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Abstract

Epidemiological datasets are essential for pub-
lic health analysis and decision-making, yet
they remain scarce and often difficult to com-
pile due to inconsistent data formats, language
barriers, and evolving political boundaries. Tra-
ditional methods of creating such datasets in-
volve extensive manual effort and are prone
to errors in accurate location extraction. To
address these challenges, we propose utilizing
large language models (LLMs) to automate the
extraction and geotagging of epidemiological
data from textual documents. Our approach sig-
nificantly reduces the manual effort required,
limiting human intervention to validating a sub-
set of records against text snippets and verify-
ing the geotagging reasoning, as opposed to
reviewing multiple entire documents manually
to extract, clean, and geotag. Additionally, the
LLMs identify information often overlooked
by human annotators, further enhancing the
dataset’s completeness. Our findings demon-
strate that LLMs can be effectively used to
semi-automate the extraction and geotagging
of epidemiological data, offering several key
advantages: (1) comprehensive information ex-
traction with minimal risk of missing critical
details; (2) minimal human intervention; (3)
higher-resolution data with more precise geo-
tagging; and (4) significantly reduced resource
demands compared to traditional methods.

1 Introduction

Epidemiology, the study of disease prevalence,
comes from the Greek word “epidemios”, mean-
ing “among the people, of one’s countrymen at
home” (Harper, 2001). Each country documents
the diseases within its borders, but they do so in
their own ways. Analyzing epidemiological reports
at a global scale thus becomes a challenging task
due to the large number of heterogeneous reports.

*Both authors contributed equally.
† Work done at Oak Ridge National Laboratory.

(a)

(b)
Figure 1: Overview of our two-step methodology for
extracting and geotagging epidemiological data: (a) first,
an LLM extracts data from a piece of text based on
the instructions provided, and (b) second, the LLM,
with access to a global administrative regions database,
geotags each extracted data, providing reasoning steps
for its selections.

Even so, researchers currently read through epi-
demiological reports to extract the valuable data
reported within. Epidemiological data refers to
data collected on the occurrence of diseases and
is used to understand the distributions, trends, and
dynamics of disease through analyzing historical
events and training models to understand drivers
behind various disease outbreaks. Such data is
crucial for public health analysis, policy develop-
ment, and decision-making, as it helps identify risk
factors for disease and targets for preventive health-
care. However, compiling epidemiological datasets
poses significant challenges due to varying factors.
There are numerous legal, technical, political, and
cultural barriers, many of which are beyond our
control, for efficient epidemiological data sharing
and utilization (Fairchild et al., 2018; Pisani and
AbouZahr, 2010). Furthermore, epidemiological
data often exists in different formats, frequently
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embedded within textual reports. The dynamic na-
ture of political boundaries further complicates data
collection and makes geotagging these records chal-
lenging. Additionally, the potential use of different
languages by different countries in their reporting
adds another layer of complexity. Traditional ways
of compiling such datasets have relied mostly on
human effort, involving manual reading of source
documents, data extraction, and subsequent post-
processing. This standard method suffers from
multiple issues, including the potential for human
error and difficulty in correctly geo-tagging such
datasets. To address these challenges, we propose
utilizing large language models (LLMs) to auto-
mate the extraction and geo-tagging of epidemio-
logical data at scale.

By leveraging the capabilities of LLMs in event
extraction and geospatial reasoning, we propose
using LLMs to extract epidemiological data from
text and geotag this information accurately. The
process is a two-step approach: (i) extraction of
epidemiological data from text and (ii) geotag-
ging this data using contextual information. First,
we employ a hand-crafted prompt to instruct the
LLM to output the epidemiological data embedded
within a given text in a structured format, such as
JSON. This can be considered as structured infor-
mation extraction from unstructured sources. Sec-
ond, the LLM utilizes a global administrative re-
gions database to geo-tag each extracted informa-
tion. With access to a global administrative region
database, we then prompt the LLM with another
prompt, incorporating the extracted data, and the
context from which it was extracted. The goal is
to identify the correct administrative regions from
the ones in the database, accurately geotagging the
extracted data.

Our findings reveal that LLMs are highly effec-
tive at extracting structured information from tex-
tual documents (Recall = 100%). While LLMs
generate more data than present in the human-
curated dataset (Precision = 20%), some of this
additional information may be incorrect. However,
even when considering only the correctly gener-
ated entries, the LLM-generated dataset is three
times larger than the human-curated one while cap-
turing all relevant entries present in the human
dataset. This highlights the significant advantage of
leveraging LLMs for enhanced data coverage. Fur-
ther, LLMs exhibit impressive geospatial reason-
ing capabilities, accurately geotagging data points
through logical inference. Overall, our results high-

light the strong performance of LLMs in both ex-
traction and geotagging tasks, indicating that these
models could semi-automate these processes, with
minimal human validation needed.

2 Related Work

Modern LLMs have transformed the field of natu-
ral language processing and artificial intelligence
by eliminating the need for task-specific models
trained using vast amounts of human-annotated
datasets. Through pre-training techniques, LLMs
can be pre-trained on large textual corpora, en-
abling them to encode various types of knowl-
edge within their parameters and potentially even
function as knowledge bases (Petroni et al., 2019).
LLMs encode world knowledge and exhibit com-
mon sense reasoning capabilities, enabling them
to understand and generate human-like text across
diverse contexts. Demonstrating this capability,
Brown et al. (2020) showed that sufficiently scaled
LLMs like GPT-3 can handle diverse downstream
tasks just by receiving a task description, with or
without a few sample task examples, as context,
a technique known as "prompting". Recent ad-
vancements in prompting techniques1 have further
enhanced the ability of LLMs to handle complex
tasks, including those requiring intricate reason-
ing. Additionally, Researchers (Bhandari et al.,
2023; Roberts et al., 2024; Mooney et al., 2023)
have shown that LLMs possess encoded geospatial
knowledge, making them geospatially aware and
capable of reasoning with geospatial data during
text generation.

Instruction tuning (IT) is another emerging tech-
nique where LLMs are further trained on datasets
containing instructions and desired output in a su-
pervised manner. Instruction tuning aligns the next-
word prediction objective of LLMs with user ob-
jectives, enabling the creation of general-purpose
chatbots like ChatGPT2 and Gemini.3 These
instruction-tuned LLMs excel at following human
instructions and have shown impressive perfor-
mance in several downstream tasks, such as event
extraction (Wei et al., 2022).

Information extraction (IE) using LLMs for
event extraction has gained significant research at-
tention, primarily due to the excellent instruction-
following capabilities of instruction-tuned LLMs.

1See Bhandari (2024) for a survey.
2https://chatgpt.com/
3https://gemini.google.com/app

259

https://chatgpt.com/
https://gemini.google.com/app


Recent advancements in this field have shown vary-
ing degrees of success.

Wei et al. (2024) introduced ChatIE, a frame-
work that transforms the zero-shot IE task into
a multi-turn question-answering problem suited
for LLMs. The authors evaluated their frame-
work on three IE tasks: entity-relation triple extrac-
tion, named entity recognition, and event extrac-
tion. Their results show that ChatIE achieves im-
pressive performance, even surpassing some multi-
shot models on several datasets. Similarly, others
have achieved success using LLMs for specific IE
tasks, with various modifications to enhance perfor-
mance (Peng et al., 2023; Vijayan, 2023; Li et al.,
2024). However, some researchers have found no-
table challenges in using LLMs for event extraction.
For instance, Gao et al. (2023) found that Chat-
GPT’s performance was only half that of a task-
specific model for long-tail and complex scenarios.
Our research presents a different approach com-
pared to the existing studies. While most research
focuses on extracting singular events described in
a text, our approach aims to extract multiple events
from a single text using LLMs’ comprehensive un-
derstanding capabilities. Additionally, rather than
solely relying on absolute performance metrics, we
also measure success in terms of reduction in hu-
man effort for creating epidemiological datasets.
Furthermore, our approach involves geotagging ex-
tracted data using LLMs, a novel concept that en-
hances the quality of the epidemiological dataset.

3 Methodology

The extraction and geotagging of epidemiologi-
cal data involve a two-step process, as outlined in
Figure 1. In the first step, data is extracted from
small sections of text, which are then processed and
merged to form the final database. In the second
step, each extracted record, along with its contex-
tual information, is passed to an LLM with access
to a global administrative region database. The
LLM is tasked with selecting the correct entries
from this database to represent the record and pro-
vide reasoning for its choices, facilitating human
validation.

3.1 Extraction of epidemiological data

Given a collection of textual documents
D = {d1, d2, ..., dn} containing epidemio-
logical data, each document di contains various
sections di = {s1, s2, ..., sm}. We use a prompt

template T1 to guide the LLM in extracting the
required data and generating output in JSON
format for each section sj of the documents:
LLM(T1, sj) = [{data}].

The template T1 can be customized based on the
targeted disease and the attributes of interests. Fig-
ure A1 in Appendix A is an example of T1, which
guides the LLM to extract global epidemiological
data on Rift Valley Fever from different journal
articles and reports, outputting the result in JSON
format. This template is employed in our experi-
ments (§4). The outputs are then post-processed
to merge records and eliminate duplicates, result-
ing in the final database DB, which contains the
epidemiological data from documents D.

3.2 Geotagging of extracted data

Geotagging, the process of adding geographical
identification metadata to the extracted epidemi-
ological data, occurs after forming the database
DB = {db_1, db_2, ..., db_k}. This database
contains epidemiological records in a structured
format like JSON alongside the text section s from
which they are extracted. Here db_k refers to the
k
th record generated by LLM.
To perform geotagging, we use a database of

global administrative regions, which we will refer
to by O. This database contains the administrative
regions for all the countries at various administra-
tive levels. We use the GADM database (GADM,
2018) for our approach.

We employ a second prompt template T2

to guide the LLM in selecting the appropri-
ate entries from the global administrative
regions database to geotag extracted data and
generate output in JSON format, including
the reasoning steps behind each decision:
LLM(T2, dbk, sj, O) = [{db+k , R1}]. Fig-
ure A2 in Appendix A illustrates an instance
of T2, which directs the LLM to select correct
entries from the GADM database to geotag RVF
occurrence data and provide reasoning steps
similar to chain-of-thoughts prompting (Wei et al.,
2023). Eliciting reasoning responses offers dual
benefits: it enhances performance and provides
reasoning steps that humans can easily validate to
assess the efficacy of geotagging using LLMs.

4 Experiments

Our experiments aim to evaluate the accuracy and
viability of using LLMs to extract and geotag epi-
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demiological data. We focus on the global spread
of Rift Valley Fever (RVF) by extracting rele-
vant information from a collection of documents
using an LLM to create a database of RVF out-
breaks. These documents are sourced from a
human-created RVF outbreak dataset. Below, we
first introduce the RVF dataset and then outline the
experimental setup, post-processing steps, and eval-
uation metrics for our two experiments: extracting
RVF data and geotagging the extracted data.

4.1 Dataset

Bron et al. (2021) compiled a comprehensive
dataset on the spread of RVF in humans and an-
imals, covering 22 countries for humans and 37
countries for animals from 1931 to 2020. The
dataset also includes seroprevalence studies con-
ducted between 1950 and 2020 (n = 228). Each
data point in the dataset is linked to either a sin-
gle or multiple sources, such as other datasets and
research publications, from which it was collected.

For our study, we collected all source documents
that were accessible to us, and created a subset
of the original dataset based on the sources we
were able to collect. Note that, in some cases, data
points with multiple sources might not have all the
required attributes available within the documents
we were able to collect, as some information might
have been derived from documents we could not
access. To address this, we manually inspected
each data point and its sources, removing any en-
tries with such discrepancies. Additionally, we
excluded seroprevalence and animal data, resulting
in a dataset focused on RVF outbreaks in humans.
This dataset is accompanied by the corresponding
source documents, which include research publi-
cations and outbreak reports in portable document
format (PDF) and span from 1955 to 2018.

4.2 Extraction of RVF data

The goal of this experiment is to extract RVF out-
break data from the accompanying documents to
evaluate the capability of LLMs to aid in epidemio-
logical data extraction. We detail our experimental
setup below, followed by a description of the post-
processing steps used to finalize the datasets and
the evaluation metrics employed to compare our
results with the human-curated dataset.

4.2.1 Experimental setup

The documents in our dataset are in PDF format,
but the LLMS require plain text input. To achieve

this, we first extract textual data from research ar-
ticles using optical character recognition (OCR).
Specifically, we use paperetl (NeuML, 2020) for
text extraction, which leverages GROBID (Lopez,
2009) to perform this task. GROBID is a machine-
learning library designed to extract, parse, and con-
vert raw documents into structured formats with a
primary focus on technical and scientific publica-
tions. The extracted text is grouped into different
sections. We overlap sections by including two pre-
ceding and two succeeding sections to ensure no
information is missed, even though this approach
increases the likelihood of generating the same in-
formation multiple times.

Next, we pass these sections, along with our
handcrafted prompt, to the LLM to extract the re-
quired information as a JSON. We use prompt tem-
plates as shown in Fig. A1 in Appendix A, to ex-
tract human cases of RVF from the documents. We
extract the location, country, start date, end date,
number of cases, and number of deaths. Each sec-
tion is processed by the LLM five times to enhance
the robustness of the extraction.

For this experiment, we use Llama-3.1 (META
AI, 2024) as the LLM of choice, specifically em-
ploying the instruction-tuned 8– and 70–billion
parameter variants. We use a top-p sampling-based
decoding strategy with p set to 0.9 and a tempera-
ture of 0.3. Top-p sampling limits the token pool
while decoding to the most probable tokens whose
cumulative probability mass is greater than or equal
to p, while temperature controls the randomness
during token selection. A higher temperature value
increases randomness, while a lower temperature
value reduces randomness. The experiments were
run on our in-house compute cluster of Nvidia
A100 80 GB GPUs, with a total GPU hours of
around 800 Hours.

4.2.2 Post-processing

The generated output undergoes a comprehensive
post-processing to extract and refine the epidemio-
logical records.

First, we extract JSON data from the generated
output text using string matching and regular ex-
pressions. Any output text that does not yield a
valid JSON structure is discarded. Next, we filter
out records lacking essential information, specif-
ically those missing location data, or missing all
of the start and end dates, number of cases, and
deaths. We then parse the essential attributes of
the JSON: disease start date, disease end date,
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number of cases, and number of deaths. We use
dateutil (DateUtil, 2014) for parsing date-related
attributes and num from string (DoubleBite, 2019)
for parsing number-related attributes. Entries from
which these details cannot be accurately extracted
are discarded. Following this, we merge identical
entries to eliminate duplicates. For merged entries,
the country name is resolved as the one with the
highest frequency. This country name is then used
to query the GeoNames (GeoNames, 2024) API,
obtaining the accurate name and code.

Subsequently, we merge entries from the five
different runs of a document. We then attribute
each record by verifying its presence in the text,
checking for the presence of case counts, death
counts, and start or end date year in the text using
string matching. We disregard records that are not
attributed.

4.2.3 Evaluation

The RVF data extraction experiment is evaluated
using both automatic metrics and human inspec-
tion.

precision = Total No. of correctly extracted events
Total No. of extracted events (1)

recall = Unique No. of correctly extracted events
Total No. of relevant events in the text (2)

First, we measure precision (Equation. 1) and
recall (Equation. 2). While precision focuses on
accuracy, any additional information extracted by
the LLM not present in the human dataset may still
hold significance, as it could represent overlooked
data. In these equations, Total No. of extracted

events refers to the number of events generated
by LLM, and the Total No. of relevant events

in the text refers to the number of events in the
human-annotated dataset. The No. of correctly ex-

tracted events refers to the records present in both
the human-annotated and LLM-generated datasets.
This is calculated as the number of identical events
in the two datasets. Precision uses the total count of
this measure whereas recall uses the unique count,
due to the possibility of duplicate records in the
LLM-generated dataset. Two events in the LLM-
generated and human-annotated dataset are con-
sidered identical if they meet all of the following
criteria: (i) originate from the same source docu-
ment, (ii) have the same case counts, (iii) share the
same year in either the start or end date and (iv)
have the same country name.

We also perform human evaluation of the LLM-
generated RVF spread dataset, to assess the records

generated by LLM, focusing on records not iden-
tical to the human-annotated ones. Evaluators are
tasked with determining whether the extracted data
are correct or incorrect based on the context from
which they were extracted. If a record is deemed
correct, it represents data missed by human anno-
tators but successfully captured by the LLM. Con-
versely, if a record is identified as incorrect, the
evaluator will provide an explanation of the error,
facilitating future improvements in data extraction
using LLM. Additionally, human evaluators are
responsible for accurately merging any remaining
duplicate records to create the final dataset.

4.3 Geo-tagging of extracted RVF data

The goal of this experiment is to geotag the ex-
tracted RVF data using an LLM with access to a
global administrative regions database. We outline
our experimental setup below, followed by the post-
processing steps and the evaluation methodology
used.

4.3.1 Experimental setup

The RVF spread dataset was generated by an LLM
extracting the required information from relevant
documents in the above experiment. To enhance
the utility of this dataset, we aim to geotag each
data point in the dataset. Each data point includes
attributes for country and location. We use this
information and the text from which the data point
was extracted as input to an LLM. The input also
includes the GADM table for the data point’s coun-
try. The LLM’s task is to infer the correct GADM
IDs for the data points and provide reasoning for
selecting these IDs. To accomplish this, we em-
ploy a chain-of-thought prompting technique, as
shown in Figure A2 in Appendix A, to infer the
GADM IDs and associated reasoning from an LLM.
For this purpose, we employ the Gemini (Gemini
Team, 2024) model, specifically the Gemini-1.5
flash version, accessible via an Application Pro-
gramming Interface (API). We chose the Gemini
model over Llama-3.1 due to the longer input se-
quence required for the geotagging task. The longer
input sequence constraints us from running Llama-
3.1 on our in-house GPU clusters. Additionally,
Gemini provides free requests, and by using the
lighter flash version instead of the pro version, we
were able to run the geotagging experiments with-
out incurring extra computational costs
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4.3.2 Post-processing

The generated output includes GADM IDs in JSON
format, which we extract and append to their cor-
responding entries to create the final geo-tagged
RVF spread database. This straightforward post-
processing step ensures the seamless integration of
geospatial metadata into the dataset.

4.3.3 Evaluation

Since we lack a reference gold database for this
experiment, our evaluation relies exclusively on
human assessments. Human evaluators assess the
reasoning steps generated by the LLM. They verify
the soundness of these steps, ensuring the accu-
racy of the geo-tagged RVF spread dataset. This
evaluation not only verifies the correctness of the
geotagged data but also validates the overall effi-
cacy of our approach to geotag epidemiological
datasets using LLMs.

5 Results

Our experimental results indicate that while LLMs
can extract significant amounts of information over-
looked by human annotators, they also produce
some inaccuracies. Additionally, LLMs equipped
with relevant contextual data show promise in ef-
fective geo-tagging. In the following sections, we
first present our empirical findings, followed by
insights from human evaluations. We conclude
by discussing the implications of these results and
their potential impact on the future of epidemiolog-
ical data extraction and geo-tagging using LLMs.

5.1 Automatic Evaluations

The human-curated RVF dataset is our gold stan-
dard reference for empirical evaluations. As de-
tailed in §4.1, the dataset has been refined to in-
clude only the subset of data points related to hu-
man RVF outbreaks that are available in the docu-
ments that we can access. As described in §4.2.3,
we evaluate the performance of the LLM-generated
RVF dataset against this human-curated dataset us-
ing Precision and Recall, as presented in Table 1.

In Table 1, the k column represents the threshold
for the number of times a record must be generated
across five runs to be included in the final dataset.
Notably, the results show that we can achieve per-
fect recall by including entries generated at least
once for the 70B model and at least twice for the
8B model. This indicates that our strategy of pass-
ing each section through the LLM multiple times
was effective.

No. of Precision Recall

Model Params k (%) (%)

Llama-3.1
8B

1 09.02 100.0
2 11.44 100.0
3 12.31 91.67

70B 1 19.82 100.0
2 18.48 91.67

Table 1: LLM can extract all the events contained
in the human curated dataset (recall = 100%) but also
generates additional events as shown by low precision,
k column represents the threshold for the number of
times a record must be generated across five runs to be
included in the final dataset

The perfect recall demonstrates that the LLM
successfully extracted all relevant information in
the human-curated dataset. However, the maxi-
mum precision achieved is only around 20 %, in-
dicating that LLM generated additional records
beyond what is captured within the human-curated
dataset. While this may initially seem like an is-
sue, it suggests that the LLM could be identifying
information that human annotators may have over-
looked. The full significance of these results will
become clearer after human evaluations of LLM-
generated outputs, which are discussed in the next
section.

5.2 Human evaluations

We present the human evaluations of the extraction
and geotagging results. The geotagging was done
on the extraction dataset, which has been refined
through human evaluation by removing the incor-
rect entries and consolidating duplicates. We use
the extraction dataset generated by the Llama-3.1
70B model, with a threshold of 1 for the number
of times a record must be generated across five
runs to be included in the final dataset. The human
evaluations conducted by the authors.

Human evaluations reveal that only 45% of the
records generated by the LLM are accurate, while
the remaining 55% contain errors for various rea-
sons. Of the incorrect entries, 40% involve details
of individual cases discussed within specific sec-
tions of the documents. Although this is not an
error in the LLM’s extraction, it indicates a need
for future experiments to refine instructions to han-
dle such cases more effectively. Another 10% of
the errors stem from the LLM including suspected
cases, despite the prompt specifying actual counts.
Additionally, approximately 5% of the errors were
due to OCR limitations, such as difficulties in cor-
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rectly extracting tables and mistakenly including
header or footer text within the main body. The re-
maining errors were due to inaccuracies introduced
by the LLM itself.

Despite these issues, notice that while the high-
est precision computed against the "gold" annota-
tions is only around 20%, there are an additional 25
automatically produced records that are deemed ac-
curate! This means that our final dataset captures

225% of the information that human annota-

tors had previously missed (our data captured

45 records and human annotators captured 20,
meaning it introduced a significant amount of new
data that was not initially identified.

Human evaluations were also conducted on the
geotagging results. The outputs included the in-
ferred GIDs for each location and the reasoning
behind selecting those GIDs, as shown in Figure B1
in Appendix B, for the location of ‘Aleg Hospital
Center’. We closely examined the reasoning steps
generated by the LLM and generally found them
to be accurate, displaying impressive reasoning
capabilities. In cases where insufficient informa-
tion was available, instead of forcing an incorrect
solution the LLM opted for broader, contextually
appropriate responses, as illustrated in Figure B2
in Appendix B.

5.3 Discussion

Our empirical and human evaluation results demon-
strate that LLMs can not only extract relevant infor-
mation but also capture details overlooked by hu-
mans. Additionally, LLMs can also accurately geo-
tag these extracted data points. This approach sig-
nificantly reduces manual effort, requiring minimal
human intervention limited to validation checks.
Based on these findings, we discuss the advan-
tages of using LLM-driven methods for similar
tasks, highlighting why future researchers should
consider such approaches over traditional, human-
based efforts. We then address the ethical and soci-
etal considerations associated with our work. We
conclude by highlighting the positive impacts of
our approach.

One key advantage of our approach is its ability

to extract information comprehensively, mini-

mizing the risk of missing critical details. As
our results show, LLMs can extract thrice as much
information compared to what humans can. Hu-
man errors are also a concern. For example, our
evaluation revealed that the human-curated dataset
recorded 240 cases of RVF in South Africa in 2010,

Figure 2: Comparison of heatmaps showing case counts
extracted and geotagged by humans (top) and by the
LLM (bottom) shows that LLM demonstrates the abil-
ity to extract more data and achieve higher geotagging
precision than manual methods.

while the LLM-generated dataset correctly iden-
tified 241. Upon further investigation, we found
that the original document mentioned 241 cases in
total but a case was missing from the state-by-state
breakdown table, which likely led the human an-
notators to capture only 240 cases. In contrast,
our LLM-based approach captured the full 241
cases. This highlights the second advantage of our
method: it requires minimal human intervention.
Human effort is limited to a few validation checks,
reducing the likelihood of errors and ensuring more
accurate and comprehensive data extraction.

The third advantage lies in the higher resolution

of extracted data. Our approach not only extracts
information but also geotags it with greater preci-
sion, enabling locations to be pinpointed with finer
granularity instead of just country-level data. This
is demonstrated in Figure 2, where the top figure
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illustrates case counts extracted and geotagged by
humans, and the bottom figure displays the results
generated by the LLM. The human-curated map is
restricted to country-level data, whereas the LLM-
generated map offers detailed information at lower
administrative levels. This enhanced granularity
significantly benefits downstream applications like
disease spread modeling.

Lastly, the fourth advantage is the reduced re-

source demands of our approach. Traditional
methods heavily rely on human labor, limiting data
collection due to high costs, significant time invest-
ment, and the challenges of recruiting and training
personnel. In contrast, our method incurs minimal
costs associated with LLM inference, which can
be further reduced with access to in-house GPU
resources. The need for human involvement is also
minimal, focused primarily on validation checks.
These relaxed resource requirements make our ap-
proach an efficient solution for extracting and geo-
tagging epidemiological data.

The advantages of our approach, as discussed
above, are significant. However, since it is applied
to public health analysis and decision-making, it is
crucial to consider the ethical implications. LLMs
are known to exhibit inherent social biases 4, and
they are prone to generate hallucinations-outputs
that are inconsistent with real-world facts or user in-
put 5. These issues could compromise the accuracy
and reliability of critical public health data that can
be used in decision-making. Our data extraction
process is less susceptible to these problems, as
the LLM is instructed to generate responses based
strictly on the provided text, with an automatic
post-processing step to verify its output. However,
biases and hallucinations may still arise, which
is why human verification of the generated data,
ensuring alignment with the source text, is inte-
gral to our method. The geo-tagging component
of our system is particularly vulnerable to these
challenges. To address this, we require the LLM to
generate reasoning steps alongside the geo-tagging
output. These reasoning steps are then reviewed
by humans to identify and mitigate potential biases
or hallucinations. Ultimately, human oversight is
essential to maintain the integrity of the dataset
produced by our system. Our next step, the geo-
tagging step is mostly susceptible to these issues.
To overcome these issues, we ask LLM to gener-

4See Gallegos et al. (2024) for a survey on bias in LLMs.
5See Huang et al. (2023) for a survey on hallucinates.

ate the reasoning steps along with the geo-tagging
response. These reasoning steps are then verified
by humans to check for issues of bias and halluci-
nation. Overall, proper human verification of the
dataset is crucial for the integrity of the generated
dataset.

The use of LLMs for extracting and geotagging
epidemiological data offers several positive im-
pacts. Our approach can be applied to gather data
on critical diseases like dengue fever, addressing
gaps that hinder effective public health analysis
and decision-making. The broader implications are
profound, as health is foundational to all aspects of
life, and our solution aims to enhance public health,
ultimately contributing to the overall well-being of
societies. However, it is important to consider the
ethical implications of our work addressed above.
Therefore, human oversight is necessary to ensure
data accuracy and integrity. Ultimately, our work
enables scalable, real-time epidemiological data
collection and geo-tagging for enhanced disease
tracking and policy-making.

6 Conclusion and Future Work

We propose an automated approach for extracting
and geotagging epidemiological data from textual
documents using Large Language Models (LLMs).
Current methods of collecting such data rely on
human effort and are prone to errors. To overcome
these challenges, our approach leverages LLMs to
automate the extraction and geotagging processes.
We tested our method by applying it to RVF out-
break data, where a human-curated dataset was
available for comparison. Our findings demon-
strate the effectiveness of this approach. The LLM
was able to capture significantly more information
than manual efforts, albeit with some inaccuracies.
Additionally, the LLM exhibited notable geospa-
tial reasoning abilities, accurately geotagging data
points. These results suggest that LLMs can be ef-
fectively employed to semi-automate the extraction
and geotagging of epidemiological data with some
level of human verification.

While our experiments focused on a single dis-
ease, the promising results encourage us to extend
this work to multiple diseases with the aim of creat-
ing publicly available datasets for epidemiological
studies. We also plan to extend our research to
include multilingual LLMs, broadening the scope
to non-English documents.
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Limitations

Our study is fairly limited in scope. Firstly, we
utilized the Llama-3.1 70-billion model instead of
more advanced options like the 405-billion param-
eter model due to computational and memory con-
straints. Similarly, we employ the Gemini flash
model rather than the more capable Pro model.
These better LLMs could have possibly produced
more intriguing and better results. Secondly, we
focus solely on English language documents; a
follow-up study could further expand to cover more
languages. Lastly, the human evaluations were
conducted solely by the authors due to time and
resource constraints, which may impact the thor-
oughness of the evaluation process.
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A Prompt Templates

Extract the occurrences of Rift Valley Fever globally on humans only, including specific locations,
outbreak dates, and epidemiological data. Adhere strictly to the provided text, ensuring accuracy
and faithfulness. Extract the information as a JSON with the following structure:

[
{

‘location’: <location_name>,
‘country’: <country_name>,
‘disease_start_date’: < Y Y Y Y/MM/DD >,
‘disease_end_date’: < Y Y Y Y/MM/DD >,
‘number_of_cases’: < INT >,
‘number_of_deaths’: < INT >,
‘location_confidence_score’: < FLOAT >

‘country_confidence_score’: < FLOAT >

‘disease_start_date_confidencescore’: < FLOAT >

‘disease_end_date_confidence_score’: < FLOAT >

‘number_of_cases_confidence_score’: < FLOAT >

‘number_of_deaths_confidence_score’: < FLOAT >

}
]

Please keep in mind the following things:
1. Only extract information regarding Rift Valley fever and not other diseases.
2. Extract information regarding the outbreak of Rift Valley fever in humans only. Disregard

information related to animals and seroprevalence.
3. Mark unavailable information as ‘None’ in the JSON.
4. Remember to generate the JSON only and nothing else and if there is no mention of the

disease in the text just provide an empty list.
5. Provide the case counts as the number of confirmed cases rather than the estimated or

investigated ones
6. Provide the location name in as much detail as you can, meaning the lowest administrative

region possible.
7. attribute_confidence_score refers to the confidence you have in the accuracy of the data

you extracted for the specific attribute. Its value ranges from 0 to 100.
8. Please be honest while assigning the confidence_score: use lower values where you are

not certain about the accuracy of the extracted information and higher values where you are
confident of the information extracted from text.

9. Only provide the JSON output.
Below is the text to extract the information:

Figure A1: Prompt template to extract human RVFV epidemiological data.

268



The following information was extracted from a research article about rift valley fever outbreak:
{

‘start_date’: <start_date>,
‘end_date’: <end_date>,
‘number_of_cases’: <number_of_cases>,
‘number_of_deaths’: <number_of_deaths>,
‘country’: <country>,
‘location’: <location>,

}
This information was extracted from the following sections of the article:

<context_txt>

The extracted country is correct and can be mapped to GADM but the location, which contains list
of location might not be directly mapped to GADM. I want you to infer the correct GADM entry for
the location and you can use the sections from which the information was extracted to better make
the decision. I will provide you with the GADM dataset as a table below for <country_name>
and you can pick the correct entry from there and provide me with the correct GADM ID (GID).
The GADM table for <country_name> is as below:

<GADM TABLE>

Please extract the correct GADM entry and think step by step to provide the correct one. I want to
infer the GADM entry for <location> from the following specific entry:

{
‘start_date’: <start_date>,
‘end_date’: <end_date>,
‘number_of_cases’: <number_of_cases>,
‘number_of_deaths’: <number_of_deaths>,
‘country’: <country>,
‘location’: <location>,

}
If the location has multiple entries, target the location at the lowest level of administration and
some location might be inferred as multiple entries and that is fine.
Also, be careful that the provided text might be talking about another outbreak and we are interested
just in the outbreak of the specific entry.
If it is difficult to infer the location at a lower administrative level, instead of guessing please
provide the upper location at an upper administrative level.
Also, be mindful of the naming conventions used in different countries. For example: some
countries have state at the 1st level of administrative region while others might have province or
regions.
I want just the GIDs, and you can provide them from the GID_1, GID_2, GID_3, GID_4 and
GID_5 columns of the table.
At the end please provide an output in the following JSON format:

{
‘inferred_gids’: [<gid>],

}

Figure A2: Prompt template to infer GADM entry for a location
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B LLM outputs

“‘json
{

"inferred_gids": ["MRT.3.1_1"]
}
”’
Here’s how we arrived at this GID:
1. **Focus on the provided entry:** We are specifically interested in the outbreak described in the
entry:
“‘json
{

"start_date": 2015-09-01’,
"end_date": ’2015-11-07’,
"number_of_cases": ’12’,
"number_of_deaths_fixed": ’nan’,
"country": ’Mauritania’,
"location": [’Aleg Hospital Center’],

}
”’
2. **Locate the relevant text:** The text mentions "During the outbreak, 19 (61%) and 12 (39%)
confirmed cases were admitted at Kiffa Hospital Center and Aleg Hospital Center, respectively."
This directly links "Aleg Hospital Center" to the outbreak we’re analyzing.
3. **Match to GADM:** The GADM table shows "Aleg" as a NAME_2 under the GID_2
"MRT.3.1_1".
4. **No lower level:** The text doesn’t provide information about a more specific location within
Aleg. Therefore, "MRT.3.1_1" is the most precise GID we can infer.

Figure B1: LLM-generated response for the geo-tagging task of ‘Aleg Hospital Center’ demonstrates the model’s
strong potential for accurately geo-tagging datasets, given sufficient contextual information to support its reasoning.

**Include all provinces:** Since we don’t have enough information to pinpoint the exact location
within the three provinces, we include all five provinces as the inferred GIDs.

Figure B2: LLM demonstrated strong reasoning skills by providing a broad, contextually appropriate response
rather than forcing an incorrect solution.

270


