

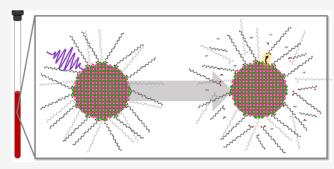
pubs.acs.org/JACS Article

Ligand Desorption and Fragmentation in Oleate-Capped CdSe Nanocrystals under High-Intensity Photoexcitation

3 Samantha M. Harvey, Jacob H. Olshansky, Alice Li, Shobhana Panuganti, Mercouri G. Kanatzidis,

⁴ Joseph T. Hupp, Michael R. Wasielewski, and Richard D. Schaller*

Cite This: https://doi.org/10.1021/jacs.3c10232


ACCESS

III Metrics & More

Article Recommendations

Supporting Information

s ABSTRACT: Semiconductor nanocrystals (NCs) offer prospec-6 tive use as active optical elements in photovoltaics, light-emitting 7 diodes, lasers, and photocatalysts due to their tunable optical 8 absorption and emission properties, high stability, and scalable 9 solution processing, as well as compatibility with additive 10 manufacturing routes. Over the course of experiments, during 11 device fabrication, or while in use commercially, these materials are 12 often subjected to intense or prolonged electronic excitation and 13 high carrier densities. The influence of such conditions on ligand 14 integrity and binding remains underexplored. Here, we expose 15 CdSe NCs to laser excitation and monitor changes in oleic acid 16 that is covalently attached to the NC surface using nuclear

magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleic acid is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H₂, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species.

24 INTRODUCTION

Colloidal semiconductor nanocrystals (NCs) are heralded for their desirable photophysical properties (e.g., large absorption cross sections, visible, and near-infrared absorption, narrow emission) that are tunable through size and morphology in addition to composition. These materials typically present 1—30 10 nm inorganic crystalline core size and long-chain alkyl ligand surface termination. Ligands are critical not only for colloidal stability but also for passivating the undercoordinated surfaces of NCs to promote radiative recombination rather than surface trapping. The coupling of the optoelectronic properties produced by the semiconductor core with robust syntheses and solution processability bolstered by capping ligands have led to semiconductor NC implementation for a wide range of applications including photocatalysis, 4—6 photovoltaics, 4—9 display technologies, biosensing, and lasing. 13,14

Many of the features of NCs that make them desirable for applications bring complications, as well. Quantum confinement of carriers permits tunability of absorption and emission, yet also gives rise to rapid Auger recombination of multiexcitons that can cause substantial heating rather than light doubted. Colloidal suspensions offer compatibility with

dropcasting, spin-coating, or printing as inks, 16,17 but the 47 interface between the semiconductor lattice and the ligands/ 48 surrounding media impacts heat dissipation. 18,19 This coupled 49 with reduced melting temperatures due to high surface 50 energies compared to bulk bonding can prove problematic 51 for high-intensity excitation applications such as solar 52 concentrators, lasers, and LEDs. 19,20 The high surface areas 53 of NCs are not only promising as catalytic sites but are also 54 prone to oxidation, especially if in conditions that cause excess 55 charges to remain. 21-23 While some applications (e.g., 56 photonic curing, ^{24,25} photothermal therapy ²⁶) aim to use 57 such properties of NCs to their benefit, most are hindered by 58 them. Despite understanding that excitation may negatively 59 impact NCs, a comprehensive microscopic picture of sample 60 evolution under the relevant conditions is lacking. Even in 61 laboratory settings, when NCs are excited to study their 62

Received: September 17, 2023 Revised: January 7, 2024 Accepted: January 9, 2024

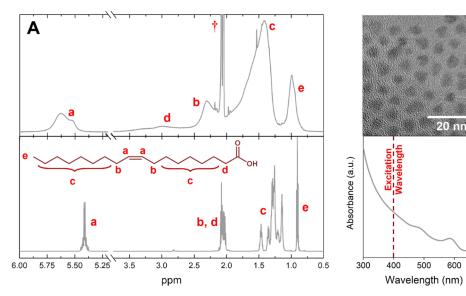


Figure 1. CdSe NCs before photoexcitation. (A) NMR spectra of oleate-terminated CdSe NCs (top) and oleic acid free in solution (bottom). Protons are assigned for each; residual toluene is labeled with \dagger . (B) TEM image of the NCs. Diameter was measured to be 4.2 \pm 0.8 nm. (C) Absorption spectrum of as-synthesized particles with the excitation wavelength (400 nm) is marked.

63 optoelectronic behavior, there is little systematic study and 64 understanding related to the effects of laser pumping over the 65 course of optical measurements. Oftentimes NCs that have 66 exhibited these behaviors are discarded without further 67 probing to uncover what is occurring and why because they 68 are considered "dead" optically, their photoluminescence has 69 dropped substantially, or precipitation renders them challeng-70 ing or impossible to colloidally process further.

The understanding of photophysical properties in semi-72 conductor NCs has advanced significantly, but only recently 73 research has begun to delve deeply into NC degradation. Many 74 studies focus purely on detrimental effects pertaining to the crystalline lattice; monitoring structural changes or as optical 76 characteristics diminish, yet the surfaces and ligand shell are 77 critical components of colloidal NCs that merit in-depth study. This is especially true given that surface oxidation, particle charging, and ligand loss are inherently tied to each other as 80 well as a major contributor to carrier trapping that limits 81 photoluminescence quantum yield. Above-gap optical 82 excitation of a NC can potentially liberate surface ligands 83 owing to electrical charge movement to the interface that 84 might disrupt bonding from chemical conversions of the 85 interfacial species, or if not at equilibrium, from increased 86 resultant thermal energy that promotes desorption. 29,30 If 87 ligands desorb or chemically change in sufficient numbers, 88 colloidal NC dispersions that initially were stable can aggregate 89 as attractions provided by van der Waals forces become 90 stronger with reduced average NC-NC separation. Addition-91 ally, the particles may become charged or their surfaces 92 oxidized, resulting in increases in carrier trapping that limit 93 radiative recombination. Hollingsworth and co-workers have examined how photoexcitation can reduce photoluminescence 95 lifetime through thermal and oxidative surface degradation, 96 effectively "killing" a NC. 31,32 Shulenberger et al. showed that 97 continuous wave (CW) illumination of CdS NCs resulted in 98 particle charging by monitoring changes in the absorption 99 spectra.³⁰ While these studies have contributed to a fuller 100 picture of how photoexcitation impacts the entire structure of 101 NCs, they do not directly probe ligand behavior. To the best of

our knowledge, no studies have correlated how photoexcitation 102 of the inorganic core might directly impact the organic ligands, 103 an important step toward understanding changes to NC 104 photophysics.

Toward this goal, we investigate oleate-terminated CdSe 106 NCs under pulsed laser illumination as a function of light 107 intensity and total exposure. We utilize nuclear magnetic 108 resonance (NMR) spectroscopy as our primary technique for 109 monitoring ligand evolution as it is noninvasive and allows 110 quantitative measurement of molecular species.³³ Importantly, 111 NMR can differentiate between different molecular species and 112 probe whether such species are bound to the surface of the NC 113 or not via chemical shift and peak broadening. By comparing 114 the same NC sample under different conditions, we find both 115 that ligands irreversibly detach from the NC surface over the 116 course of optical exposure and observe increased unbound 117 ligand as denoted by changes in resonance and line shape. 118 Unexpectedly, we also note appreciable chemical changes to 119 these ligands upon light exposure; ligand degradation products 120 and small molecules, including aldehydes, water, and molecular 121 hydrogen, form in nearly all experiments. In conjunction with 122 transmission electron microscopy (TEM), X-ray diffraction 123 (XRD), and photoluminescence, a range of properties are 124 investigated, from fusing/sintering of NCs to photobrightening 125 and eventually substantial decreases in photoluminescence 126 intensity. Whereas the lowest-energy absorption feature 127 persists with exposure, Urbach tails, consistent with increas- 128 ingly poorly passivated surfaces, appear commensurate with 129 appreciable ligand loss. This study serves as a first look into 130 photoinduced changes in CdSe NCs passivated by oleate and 131 aims to address some of the questions raised above while 132 providing promising future directions.

RESULTS AND DISCUSSION

Oleate-terminated CdSe NCs were synthesized following 135 existing protocols described in the Supporting Information 136 (SI).³⁴ Particles were cleaned via three rounds of centrifuga- 137 tion with isopropyl alcohol and methanol as antisolvents. ¹H 138 NMR was used to confirm the ligand identity as well as the 139 fl

134

Table 1. Photophysical Properties and Diameter of CdSe NCs before and after Photoexcitation

sample	laser power and spot size	$\langle N \rangle$	photoexposure times (min)	abs. max (nm)	PL max (nm)	diameter (nm)	$\langle \tau \rangle_{\text{PL,5ns}} \; (\text{ns})$	$\langle \tau \rangle_{\text{PL,50 ns}}$ (ns)
control				585	598	4.19 ± 0.81	4.9 ± 0.3	7.4 ± 0.4
Tube 1	140 mW, 9.8 mm ²	4.2	30, 90, 150	583	599	4.19 ± 0.71	6.1 ± 0.5	8.3 ± 0.3
Tube 2	140 mW, 0.85 mm ²	49	15, 30, 60, 85	583	599	4.19 ± 0.75	4.6 ± 0.5	7.4 ± 0.4
Tube 3	140 mW, 0.071 mm ²	584	15, 30, 60, 85	580	603	4.36 ± 0.83	1.6 ± 0.1	3.1 ± 0.3
Tube 4	75 mW, 0.071 mm ²	313	15, 30	583	599	4.28 ± 0.79	4.4 ± 0.5	6.8 ± 0.3

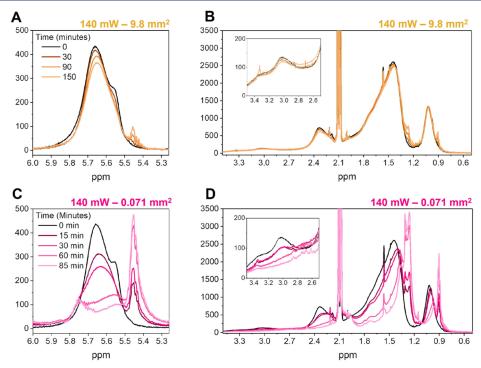


Figure 2. Photoinduced ligand desorption. NMR spectra of Tubes 1 (A, B) and 3 (C, D) as a function of laser exposure time.

140 successful removal of any unbound molecular species. Figure 141 1A shows NMR spectra of the NCs compared to those of oleic 142 acid in deuterated toluene. As expected, the proton features of bound oleate are broadened and shifted downfield, compared to free oleic acid, due to reduced diffusion-altering relaxation times.³³ Peaks are marked with the corresponding proton 146 assignments. Importantly, vinylic protons, which appear near 147 5.6 ppm (marked by a), are broad and lack sharp features that 148 would otherwise correspond to unbound oleic acid at around 149 5.4 ppm. Throughout this study, we focus on this region as it is 150 less congested by alkyl or aromatic proton signals, allowing 151 ease of fitting and analysis. TEM and absorption measurements 152 (Figure 1B,C) show a monodisperse sample with a diameter of 153 4.2 \pm 0.8 nm and a distinct lowest energy peak at 585 nm. To ensure a direct comparison, the CdSe NC sample 154 155 described above was used for all experiments appearing in this 156 report. The sample was separated into six aliquots and examined under a range of different conditions. Aliquot samples 1-4 were illuminated at 400 nm using a 1 kHz pulsed, 100 fs pulsewidth laser. The samples, contained in NMR tubes, were mechanically rastered such that the entirety of the sample volume was illuminated over the course of the experiments. Incident power on the NC dispersions was adjusted using a 163 neutral density wheel, and laser spot size was controlled using 164 an iris and altered focal distance. For samples 1-3, the average 165 laser power was maintained at 140 mW, but the spot size was 166 adjusted to 9.8, 0.85, or 0.071 mm², respectively. This results in

a constant number of incident photons but altered fluence 167 which changes the number of photons absorbed per particle 168 per pulse. Tube 1 experienced 1.43 mJ/cm² resulting in an 169 average number of excitons ($\langle N \rangle$) per NC of 4.2, Tube 2 170 experienced a fluence of 16.5 mJ/cm² giving $\langle N \rangle$ = 49, and 171 Tube 3 experienced 197 mJ/cm² giving $\langle N \rangle$ = 584. Tube 4 was 172 exposed to half the laser power of the other samples (75 mW) 173 but the same spot size as 3, resulting in a fluence of 106 mJ/ 174 cm² and $\langle N \rangle$ = 313. Throughout the experiment, photo- 175 excitation was paused at set time points so that NMR spectra 176 could be recorded. All other characterization was preformed 177 after the final light dosing. While excitation regimes examined 178 in this work in some cases exceed those of usual device- 179 relevant ranges, they are in line with those of photonic curing 180 and optical amplification and were chosen to ensure that we 181 could draw meaningful conclusions about the dependencies 182 and mechanisms of ligand desorption and fragmentation. 14,24 183

The last two samples, Tubes 5 and 6, were not photoexcited. 184 One was maintained as a control for all measurements, with 185 the only modification being the addition of CH_2Br_2 as an 186 internal standard for determining ligand density (see SI for 187 calculation). Based on this internal calibrant, as synthesized, 188 the CdSe NCs have ~ 3.4 molecules/nm² which is consistent 189 with multiple reports. 35–38 The latter sample, Tube 6, was 190 flame-sealed for variable temperature experiments without laser 191 illumination to evaluate the thermal dissociation of ligands. A 192 summary of all samples is provided in Table 1.

NMR spectra collected for Tubes 1 and 3 are displayed in Figure 2A–D. Over the course of increasing laser exposure time, ligands increasingly dissociate from the surfaces of the NCs as indicated by the appearance of sharp (unbound ligand) NMR peaks around 5.4 ppm and the reduction of the broad (bound) 5.6 ppm peak. The alkyl features also shift upfield and sharpen due to desorption. To quantitatively determine the extent of ligand loss, fitted peak areas in the range of 5.3–6 ppm were separated into "bound" or "free" depending on chemical shift and width (Figure S11). The percentage of free ligand versus time for Tubes 1–4 are given in Figure 3A.

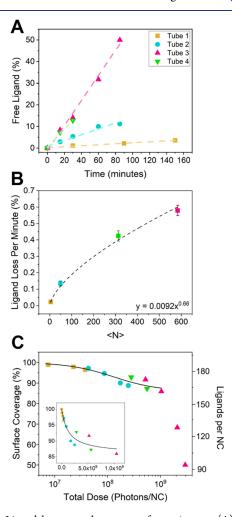


Figure 3. Ligand loss over the course of experiments. (A) Ratio of integrated free ligand signal versus total ligand for the four photoexcited samples. Linear fits for each laser fluence as a function of time provide rates for ligand loss. These rates are plotted against $\langle N \rangle$ in (B) where a nonlinear response is noted by fit to a power function. (C) Total absorbed photons per NC versus surface coverage fit to a Langmuir isotherm.

205 Although ligand loss is linear with the number of photons 206 absorbed, Tubes 1-3 do not show the same slope, suggesting 207 the process for desorption is dependent on the density of 208 photons. As the fluence is increased (by decreasing spot size), 209 more ligands are dissociated from the surface with upward of 210 \sim 50% desorption from Tube 3 after 85 min of illumination 211 versus \sim 3% desorption with the same total number of photons 212 but with lower intensity in Tube 1. The NCs remained stable 213 in solution with no aggregation evident over the course of the 214 experiments. Given months in solution, NCs in Tube 3 did

experience loss of colloidal stability as noted by precipitation, 215 whereas the other tubes that showed less ligand loss in total 216 did not. Tube 4 showed similar ligand loss to Tube 3 despite 217 approximately half the incident power (and therefore half the 218 absorbed photon dose) suggesting a $\langle N \rangle$ threshold above 219 which continued photon absorption does not result in ligand 220 loss. Once dissociated, ligands did not readsorb onto the 221 surface of the NCs with time, suggesting an irreversible change. 222 Such a process, even if low in terms of quantum yield, thus can 223 be important for NC implementation.

Desorbed ligand amount (relative to initial ligand coverage) 225 appears linear versus exposure time in each case, and linear fits 226 provide a rate of ligand loss per minute relative to $\langle N \rangle$. As we 227 describe above, this rate does not increase linearly with $\langle N \rangle$, 228 but instead it seems to approach a maximum rate of ligand loss 229 upon which higher fluences yield similar results (Figure 3B). 230 This allows us to approximate the length of time required for 231 an arbitrary percentage of ligand dissociation at low $\langle N \rangle$. For 232 example, at an $\langle N \rangle$ value of 0.05, to achieve 1% ligand loss 233 would require \sim 13 h and 50% ligand loss would require over 234 27 days of the described laser exposure.

Mechanistically, thermal energy may play a key role in the 236 observed ligand desorption, where optical excitation produces 237 phonons through intraband relaxation and Auger recombina- 238 tion. For the system to return to equilibrium, this heat must be 239 dissipated through the particle, interface, and ligands, 240 potentially causing release of bound surface species. To 241 determine whether static heating from laser illumination 242 could cause ligand desorption, we performed variable temper- 243 ature NMR to monitor changes in the population of bound 244 and free ligand upon heating to 100 °C. We were limited to 245 this temperature range due to the boiling point of d8-toluene, 246 but assume that prolonged exposure at 100 °C could promote 247 desorption given literature precedence for photogenerated 248 temperature increases and that the lowest pulsed excitation 249 regime studied here experienced ligand loss after only 15 250 min. 19,39-41 With sample temperature elevation, ligand loss 251 was not observed, and even after maintaining the sample at 100 252 °C for 1 h, no solvated oleic acid features were detectable 253 (Figure S25). These results are consistent with other heating 254 experiments in the literature. 42 We do note, however, that the 255 shoulder present on the downfield side of the vinylic proton 256 feature decreases concurrently with the increased intensity of 257 the main peak. This is potentially due to the rearrangement of 258 ligands on the surface into more energetically favorable 259 configurations, suggestive of some form of sample surface or 260 ligand annealing. Reports on InP NCs have shown that these 261 two features can be correlated to edge and facet binding site, 262 further evidence of ligand migration or loss of higher energy 263 edges.⁴³ In the photoexcited samples, desorption of ligands 264 tends to deplete this shoulder first, as well. Regardless, the 265 absence of thermally induced ligand dissociation over this 266 accessible temperature range suggests photoexcitation may be 267 producing even higher temperatures (resulting in surface 268 melting) or that carriers lead to chemical changes of the NC 269 surface or ligands.

While our focus here was on pulsed excitation, we also 271 illuminated a sample of CdSe NCs with above-band gap CW 272 illumination with an average power of 140 mW and intensity of 273 approximately 580 mW/cm² (Figure S27). We saw no 274 discernible ligand loss after 75 min under these conditions 275 with similar number of total absorbed photons to pulsed 276 measurements. Given that CW excitation results in a lower $\langle N \rangle$ 277

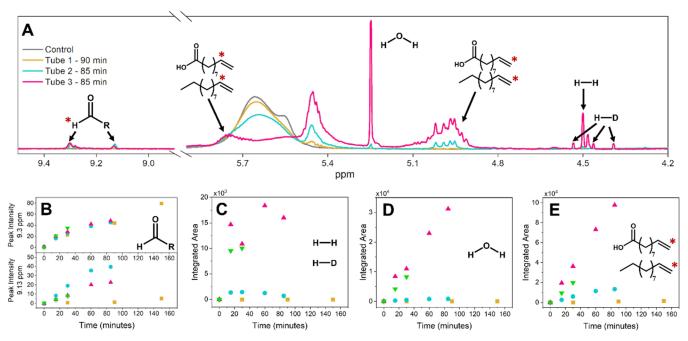


Figure 4. Ligand fragmentation. (A) Tubes 1–3 after similar photoexcitation dose times. Chemical shifts of new molecular species that arise from fragmentation of the oleic acid ligand or reaction with toluene are marked by red asterisks (*). (B–E) Chemical species as a function of laser exposure time. (B) Aldehyde features at 9.13 and 9.3 ppm, (C) hydrogen features between 4.4 and 4.55 ppm, (D) water clusters peak at 5.25 ppm, and (E) terminal protons of undecane or undecanoic acid between 4.9 and 5.1 ppm.

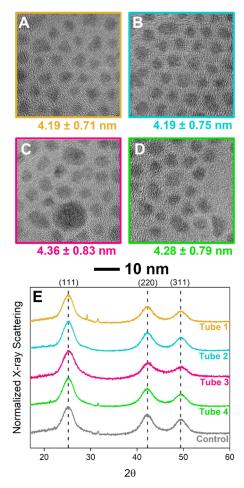
278 than pulsed, we are in a regime where the vast majority of NCs 279 have one or no excitons suggesting that Auger processes, 280 multiphoton absorption, or ionization may be critical to ligand 281 loss. It is important to note that higher intensity CW fluences 282 have produced ligand loss and are accessed in LED and 283 photocatalysis experiments. 31,32,44,45

Conversion of the collected data from Figure 3A to 285 photons/NC provides a measure of the total absorbed dose 286 across the four samples (Figure 3C). When plotted in this 287 manner, ligand loss percentage appears to follow a trend 288 between samples, with increasing desorption occurring as 289 photon flux increases. We were able to fit most of the data 290 plotted in this way to a Langmuir binding isotherm (eq 1) 291 where θ is the fraction of free ligand, $K_{\rm d}$ is the dissociation 292 constant, [hv] is the total absorbed dose, and constant a relates 293 saturation. This model was chosen as it is commonly used to describe ligand binding and desorption from NC surfaces. 42,46 295 As far as we are aware, this is always studied with the addition 296 of a competing ligand that induces exchange instead of 297 photoexcitation; however, there are examples of Langmuir 298 isotherms applied to photoreactions in biological systems. 47 299 Ligand desorption values above ~14% cease to follow a simple 300 Langmuir model and were excluded from the fit.

$$\theta = \frac{aK_{\rm d}[h\nu]}{1 + K_{\rm d}[h\nu]} \tag{1}$$

We find that the dissociation constant $(K_{\rm d})$ is 7.7×10^{-9} 303 NCs/photons for this binding isotherm. Given that each NC 304 initially has ~188 ligands, this translates into $K_{\rm d}=1.5\times 10^{-6}$ 305 ligands/photon. This low quantum yield is consistent with our 306 need for pulsed laser excitation and a lack of appreciable ligand 307 loss with low-power CW illumination. While we were unable to 308 fit to a two isotherm model, curiously, the data fit well to a 309 biphasic equation that is commonly used to describe two 310 binding sites (e.g., observed in bimodal drug release, see SI for

more information).⁴⁸ The need for two phases once again 311 suggests a difference in the binding motif or binding strength. 312 This could correspond to differences in binding modes 313 (bidentate versus monodentate, edge versus facet), a change 314 in ligand displacement type (X-type oleic acid versus Z-type 315 Cd-oleate), or suggests that a fundamentally different process 316 occurs at particularly high fluences. 42,49 At this time, we are 317 unable to resolve the species from our data that constitute the 318 two different binding motifs. As mentioned above, we do 319 observe loss of the upfield shoulder on the vinylic protons, 320 which could be due to differences in faceting as reported for 321 InP; however, we cannot be certain that such behavior is at 322 play with our particles as they are spheroidal. Furthermore, we 323 are unable to distinguish between liberated oleic acid and Cd- 324 oleate due to the similarity in chemical shift. This biphasic 325 model provides an upper limit for ligand dissociation of 60 ± 326 10%, suggesting that above this point NCs either do not lose 327 any more ligand or further ligand loss results in colloidal 328 instability. Precipitation of such particles would prohibit their 329 involvement in NMR signals, i.e., they would become invisible 330 to the techniques used here, but precipitate was not observed 331 for the range of parameters studied herein.


In addition to ligand loss, NMR resonances develop that 333 cannot be attributed to oleic acid but instead clearly indicate 334 formation of new chemical species as shown in Figure 4. At 335 f4 4.9–5.05 and 5.65–5.8 ppm, clear signatures of the vinylic 336 hydrogens of undecane or undecanoic acid are evident. We 337 are not able to distinguish between these chemical species 338 given the similarity in their proton shifts, but integration 339 confirms their identity. In addition, a strong feature at 5.25 340 ppm grows in that corresponds to water. Given the nonpolar 341 nature of toluene, any water formed produces clusters that 342 yield a distinctive chemical shift. Around 4.3 ppm, sharp 343 peaks demarking molecular hydrogen (H₂, HD) are present. 344 Indeed, in some experiments, bubbles were clearly observed to 345

346 form in the tube consistent with this assignment (although we 347 note that CO₂ is also a possible side product that would not 348 appear in ¹H NMR). Furthermore, the integrated peak area for 349 these features is relatively constant, suggesting formation of 350 dissolved gases that eventually leave the solution. Given that 351 HD is present alongside H₂ (Figure S13) chemical interaction 352 between the deuterated toluene and the NCs must be 353 occurring, suggesting radical formation. Cadmium chalcoge-354 nide NCs have been shown to be viable hydrogen evolution 355 catalysts using formic acid or water. 54,55 Features around 9 356 ppm demarcate aldehyde protons, although again we cannot be 357 quite clear as to molecule identity. Aldehydes can form upon 358 the loss of the hydroxide group from oleic acid or oxygen 359 addition to the double bond. Two distinct features in this 360 region show different behaviors with photoexcitation. The peak 361 at ~9.3 ppm forms on similar time scales of illumination 362 regardless of the range of fluences studied. The peak at 9.13 363 ppm, however, shows behavior more similar to the other 364 chemical species and ligand desorption (i.e., fluence depend-365 ent). As oleic acid will only readily exchange on the surfaces of 366 CdSe NCs in the presence of a proton source, this fragmentation may be further enabling ligand dissociation.⁵⁶

We note that no chemicals were added to these samples to 369 cause fragmentation. The NMR spectrum of our oleic acid 370 showed no evidence of these chemical species, nor were they 371 present in the NC spectrum before photoexcitation. As a 372 control experiment to determine if the CdSe NCs were 373 necessary for this oleic acid degradation process, we 374 illuminated a tube of concentrated oleic acid in deuterated 375 toluene using a higher fluence than the other tubes for a longer 376 length of time as described in Figure S24. Even with these 377 more intense, more sustained excitation conditions, only trace 378 amounts of undecane/undecanoic acid and aldehydes were 379 seen and neither hydrogen nor water were observed. Along 380 with the temperature-dependent NMR, this control measure-381 ment suggests that a combination of laser irradiation, CdSe, 382 and oleate is necessary to generate the observed photo-383 products.

One might expect an appreciable morphological evolution of 385 NC dispersions upon intense, sustained laser exposure in 386 solution. However, TEM images of the NCs after photo-387 excitation reveal particle shape and size remain largely unchanged for the range of fluences and exposure times examined (Figure 5A-D). NCs exposed to the highest 390 intensity (Sample 3) experienced trace amounts of sintering between some NCs to form larger agglomerated structures (~8-10 nm). Given that distinct crystallographic domains can 393 be seen within these larger NCs (see Figure S4 for more examples), we suggest that ligand loss likely produces colloidal instability and increases close contact of NC surfaces. Samples 396 1 and 2 showed no discernible difference in NC diameter, and rather a slight narrowing in distribution, consistent with laser annealing. Powder XRD measurements indicate that the materials persist in the initial zincblende crystalline phase (Figure 5E). Broadening of diffraction peaks in Tube 3 suggests smaller crystalline domains have formed, consistent with loss of surface layers and ligands that lead to agglomeration. Scherrer analysis shows a reduction in crystallite size of approximately 0.6 nm in Tube 3, but the 405 remaining samples were unaffected (Figure S9).

Optical properties offer additional information regarding the impact of exposure and ligand loss, which is crucial regarding the performance in optoelectronic devices. UV—vis shows that

Figure 5. Characterization of the samples after photoexposure. (A–D) TEM images of Tubes 1–4 and the corresponding diameters measured. (E) XRD patterns of Tubes 1–4 and the control.

the absorption has only slightly shifted by just 2–5 nm (see 409 Table 1) although Sample 3, and to a lesser extent Sample 4, 410 shows a broadening of features and emergence of a tail to the 411 red. This absorption is lower in energy than bulk CdSe 412 (marked by the dashed line at 713 nm), and we attribute this 413 feature to trap state formation within the bandgap (an Urbach 414 tail).²⁷ Low concentrations and solvent correction were used 415 to ensure that this was not an artifact of scattering. As noted 416 above, despite ligand loss, all samples showed no precipitation 417 initially.

Static and time-resolved photoluminescence (Figure 6B,C) 419 f6 provides further insight into the impacts of surface passivation. 420 Despite broadening and the appearance of midgap trap states 421 observed by absorption, no emission red of the main band- 422 edge feature is observed, though Sample 3 did exhibit 423 broadening and a slight red shift of PL. All samples maintained 424 a similar emission wavelength, consistent with the bandgap and 425 particle size remaining close to the control. We find that 426 Samples 1 and 2 showed brightening after ligand loss 427 suggesting a reduction of trap states either through annealing 428 of intrinsic defects or reorganization of ligands into a position 429 or binding motif that is more favorable for radiative 430 recombination. Other reports of photobrightening have also 431 attributed changes to surface oxidation states through ligand 432 loss. 31,32,57,58 Sample 3 showed a drastic reduction in emission 433 intensity, likely due to formation of numerous trap sites. We 434

485

486

495

496

497

498

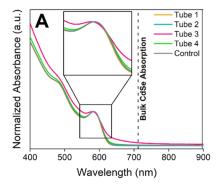
499

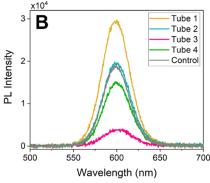
500

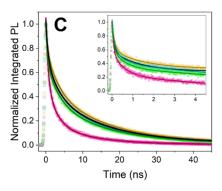
501

502

503


504


505


506

507

508

Figure 6. Optical characterization of samples after prolonged illumination. (A) Absorption spectra for photoexcitated samples and the control. Inset shows the lowest energy absorption in finer detail. Bulk CdSe absorption at 713 nm is given as a dashed line. (B) Static PL spectra. (C) Time-resolved PL spectra over 50 and 5 ns (inset) along with triexponential fits.

435 observed similar results via time-resolved measurements using 436 a streak camera to spectrally and temporally resolve the PL. No 437 evidence of trap state emission at redder wavelengths was 438 found although some increase in blue emission (<550 nm) 439 appeared in Tube 3. Integration of PL from 525 to 675 nm 440 provides emission dynamics shown in Figure 6C, which were 441 fit to multiexponentials to provide the average PL lifetimes $\langle \tau \rangle$ 442 listed in Table 1. Tube 1 exhibited longer lifetimes, while Tube 443 3 showed a more substantial reduction in lifetimes. Such 444 observations again are consistent with large trap populations 445 for the highest pump intensity and possible annealing for the 446 lower intensity exposures. Similarities in early time dynamics 447 with drop in emission at later times are consistent with reports 448 of charging. 32

449 CONCLUSIONS

450 In this work, we have demonstrated that photoexcitation of 451 oleate-capped CdSe NCs results in irreversible ligand loss as a

function of exposure time and pump intensity. The rate of 452 ligand desorption correlates with laser fluence and, in the 453 extreme, upward of 50% of ligands are removed after 85 min at 454 197 mJ/cm². From these results, we calculated a rate of ligand 455 loss per photons absorbed of 1.5×10^{-6} . While this low 456 quantum yield may not appreciably affect NCs under standard 457 illumination, photon density in high-intensity CW and pulsed 458 conditions is enough to irreversibly desorb ligands from the 459 surface and produce chemical changes. In addition to ligand 460 loss, fragmentation of oleate resulted in formation of water, 461 molecular hydrogen, undecane/undecanoic acid, and alde- 462 hydes as evident by NMR. All NC samples maintain the 463 zincblende structure, and size is unaffected except at the 464 highest fluence which resulted in minor particle sintering after 465 ligand loss. Absorption and emission profiles were largely 466 maintained although PL intensity showed photobrightening in 467 the lower fluence samples and a sharp reduction for the highest 468 fluence sample further suggesting surface rearrangement and 469 trap formation under such conditions of significant ligand 470 degradation and desorption. These results have implications 471 for NC and ligand stability in a wide range of applications that 472 depend on high-intensity illumination including solar concen- 473 trators, LEDs, lasers, and photocatalysts. Beyond concerns 474 about the stability of the inorganic core (e.g., photobleaching, 475 charging), ligand fragmentation is of particular concern given 476 that the chemical processes likely remain active even in solid- 477 state devices, whereas ligand desorption potentially decreases 478 in the solid state as diffusion of desorbed ligand would be 479 impeded. Influence of colloidal dispersion versus solid-state 480 conditions will be examined in future studies. We hope this 481 work serves as a preliminary exploration into the effects of 482 light-induced ligand and surface restructuring in semi- 483 conductor NCs.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at 487 https://pubs.acs.org/doi/10.1021/jacs.3c10232. 488

Experimental methods and supplementary data, syn- 489 thesis of CdSe NCs, quantification of NC and ligand 490 concentration, photon density calculations, TEM im- 491 ages, Scherrer analysis of XRD data, NMR fits and 492 analysis, additional photoluminescence data, and control 493 experiments (PDF)

AUTHOR INFORMATION

Corresponding Author

Richard D. Schaller — Department of Chemistry and International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States; orcid.org/0000-0001-9696-8830; Email: schaller@northwestern.edu, schaller@anl.gov

Authors

Samantha M. Harvey – Department of Chemistry and International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States

```
Jacob H. Olshansky - Department of Chemistry and
510
        International Institute for Nanotechnology, Institute for
511
        Sustainability and Energy at Northwestern, Northwestern
512
        University, Evanston, Illinois 60208, United States;
513
        orcid.org/0000-0003-3658-1487
514
      Alice Li – Department of Chemistry, Northwestern University,
515
        Evanston, Illinois 60208, United States; o orcid.org/0000-
516
        0003-0667-2118
517
      Shobhana Panuganti – Department of Chemistry,
518
        Northwestern University, Evanston, Illinois 60208, United
519
        States; orcid.org/0000-0003-1762-527X
520
      Mercouri G. Kanatzidis - Department of Chemistry and
521
        International Institute for Nanotechnology, Institute for
522
        Sustainability and Energy at Northwestern, Northwestern
523
        University, Evanston, Illinois 60208, United States;
524
        orcid.org/0000-0003-2037-4168
525
      Joseph T. Hupp – Department of Chemistry and
526
        International Institute for Nanotechnology, Institute for
527
        Sustainability and Energy at Northwestern, Northwestern
528
        University, Evanston, Illinois 60208, United States;
529
        orcid.org/0000-0003-3982-9812
530
      Michael R. Wasielewski - Department of Chemistry and
531
532
        International Institute for Nanotechnology, Institute for
        Sustainability and Energy at Northwestern, Northwestern
533
        University, Evanston, Illinois 60208, United States;
534
        orcid.org/0000-0003-2920-5440
535
536 Complete contact information is available at:
```

538 Notes

539 The authors declare no competing financial interest.

537 https://pubs.acs.org/10.1021/jacs.3c10232

540 ACKNOWLEDGMENTS

541 S.M.H., S.P., and A.L. acknowledge funding from the National 542 Science Foundation Graduate Research Fellowship under 543 Grant DGE-1842165. This work was supported by the 544 National Science Foundation MSN #1808950. Work per-545 formed at the Center for Nanoscale Materials, a U.S. 546 Department of Energy Office of Science User Facility, was 547 supported by the U.S. DOE, Office of Basic Energy Sciences, 548 under Contract No. DE-AC02-06CH11357. This work was 549 supported by the U.S. Department of Energy, Office of 550 Science, Office of Basic Energy Sciences under Award DE-551 FG02-99ER14999 (M.R.W.). J.T.H. gratefully acknowledges 552 support from the U.S. Dept. of Energy, Office of Science, Basic 553 Energy Science via grant no. DE-FG02-87ER13808. This work 554 made use of the IMSERC NMR facility at Northwestern 555 University, which has received support from the Soft and 556 Hybrid Nanotechnology Experimental (SHyNE) Resource 557 (NSF ECCS-1542205), Int. Institute of Nanotechnology, and 558 Northwestern University. This work also made use of the EPIC 559 facility of Northwestern University's NUANCE Center, which 560 has received support from the Soft and Hybrid Nano-561 technology Experimental (SHyNE) Resource (NSF ECCS-562 1542205), the MRSEC program (NSF DMR1720139) at the 563 Materials Research Center, the International Institute for 564 Nanotechnology (IIN), the Keck Foundation, and the State of 565 Illinois, through the IIN. The authors would like to 566 acknowledge Dr. Yuyang Wu for support with the temper-567 ature-dependent NMR experiments. Aspects of this work are 568 adapted from the PhD dissertation of S.M.H.

REFERENCES

- (1) Pietryga, J. M.; Park, Y.-S.; Lim, J.; Fidler, A. F.; Bae, W. K.; 570 Brovelli, S.; Klimov, V. I. Spectroscopic and Device Aspects of 571 Nanocrystal Quantum Dots. Chem. Rev. 2016, 116 (18), 10513-572
- (2) Hartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-Level 574 Insight into Semiconductor Nanocrystal Surfaces. J. Am. Chem. Soc. 575 2021, 143 (3), 1251-1266.
- (3) Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; 577 Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, 578 A.; Oh, E.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Stratakis, E.; 579 Parak, W. J.; Kanaras, A. G. The Role of Ligands in the Chemical 580 Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 581 **2019**, 119 (8), 4819–4880.
- (4) Harris, R. D.; Bettis Homan, S.; Kodaimati, M.; He, C.; 583 Nepomnyashchii, A. B.; Swenson, N. K.; Lian, S.; Calzada, R.; Weiss, 584 E. A. Electronic Processes within Quantum Dot-Molecule Complexes. 585 Chem. Rev. 2016, 116 (21), 12865–12919.
- (5) Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent Advances in Quantum 587 Dots Photocatalysts. Chem. Eng. J. 2023, 458, No. 141399. 588
- (6) Yuan, Y.; Jin, N.; Saghy, P.; Dube, L.; Zhu, H.; Chen, O. 589 Quantum Dot Photocatalysts for Organic Transformations. J. Phys. 590 Chem. Lett. 2021, 12 (30), 7180-7193.
- (7) Kamat, P. V. Quantum Dot Solar Cells. Semiconductor 592 Nanocrystals as Light Harvesters. J. Phys. Chem. C 2008, 112 (48), 593 18737-18753.
- (8) Lin, S.; Peng, X. Current Status and Challenges of Solar Cells 595 Based on Semiconductor Nanocrystals. Energy Fuels 2021, 35 (23), 596 18928-18941.
- (9) Stolle, C. J.; Harvey, T. B.; Korgel, B. A. Nanocrystal 598 Photovoltaics: A Review of Recent Progress. Nanotechnol. Sep. Eng. 599 **2013**, 2 (2), 160–167.
- (10) Jang, E.; Jang, H. Review: Quantum Dot Light-Emitting 601 Diodes. Chem. Rev. 2023, 123 (8), 4663-4692.
- (11) Nguyen, H. A.; Dixon, G.; Dou, F. Y.; Gallagher, S.; Gibbs, S.; 603 Ladd, D. M.; Marino, E.; Ondry, J. C.; Shanahan, J. P.; Vasileiadou, E. 604 S.; Barlow, S.; Gamelin, D. R.; Ginger, D. S.; Jonas, D. M.; Kanatzidis, 605 M. G.; Marder, S. R.; Morton, D.; Murray, C. B.; Owen, J. S.; Talapin, 606 D. V.; Toney, M. F.; Cossairt, B. M. Design Rules for Obtaining 607 Narrow Luminescence from Semiconductors Made in Solution. Chem. 608 Rev. 2023, 123 (12), 7890-7952.
- (12) Li, J.; Zhu, J.-J. Quantum Dots for Fluorescent Biosensing and 610 Bio-Imaging Applications. Analyst 2013, 138 (9), 2506-2515.
- (13) Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V. I. Colloidal 612 Semiconductor Nanocrystal Lasers and Laser Diodes. Chem. Rev. 613 2023, 123 (13), 8251-8296. 614
- (14) Park, Y.-S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. 615 Colloidal Quantum Dot Lasers. Nat. Rev. Mater. 2021, 6 (5), 382-616
- (15) Diroll, B. T.; Kirschner, M. S.; Guo, P.; Schaller, R. D. Optical 618 and Physical Probing of Thermal Processes in Semiconductor and 619 Plasmonic Nanocrystals. Annu. Rev. Phys. Chem. 2019, 70 (1), 353-620
- (16) Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Reid, D. 622 K.; Hellebusch, D. J.; Adachi, T.; Korgel, B. A. Spray-Deposited 623 CuInSe₂ Nanocrystal Photovoltaics. Energy Environ. Sci. 2010, 3 (10), 624 1600-1606.
- (17) Cohen, T. A.; Sharp, D.; Kluherz, K. T.; Chen, Y.; Munley, C.; 626 Anderson, R. T.; Swanson, C. J.; De Yoreo, J. J.; Luscombe, C. K.; 627 Majumdar, A.; Gamelin, D. R.; Mackenzie, J. D. Direct Patterning of 628 Perovskite Nanocrystals on Nanophotonic Cavities with Electro- 629 hydrodynamic Inkjet Printing. Nano Lett. 2022, 22 (14), 5681-5688. 630 (18) Hannah, D. C.; Gezelter, J. D.; Schaller, R. D.; Schatz, G. C. 631
- Reverse Non-Equilibrium Molecular Dynamics Demonstrate That 632 Surface Passivation Controls Thermal Transport at Semiconductor- 633 Solvent Interfaces. ACS Nano 2015, 9 (6), 6278-6287.
- (19) Harvey, S. M.; Houck, D. W.; Kirschner, M. S.; Flanders, N. C.; 635 Brumberg, A.; Leonard, A. A.; Watkins, N. E.; Chen, L. X.; Dichtel, 636 W. R.; Zhang, X.; Korgel, B. A.; Wasielewski, M. R.; Schaller, R. D. 637

- 638 Transient Lattice Response upon Photoexcitation in CuInSe₂ 639 Nanocrystals with Organic or Inorganic Surface Passivation. ACS 640 Nano **2020**, 14 (10), 13548–13556.
- 641 (20) Rowland, C. E.; Liu, W.; Hannah, D. C.; Chan, M. K. Y.; 642 Talapin, D. V.; Schaller, R. D. Thermal Stability of Colloidal InP 643 Nanocrystals: Small Inorganic Ligands Boost High-Temperature 644 Photoluminescence. ACS Nano 2014, 8 (1), 977–985.
- 645 (21) Hines, D. A.; Becker, M. A.; Kamat, P. V. Photoinduced Surface 646 Oxidation and Its Effect on the Exciton Dynamics of CdSe Quantum 647 Dots. *J. Phys. Chem. C* **2012**, *116* (24), 13452–13457.
- 648 (22) Morshedian, H.; Abolhasani, M. Accelerated Photostability 649 Studies of Colloidal Quantum Dots. *Sol. RRL* **2023**, 7 (10), 650 No. 2201119.
- 651 (23) Reichert, M. D.; Lin, C.-C.; Vela, J. How Robust Are 652 Semiconductor Nanorods? Investigating the Stability and Chemical 653 Decomposition Pathways of Photoactive Nanocrystals. *Chem. Mater.* 654 **2014**, 26 (13), 3900–3908.
- 655 (24) Stolle, C. J.; Harvey, T. B.; Korgel, B. A. Photonic Curing of 656 Ligand-Capped CuInSe₂ Nanocrystal Films. Proceedings of the 2014. 657 *IEEE 40th Photovoltaic Specialist Conference (PVSC)*: Denver, June 8–658 13, 2004; IEEE: Piscataway, NJ, 2014; pp 270–274.
- 659 (25) Weidling, A. M.; Turkani, V. S.; Luo, B.; Schroder, K. A.; 660 Swisher, S. L. Photonic Curing of Solution-Processed Oxide 661 Semiconductors with Efficient Gate Absorbers and Minimal Substrate 662 Heating for High-Performance Thin-Film Transistors. *ACS Omega* 663 **2021**, 6 (27), 17323–17334.
- 664 (26) Han, H. S.; Choi, K. Y. Advances in Nanomaterial-Mediated 665 Photothermal Cancer Therapies: Toward Clinical Applications. 666 Biomedicines 2021, 9 (3), 305.
- 667 (27) Hartley, C. L.; Dempsey, J. L. Electron-Promoted X-Type 668 Ligand Displacement at CdSe Quantum Dot Surfaces. *Nano Lett.* 669 **2019**, 19 (2), 1151–1157.
- 670 (28) Busby, E.; Anderson, N. C.; Owen, J. S.; Sfeir, M. Y. Effect of 671 Surface Stoichiometry on Blinking and Hole Trapping Dynamics in 672 (18) Nanoportals, J. Phys. Chem. C 2015, 110 (40) 27707, 27803
- 672 CdSe Nanocrystals. J. Phys. Chem. C 2015, 119 (49), 27797–27803. 673 (29) Krivenkov, V.; Samokhvalov, P.; Zvaigzne, M.; Martynov, I.;
- 674 Chistyakov, A.; Nabiev, I. Ligand-Mediated Photobrightening and 675 Photodarkening of CdSe/ZnS Quantum Dot Ensembles. *J. Phys.*
- 676 Chem. C **2018**, 122 (27), 15761–15771. 677 (30) Shulenberger, K. E.; Keller, H. R.; Pellows, L. M.; Brown, N. L.;
- 677 (30) Snulenberger, K. E.; Reller, H. R.; Pellows, L. M.; Brown, N. L.; 678 Dukovic, G. Photocharging of Colloidal CdS Nanocrystals. *J. Phys.* 679 Chem. C **2021**, 125 (41), 22650–22659.
- 680 (31) Orfield, N. J.; Majumder, S.; Hu, Z.; Koh, F. Y.-C.; Htoon, H.; 681 Hollingsworth, J. A. Kinetics and Thermodynamics of Killing a 682 Quantum Dot. ACS Appl. Mater. Interfaces 2020, 12 (27), 30695–683 30701.
- 684 (32) Orfield, N. J.; Majumder, S.; McBride, J. R.; Yik-Ching Koh, F.; 685 Singh, A.; Bouquin, S. J.; Casson, J. L.; Johnson, A. D.; Sun, L.; Li, X.; 686 Shih, C.-K.; Rosenthal, S. J.; Hollingsworth, J. A.; Htoon, H. 687 Photophysics of Thermally-Assisted Photobleaching in "Giant" 688 Quantum Dots Revealed in Single Nanocrystals. *ACS Nano* **2018**, 689 12 (5), 4206–4217.
- 690 (33) Hens, Z.; Martins, J. C. A Solution NMR Toolbox for 691 Characterizing the Surface Chemistry of Colloidal Nanocrystals. 692 *Chem. Mater.* **2013**, 25 (8), 1211–1221.
- 693 (34) Flamee, S.; Cirillo, M.; Abe, S.; De Nolf, K.; Gomes, R.; Aubert, 694 T.; Hens, Z. Fast, High Yield, and High Solid Loading Synthesis of 695 Metal Selenide Nanocrystals. *Chem. Mater.* **2013**, 25 (12), 2476–696 2483.
- 697 (35) Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. 698 Ligand Exchange and the Stoichiometry of Metal Chalcogenide 699 Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate 700 Displacement and Binding. *J. Am. Chem. Soc.* **2013**, *135* (49), 18536–701 18548.
- 702 (36) Singh, S.; Leemans, J.; Zaccaria, F.; Infante, I.; Hens, Z. Ligand 703 Adsorption Energy and the Postpurification Surface Chemistry of 704 Colloidal Metal Chalcogenide Nanocrystals. *Chem. Mater.* **2021**, 33 705 (8), 2796–2803.

- (37) Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. 706 C.; Hens, Z. Short-Chain Alcohols Strip X-Type Ligands and Quench 707 the Luminescence of PbSe and CdSe Quantum Dots, Acetonitrile 708 Does Not. *J. Am. Chem. Soc.* **2012**, *134* (51), 20705–20712.
- (38) Anderson, N. C.; Owen, J. S. Soluble, Chloride-Terminated 710 CdSe Nanocrystals: Ligand Exchange Monitored by 1H and 31P 711 NMR Spectroscopy. *Chem. Mater.* **2013**, 25 (1), 69–76.
- (39) Hannah, D. C.; Dunn, N. J.; Ithurria, S.; Talapin, D. V.; Chen, 713 L. X.; Pelton, M.; Schatz, G. C.; Schaller, R. D. Observation of Size-714 Dependent Thermalization in CdSe Nanocrystals Using Time-715 Resolved Photoluminescence Spectroscopy. *Phys. Rev. Lett.* **2011**, 716 107 (17), No. 177403.
- (40) Tamulaitis, G. Origin of Carrier Heating in Semiconductor 718 Nanocrystals: Excess Energy of Photoexcited Electrons or Auger 719 Processes? *J. Phys.: Condens. Matter* **1998**, *10* (45), 10307.
- (41) Kirschner, M. S.; Diroll, B. T.; Guo, P.; Harvey, S. M.; Helweh, 721 W.; Flanders, N. C.; Brumberg, A.; Watkins, N. E.; Leonard, A. A.; 722 Evans, A. M.; Wasielewski, M. R.; Dichtel, W. R.; Zhang, X.; Chen, L. 723 X.; Schaller, R. D. Photoinduced, Reversible Phase Transitions in All-724 Inorganic Perovskite Nanocrystals. *Nat. Commun.* **2019**, *10* (1), 504. 725
- (42) Drijvers, E.; De Roo, J.; Martins, J. C.; Infante, I.; Hens, Z. 726 Ligand Displacement Exposes Binding Site Heterogeneity on CdSe 727 Nanocrystal Surfaces. *Chem. Mater.* **2018**, 30 (3), 1178–1186.
- (43) Dümbgen, K. C.; Infante, I.; Hens, Z. Localizing Oleylamine 729 Ligands on Amine–Halide Copassivated Indium Phosphide Nano- 730 crystals. *Chem. Mater.* **2023**, *35* (11), 4393–4403.
- (44) Dou, F. Y.; Harvey, S. M.; Mason, K. G.; Homer, M. K.; 732 Gamelin, D. R.; Cossairt, B. M. Effect of a Redox-Mediating Ligand 733 Shell on Photocatalysis by CdS Quantum Dots. *J. Chem. Phys.* **2023**, 734 158 (18), 184705.
- (45) Homer, M. K.; Kuo, D.-Y.; Dou, F. Y.; Cossairt, B. M. 736 Photoinduced Charge Transfer from Quantum Dots Measured by 737 Cyclic Voltammetry. *J. Am. Chem. Soc.* **2022**, 144 (31), 14226–14234. 738
- (46) Morris-Cohen, A. J.; Vasilenko, V.; Amin, V. A.; Reuter, M. G.; 739 Weiss, E. A. Model for Adsorption of Ligands to Colloidal Quantum 740 Dots with Concentration-Dependent Surface Structure. ACS Nano 741 **2012**, 6 (1), 557–565.
- (47) Fragata, M.; Viruvuru, V.; Dudekula, S. Theoretical 743 Consideration of the Use of a Langmuir Adsorption Isotherm To 744 Describe the Effect of Light Intensity on Electron Transfer in 745 Photosystem II. J. Phys. Chem. B 2007, 111 (12), 3315–3320.
- (48) Tran, V. A.; Lee, S.-W. pH-Triggered Degradation and Release 747 of Doxorubicin from Zeolitic Imidazolate Framework-8 (ZIF8) 748 Decorated with Polyacrylic Acid. RSC Adv. 2021, 11 (16), 9222–749 9234.
- (49) Owen, J. The Coordination Chemistry of Nanocrystal Surfaces. 751 Science 2015, 347 (6222), 615–616.
- (50) Knauf, R. R.; Lennox, J. C.; Dempsey, J. L. Quantifying Ligand 753 Exchange Reactions at CdSe Nanocrystal Surfaces. *Chem. Mater.* 754 **2016**, 28 (13), 4762–4770.
- (51) Oka, K.; Shibue, T.; Sugimura, N.; Watabe, Y.; Winther-Jensen, 756 B.; Nishide, H. Long-Lived Water Clusters in Hydrophobic Solvents 757 Investigated by Standard NMR Techniques. *Sci. Rep.* **2019**, 9 (1), 758 223.
- (52) Nakahara, M.; Wakai, C. Monomeric and Cluster States of 760 Water Molecules in Organic Solvent. *Chem. Lett.* **1992**, *21* (5), 809–761 812.
- (53) Chen, J. Y.-C.; Martí, A. A.; Turro, N. J.; Komatsu, K.; Murata, 763 Y.; Lawler, R. G. Comparative NMR Properties of H_2 and HD in 764 Toluene- d_8 and in $H_2/\text{HD}@\text{C60}$. *J. Phys. Chem. B* **2010**, 114 (45), 765 14689–14695.
- (54) Kuehnel, M. F.; Wakerley, D. W.; Orchard, K. L.; Reisner, E. 767 Photocatalytic Formic Acid Conversion on CdS Nanocrystals with 768 Controllable Selectivity for H₂ or CO. *Angew. Chem., Int. Ed.* **2015**, 54 769 (33), 9627–9631.
- (55) Aslan, E.; Birinci, O.; Aljabour, A.; Özel, F.; Akın, I.; Hatay 771 Patir, I.; Kus, M.; Ersoz, M. Photocatalytic Hydrogen Evolution by 772 Oleic Acid-Capped CdS, CdSe, and CdS_{0.75}Se_{0.25} Alloy Nanocrystals. 773 ChemPhysChem **2014**, 15 (13), 2668–2671.

- 775 (56) Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens,
- 776 Z. Utilizing Self-Exchange To Address the Binding of Carboxylic Acid
- 777 Ligands to CdSe Quantum Dots. J. Am. Chem. Soc. 2010, 132 (29),
- 778 10195-10201.
- 779 (57) Lee, S. F.; Osborne, M. A. Photodynamics of a Single Quantum
- 780 Dot: Fluorescence Activation, Enhancement, Intermittency, and
- 781 Decay. J. Am. Chem. Soc. 2007, 129 (29), 8936-8937.
- 782 (58) Lee, S. F.; Osborne, M. A. Brightening, Blinking, Bluing and
- 783 Bleaching in the Life of a Quantum Dot: Friend or Foe?
- 784 ChemPhysChem 2009, 10 (13), 2174-2191.