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ABSTRACT

In urban science, understanding mobility patterns and analyzing
how people move around cities helps improve the overall quality of
life and supports the development of more livable, efficient, and sus-
tainable urban areas. A challenging aspect of this work is the collec-
tion of mobility data through user tracking or travel surveys, given
the associated privacy concerns, noncompliance, and high cost. This
work proposes an innovative Al-based approach for synthesizing
travel surveys by prompting large language models (LLMs), aiming
to leverage their vast amount of relevant background knowledge
and text generation capabilities. Our study evaluates the effective-
ness of this approach across various U.S. metropolitan areas by
comparing the results against existing survey data at different gran-
ularity levels. These levels include (i) pattern level, which compares
aggregated metrics such as the average number of locations trav-
eled and travel time, (ii) trip level, which focuses on comparing
trips as whole units using transition probabilities, and (iii) activity
chain level, which examines the sequence of locations visited by
individuals. Our work covers several proprietary and open-source
LLMs, revealing that open-source base models like Llama-2, when
fine-tuned on even a limited amount of actual data, can generate
synthetic data that closely mimics the actual travel survey data
and, as such, provides an argument for using such data in mobility
studies.
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1 INTRODUCTION

Analyzing mobility patterns in urban areas has become a critical
area of research given the population growth in (mega)cities and
associated space and resource constraints. Analyzing how people
navigate cities is essential for several tasks that have the ultimate
goal of improving the quality of life of residents and supporting
the development of more livable, efficient, and sustainable urban
areas. Given the right insight, city planners can design better trans-
portation systems, reduce traffic congestion, reduce environmental
impacts, and ensure equitable access to transportation for all resi-
dents.

Mobility data is the cornerstone of this assessment. However,
collecting such data presents significant challenges. Current meth-
ods include user tracking [2, 18, 28] and travel surveys [21, 25].
Each has its own set of issues such as privacy concerns, participant
noncompliance, and high cost. This paper proposes an innovative
approach to the assessment of urban mobility using artificial in-
telligence and specifically large language models to tap into the
existing collective wisdom and thus to overcome these challenges.

Mobility data, which captures the movement of people, is foun-
dational for urban mobility assessment. While the rise of 5G and
IoT technologies promises a great avenue to collect mobility data
using GPS tracking, this approach has significant issues. Collecting
GPS data raises privacy concerns, and even when the data is col-
lected securely and ethically, many people are reluctant to opt-in
to such programs. In addition, pure tracking data does not capture
the context and purpose of a trip. Here, an alternative method is
conducting travel surveys. These surveys collect information about
an individual, and their household, and use a travel diary, which
captures a person’s movements on a particular day. Although dif-
ferent approaches exist, in general, surveys ask participants to log
their start and end time, start and end location, mode of travel, and
purpose of the journey in a travel diary. The quality of such surveys
is often disputed given their low response rate and associated high
cost, for example, the US National Highway Travel Survey (NHTS)
from 2017 has an overall response rate of only 15.6% [34].

Those concerns have motivated researchers to explore simulation-
based techniques to gather synthetic travel survey data [11]. In this
context, our work leverages large language models (LLM) to gener-
ate travel surveys, offering a promising alternative to traditional
methods and improving the evaluation of urban mobility.

LLMs have revolutionized the field of natural language process-
ing and artificial intelligence, eliminating the need for task-specific
models trained using vast amounts of labeled datasets. With the
advent of pre-training techniques, LLMs, which have a large num-
ber of parameters in them, can be pre-trained without any labeled
data. This pre-training allows LLMs to encode different types of
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knowledge within their parameters, effectively acting as knowledge
bases [23]. LLMs also encode world knowledge and exhibit common
sense reasoning capabilities, enabling them to understand and gen-
erate human-like text across various contexts. Demonstrating this
capability, Brown et al. [6] showed that sufficiently scaled LLMs like
GPT-3 can handle diverse downstream tasks just by passing a task
description, with or without a few sample task examples, as context.
This technique is known as Prompting. Moreover, advancements in
prompting techniques [3] have made it possible to handle complex
tasks, including reasoning.

We hypothesize that since LLMs are trained on a vast amount of
textual data, they could potentially encode travel-related data within
their parameters. This suggests that simulating travel surveys using
LLMs could present a promising alternative. In our study, we prompt
LLMs, including Llama-2 [29], Gemini-Pro [9], and GPT-4 [1], to
simulate a travel survey.

In our approach, an LLM generates a travel survey by complet-
ing the travel diary entries as a survey participant. To validate the
results, we compare them to actual travel surveys, specifically the
2017 NHTS data. The evaluation of the results occurs at the (i) pat-
tern level, i.e., aggregate metrics such as the number of locations
visited or total travel time, (ii) trip level, i.e., comparing trips be-
tween location pairs using transition probabilities, and (iii) activity
chain level, i.e., comparing daily location sequences. Our evalua-
tion covers different US Statistical Metropolitan areas and compares
them with the 2017 NHTS data. In another experiment, we also
compare our LLM-based generation results with a pattern-of-life
simulation, an agent-based model (ABM) simulation [15].

Our findings reveal that LLMs even without fine-tuning or align-
ment to better follow human instructions, encode travel-related
information. However, fine-tuning these LLMs even with a small
subset of actual travel surveys enables them to better mimic the real-
world surveys, surpassing the performance of existing simulation
techniques.

The remainder of this paper is structured as follows. Section 2
reviews related work in the field of travel survey simulation for ur-
ban mobility assessment. An overview of our proposed LLM-based
travel survey simulation system is presented in Section 3. Section 4
discusses the methodology used to assess the quality of our gener-
ated data. Section 5 details our experimental setup and results. We
then compare our system with an agent-based simulation approach
in Section 6. Finally, Section 7 provides conclusions and directions
for future work.

2 RELATED WORK

Researchers have explored various techniques to simulate travel
surveys, aiming not to replace the instrument but to complement
and extend collected travel survey data.

One of the first techniques was based on the Monte Carlo method
[30]. Greaves and Stopher [12] proposed a method that first em-
ployed the Classification and Regression Tree method [5] to classify
the households from an actual survey into clusters based on travel
attributes. Subsequently, within each cluster, the variability of trip
attributes was captured as a probability distribution. This approach
was then applied to households within the location of interest,
where Monte Carlo Sampling (MCS) was utilized to select values
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from the appropriate probability distribution. Initially applied in
Baton Rouge, Louisiana, this technique has been validated in vari-
ous locations, including the Dallas-Fort Worth and Salt Lake City
metropolitan area [27], and Adelaide and Sydney in Australia [24].
A similar approach was adopted by Mohammadian et al. [22], who
used a synthesized population for the target location and employed
neural networks to facilitate the transferability of clusters from
actual survey data to the synthesized population. Although this
method accurately predicted trip rates, it failed to capture other
trip characteristics like mode, departure time, and travel time. The
authors attribute this to the method’s inability to reflect contextual
differences between locations. In contrast, our approach mitigates
this issue, as recent studies have demonstrated the ability of LLMs
to discern between locations when provided with the proper con-
text [4]. In contrast, our approach addresses this issue by leveraging
LLMs’ ability to distinguish locations with proper context [4].

The method described by Greaves and Stopher [12] generates
each trip in a chain independently of prior trips, which is also by de-
fault handled by the autoregressive nature of LLMs that we employ.
Going beyond, researchers have also tried simulating trips based on
previous trips taken in the chain [14, 17]. The main idea here is to
generate weighted transition probabilities, as we have used in our
evaluations. However, these methods typically rely on second-order
transition probabilities only, whereas during our model fine-tuning,
we incorporate higher-order transition probabilities.

Additionally, another technique involves simulating real-world
location-based social network (LBSN) datasets, based on typical
human behavior, also known as patterns of life [15, 16]. In this sim-
ulation, agents with needs similar to real individuals are tracked to
generate LBSN datasets resembling actual human interactions. One
advantage of this technique is that it can generate precise location
information, which our system currently lacks. To evaluate our
system against this ‘patterns of life’ based simulation, we conduct
a comparative analysis in Section 6.

Lastly, recent research has explored the use of LLM-based tech-
niques, particularly for human mobility predictions. Wang et al.
[32] demonstrated that LLMs excel in accurately predicting the
likely next destination in a human trajectory. Similarly, Wang et al.
[31] introduced an LLM agent framework designed to generate ac-
tivities based on real-world human activity data. Building on these
advancements, our work shows that LLMs are not only effective at
predicting subsequent destinations but also possess encoded mo-
bility information. This inherent capability allows LLMs to assess
urban mobility even in the absence of real-world data, highlight-
ing their potential for broader applications in urban planning and
mobility studies.

3 SYSTEM OVERVIEW

Our proposed LLM-based system aims to generate synthetic travel
survey data to simplify and complement the data aspect of urban
mobility assessment. Leveraging the extensive knowledge encoded
in LLMs, the system generates travel survey responses by prompt-
ing the LLM to fill out a travel diary. The system then processes the
LLM-generated output, which is structured as a travel diary table.
Table 1 provides a sample table of the generated output. The overall
system architecture shown in Figure 1 comprises the following
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Table 1: A (reformatted) sample output generated by our
LLM-based approach.

Place Arrival | Departure | Location
Visited Time Time Type
Home | 00:00 AM | 07:30 AM 1
Work | 08:00 AM | 05:00 AM 3
Home | 05:30 AM | 11:59 PM 1
Control
Location  Variables

Population
Sampler

Prompt

Post
Generator H LLM H Processor ‘

}

Date Sampler

Simulated
Start End Travel
Date Date Data

Figure 1: LLM-based travel survey generation system.

components: population sampler, date sampler, prompt generator,
LLM, and a post-processor.

Population Sampler To ensure the accuracy of our LLM-based
approach, it is important to account for the diverse demographics
of the targeted location. To achieve this, we employ a population
sampler, sampling individuals based on various control variables
such as sex, age group/age, race, school enrollment, participation
in the labor force, employment, occupation, marital status, house-
hold type, and presence of children under the age of 18 years. To
maintain consistency with actual travel surveys, we exclude par-
ticipants under the age of 16. We use the American Community
Survey (ACS) [7] to define the prior probabilities used to sample
demographics for locations within the United States of America.
Date Sampler Given that surveys operate within a specific dura-
tion, we employ a date sampler, which selects the survey date for
each participant by uniformly sampling a date falling between the
designated start and end dates of the survey.

Prompt Generator The prompt generator is responsible for craft-
ing inputs for the LLM, using the outputs of the population and
date samplers. Our prompts are hand-designed to emulate the for-
mat of the National Household Travel Survey 2017 [8] employing
travel diary-based completion prompts, aiming to simulate an indi-
vidual’s travel diary. The prompt instructs the LLM to populate a
table detailing the places visited by the participant, along with the
arrival and departure times and the location types. Specifically, the
pre-specified columns are: ‘Place Visited’, ‘Arrival Time’,
‘Departure Time’, and ‘Location Type’. An illustrative prompt
is shown in Appendix A in Figure Al. We use the location type
categorization used by the National Household Travel Survey 2017.
We have provided the categorization in Appendix C in Table C1.
Large Language Model We prompt the LLMs with the output
generated by the prompt generator and assess their efficacy in
simulating travel surveys using three LLMs: Llama-2, Gemini, and
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NHTS-2017 Location Types New Location Types
Regular home activities Home

Work from home Home

Work Work
Work-related meeting/trip Work
Volunteer activities Community
Drop off /pick up someone In Transit
Change type of transportation In Transit
Attend school as a student Education
Attend child care Care

Attend adult care Care

Buy goods Shopping
Buy services Shopping
Buy meals Eat Meal
Other general errands Other
Recreational activities Recreational
Exercise Recreational
Visit friends or relatives Social
Health care visit Social
Religious or other community activities | Community
Something else Other

Table 2: Reclassification of the 20 location types in NHTS-
2017 survey to 11 location types.

GPT-4. In our Llama-2 setup, we use top-k sampling-based decoding
with k = 50 and a temperature of 1. Top-k sampling limits the
token pool while decoding to the k most likely options at each
step. Temperature controls the randomness during token selection.
A higher temperature value increases randomness, while a lower
temperature value makes the output more deterministic. For Gemini
and GPT-4, we use the default sampling-based decoding strategy
offered in their Application programming interface (API).
Post-processor While the prompt instructs the LLMs to produce
output in a structured tabular format, their responses sometimes
include extraneous text or omit required information. Hence, we
need to post-process the responses generated by the LLM to extract
structured travel data.

First, the post-processor utilizes regular expressions to extract
the tabular data from the LLM-generated output. However, it is
important to note that not all survey outputs result in accurate
table formation. Specifically, for Llama-2 model outputs, the post-
processor filters out surveys lacking travel time information or
exhibiting travel times exceeding 2 hours between two locations. In
addition, specifically for Llama-2 model outputs, we exclude surveys
featuring location types categorized as 97 (Other). This decision is
based on post-analysis, which revealed a notable prevalence of this
location type, possibly due to the LLM trying to play it safe.

Lastly, the post-processor reclassifies the original 20 location
types into a new set of 11 location types, following the method
of Reia et al. [26], to facilitate an easier in-depth analysis. The
reclassification is provided in Table 2.
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4 EVALUATION METHODOLOGY

Comparing our generated travel data to actual travel data is inher-
ently complex and requires multiple metrics ranging from aggregate
to more detailed levels, such as daily activity chains (cf. Janssens
et al. [14]). These levels include (i) pattern level, which exam-
ines aggregated metrics such as the average number of locations
traveled and average travel time, (ii) trip level, which focuses
on comparing all the trips using transition probabilities, and (iii)
activity-chain level, which analyzes the sequence of locations
visited by individuals.

Pattern level Pattern-level metrics compare the generated and
actual travel data at the highest level by examining aggregate mea-
sures of travel behavior. At this level, we use the average number
of locations visited per participant and the average travel duration
as key comparison metrics. Additionally, we analyze location visit
counts (visualized with histograms) and travel time distributions
(visualized with box plots), comparing the characteristics of our
generated data to those of actual travel survey data.

Trip level A trip refers to a movement or a journey made by an indi-
vidual from one location to another (e.g., ‘Home -> Work’). Trips are
the fundamental unit of analysis in urban mobility. So, to compare
trips, we generate transition probabilities, as shown in Table 3, from
our actual and generated survey data. These transition probabilities
capture the likelihood of traveling between different locations. We
also generate the second-order transition probabilities (example
provided in Table C2 in Appendix C). Effectively, the transition
probabilities computed over a set of surveys can be presented as a
square matrix. This representation allows us to easily quantify the
distance between transition probabilities computed over different
sets of surveys (actual and generated), by calculating the matrix
norm of their difference (i.e., the norm of the subtraction —actual
minus generated- of the probability matrices). In our case, we use
the Forbenius norm [10]. We additionally focus on destination prob-
abilities, i.e., the probabilities of a trip ending at a specific location
type, to evaluate the likelihood of each location type across differ-
ent LLMs and contrasting them with the destination probabilities
observed in the actual survey data.

Table 3: Example of a first-order transition probabilities.

Xt
Xe-1 Home Work Community In Transit
Home 0 0.31 0.05 0.07
Work 0.21 0 0.03 0.04

Activity-chain level Activity chains represent the complete se-
quence of visited locations during a day (e.g., ‘Home -> Work ->
Home’).

We examine different combinations of the presence of activity
chains across the actual and generated data. First, for a given loca-
tion we analyze if generated activity chains appear in the respective
actual survey, i.e., evaluating for a specific location the portion of
the survey data that is captured by the generated data. We term
this metric ‘Chain Precision;,.” in our results.
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Second, we consider the presence of generated chains within the
actual chains across all locations. The assumption here is that a
specific activity chain is realistic if it appears in an actual survey of
any location. In our tables, we call this metric ‘Chain Precisiong; .

The previous two metrics are conceptually equivalent to preci-
sion. We test how many of our generated activity chains are realistic,
i.e., similar to the ground truth. Thus, we also need a metric concep-
tually similar to recall. We quantify the presence of activity chains
from actual surveys in generated surveys, measuring the represen-
tativeness of the generated chains. Specifically, we compute the
ratio of the actual chains that are represented by the generated
ones. We name this metric as ‘Chain Recall’ in our tables.

Finally, we calculate the weighted overlap between the actual
and generated activity chains. This weighted overlap can serve as
a single measure to compare different LLMs, indicating which LLM
generates activity chains that most closely match the actual ratios.
Table 4 summarizes the different aspects of these activity chain
level metrics for easy reference.

Table 4: Activity-chain level metrics used to compare the
generated and actual travel chains. Labels used in results and
a short description.

Metric

Description

Chain Precision),. | Generated chain appears in respective
actual survey (Resemblance of gener-
ated to actual)

Generated chain appears in any actual
(Presence in other locations also indi-
cates realistic outputs)

Chain Precision,)

Chain Recall Actual chain appears in generated ones
(Representatives of generated to actual)
Weighted overlap | Similarity between actual

between chains and generated chains

In summary, assessing generated travel data against actual data
requires a multi-level approach. We analyze aggregated metrics,
individual trips, and activity chains. These evaluations help us
understand how generated data aligns with actual ones, providing
insights into the use of LLMs for urban mobility assessment.

5 EXPERIMENTS

Our experiments evaluate the accuracy and, essentially, the viability
of our LLM-based travel survey system for various metropolitan
areas in the US. We generate synthetic travel data for five different
metropolitan areas and compare them to the actual 2017 National
Household Travel Survey (NHTS) data. We first introduce our ex-
perimental setup and provide a detailed analysis focusing on the
San Francisco-Oakland-Hayward metropolitan area. Following this
case study, we extend our experiments and discussion to four more
metropolitan areas. In a nutshell, the results reveal that our pro-
posed approach is indeed viable. LLMs fine-tuned on even a limited
amount of actual data can generate synthetic data that closely re-
semble actual survey data.
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5.1 Experimental Setup

We use our LLM-based travel survey generation system to gen-
erate travel data for five different metropolitan areas in the USA:
(i) San Francisco-Oakland-Hayward, (ii) Los Angeles-Long Beach-
Anaheim, (iii) Washington-Arlington-Alexandria, (iv) Dallas-Fort
Worth-Arlington, and (v) Minneapolis-St. Paul-Bloomington.

The population and date samplers, the first two components of
our system, are tasked with sampling for participant demographics
and for dates to maintain consistency with actual travel surveys.
The population sampler uses the 2017 American Community Survey
(5-year estimates) to sample individuals. The date sampler samples
a date between April 19, 2016, and April 25, 2017, to mimic the
NHTS 2017 survey timeline.

LLM is a key component of our system that generates the gener-
ated travel data. We use three different LLMs: (i) Gemini-Pro, (ii)
GPT-4, and (iii) Llama-2, to compare their effectiveness.

Gemini-Pro and GPT-4-turbo are proprietary LLMs only accessi-
ble via an API. We use the Gemini-Pro and GPT-4-turbo versions.

Llama-2, an open-source LLM, is deployed on a GMU research
computing GPU cluster. We employ the largest variant of Llama-2,
which has 70B parameters. However, we opt for the 8-bit quantized
version, as fitting it in our GPU cluster is not feasible otherwise.
Model quantization involves employing low-precision data types,
such as 8-bit integers (int8), for model inference, reducing compu-
tational and memory demands, albeit with a minor performance
trade-off.

The pre-trained Llama-2 model can be further fine-tuned to the
task-at-hand. Fine-tuning uses a subset of 10,000 randomly sampled
surveys from NHTS-2017, including all possible locations. These
samples are then converted to produce prompts similar to ours
based on the survey metadata (Figure Al in Appendix A), while
the LLM’s output should align with the actual travel diary entries
(Table 1). Fine-tuning the whole model is prohibitively expensive
due to its size. We instead use Low-Rank Adaptation (LoRA) [13],
which enhances pre-trained LLMs by freezing their model weights
and injecting trainable rank decomposition within each layer of
the LLMs transformer architecture. This technique significantly
reduces the number of trainable parameters, making fine-tuning
LLMs feasible. We employ AdamW [20] as the optimizer, with a
learning rate of 0.001 and a cosine learning rate scheduler [19],
running for 3 epochs. LoRA-based hyperparameters alpha and rank
are set to 128 and 256 respectively.

In the following section, we present the results of employing
these different LLMs, to provide an in-depth analysis of their perfor-
mance for the San Francisco-Oakland-Hayward metropolitan area.
In a subsequent section, we use the insights from the detailed study
to provide a comprehensive assessment for four more locations.

5.2 Detailed evaluation - San Francisco

What follows is a detailed analysis of the data generated by our
LLM-based travel survey system for the San Francisco-Oakland-
Hayward metropolitan area by comparing it to the actual 2017
NHTS data using the methodology outlined in Section 4.

Our findings indicate the superior performance of the fine-tuned
Llama-2 model, demonstrating its effectiveness even for locations /
cities where no actual travel survey data is available for training
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Table 5: Comparison of the average number of visited loca-
tions and mean travel time across different models - Llama-2-
trained model best matches survey data showcased by lower
differences A.

Num of Avg num of visited Travel

samples locations  (A) hours (A)
Actual 4027 5.35 1.74
Gemini-Pro 1241 659 (1.24) 252 (0.78)
GPT-4 688 6.96 (1.61) 252 (0.78)
Llama-2 1279 555 (0.20)  7.17 (5.43)
Llama-2-trained 1452 4.97 (-0.38) 1.53 (-0.21)

the model. Below we provide supporting arguments for all lev-
els of analysis (pattern, trip, and activity chain). The final section
more closely examines LLM fine-tuning to investigate the impact
of training data choices and the model’s generalization abilities.
Pattern-level evaluation The pattern-level evaluation compares
the actual and generated travel data at an aggregate level, i.e., in
our cases consider the (average) number of visited locations and
total travel time.

Our findings reveal that the Llama-2-trained model closely matches
the actual data in terms of aggregate metrics of the average number
of visited locations and travel time.

Table 5 presents the metrics for the various models and also
indicates the respective sample sizes. Among the four models, the
Llama-2-trained model performs best since it produced both, a
reasonable average number of visited locations and at the same
time keeps the travel time (in hours) close to the actual average.
The other three models each perform poorly on at least one of the
two metrics.

Among the three base models, Llama-2 best matches the survey
data in terms of visited locations but does not properly capture
travel time. This discrepancy can be attributed to differences in
model alignment. Model alignment refers to fine-tuning the model
to better match the downstream task. GPT-4 and Gemini-Pro are
fine-tuned for better alignment with human instructions, making
them adept at handling numerical and temporal data. In contrast,
the base Llama-2 model lacks such fine-tuning. However, this align-
ment of GPT-4 and Gemini-Pro, while advantageous for travel time
prediction, also leads to the generation of more text, consequently re-
sulting in an abnormally higher number of locations traveled. This
trend is also visible in Figure 2 showing the distribution of the num-
ber of locations traveled by the survey respondents. For Gemini-Pro
and GPT-4, the number of locations traveled far exceeds the actual
data, particularly for longer journeys. GPT-4 produces surveys with
only 5-10 locations visited. Other models output ranges from 1 to
19 locations, which resemble more closely the distributions of the
actual survey data. The plot on the bottom right of Figure 2 shows
how closely the fine-tuned Llama-2-trained model matches actual
survey data in terms of locations visited.

The limitation of the Llama-2 base model in handling numerical
data and consequently travel time is also evident in Figure 3, which
shows the travel times of each model in a box plot. The travel
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Actual Actual
20 Gemini-Pro | 20 Uama-2

123456 78 910111213141516171819 12345678 91011121314151617 1819

30 Actual Actual
GPT-4 Uama-2-trained

12345678 910111213141516171819 12345678 91011121314151617 1819

Figure 2: Distribution of the number of locations traveled by
survey respondents for the San Francisco-Oakland-Hayward
metropolitan area. Llama-2 and its fine-tuned variant show
best alignment with actual survey data.
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o
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Actual Gemini-Pro Llama-2 GPT-4  Llama-2-trained
Figure 3: Travel time predictions - Gemini-Pro and GPT-4
models outperform Llama-2. The Llama-2-trained model
matches survey travel times. Outliers are removed for better

visualization.

time for Llama-2 is as high as 120h (in a survey that captures 24h),
indicating its struggle with time-related data. Gemini-pro and GPT-
4 better model travel times.

Fine-tuning the Llama-2 model addresses both of these issues.
As shown in Figure 3 (right-most box), the fine-tuned model travel
times resemble more closely those of the actual survey.

Overall, the pattern-level evaluation of the various models in-

dicates that the Llama-2-based generated data, particularly the
Llama-2-trained model, most closely matches the actual travel sur-
vey data.
Trip-level evaluation The trip-level evaluation compares all the
survey’s individual trips (between two locations) using transition
probabilities. These results suggest that, again, the Llama-2-trained
model best matches the travel survey transition probabilities.

In the trip-level comparison, the Llama-2-trained model distin-
guishes itself. It shows the closest resemblance to the actual tran-
sition probabilities, as indicated by the Forbenius norm results
of Table 6. Among the base models, Gemini-pro performs best,
whereas GPT-4 shows the poorest alignment. This variation in
model performance can be further explained by examining the dif-
ferences in first-order destination probabilities, which reflect the
likelihood of a trip ending at a particular location type. Figure 4
shows the differences between the generated and actual survey data
ordered by the probabilities of the actual survey. Gemini-Pro and
GPT-4 tend to overpredict destinations typically associated with
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Table 6: Frobenius norm of transition probability differences
between actual and generated data (lower is better). Llama-2-
trained data best matches actual survey data.

Frobenius Norm with
1st order 2nd order
transition prob  transition prob

Gemini-Pro 0.063 0.046
GPT-4 0.166 0.130
Llama-2 0.106 0.071
Llama-2-trained 0.044 0.032

tasks such as “shopping”, “dining out”, and “recreational activities”
(notice the large negative bars). This tendency is likely a result of
the models being fine-tuned to respond to queries related to such
location types. Llama-2 tends to overpredict other location types,
such as “work”. However, it more closely captures the actual survey
data trends. The fine-tuned Llama-2-trained model overall shows
the best performance and alignment (as indicated by having gener-
ally smaller positive and negative bars in the figure). The analysis
of second-order destination probabilities detailed in the appendix
shows a similar trend (see Figure B1 in Appendix B).

In summary, the trip-level evaluation indicates that Llama-2-

trained generated data has transition probabilities best resembling
those of the actual survey data. This finding is consistent with our
pattern-level evaluation.
Activity-chain-level evaluation The third type of evaluation is
the most detailed one and compares the generated model results
at the activity-chain level by analyzing the sequence of locations
visited during a 24h period. Again, the results suggest that the
Llama-2-trained model generates activity chains that more closely
resemble the actual activity chains of travel surveys. This analysis
shows that fine-tuning is crucial: we observe a 1.5-2x improvement
in emulating the activity chains from travel surveys over the base
Llama-2 model.

Table 7 presents a comprehensive overview of the results for the
San Francisco-Oakland-Hayward metropolitan area, showing all
metrics following the explanation provided in Table 4.

According to all metrics, Llama-2-trained outperforms all other
models. 61% of its generated activity chains appear in the actual
survey (Chain Precisionj,.), compared to only around 36% for the
base Llama and even lower numbers for Gemini-pro and GPT-4.
Moreover, the Llama-2-trained model generates around 80% of
all (67% unique) activity chains of the NHTS survey (see Chain
Precision,y). This is a significant improvement over the base models
Llama-2, Gemini-pro, and GPT-4, which only reach 50%.

Taking into account the frequency of the activity chains (by
appropriate weighting), we find that approximately 47% of the
actual activity chains are present in the generated data of the Llama-
2-trained model (see Chain Recall), compared to around 39% for the
Llama-2 base model and Gemini-pro, and only 2% for GPT-4. Finally,
the weighted overlap between the actual and generated activity
chains is around 42% for the Llama-2-trained model, exceeding
Gemini-pro by more than 20% and GPT-4 by 40%. This shows how
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Figure 4: Difference in first order destination probabilities (actual - generated) per location category. Llama-2-trained outper-
forms (with shorter bars) other models.

Table 7: Activity chain analysis - Llama-2-trained model closely captures the activity chains of actual travel survey. Chain
Precisionj,: presence of generated chains within actual (resemblance); Chain Precision,j: presence of generated chains within
actual of all the cities (chain realism); Chain Recall: presence of actual chains within generated ones (Representativeness);
Weighted overlap between chains: weighted similarity of chains.

Chain Precision),. Chain Precision,j Chain Recall Weight Overlap
high is better for all metrics %  weighted ‘ %  weighted ‘ % weighted ‘ of Chains
Gemini-Pro 15.55 29.81 | 46.22 56.79 7.77 39.21 17.25
GPT-4 7.89 11.92 | 40.71 52.76 1.63 2.19 1.44
Llama-2 15.54 36.12 | 43.06 57.39 6.88 39.14 25.42
Llama-2-trained ‘ 30.88 61.16 | 65.44 80.10 | 11.92 48.22 42.54

good the Llama-2-trained model is at representing the activity
chains present in the actual survey.

While matching already observed activity chains is a good in-
dicator, it is important to remember that there are many possible
activity chains. Hence, we need to also establish that the remain-
ing generated but unmatched activity chains are still realistic. To
achieve this, we measure the correctness of unmatched activity
chains using the Levenshtein distance [35] (also known as edit dis-
tance) and reporting the minimum Levenshtein distance between an
unmatched activity chain and any actual one. We find that among
the remaining unmatched chains, 69% have an edit distance of 1,
22.44% have an edit distance of 2, 6.29% have an edit distance of 4,
and the remaining 2.75% have a higher edit distance. This means
that unmatched activity chains are not too dissimilar from those
found in travel surveys.

Figure 5 plots the cumulative sum of the activity chain counts in
relation to the matched activity chain counts across various mod-
els, i.e., only generated activity that matches actual survey data
are included. As a reference, we also plot the matching activity
chains from another metropolitan area (Los Angeles-Long Beach-
Anaheim (LA)). Two vertical lines in the plot indicate thresholds
of activity chains with less than 10 counts (left blue line) and with
only 1 count (right grey line). This shows the sparsity of many
chains. From this figure, we can infer that GPT-4 exhibits the least
resemblance, followed by Gemini-pro and then the Llama-2 base
model (bottom three plots) to the actual data. Finally, the Llama-
2-trained model best matches the actual chains, akin to how the

First < 10 count
First 1 count
« Actual
Gemini-Pro
Llama-2
GPT-4
LA Actual
Llama-2-trained

o % o o

0 250 500 750 1000 1250 1500 1750

Figure 5: The cumulative sum of activity chain counts for the
San Francisco-Oakland-Hayward metropolitan area’s actual
survey compared to the generated data. Llama-2-trained data
closely matches the actual survey. Llama-2-trained and LA
actual data are almost overlapping,.

activity chains of the Los Angeles-Long Beach-Anaheim metropoli-
tan area match the San Francisco-Oakland-Hayward metropolitan
area data (overlapping plots of Llama-2-trained and LA data just
below the actual survey data). This result is intriguing, as we will
see in the next sections that the difference between the travel sur-
veys of different cities is very nominal, suggesting a noteworthy
level of generation accuracy.

We also plot the distribution of the top 100 activity chains by
the count of the actual survey in comparison to other generated
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surveys in Figure B2 in Appendix B. These demonstrate that the
Llama-2-trained results and LA’s actual survey data closely match
the distribution of San Francisco’s activity chains. In contrast, GPT-
4 matches only two chains, while Gemini and Llama-2 show better
performance than GPT-4 but still fall short of Llama-2-trained.

Overall, activity-chain-level evaluation across various models
indicates that the Llama-2-trained model data shows the closest
resemblance to the activity chains present in the actual survey.
Are location-specific training data important? We have now
established that fine-tuning an LLM to mimic travel surveys leads
to producing realistic outputs that closely match real ones. How-
ever, the data used to fine-tune the model can potentially play an
important role in the model’s performance. Ideally, we would want
to be able to generate travel surveys even for locations for which
no real travel survey data are available — this is in fact the ultimate
frontier of synthetic travel data generation!

To test the ability of our generation approach to generalize be-
yond already-seen locations, we fine-tune another Llama-2 model,
using a different fine-tuning dataset. This dataset is curated by ex-
cluding the actual travel surveys from all five specific metropolitan
areas where our system will be applied (including San Francisco).

Encouragingly, our experiments show that the Llama-2-trained
model without training data from the San Francisco-Oakland -
Hayward area performs similarly to the model fine-tuned using
such local data.

The original fine-tuned Llame-2-trained model that uses local
data produces an average of 4.97 locations traveled and a travel
time of 1.53h (as discussed previously in Table 5). In comparison,
the model fine-tuned without local data shows an average of 4.79
visited locations and a travel time of 1.60h. We consider these slight
decrease in the number of locations and increase in travel time to
be rather minor. The trip-level evaluation also shows no discernible
difference between the model fine-tuned with or without local
data. The model fine-tuned with local data has a Forbenius norm
of 0.044 for first-order transition probabilities, while the model
without local data achieves a slightly better 0.043. Conversely, for
second-order transition probabilities, the model fine-tuned with
local data has a Forbenius norm of 0.0319, compared to 0.0360 for
the model fine-tuned without local data, indicating a slightly worse
performance when lacking local training data. The activity-chain
level evaluation also indicates a minimal performance drop, with
the weighted overlap between the actual and generated chains
decreasing from 42.5% for the model fine-tuned with local data to
41% for the one fine-tuned without local data.

Overall, we find that a lack of local training data only very
slightly decreases the quality of the generated data, and as such
demonstrates the robust generalization capabilities of our LLM-
based approach.

In conclusion, the in-depth evaluation of our LLM-based travel
survey generation system for the San Francisco area demonstrates
that base models like Llama-2 already produce meaningful data.
However, when fine-tuned even with a limited amount of data, these
models can generate synthetic travel surveys resembling actual
ones, even when location-specific training data is not available.
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5.3 Overall system performance

Measuring the overall system performance of our travel survey
generation system requires comparing results across multiple cities.
We have two desiderata for our system. First, that the generated
data for the specific city match the actual travel surveys—this is in
line with the analysis we performed on San Fransisco in §5.2, which
we repeat here for all cities. And second, that generated surveys are
meaningfully localized: this means that they properly capture local
urban infrastructure and population characteristics. To this effect,
we compare data generated for a specific city to the generated
data for other cities, and we ground this discussion by comparing
the actual travel survey data of different cities to each other. We
also produce a clustering of the cities, the assumption being that
more "similar” cities should also have more similar aggregate travel
survey characteristics.

In short, we find that the Llama-2-trained model shows the small-
est difference between generated and actual data among the same
cities and across cities. Additionally, clustering cities shows that
the Llama-2-trained model produces clusters that most closely re-
semble the actual city clusters, further validating the effectiveness
of our approach.

Table 8 offers a consolidated pattern and activity-chain-level
analysis for the additional four metropolitan areas. The table reaf-
firms our earlier finding that Llama-2-trained outperforms all other
models. Of the base models, although it struggles with travel time,
Llama-2 more closely approximates the actual data considering the
pattern and activity-chain-level analyses.

The trip-level analysis for different cities yields interesting in-
sights. Figure 6 presents box plots illustrating the Forbenius norm
of the difference between the first-order transition probabilities of
actual and generated surveys in various combinations for different
LLMs. Plot (i) compares the Forbenius norm for the difference of
first-order transition probabilities of actual and generated surveys
for the same city across different models, as in the previous anal-
ysis. The distribution of norms is lowest for the Llama-2-trained
model, which indicates that it best approximates the actual survey
data. Plot (ii) displays the norms between the actual and generated
surveys for different cities. Effectively, we want to quantify how
unique (or not) the generated surveys are to a specific city. The
plot is similar to Plot (i), albeit with slightly greater variability. This
may seem counterintuitive, but the third plot sheds light on this
phenomenon. Plot (iii) shows the norm among generated surveys
between different cities, together with the norm between actual
surveys for different cities, i.e., how similar is the generated output
of one model across different cities and how similar are actual sur-
veys to each other (fifth shaded box in Plot (iii)). The differences
are overall much smaller than in Plots (i) and (ii), which means
that the generated data of a model does not differ too much across
different cities. The same trend is observed for the actual data as
well. A takeaway from Figure 6 is that Llama-2-trained outperforms
all other models and produces data that best matches actual survey
data. Additionally, the similarity between Plots (i) and (ii) suggests
that the difference among actual cities is also marginal, which is
also shown in Plot (iii), indicating that the survey data for (US)
cities are quite similar.
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of actual and generated surveys for different cities and for

different LLMs. Minimal differences among actual cities themselves (see (iii): Actual) justify the minimal differences observed
between actual and generated data of different cities (ii). Llama-2-trained shows best similarity (i).

With the transition probabilities from actual and generated sur-
veys from different LLMs, we also conduct Ward hierarchical clus-
tering [33]. Using the actual surveys, cities are clustered into two
groups:

(1) San Francisco-Oakland-Hayward, Los Angeles-Long Beach-

Anaheim, and Washington-Arlington-Alexandria
(2) Dallas-Fort Worth-Arlington and Minneapolis-St. Paul-
Bloomington

Using the generated data, clustering using surveys from the GPT-
4 and Llama-2-trained models produces similar results. The only
difference is Washington-Arlington-Alexandria moving to the other
cluster (Dallas and Minneapolis).

This similarity of clusters, combined with Llama-2-trained gener-
ated data’s similarity to the actual survey, continues to make a good
case for using fine-tuned models in our travel survey generation
approach. LLMs fine-tuned on even small amounts of data have the
potential to serve as low-cost alternatives to generate travel survey
data as part of an effort to simplify urban mobility assessment.

6 COMPARISON TO PATTERNS-OF-LIFE
SIMULATION

The Patterns-Of-Life (POL) simulation for location-based social net-
work datasets presents a novel approach to simulate travel surveys.
The POL approach is based on an agent based modeling (ABM)
framework that uses basic agent needs to generate mobility data
for arbitrary geographic locations [15, 16]. We compare the output
of this approach to our LLM-based generation system using the
pattern, trip, and activity level evaluation methodologies described
in Section 4. We are only using Llama-2-trained as it is our best
performing LLM model.

Our comparison uses the San Francisco-Oakland-Hayward Met-
ropolitan area with the generated data generated by the Llama-2-
trained model and the POL simulation. The latter produces continu-
ous travel data for multiple agents, and to ensure consistency with

30
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Figure 7: Distribution of the number of locations traveled.
Our LLM-based approach better matches the actual distribu-
tion.

travel surveys, we sample from all the data available, to match the
same size of both simulation techniques. One thing to note is that
we could not extract the travel time for the POL simulation, so we
exclude the associated metrics from our analysis. Another notewor-
thy consideration is the limited number of location types available
in the POL simulation, which has only six different location types.
Consequently, we reclassify the original 20 different location types
from NHTS-2017 into the 6 location types provided by POL (Re-
classification shown in Table C3 in Appendix C) and modify our
system’s post-processor to allow for a direct, fair comparison.
The evaluations reveal some stark differences between the two
approaches. Our generative model better captures the average num-
ber of locations traveled by the survey respondents, as shown in
Table 9. Figure 7 shows the distribution of the number of locations.
Both systems overpredict the number of visited locations, but the
POL simulation has less variability and fails to capture the tail end
of the distribution, which the LLM-based approach handles better.
The trip-level evaluation again clearly shows the superiority of
the LLM-based approach. Table 10 provides the Forbenius Norm
between the first-order and second-order transition probabilities
obtained from the actual survey and both techniques. Notably, our
approach exhibits a significant, order-of-magnitude lower Forbe-
nius norm than the POL simulation, indicating a substantial differ-
ence in their performance. The LLM-based approach significantly
outperforms POL by a considerable margin in this metric.
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Table 8: Pattern and activity-chain-level analysis for addi-
tional cities - Llama-2-trained produces results comparable
to actual survey data.

Avg. no Wt. overlap
of. locs Travel  of Actual &
traveled (A) hours (A) Generated

Washington-Arlington-Alexandria

Actual 5.15 1.75 -
Gemini-Pro 645 (1.30) 282 (1.07) 18.89
GPT-4 691 (1.76) 258 (0.77) 2.7
Llama-2 538 (0.23) 643 (4.68) 26.58

Llama-2-trained 4.68 (-047) 1.56 (-0.19) 40.15

Los Angeles-Long Beach-Anaheim

Actual 5.11 1.63 -
Gemini-Pro 656 (1.46)  2.26 (0.63) 17.22
GPT-4 6.88 (1.77)  2.53 (0.90) 1.51
Llama-2 563 (0.52) 622 (4.59) 27.29
Llama-2-trained | 4.64 (-0.47) 1.69 (0.06) 43.12
Dallas-Fort Worth-Arlington
Actual 5.14 1.52 -
Gemini-Pro 631 (1.17) 231 (0.79) 18.4
GPT-4 691 (1.77) 253 (1.01) 2.04
Llama-2 542 (0.28) 575 (4.23) 28.18

Llama-2-trained 4.68 (-0.45) 1.56 (0.04) 44.42

Minneapolis-St. Paul-Bloomington

Actual 5.10 1.61 -
Gemini-Pro 624 (1.14) 242 (0.81) 16.99
GPT-4 710 (2.00)  2.54 (0.93) 2.27
Llama-2 573 (0.63) 659 (4.98) 24.44
Llama-2-trained 4.75 (0.35) 1.44 (0.17) 45.84

Table 9: Average locations traveled and weighted overlap of
actual vs. generated activity chains. Our LLM-based approach
better aligns with actual data than POL simulation.

Avg. no Weighted

No.of.  of locations overlap

Samples traveled (A) of chains

Actual 4027 5.35 -
Llama-2-trained 1435 4.98 (-0.37) 53.35
Pattern-of-life 1435 3.98 (-1.37) 27.49

The activity-chain-level evaluation, with the results shown in
Table 9, focuses on the weighted overlap of activity chains generated
by the different methods. The results in predicting activity chains as
shown in Figure 8, where the cumulative sum of the activity chain
counts is plotted compared to the matched activity chain counts
across both approaches. While the POL approach accurately models
the most prevalent activity chains of the actual survey (towards the
left of the x-axis), it tends to overpredict them. Moreover, it does
not capture the less common activity chains of the actual survey.
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Table 10: Transition probabilities comparison (lower is bet-
ter). LLM-based outputs closely match actual survey trips.

Frobenius Norm with
1st order
transition prob  transition prob

2nd order

Llama-2-trained 0.037 0.034
Patterns-of-life 0.214 0.193
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Figure 8: Cumulative sum of activity chain counts. POL sim-
ulation captures major patterns but misses less common
patterns, while our LLM-based system captures all.

This is shown by the scarcity of single-count chains in the POL
result compared to the LLM approach.

In conclusion, the survey, trip, and activity chain level analy-
sis shows that our LLM-based travel survey simulation approach
more accurately reflects the actual survey data compared to POL
simulation. While the POL simulation certainly has its advantages
compared to our technique (like generating precise location data),
combining both techniques could lead to an even more robust mo-
bility simulation. We leave this task for future work.

7 CONCLUSION AND FUTURE WORK

We propose a novel approach for urban mobility assessment utiliz-
ing Large Language Models (LLMs). Current urban mobility data
collection, a cornerstone for urban mobility assessment, often faces
significant challenges, including privacy concerns, noncompliance,
and high costs. To address these issues, we introduce an LLM-based
travel-survey generation system that generates synthetic travel
data to facilitate enhanced urban mobility assessment. We devise
a set of evaluation criteria to assess the quality of the generated
data at the pattern, trip, and activity-chain levels. Our findings
highlight the effectiveness of our system, particularly when using
base models like Llama-2, which has not been fine-tuned to better
follow human instructions and is trained with a limited amount of
actual travel data.

Future work will focus on extending this approach to locations
outside the US and refining the system to generate more precise
location data. This will enhance the transferability and applicability
of our system towards global urban mobility assessment.

Code, dataset, and models: https://github.com/gmuggs/Urban-
Mobility-LLM
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A PROMPT TEMPLATE

Figure A1l: An example of a travel diary-based prompt.

The individual is a 59-year-old female whose racial background
is ‘White alone’. Currently, she is not enrolled in school and
is participating in the labor force. She is employed and working

Regarding her marital status, she is married, and lives in a
married couple family. She lives in San Francisco, CA. She has
been selected for a travel survey and has recorded her travel logs
for 2016-05-05 which is a Thursday. She was asked to provide a
list of all the places she visited on her travel date, including

The table format provided was as follows:

| Place Visited | Arrival Time | Departure Time | Location Type |
| ol |

| [Place Name] | [HH:MM AM/PM] | [HH:MM AM/PM] | [Location Type] |
| [Place Name] | [HH:MM AM/PM] | [HH:MM AM/PM] | [Location Typel] |
I [ R

She was instructed to fill in each row with the relevant information
for each place she visited on the specified date. If she visited
the same place multiple times on the same date, she was advised to
add a separate row for each visit to that place.

She was reminded of the following:

1. Ensure that <‘Home’ is included in the 1list if it was
part of travel activities on the specified date.

2. She was asked to input the exact arrival and departure time as
she noted in her travel diary.

3. She was advised to carefully enter the times, as gaps between
the departure time of the previous place and the arrival time of
the current place indicate the time taken to arrive at the current
location.

For the ‘Location Type,’ she was instructed to use the corresponding
code from the provided list:

: Regular home activities (chores, sleep)

: Work from home (paid)

: Work

: Work-related meeting / trip

: Volunteer activities (not paid)

: Drop off / pick up someone

: Change type of transportation

: Attend school as a student

9: Attend child care

10: Attend adult care

11: Buy goods (groceries, clothes, appliances, gas)

12: Buy services (dry cleaners, banking, service a car, etc)
13: Buy meals (go out for a meal, snack, carry-out)

14: Other general errands (post office, library)

15: Recreational activities (visit parks, movies, bars, etc)
16: Exercise (go for a jog, walk, walk the dog, go to the gym, etc)
17: Visit friends or relatives

18: Health care visit (medical, dental, therapy)

19: Religious or other community activities

97: Something else

0O ~NoO U A WN =

The table she created is as follows:

in the ‘Business and financial operations occupations’ field.

the exact times of arrival and departure, and the location type.
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Figure B1: Difference in second-order destination proba-
bilities (original - generated) for San Francisco-Oakland-
Hayward metropolitan area .
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Figure B2: Distribution of top 100 activity chains of San
Francisco-Oakland-Hayward metropolitan area in compari-
son to various LLM-based simulation techniques.
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Table C2: Example of second order transition probabilities.

Xt
Home Work

Home | Work 0.15 0.03
Home | Community 0.05 0.04

Xt—2 Xt—1
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Table C1: Categorization of location types done in the Na-
tional Highway Travel Survey 2017.

ID Label

1 Regular home activities (chores, sleep)

2 Work from home (paid)

3  Work

4 Work-related meeting/trip

5 Volunteer activities (not paid)

6 Drop off /pick up someone

7  Change type of transportation

8 Attend school as a student

9 Attend child care
10  Attend adult care
11 Buy goods (groceries, clothes, appliances, gas)
12 Buy services (dry cleaners, banking, service a car, etc)
13 Buy meals (go out for a meal, snack, carry-out)
14  Other general errands (post office, library)
15 Recreational activities (visit parks, movies, bars,

movies, etc)
16  Exercise (go for a jog, walk, walk the dog,
go to the gym, etc)

17  Visit friends or relatives
18 Health care visit (medical, dental, therapy)
19 Religious or other community activities
97 Something else
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Table C3: Reclassification of the 20 location types in NHTS-
2017 survey to 6 location types of patterns of life based sim-
ulation system.

NHTS-2017

Pattern of Life

Regular home activities

Work from home

Work

Work-related meeting/trip
Volunteer activities

Drop off /pick up someone
Change type of transportation
Attend school as a student
Attend child care

Attend adult care

Buy goods

Buy services

Buy meals

Other general errands
Recreational activities
Exercise

Visit friends or relatives
Health care visit

Religious or other community activities
Something else

Home
Home
Work
Work
Recreation
Other
Other
School
Other
Other
Other
Other
Restaurant
Other
Recreation
Recreation
Other
Other
Other
Other
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