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Abstract

Numerous recent studies have highlighted so-
cietal harms that can be caused by language
technologies deployed in the wild. While sev-
eral surveys, tutorials, and workshops have dis-
cussed the risks of harms in specific contexts—
e.g., detecting and mitigating gender bias in
NLP models—no prior work has developed a
unified typology of technical approaches for
mitigating harms of language generation mod-
els. Our tutorial is based on a survey we re-
cently wrote that proposes such a typology. We
will provide an overview of potential social is-
sues in language generation, including toxicity,
social biases, misinformation, factual incon-
sistency, and privacy violations. Our primary
focus will be on how to systematically identify
risks, and how eliminate them at various stages
of model development, from data collection, to
model development, to inference/language gen-
eration. Through this tutorial, we aim to equip
NLP researchers and engineers with a suite of
practical tools for mitigating safety risks from
pretrained language generation models.

1 Motivation

With the widespread success and increasing adop-
tion on natural language processing (NLP) tech-
nologies in user-facing products including machine
translation (Vaswani et al., 2017; Lewis et al.,
2020), dialogue systems (Andreas et al., 2020; Gan-
gadharaiah and Narayanaswamy, 2020) and recom-
mendation systems (Jannach et al., 2020) the NLP
community is becoming increasingly aware that
we have a responsibility to evaluate the effects of
our research and mitigate harmful outcomes (Ben-
der et al., 2021). Indeed, models have been shown
to introduce vulnerabilities and threats, both inad-
vertent and malicious, to individual users, social
groups, and content integrity. Without social con-
text and content control, deployed language gen-
erators have quickly derailed to racist, homopho-
bic, hateful comments (Hunt, 2016; Jang, 2021;

Wolf et al., 2017; Vincent, 2022), compromised
user privacy (Carlini et al., 2021), spread disinfor-
mation (Shao et al., 2018), and even encouraged
suicide (Daws, 2020). Prior works have outlined
these risks (Maynez et al., 2020; Sheng et al., 2021;
Weidinger et al., 2021), proposed taxonomies (Wei-
dinger et al., 2022), discussed their points of origin,
and advocated for research on ethical development
of LMs (Bender et al., 2021; Solaiman et al., 2019).

However, there is little work that summarizes
actionable approaches and technical solutions
to preventing or mitigating these harms. This is
the purpose of our tutorial, which is based on a
survey we have recently conducted (Kumar et al.,
2022). In this tutorial, we aim to provide a compre-
hensive, unified taxonomy of relevant mitigation
strategies proposed in prior literature, specifically
focusing on language generation models.

2 Tutorial Content and Relevance

What are language models? A brief back-
ground: To build a common ground for dis-
cussing the risk mitigation strategies, this tutorial
will begin with a brief overview of recent trends in
language modeling and pretraining. We will cover
both causal (Radford et al., 2019; Brown et al.,
2020) and non-causal language models (Devlin
et al., 2019) highlighting their differences and their
impact on NLP research. We will briefly discuss
how pretrained models can be adapted to different
tasks covering model finetuning (both complete
and adapter based) as well as prompt-based formu-
lation to solve NLP tasks. We will also focus on
their scale both in terms of model parameters as
well as training data size.

How can language models cause societal harm?
After presenting the background on language mod-
els, we will then give a formal definition of harms
based on taxonomy defined in prior work (Barocas
et al., 2017) and focus on representational harms
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Figure 1: Overview of Intervention Strategies. Our
survey presents a taxonomy of intervention strategies
organized around the different phases where they can
be applied.

in this tutorial. Highlighting the impact of heed-
lessly using web data which is usually population-
imbalanced (Bender et al., 2021) and contains bi-
ased language against towards specific populations,
we will discuss how language models tend to re-
inforce and amplify bias against sub-populations
based on different personal and social attributes
such as gender (Stanovsky et al., 2019; de Vassi-
mon Manela et al., 2021), race (Liang et al., 2021;
Field et al., 2021), region (Huang et al., 2020), de-
mographics (Huang et al., 2020), age (Nangia et al.,
2020) among others. We will also discuss, that
by not being grounded in real world knowledge,
they pickup on spurious statistical correlations in
data and generate (in other words, hallucinate) fac-
tually incorrect content which can potentially be
used to spread misinformation (Zellers et al., 2020;
Kryscinski et al., 2020). Major content of this
section is borrowed from the course on Ethics in
NLP developed at Carnegie Mellon University and
the University the Washington by organizer Yulia
Tsvetkov.

Can we reduce or mitigate such harms? Fi-
nally, in this part, we will focus on work on mitigat-
ing harmful effects of language generation systems.
While still a nascent field of research, several so-
lutions in this space have been proposed which
we categorize into four categories, visualized in
Fig. 1. We organize and discuss in detail interven-

tion strategies based on where they fit in different
stages of LM development: in data collection,
modeling, post-factum decoding, and applica-
tion. Within each of these categories, our taxon-
omy brings together prior works that have been
treated as disjoint areas targeting different types of
harms (toxic/biased language and misinformation).

Since LMs learn and amplify biases present in
the training data, we will first discuss data level
interventions which focus on either (1) filtering
the pretraining corpora to create more balanced
datasets (Jia et al., 2020), or (2) finetuning trained
LMs on sanitized data (Gehman et al., 2020a).
Second, we will review model level interventions
where we consider approaches which modify either
the architecture or training objectives to induce or
remove desired biases (Nan et al., 2021; Cao and
Wang, 2021). Third, we will present methods to
modify model outputs post generation using de-
coding and editing methods to demote or remove
harmful content (Yang and Klein, 2021; Kumar
et al., 2021; Cao et al., 2020). These techniques are
especially useful for cases where it is impossible
to modify data or models or even decoding strate-
gies such as in case of GPT3 (Brown et al., 2020)
which are only available through an API. Finally,
we will end with application level interventions
where we show how methods to flag and redact
harmful content allow applications to shield such
content from reaching users (Vaidya et al., 2020;
Sun et al., 2019).

Throughout the tutorial, we will highlight both
detection and mitigation approaches, as well as
their specific limitations and shortcomings. By
the end of the tutorial, participants will be better
informed where to focus future research efforts.

Due to the vast range of societal harms and their
mitigation strategies, we do not plan an exhaustive
treatment of this material. One central goal is to
raise awareness for participants of the relevant is-
sues, so that when they return to their research they
will be more able to notice ways in which their
research based on large language models might im-
pact different variety of users. To achieve this goal,
we will aim for a “T-shape” in terms of breadth and
depth: to briefly mention a number of core ques-
tions and then to drill down into a few particular
case studies to see how these issues play out in real
research settings.
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3 Tutorial Structure

We propose a cutting-edge tutorial on an emerg-
ing area that has not been previously covered in
ACL/EMNLP/NAACL/COLING tutorials. This
would be a discussion-style tutorial where the or-
ganizers will present material with structured time
throughout for questions, and discussion amongst
attendees. The duration of the tutorial will be 3
hours with 5 min breaks at the end of each hour.
The following would be the outline of the talk:
1. Brief Introduction to Language models (10 mins)
- We will provide a quick background on current
state of NLP research with introduction to language
models and their capabilities.
2. Possible Harms of Language Technologies (15
mins) - We will briefly cover examples of ethical
concerns, societal harms and biases present in cur-
rent NLP tools.

• Fairness/Bias - Research on human-like biases
in NLP (Field et al., 2021; Caliskan et al.,
2017; Field and Tsvetkov, 2020)

• Toxicity - Research on toxic text generated
by NLP models (Gehman et al., 2020a) and
biases propagated in efforts to correct them
(Davidson et al., 2017).

• Misinformation, Factual Inconsistencies - fac-
tual errors in generated text (Cao et al., 2018;
Buchanan et al., 2021; Zellers et al., 2020)

• Privacy - Models generating sensitive, iden-
tifying information like addresses, SSN, etc.
(Carlini et al., 2020; Inan et al., 2021)

3. Application Level Interventions (30 mins) -
Techniques to filter harmful content before present-
ing model outputs to users.

• Harm Detection - Research on Toxic text de-
tection (Vaidya et al., 2020; Han and Tsvetkov,
2020), fact-checking (Zhou et al., 2021), hal-
lucination detection (Kryscinski et al., 2020;
Goyal and Durrett, 2020), bias-detection (Sun
et al., 2019; Park et al., 2018).

• Redacting or Flagging Harmful Text - Re-
search on application level warnings or redac-
tion for harmful or inappropriate generated
text (Xu et al., 2020).

4. Output Level Interventions (30 mins) - Tech-
niques to modify outputs to remove harmful con-
tent.

• Decoding Techniques - Research on search
and sampling algorithms for controllable gen-
eration by promoting or demoting specific
properties in output text (Zhang et al., 2022;

Krishna et al., 2022; King et al., 2022).
• Post-Factum Editing - Research to edit or re-

vise generated text to remove harmful content
(Pryzant et al., 2020; He et al., 2021; Bal-
achandran et al., 2022).

5. Model Level Interventions (30 mins) - Tech-
niques to modify or optimize model parameters to
prevent risky generations.

• Architecture and Training - Research on objec-
tives and model architectures to enforce safe
and reliable text generation (Yu et al., 2022;
Nan et al., 2021; Falke et al., 2019).

• Finetuning and Model Editing - Research
on editing or finetuning model parameters
to incorporate safety constraints, through
with new objectives (Gururangan et al., 2020;
Chan et al., 2021; Gehman et al., 2020b;
Chronopoulou et al., 2020).

6. Data Level Interventions (30 mins) - Techniques
to curate clean training data to prevent models from
using harmful text.

• Data Filtration - Research on filter-
ing/removing training data instances
containing toxic or harmful content (Ngo
et al., 2021; Brown et al., 2020).

• Data Augmentation - Research on adding
safer examples to datasets to offset the effect
of problematic data (Mathew et al., 2018; Di-
nan et al., 2020; Stafanovičs et al., 2020).

7. Open Problems and Future Research (20 mins)
The tutorial will be a series of presentations with

a set of references to related research papers and
external demos. The presentation will cover a wide
array of research on the topics from across the
field. We will share the slides with the participants
in advance. We will additionally share an online
repository of relevant research material and online
links to available code and demos to help partici-
pants navigate and use relevant research for their
work. No copyright issues are expected as we will
use open-source material.

4 General Information

4.1 Organizers
Sachin Kumar is a sixth year PhD candidate at the
Language Technologies Institute, School of Com-
puter Science at CMU. Sachin’s research tackles
critical technical problems in core language gener-
ation with deep learning, such as open-vocabulary
generation, detection and demotion of spurious con-
founders, and controllable generation.
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Vidhisha Balachandran (she/her) is a fourth-year
Ph.D. student at the Language Technologies Insti-
tute, School of Computer Science at CMU. Her
current research focuses on building interpretable
and reliable NLP models with a focus on summa-
rization, factuality, and KB-based reasoning.
Lucille Njoo (she/her) is a second-year PhD stu-
dent at the Paul G. Allen School of Computer Sci-
ence and Engineering at the University of Washing-
ton. She works in the intersection of NLP, ethics,
and computational social science, working on iden-
tifying societal harms in NLP models.
Antonios Anastasopoulos (he/him) is an Assistant
Professor at the Department of Computer Science
at George Mason University, USA. His research fo-
cuses on NLP for local and low-resource languages
and varieties, cross-lingual learning and multilin-
guality, and cross-lingual fairness.
Yulia Tsvetkov (she/her) is an Assistant Profes-
sor at the Paul G. Allen School of Computer Sci-
ence and Engineering at the University of Washing-
ton, USA. Her research focuses on computational
ethics, multilingual NLP, and machine learning for
NLP. She developed a course on Computational
Ethics in NLP and is teaching it at both undergrad-
uate and graduate levels since 2017, and she is a
co-chair of the ACL Ethics Committee.

4.2 Audience and Pre-Requisites
We expect participants from a wide array of back-
grounds, including researchers, engineers, and end
users of NLP technologies. Based on prior itera-
tions of the tutorial, we expect an audience size
of 50-100. No prior experience with NLP/ML is
required, but we believe that our tutorial will most
benefit those who are currently using NLP or are in-
tending to use NLP tools in the near future in their
research/products. An optional list of papers is
presented in our survey paper (Kumar et al., 2022).

4.3 Diversity
The content of this tutorial highlights the impact
of LMs on diverse users and therefore we aim to
reach wide and diverse audiences. We will adver-
tise this tutorial to diverse groups of researchers
(e.g., Masakane, LatinX, North Africans, disabled
in AI, indigenous in AI, Khipu) to bring in partici-
pants from various backgrounds. A previous ver-
sion of this tutorial attracted audience from diverse
gender, race as well as professional backgrounds
like researchers, beginners and industry practition-
ers. Accordingly, our content will be made accessi-

ble to such audiences. Our own team is also diverse
across multiple demographic attributes as well as
professional expertise.

5 Logistics
Previous Editions This is the second iteration
of the tutorial. The first edition of the tutorial was
presented at The Web Conference 2022. While the
previous iteration was focused to a general CS audi-
ence with less NLP background, this iteration will
be modified to be aligned more for NLP-focused
audience. This would entail including deeper tech-
nical specification of the interventions, including
data, models and objectives.

Our tutorial is related and complementary to
prior ACL tutorials related to bias and fairness in
NLP (Socially Responsible NLP at NAACL 2018,
Bias and Fairness in NLP at EMNLP 2019, Inte-
grating Ethics into the NLP Curriculum at ACL
2020). Complementary to the content of the above
tutorials which highlight social harms in NLP and
discuss their detection, primarily focusing on rep-
resentation learning and text classification, our tu-
torial will focus on practical methods to identify
and mitigate harms in large language models and
language generation.

Venue We prefer EMNLP or ACL, but any venue
would work for us.

Technical Requirements We will not require ad-
ditional equipment other than presentation material:
an LCD projector, a computer with PowerPoint and
Acrobat Reader, and internet connection.

Public Release We will publicly release all tu-
torial materials, including prerecorded lectures as
backup for the tutorial which will be uploaded prior
to the tutorial. These will be hosted on an open-
access platform and linked from our University
websites.

6 Ethics Statement
Although the aim of this tutorial is to improve the
safety and inclusivity of NLP technologies and
equip practitioners with tools to do so, we are well
aware that as a not perfectly-diverse group of re-
searchers we might incorporate our own biases into
tutorial stricture and its technical focus. We will
acknowledge this limitation in our tutorial, as well
as the fact that the field of computational ethics
is developing rapidly, and thus the content of our
tutorial is inherently incomplete.
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