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ABSTRACT
Most existing model poisoning attacks in federated learning (FL)
control a set of malicious clients and share a !xed number of mali-
cious gradients with the server in each FL training round, to achieve
a desired tradeo" between the attack impact and the attack budget.
In this paper, we show that such a tradeo" is not fundamental and
an adaptive attack budget not only improves the impact of attack
A but also makes it more resilient to defenses. However, adaptively
determining the number of malicious clients that share malicious
gradients with the central server in each FL training round has
been less investigated. This is due to the fact that most existing
model poisoning attacks mainly focus on FL optimization itself
to maximize the damage to the global model, and largely ignore
the impact of the underlying deep neural networks that are used
to train FL models. Inspired by recent !ndings on critical learn-
ing periods (CLP), where small gradient errors have irrecoverable
impact on model accuracy, we advocate CLP augmented model
poisoning attacks A-CLP in this paper. A-CLP merely augments
an existing model poisoning attack A with an adaptive attack bud-
get scheme. Speci!cally, A-CLP inspects the changes in federated
gradient norms to identify CLP and adaptively adjusts the number
of malicious clients that share their malicious gradients with the
server in each round, leading to dramatically improved attack im-
pact compared to A by up to 6.85→, with a smaller attack budget.
This in turn improves the resilience ofA by up to 2→. SinceA-CLP

is orthogonal to the attack A, it also crafts malicious gradients by
solving a di#cult optimization problem. To tackle this challenge
and based on our understandings of A-CLP, we further relax the in-
ner attack subroutineA inA-CLP and design GraSP, a lightweight
CLP augmented similarity-based attack. We show that GraSP not
only is more $exible but also achieves an improved attack impact
compared to the strongest of existing model poisoning attacks.
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1 INTRODUCTION
Federated learning (FL) [39] has emerged as an attractive distributed
learning paradigm that leverages a large number of untrusted clients
to collaboratively learn a global model, with training data on each
client. A central server repeatedly coordinates clients and collects
their local model updates computed using their local data, aggre-
gates clients’ updates using an aggregation rule, and !nally uses
aggregated updates to tune the global model, which is broadcast to
a subset of clients at the beginning of each training round.

Unfortunately, FL is susceptible to poisoning by malicious clients
compromised by an adversary [11, 14, 26, 30, 36, 49, 64], who ham-
pers the global models’ accuracy by instructing malicious clients to
share malicious gradients with the server. Most existing untargeted
model poisoning attacks, such as Fang [18], LIE [6], Min-Sum/Min-
Max [48] and MPHM [50], control a set of malicious clients M. In
each training round, attackA crafts the gradients of a !xed number
of malicious clients (i.e., a subset of M), and shares their malicious
gradients with the central server for global model update.
Tradeo! between the attack impact and the attack budget.
However, choosing the number of malicious clients that share ma-
licious gradients1 with the central server in each FL training round
presents a seemingly inherent tradeo" between the a!ack impact
(measured by the reduction in model accuracy) and the a!ack
budget (the average number of malicious clients per round). For

1Unless otherwise speci!ed, in the rest of this paper, we refer to “malicious clients”
only as those that share malicious gradients with the central server for global model
update in each FL training round. Such malicious clients are a subset of the total
compromised clients controlled by the adversary.
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example, when training a FL model using Multi-krum aggregation
rule [10] on CIFAR-10 with AlexNet, Fang, LIE, Min-Sum and Min-
Max with an attack budget of 25% of the total clients are 3.75→, 4.2→,
2.7→ and 3.8→ more impactful than those with an attack budget of
10% of the total clients [48]. However, such attack impact improve-
ments are at the cost of sharing more malicious gradients in each
FL training round, which in turn requires the adversary to invoke
more malicious clients (see Section 3.4 for details).

This raises a fundamental question:

Is this observed tradeo! between the attack impact and the attack
budget fundamental?

In this paper, we show that such a tradeo" is not fundamental
but a mere artifact of using a "xed attack budget throughout the FL
training process. In other words, if the attack budget is adaptively
tuned, i.e., the number of malicious clients is adaptively tuned over
FL training rounds, then both the attack impact and the adversary’s
resilience can be signi!cantly improved, compared against the case
with a !xed number of malicious clients in each FL training round.
The gap between the literature and the practice. However,
determining the number of malicious clients in an adaptive manner
during the training process has been less investigated in the liter-
ature. This is due to the fact that most existing model poisoning
attacks mainly focus on the FL optimization itself to maximize the
distance between benign and malicious clients, and largely ignore
the impact of the underlying deep neural networks (DNNs) that are
used to train the FL models. As a result, existing model poisoning
attacks implicitly assume that all FL training phases are equally
important, and hence consistently craft gradients of a !xed num-
ber of malicious clients in each training round. Unfortunately, this
assumption has recently been revealed to be invalid due to the
existence of critical learning periods (CLP), i.e., the !nal quality
of a DNN model is determined by the !rst few training rounds,
in which de!cits such as low quality or quantity of training data
cause irreversible model degradation. Notably, this phenomenon
has been revealed in the latest series of works in both centralized
and federated settings [1, 19, 20, 28, 29, 62, 63]. Given this phenom-
enon, it is imperative that advanced poisoning attacks evolve to
leverage these nuances. By focusing on exploiting the identi!ed vul-
nerabilities during CLPs, we can unveil FL’s susceptibilities as well
as contribute to fortifying its defenses against adversarial attacks
[3, 12, 16, 43, 64, 67]. This dual focus not only propels technical
advancements but also underscores the ethical responsibility to
ensure FL’s secure deployment in real-world applications.
Our contributions.We build upon these aforementioned works
and extend the notion of CLP to model poisoning attacks to
Byzantine-robust FL.
1. A-CLP: CLP Aware Model Poisoning Attacks.We attribute
the power of adaptive attack budget to the CLP, and advocate CLP
aware model poisoning attacks (A-CLP), which merely augments
a model poisoning attack A with an adaptive scheme for the at-
tack budget (i.e., to determine the number of malicious clients) in
each FL training round. Hence, A-CLP is orthogonal to attack A

since it does not change how attack A crafts malicious gradients.
Speci!cally, A-CLP !rst identi!es CLP in an online manner using

an easy-to-compute federated gradient norm metric, and then adap-
tively adjusts the number of malicious clients in each FL training
round. We show that a larger attack budget is only required during
CLP. As a result, A-CLP signi!cantly improves the impact of A
attack itself while maintaining a smaller attack budget on average.
This in turn improves the resilience of attack A and makes it less
easier to be defeated by state-of-the-art defenses, such as FLTrust
[12], SparseFed [43], cosDefense [16], FLAIR [3] and LeadFL [67].

Extensive experiments on two popular tasks (i.e., image clas-
si!cation and natural language processing) using !ve real-world
datasets (i.e., CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, and
the Shakespeare) across several representative models (i.e., AlexNet,
VGG-11, ResNet-18, and LSTM) show that when augmenting the
strongest state-of-the-art model poisoning attacks, e.g., Fang, LIE,
Min-Sum/Min-Max and MPHM [50], our A-CLP results in up to
6.85→ more accuracy reduction compared to A itself (i.e., without
being CLP aware). Moreover, when facing state-of-the-art defensive
mechanisms, A-CLP not only sustains e#cacy but also enhances
the resilience of A by up to 2→.

The limitation of A-CLP: To achieve the above desired trade-
o", one needs to specify the inner attack subroutine A in A-CLP.
The goal of most existing model poisoning attacks A is to deviate
the global model parameter the most towards the inverse of the
direction along which the global model parameter would change
without being attacked in each FL training round. However, op-
timizing such a global objective becomes di#cult due to highly
non-linear constraints, large state space of local models and non-
IID local data at each client [37]. As a result, either sub-optimal
approximation techniques [18] or a !xed perturbation to malicious
gradients is assumed [48], with attack e#ciency highly dependent
on these arti!cial hyperparameters. Exacerbating the problem is the
fact that full knowledge of the FL central server’s aggregation rule
is often required; however, the practice is often on the other side
since FL platforms can conceal the details and/or the parameters of
their Byzantine-robust aggregation rule to protect the security of
the proprietary global model.
2. GraSP: CLP Aware Similarity-based Attack. To address the
aforementioned limitation and based on our understandings on
A-CLP, we further relax the inner attack subroutine (i.e., A) in
A-CLP so as to make it be better integrated with the existing of
CLP in FL training process via a lightweight similarity-based poi-
soning attack. This results in a CLP aware gradient-similarity-based
poisoning attack, dubbed as GraSP. Our key insight is that it is su#-
cient to approximate an inverse direction that deviates the gradient
updates of malicious clients based on the proximities between the
adversary’s local updates, but not necessarily the most towards
the inverse direction of the global model update as done in most
existing model poisoning attacks.

To this end, we adopt a simple cosine similarity as a proximity
between clients’ gradients, and relax the adversary’s goal to com-
promise a set of malicious clients such that the cosine similarity be-
tween after-attacked aggregated gradient and that of before-attack
is beyond an attack threshold 𝐿 . Such a relaxation not only makes
GraSP signi!cantly computationally e#cient compared to A-CLP,
but also ensures that GraSP achieves an improved attack impact by
up to 1.4→ compared to A-CLP on CIFAR-10, CIFAR-100, MNIST,
Fashion-MNIST and the Shakespeare datasets across several models.
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4 CLP AWARE SIMILARITY-BASED ATTACK
As discussed in Section 1, the inner attack subroutine (i.e., A) in
A-CLP crafts malicious gradients via solving a di#cult optimiza-
tion problem to deviate the global model parameter the most to-
wards the inverse of the direction along which the global model
parameter would change before-attack. To address this limitation of
A-CLP and avoid solving a complex optimization, we relax the in-
ner attack subroutine and propose GraSP, a lightweight CLP aware
gradient-similarity-based poisoning attack. For ease of presentation,
we present GraSP with all benign gradients known in the design
(Section 4.1), which can be easily generalized to the full agnostic
case (Remark 3).

4.1 The Design of GraSP
4.1.1 Background. In the general setting of model poisoning
attacks to FL, there is one global optimization goal, which is to
maximize the damage to the global model [18, 48]. Speci!cally, let
𝑓 𝑈 (𝑉) be the changing direction of the 𝑔-th global model parameter
in round 𝑉 when there is no attack, where 𝑓 𝑈 (𝑉) = 1 (resp. 𝑓 𝑈 (𝑉) = 1)
means that the 𝑔-th global model parameter increases (resp. de-
creases) upon the previous round. Denote s(𝑉) = (𝑓 𝑈 (𝑉)) 𝑈=1,· · · ,𝑉 .
Suppose in round 𝑉 , w𝐿 (𝑉) (resp. g𝐿 (𝑉)) is the local model (resp. gra-
dient) update that client 𝑅 tends to send to the central server when
there is no attack, and w̃𝐿 (𝑉) (resp. g̃𝐿 (𝑉)) is the local model (resp.
gradient) update if client 𝑅 is compromised. Like most of the existing
attacks, e.g., [18, 48], we restrict ourselves to

w̃𝐿 (𝑉) := w𝐿 (𝑉) ↘ 𝑋𝑕𝐿s𝑃 , (2)

which models the deviation between the crafted local model w̃𝐿 (𝑉)
and the before-attack local modelw𝐿 (𝑉), with 𝑕𝐿 > 0. Sincew𝐿 (𝑉) =
w𝐿 (𝑉 ↘ 1) ↘ 𝑋g𝐿 (𝑉) and w̃𝐿 (𝑉) = w𝐿 (𝑉 ↘ 1) ↘ 𝑋g̃𝐿 (𝑉),where w𝐿 (𝑉 ↘ 1)
is the received latest global model at the beginning of round 𝑉 ,
from (2), we have g̃𝐿 (𝑉) = g𝐿 (𝑉) + 𝑕𝐿s𝑃 . The adversary’s goal is then
to derivate the global model parameter the most towards the inverse
of the direction along which the global model parameter would
change without attacks at each round 𝑉 , i.e., for any aggregation
rule H(·),

max
g̃1 (𝑃 ),· · · ,g̃𝑂 (𝑃 )

s↭𝑃 (g𝑃 ↘ g̃𝑃 ), (3)

s.t. g(𝑉) = H(g1 (𝑉), · · · , g𝑇 (𝑉), g𝑇+1 (𝑉), · · · , g𝑄 (𝑉)), (4)
g̃(𝑉) = H(g̃1 (𝑉), · · · , g̃𝑇 (𝑉), g𝑇+1 (𝑉), · · · , g𝑄 (𝑉)). (5)

Given (2), Fang et al. [18] showed that the above optimization
problem can be transformed to one with the objective function
of (𝑕𝐿 )𝐿=1,· · · ,𝑇 . However, optimizing such a global objective for
(𝑕𝐿 )𝐿=1,· · · ,𝑇 becomes di#cult due to highly non-linear constraints,
large state space of local models and non-IID local data distributions
at each client [37]. Below, we !rst provide intuition behind our
attack and then propose a CLP aware similarity-based poisoning
attack, GraSP to compromise malicious clients in FL.

4.1.2 Intuition. Most Byzantine-robust FL aggregation rules are
distance-based, i.e., removing gradients that lie outside of the clique
formed by benign gradients. In particular, the distances could be
from benign gradients [2], or di"erence between 𝑃𝑊 -norms of benign
and malicious clients [52], or distributional di"erences with benign
gradients [7]. A natural idea to maximize the performance of the

adversary is to ensure that malicious gradients lie within the clique
of benign gradients. However, to guarantee such a similarity is
far from trivial. As discussed earlier, optimizing a complex global
objective is often di#cult [18]. Instead of solving a complex global
optimization problem to determine the changing directions,why not
simply craft the malicious clients’ gradients based on the proximities
between their local models?

4.1.3 GraSP. Our key insight is that it is su#cient to approximate
an inverse direction that deviates the malicious gradient updates
based on proximities between the adversary’s local updates, but
not necessarily the most towards the inverse direction of global
model update as in existing attacks A. The number of such ma-
licious clients in each round is determined by the identi!ed CLP
as in Algorithm 1. This naturally leads to two questions: (i) how
to measure the proximity or distance? and (ii) how to determine the
attack goal of the adversary in each communication round?

For the choice of measure, the 𝑃𝑊 distance has been used as a
heuristic between models [48]. However, this often su"ers from
huge computational overheads due to the large state space of local
models. The cosine similarity between gradients calculated by up-
dates of model parameters is an alternative lightweight measure.
Speci!cally, the cosine similarity between gradient updates of any
two clients 𝑅 and 𝑅↔ satis!es

F (g𝐿 (𝑉), g𝐿↔ (𝑉)) :=
〈
g𝐿 (𝑉), g𝐿↔ (𝑉)

〉
⇐g𝐿 (𝑉)⇐ · ⇐g𝐿↔ (𝑉)⇐

. (6)

The expectation of F (·, ·) remains asymptotically constant as di-
mensionality increases [45].

Using this similarity measure, the goal of the adversary boils
down to craft the gradients of𝑈CLP malicious clients such that the
cosine similarity between the after-attacked aggregated gradient
computed by the adversary and that of before-attack is 𝐿 ↓ [↘1, 1],
where 𝐿 is a system-wide control knob, which the adversary can
set to tradeo" between the severity of attacks and possibility to
be defensed. The number of malicious clients is𝑈CLP = 2𝑈 if the
current round is in CLP, and otherwise𝑈/2 as in A-CLP. We call 𝐿
as the attack threshold. The choice of 𝐿 is very much dependent on
the adversary, and having 𝐿 as an adversary input adds to the “$ex-
ibility” of the overall attacking framework and ultimately, shows
the wide applicability of our GraSP.

Therefore, for a given attack threshold 𝐿 , the goal of the adversary
is to !nd changing directions via 𝑕𝐿 ,⇔𝑅 to craft gradients of each of
𝑈CLP malicious clients by solving (7),

F (g(𝑉), g̃(𝑉)) = 𝐿, (7)

where g(𝑉) and g̃(𝑉) are given in (4) and (5), and g̃𝐿 (𝑉) = g𝐿 (𝑉) +𝑕𝐿s𝑃 ,
⇔𝑅 = 1, · · · ,𝑈CLP. One challenge to solve (7) is that the adversary
does not know the aggregation rule. To this end, we make one
approximation. The attack threshold provides a “$exibility” to the
adversary since it does not need to attack towards the most inverse
direction by solving a complex optimization problem, and hence our
approximation can be treated as part of such a $exibility. As we will
demonstrate in experiments, GraSP using such an approximation
for all considered aggregation rules can substantially increase the
attack impact compared to the strongest state of the arts.

Speci!cally, we assume that the adversary adopts an “average
rule” to approximate the aggregation rule of the server, i.e., g(𝑉) ≃
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1
𝑄
∑𝑄
𝐿=1 g𝐿 (𝑉), g̃(𝑉) ≃

1
𝑄
∑𝑄
𝐿=1 g̃𝐿 (𝑉), and 𝑕 ↫ ∑𝑇CLP

𝐿=1 𝑕𝐿 . Then g̃(𝑉) ≃
g(𝑉) + 𝑕s(𝑉), from which we can easily solve a so-called “global” 𝑕
that is common for all𝑈CLP malicious clients. Formally, we have
the following proposition.

P$&’&()*)&+ 1. Suppose that 𝑕 is the changing direction to craft
gradients of𝑈CLP malicious clients based on the cosine similarity. For
any given attack threshold 𝐿 , the value of 𝑕 is

𝑕 =
↘𝑖 ↘

√
𝑖2 ↘ 4𝑗𝑘
2𝑗

, (8)

where 𝑗 = (g(𝑉)↭s(𝑉))2 ↘𝐿2⇐g(𝑉)⇐2 · ⇐s(𝑉)⇐2, 𝑘 = (1↘𝐿2) · ⇐g(𝑉)⇐4,
and 𝑖 = 2(𝐿2 ↘ 1)⇐g(𝑉)⇐2 · g(𝑉)↭s(𝑉).

Given the value of 𝑕 in Proposition 1, the adversary determines
the changing directions for the aggregated gradient g̃(𝑉) of all
malicious clients at round 𝑉 . Since in practical FL systems, clients
often have heterogeneous data distributions and system capabilities
[11, 25, 30], and hence a heterogeneous changing direction deter-
mined by 𝑕𝐿 ,⇔𝑅 is more preferable than a “global” one 𝑕 across all ma-
licious clients. To achieve this goal, we !rst leverage the de!nition of

cosine similarity to obtain F (g(𝑉), g̃(𝑉)) = 1
𝑇CLP

∑𝑂CLP
𝑀=1 ↖g(𝑃 ),g̃𝑀 (𝑃 )↙
⇐g(𝑃 ) ⇐ ·⇐ g̃(𝑃 ) ⇐ .

Then the changing direction to craft each malicious gradient ⇔𝑅
can be approximated by F (g(𝑉), g̃𝐿 (𝑉)) =

↖g(𝑃 ),g̃𝑀 (𝑃 )↙
⇐g(𝑃 ) ⇐ ·⇐ g̃(𝑃 ) ⇐ ≃ 𝐿 . When

combined with g̃𝐿 (𝑉) = g𝐿 (𝑉) + 𝑕𝐿s𝑃 , we can determine 𝑕𝐿 ,⇔𝑅 , which
is summarized in the following corollary.

L!""# 1. Suppose that 𝑕𝐿 is the changing direction to craft ma-
licious gradient of the malicious client 𝑅 , ⇔𝑅 = 1, · · · ,𝑈CLP. Then for
any given attack threshold 𝐿 , the value of 𝑕𝐿 satis"es

𝑕𝐿 =

〈
g(𝑉), g𝐿 (𝑉)

〉
↘ 𝐿 ⇐g(𝑉)⇐⇐g̃(𝑉)⇐

g(𝑉)↭s(𝑉) , ⇔𝑅 = 1, · · · ,𝑈CLP . (9)

R!"#$% 3. Our GraSP can be easily generalized when benign
gradients are unknown to the adversary. Since the adversary does
not have benign gradients, the changing directions s(𝑉),⇔𝑉 are not
known and hence we cannot directly solve for 𝑕𝐿 using (9). However,
the before-attack local models on malicious clients are known to the
adversary. Similar to [18, 48], we estimate changing directions using
the mean before-attack local model of malicious clients. In other words,
if the mean of the 𝑔-parameter is larger than the 𝑔-th global model
parameter received from the server in the current round, then 𝑓 𝑈 (𝑉) is
approximated to be 1, and otherwise ↘1. Using this approximation,
we can obtain the changing directions, which we denote as s̃, and
hence the 𝑕̃𝐿 ,⇔𝑅 using (9).

4.2 Evaluation of GraSP
We compare GraSP with state-of-the-art CLP aware attacks (Sec-
tion 3) when benign gradients are unknown (Table 5) to the adver-
sary. We consider the same experimental setup as in Section 3.5.
Similar observations hold when benign gradients known to the
adversary, and hence are omitted here due to space constraint.
• Attack impacts. When benign gradients are unknown to the
adversary, the impacts of GraSP attack and that of the best among
LIE-CLP, Fang-CLP, Min-Max-CLP, Min-Sum-CLP and MPHM-CLP at-
tacks (Table 2), denoted as A∝

-CLP, are reported in Table 5. GraSP

Dataset
(Model)

Aggregation
Rule

A
∝
-CLP GraSP

Attack
Impact

Time
(ms)

Memory
(MB)

Attack
Impact

Time
(ms)

Memory
(MB)

CIFAR-10
(AlexNet)

Multi-krum 26.47 283.9 95.7 28.55 54.2 94.5
Bulyan 20.90 264.9 94.3 22.11 52.1 93.2

Trimmed-mean 22.85 266.0 91.9 24.31 52.7 90.9
Median 22.62 537.4 107.6 23.60 50.5 98.3
AFA 19.05 244.0 95.1 20.27 49.9 96.2

CIFAR-10
(VGG)

Multi-krum 18.07 986.7 382.5 20.13 110.7 403.1
Bulyan 22.53 2134.9 430.5 24.03 118.8 410.4

Trimmed-mean 20.95 842.4 371.4 22.62 108.1 398.9
Median 23.58 2203.5 405.7 24.21 113.3 407.2
AFA 11.55 901.3 392.4 13.27 107.1 415.3

CIFAR-100
(ResNet)

Multi-krum 25.62 1440.2 498.1 27.13 217.7 449.3
Bulyan 19.11 1099.9 423.5 20.30 219.6 431.3

Trimmed-mean 19.62 1121.7 419.3 21.35 220.4 428.7
Median 23.90 1414.6 472.4 24.30 216.8 455.6
AFA 13.93 1103.8 420.2 14.01 215.8 412.9

MNIST
(FC)

Multi-krum 2.32 42.2 15.6 2.86 13.5 17.2
Bulyan 2.14 43.8 16.2 3.02 13.4 15.8

Trimmed-mean 2.28 42.1 14.3 2.85 14.1 14.1
Median 2.16 43.0 17.1 2.72 13.6 16.9
AFA 2.10 41.8 13.9 2.55 12.6 15.3

Fashion
MNIST

(AlexNet)

Multi-krum 15.37 212.8 106.9 16.37 43.9 107.8
Bulyan 20.58 390.2 116.8 21.81 56.6 103.2

Trimmed-mean 11.77 126.6 76.5 12.41 58.0 98.0
Median 10.65 116.3 82.4 11.35 50.6 104.3
AFA 9.49 201.3 98.6 10.68 45.1 102.7

Shakespeare
(LSTM)

Multi-krum 11.94 340.6 63.8 12.85 43.6 56.8
Bulyan 13.71 327.9 59.4 14.46 42.5 53.4

Trimmed-mean 12.18 329.6 67.2 13.05 43.0 58.1
Median 11.53 316.4 56.8 12.21 42.6 52.9
AFA 10.98 256.2 50.5 11.40 43.6 54.7

Table 5: Comparisons of GraSP andA
∝-CLP in terms of attack

impact and computational complexity under various threat
models using non-IID partitioned datasets, when the benign
gradients are unknown.

is consistently more impactful than the strongest of existing poi-
soning attacks. For example, GraSP is 1.1→ more impactful than
A

∝
-CLP attack for AlexNet and VGG-11 models on non-IID parti-

tioned CIFAR-10. Combined with results in Table 2, GraSP is up to
2.9→ more impactful than the strongest state-of-the-art LIE, MIN-
Sum and Min-Max attacks. Similarly, GraSP is 1.4→ and 1.1→ more
impactful thanA

∝
-CLP attack for FC model on non-IID MNIST and

AlexNet model on non-IID Fashion-MNIST, respectively, and hence
is 9.6→ and 3.3→ more impactful than the strongest state-of-the-art
attacks, respectively.
•Gradientmagnitude.Given the above results, a natural question
is why GraSP is much more impactful than A

∝
-CLP? Recall that

existing attacks A craft malicious gradients via solving a di#cult
optimization problem to deviate the global model parameter the
most towards the inverse of the direction along which the global
model parameter would change before-attack. This is a two-edged
sword. On one hand, it is successful, then it brings the largest
attack impact to the global model. On the other hand, this makes it
vulnerable and easier to be detected by existing Byzantine-robust
aggregation rule, which in turn diminish its attack impacts. In
contrast, GraSP relaxes the hard optimization rather than deviating
the most inverse directions (see Section 4.1), which becomes harder
to be detected and in turn improves the attack impact.

Another reason that leads to the higher attack impact of GraSP is
due to its larger gradient magnitude. More precisely, let g𝐿 (𝑉) be the
gradient of 𝑅-th client at 𝑉-th training round without being attacked,
and g↔𝐿 (𝑉) be the modi!ed gradient of 𝑅-th client after being attacked.
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Dataset
(Model)

Aggregation
Rule

Unknown Known
A

∝
GraSP

∝
A

∝
GraSP

∝

CIFAR-10
(AlexNet)

Multi-krum 12.03 13.82 19.88 21.76
Bulyan 9.40 10.58 13.61 15.01

Trimmed-mean 10.32 11.76 16.43 17.36
Median 11.73 12.69 18.31 19.12
AFA 9.27 10.42 15.11 16.88

CIFAR-10
(VGG)

Multi-krum 9.94 11.18 19.43 21.04
Bulyan 15.16 15.98 21.00 22.25

Trimmed-mean 13.14 14.68 22.24 23.88
Median 15.23 16.08 20.02 21.43
AFA 8.54 9.03 12.87 13.66

CIFAR-100
(ResNet-18)

Multi-krum 18.49 19.08 23.61 24.88
Bulyan 14.28 15.01 22.63 24.51

Trimmed-mean 11.17 12.31 14.49 16.74
Median 12.41 13.12 18.45 19.82
AFA 10.13 11.06 12.83 14.43

MNIST
(FC)

Multi-krum 1.59 1.81 2.12 2.31
Bulyan 1.36 1.73 1.71 1.95

Trimmed-mean 1.49 1.97 1.76 2.13
Median 1.51 1.75 1.85 1.97
AFA 1.29 1.51 1.80 1.96

Fashion
MNIST

(AlexNet)

Multi-krum 5.97 6.90 9.43 10.39
Bulyan 7.95 8.59 12.59 13.20

Trimmed-mean 6.10 7.42 6.74 7.69
Median 5.84 6.74 9.47 10.75
AFA 4.91 5.58 7.76 8.59

Shakespeare
(LSTM)

Multi-krum 9.65 10.58 13.34 13.93
Bulyan 10.38 10.89 12.23 12.95

Trimmed-mean 9.03 9.92 10.18 10.65
Median 9.09 9.64 10.72 11.32
AFA 8.58 9.21 10.10 10.52

Table 7: Comparisons of GraSP∝ (i.e., GraSP without CLP) and
A

∝ in terms of attack impact under various threat models us-
ing non-IID partitioned datasets, whereA∝ is the best among
baseline attacks reported in Table 2. “Unknown” (“Known”)
means that benign gradients are unknown (known) to the
adversary.

•Without CLP awareness. In this paper, we focus on advocating
CLP aware attacks, and directly present the results of GraSP. We
also evaluate the performance of GraSPwithout CLP awareness and
denote the corresponding method as GraSP∝. As shown in Table 7,
GraSP

∝ improves the performance of A, however, its bene!ts are
further pronounced when being CLP aware, i.e., GraSP brings much
more bene!ts than GraSP

∝ as shown in Tables 5.

T!"#!$!% 2. There are two fundamental di!erences between
GraSP and existing attacks that contribute to the superior performance
of GraSP. First, rather than solving a complex optimization problem to
maximize the di!erence in the direction between malicious and benign
gradients, a key insight in the design of GraSP is that it is su#cient
to approximate the largest derivation via an attack threshold. This
$exible control knob relaxes the assumptions (see Section 1) needed in
state of the arts [18, 48], whose performance largely depend on these
hyperparameters. In addition, GraSP carefully crafts the gradient
of each malicious client (i.e., using di!erent 𝑕𝐿 ) due to the practical

heterogeneity among FL clients, rather than a single attack across all
malicious clients, e.g., [18].

Second, our GraSP leverages CLP to adaptively determine the num-
ber of malicious clients in each round while existing attacks are ag-
nostic to CLP. Though being CLP aware also signi"cantly improves
the impact of these attacks (see Section 3.5), GraSP is superior to their
A-CLP counterparts. We conjecture that a $exible attack threshold,
rather than a maximal attack, "ts better with CLP, e.g., GraSP has
a larger gradient magnitude especially during CLP (see Figure 15),
which contributes to the its superior performance. Building a better
theoretical understanding of GraSP is our future work.

5 CONCLUSIONS
In this paper, we advocated CLP aware model poisoning attacks,
dubbed asA-CLP. We demonstrated that by augmenting an existing
state-of-the-art model poisoning attack A with the CLP, the attack
impact and the resilience can be signi!cantly improved. We further
proposed a lightweight CLP aware similarity-based attack GraSP

that outperforms the strongest of existing model poisoning attacks
by large margins. In the future work, it would be interesting to
study CLP aware targeted and backdoor attacks, and to design new
CLP aware defenses against CLP aware attacks.
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A APPENDIX: DATASETS AND MODELS
In this study, our exploration spans two pivotal tasks using a variety
of datasets and models, as we aim to dissect the intricacies of both
image classi!cation and natural language processing (NLP).

For image classi!cation, we engage with the CIFAR-10 and
CIFAR-100 datasets [32], each comprising 60,000 color images of
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Parameter Shape Layer hyper-parameter
layer1.conv1.weight 3 → 3, 64 stride:1; padding: 1
layer1.conv1.bias 64 N/A
batchnorm2d 64 N/A

layer2.conv2
[
3 → 3, 64
3 → 3, 64

]
→ 2 stride:1; padding: 1

layer3.conv3
[
3 → 3, 128
3 → 3, 128

]
→ 2 stride:1; padding: 1

layer4.conv4
[
3 → 3, 256
3 → 3, 256

]
→ 2 stride:1; padding: 1

layer5.conv5
[
3 → 3, 512
3 → 3, 512

]
→ 2 stride:1; padding: 1

pooling.avg N/A N/A
layer6.fc6.weight 512 → 100 N/A
layer6.fc6.bias 100 N/A

Table 8: Detailed information of the ResNet-18 architecture
used in our experiments. All non-linear activation functions
in this architecture are ReLU. The shapes for convolution
layers follow (𝑙𝐿𝑄,𝑙𝑋𝑌𝑃 , 𝑚, 𝑚).

Parameter Shape Layer hyper-parameter
layer1.conv1.weight 3 → 64 → 3 → 3 stride:1; padding: 1
layer1.conv1.bias 64 N/A
pooling.max N/A kernel size:2; stride: 2

layer2.conv2.weight 64 → 128 → 3 → 3 stride:1; padding: 1
layer2.conv2.bias 128 N/A
pooling.max N/A kernel size:2; stride: 2

layer3.conv3.weight 128 → 256 → 3 → 3 stride:1; padding: 1
layer3.conv3.bias 256 N/A

layer4.conv4.weight 256 → 256 → 3 → 3 stride:1; padding: 1
layer4.conv4.bias 256 N/A
pooling.max N/A kernel size:2; stride: 2

layer5.conv5.weight 256 → 512 → 3 → 3 stride:1; padding: 1
layer5.conv5.bias 512 N/A

layer6.conv6.weight 512 → 512 → 3 → 3 stride:1; padding: 1
layer6.conv6.bias 512 N/A
pooling.max N/A kernel size:2; stride: 2

layer7.conv7.weight 512 → 512 → 3 → 3 stride:1; padding: 1
layer7.conv7.bias 512 N/A

layer8.conv8.weight 512 → 512 → 3 → 3 stride:1; padding: 1
layer8.conv8.bias 512 N/A
pooling.max N/A kernel size:2; stride: 2
dropout N/A p=20%

layer9.fc9.weight 4096 → 512 N/A
layer9.fc9.bias 512 N/A

layer10.fc10.weight 512 → 512 N/A
layer10.fc10.bias 512 N/A

dropout N/A p=20%
layer11.fc11.weight 512 → 10 N/A
layer11.fc11.bias 10 N/A

Table 9: Detailed information of the VGG-11 architecture
used in our experiments. All non-linear activation functions
in this architecture are ReLU. The shapes for convolution
layers follow (𝑙𝐿𝑄,𝑙𝑋𝑌𝑃 , 𝑚, 𝑚).

32→32 pixels across 10 and 100 classes respectively, segmented into

Parameter Shape Layer hyper-parameter
layer1.conv1.weight 3 → 64 → 3 → 3 stride:2; padding: 1
layer1.conv1.bias 32 N/A
pooling.max N/A kernel size:2; stride: 2

layer2.conv2.weight 64 → 192 → 3 → 3 stride:1; padding: 1
layer2.conv2.bias 64 N/A
pooling.max N/A kernel size:2; stride: 2

layer3.conv3.weight 192 → 384 → 3 → 3 stride:1; padding: 1
layer3.conv3.bias 128 N/A

layer4.conv4.weight 384 → 256 → 3 → 3 stride:1; padding: 1
layer4.conv4.bias 128 N/A

layer5.conv5.weight 256 → 256 → 3 → 3 stride:1; padding: 1
layer5.conv5.bias 256 N/A
pooling.max N/A kernel size:2; stride: 2
dropout N/A p=5%

layer6.fc6.weight 1024 → 4096 N/A
layer6.fc6.bias 512 N/A

dropout N/A p=5%
layer7.fc7.weight 4096 → 4096 N/A
layer7.fc7.bias 512 N/A

layer8.fc8.weight 4096 → 10 N/A
layer8.fc8.bias 10 N/A

Table 10: Detailed information of the AlexNet architecture
used in our experiments. All non-linear activation functions
in this architecture are ReLU. The shapes for convolution
layers follow (𝑙𝐿𝑄,𝑙𝑋𝑌𝑃 , 𝑚, 𝑚).

Parameter Shape Layer hyper-parameter
layer1.embeding 80 → 256 N/A

layer2.lstm 256 → 512 num_layers=2, batch_!rst=True
dropout N/A p=5%

layer3.fc.weight 512 → 80 N/A
layer3.fc.bias 80 N/A

Table 11: Detailed information of the LSTM architecture used
in our experiments.

Parameter Shape Layer hyper-parameter
layer1.fc1.weight 1024 → 256 N/A
layer1.fc1.bias 256 N/A

layer2.fc2.weight 256 → 256 N/A
layer2.fc2.bias 256 N/A

layer3.fc3.weight 256 → 10 N/A
layer3.fc3.bias 10 N/A

Table 12: Detailed information of the FC architecture used in
our experiments. All non-linear activation functions in this
architecture are ReLU. The shapes for convolution layers
follow (𝑙𝐿𝑄,𝑙𝑋𝑌𝑃 , 𝑚, 𝑚).

sets of 50,000 images for training and 10,000 for testing. Addition-
ally, we utilize the Fashion-MNIST and MNIST datasets [34], each
containing 60,000 28 → 28 grayscale training images and 10,000 test
images, distributed among 10 classes.

In the domain of NLP, our focus shifts to next-character pre-
diction, employing “The Complete Works of William Shakespeare”
dataset [39], which encompasses 734,057 training data points and
70,657 test data points, spread over 74 characters. Through this
diverse dataset and model utilization, our work seeks to provide
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nuanced insights into the methodologies’ e"ectiveness and adapt-
ability across di"erent challenges.

For classi!cation tasks, we deploy several models accordingly:
ResNet-18 [23], VGG-11 [51], and AlexNet [33]. Detailed speci!ca-
tions of these models can be found in Tables 8, 10 and 9. For NLP’s
next-character prediction, use an LSTM language model, as detailed
in Table 11, following the con!guration in [31]. The FC model used
for the MNIST dataset is described in Table 12. This diverse array
of datasets and models provides a robust platform for evaluating
our federated learning strategies.

B APPENDIX: DESIGN DETAILS
B.1 Feasibility Guarantee for A∝-CLP
As aforementioned, the central server randomly selects a subset
of 𝑇 out of 𝑀 clients to participate in the global model update in
each round. In our A-CLP framework,𝑈 out of 𝑇 clients should
be malicious clients. Then a natural question is that how many
clients in total (denoted as𝑆) should the adversary A control so that
our A-CLP framework is feasible? In the following, we provide a
theoretical performance guarantee on the feasibility of A-CLP. In
other words, we determine the so-called control rate 𝑆 of attack
A such that the event that at least𝑈 malicious clients are selected
in each round 𝑉 and hence contribute to the global model update,
occurs with a probability 𝑂0, i.e.,

1(𝑆
𝑄

)
min(𝑅,𝑄)∑

𝐿=𝑇

(𝑆↘𝑅
𝑄↘𝐿

) (𝑅
𝐿

)
⇒ 𝑂0 . (10)

Unfortunately, (10) is hard to be solved directly due to the compu-
tational complexity, especially when 𝑀 is large. Our key insight
is that this problem can be equivalently transformed into a hyper-
geometric distribution problem [21, 22]. Speci!cally, denote 𝑎 as a
random variable indicating the number of malicious clients selected
by the central server at each round, which follows the hypergeo-
metric distribution, i.e., 𝑎 ⇓ 𝑏 (𝑇,𝑆,𝑀 ), with its mean 𝑛̃ = 𝑄𝑅

𝑆 and
variance 𝑜̃2 = 𝑄𝑅

𝑆 (1 ↘ 𝑅
𝑆 )

𝑆↘𝑄
𝑆↘1 . When the total number of clients

𝑀 is large, the hypergeometric distribution can be approximated
by the binomial distribution and hence 𝑎 approximately follows
the normal distribution𝑝 (𝑛̃, 𝑜̃2) due to the central limit theorem.
As a result, the number of selected malicious clients 𝑎 satis!es

P(𝑎 ⇒ 𝑈) = P
(
𝑎 ↘ 𝑛̃

𝑜̃
⇒

𝑈 ↘ 𝑛̃

𝑜̃

)
⇒ 𝑂0, (11)

where 𝑍↘𝑎̃
𝑏̃ ⇓ 𝑝 (0, 1). Therefore, we can obtain𝑆 by solving (11),

which satis!es

𝑆 ⇒
↘𝑞 +

′
𝑞2 ↘ 4𝑟𝑚
2𝑟

, (12)

where 𝑟 = 2𝑄
𝑆 + (𝑠 (𝑂0))2

(𝑆↘𝑄)𝑄
𝑆 2 (𝑆↘1) , 𝑞 = ↘2𝑄𝑇𝑆 ↘ (𝑠 (𝑂0))2

(𝑆↘𝑄)𝑄
𝑆 (𝑆↘1) ,

𝑚 = 𝑈2, and 𝑠 (𝑂0) =
𝑇↘𝑎̃
𝑏̃ is the quantile of normal distribution.

We remark that (12) can be easily solved for any given 𝑇,𝑈,𝑀 , 𝑂0.
We now numerically evaluate the performance of our proposed

lightweight approximated method in Equation (12) to determine the
control rate, i.e.,𝑆 of attack A for any given 𝑇,𝑈,𝑀 , 𝑂0. We com-
pare it with the exact results computed from Equation (10), which
is order of magnitude complex than our method in Equation (12).

𝑂0 = 0.55 Method 𝑇 = 16 𝑇 = 24 𝑇 = 32

𝑈 = 0.125𝑇 Equation (10) 15 15 16
Equation (12) 17 17 17

𝑈 = 0.25𝑇 Equation (10) 31 31 32
Equation (12) 33 33 33

𝑈 = 0.375𝑇 Equation (10) 47 47 48
Equation (12) 50 49 49

Table 13: Comparison of the control rate 𝑆 computed by
Equation (10) and Equation (12) when 𝑀 = 128 and 𝑂0 = 0.55.

𝑂0 = 0.55 Method 𝑇 = 32 𝑇 = 48 𝑇 = 64

𝑈 = 0.125𝑇 Equation (10) 31 32 32
Equation (12) 34 33 33

𝑈 = 0.25𝑇 Equation (10) 63 64 64
Equation (12) 66 66 65

𝑈 = 0.375𝑇 Equation (10) 95 96 96
Equation (12) 98 98 98

Table 14: Comparison of the control rate 𝑆 computed by
Equation (10) and Equation (12) when 𝑀 = 256 and 𝑂0 = 0.55.

𝑂0 = 0.9 Method 𝑇 = 16 𝑇 = 24 𝑇 = 32

𝑈 = 0.125𝑇 Equation (10) 28 26 24
Equation (12) 31 27 25

𝑈 = 0.25𝑇 Equation (10) 47 44 42
Equation (12) 49 45 43

𝑈 = 0.375𝑇 Equation (10) 64 61 59
Equation (12) 65 62 59

Table 15: Comparison of the control rate 𝑆 computed by
Equation (10) and Equation (12) when 𝑀 = 128 and 𝑂0 = 0.9.

𝑂0 = 0.9 Method 𝑇 = 32 𝑇 = 48 𝑇 = 64

𝑈 = 0.125𝑇 Equation (10) 49 46 44
Equation (12) 52 47 44

𝑈 = 0.25𝑇 Equation (10) 86 82 79
Equation (12) 87 82 79

𝑈 = 0.375𝑇 Equation (10) 119 115 112
Equation (12) 120 115 112

Table 16: Comparison of the control rate 𝑆 computed by
Equation (10) and Equation (12) when 𝑀 = 256 and 𝑂0 = 0.9.

For ease of complexity (mainly for computing Equation (10)), we
consider two cases: (i) 𝑀 = 128, and the FL central server selects
𝑇 = 16, 24 or 32 clients for global model update in each round; and
(ii) 𝑀 = 256, and the FL central server selects 𝑇 = 32, 48 or 64 clients
for global model update in each round.

The adversary needs to guarantee 𝑈 malicious clients are se-
lected with probability 𝑂0. Speci!cally, we consider the following
cases with𝑈 = 0.125𝑇 to𝑈 = 0.375𝑇 and 𝑂0 = 0.55, 0.9. The number
of malicious clients𝑆 that the adversary need to control computed
by Equation (10) and Equation (12) for the above cases are presented
in Tables 13 and 15, and Tables 14 and 16, respectively. It is clear
that the results computed by these two methods are quite close to
each other, especially when 𝑇 and𝑈 become larger. Hence we use
our lightweight method in Equation (12) to determine the control
rate𝑆 for the adversary in our experiments.

511




	Abstract
	1 Introduction
	2 Background
	3 A-CLP: CLP Aware Model Poisoning Attacks
	3.1 Model Poisoning Attacks to FL Exhibit CLP
	3.2 Identifying Critical Learning Periods
	3.3 The Design of A-CLP
	3.4 Feasibility Guarantee for A-CLP
	3.5 Evaluation of A-CLP

	4 CLP Aware Similarity-based Attack
	4.1 The Design of GraSP
	4.2 Evaluation of GraSP

	5 Conclusions
	Acknowledgments
	References
	A Appendix: Datasets and Models
	B Appendix: Design Details
	B.1 Feasibility Guarantee for A*-CLP
	B.2 Robustness of Identifying CLP


