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ABSTRACT

Recent works in end-to-end speech-to-text translation (ST) have
proposed multi-tasking methods with soft parameter sharing which
leverage machine translation (MT) data via secondary encoders that
map text inputs to an eventual cross-modal representation. In this
work, we instead propose a ST/MT multi-tasking framework with
hard parameter sharing in which all model parameters are shared
cross-modally. Our method reduces the speech-text modality gap
via a pre-processing stage which converts speech and text inputs into
two discrete token sequences of similar length – this allows models
to indiscriminately process both modalities simply using a joint
vocabulary. With experiments on MuST-C, we demonstrate that
our multi-tasking framework improves attentional encoder-decoder,
Connectionist Temporal Classification (CTC), transducer, and joint
CTC/attention models by an average of +0.5 BLEU without any ex-
ternal MT data. Further, we show that this framework incorporates
external MT data, yielding +0.8 BLEU, and also improves transfer
learning from pre-trained textual models, yielding +1.8 BLEU.1

Index Terms— ST, MT, multi-tasking, transfer learning

1. INTRODUCTION

One of the preeminent challenges in end-to-end speech-to-text trans-
lation (ST) is that of data scarcity. There are relatively small amounts
of labeled ST data compared to automatic speech recognition (ASR)
and machine translation (MT) data, as well as unpaired speech and
text data. Simply pseudo-labeling ASR data with strong MT models
has proven to be effective [1, 2]; however, synthesizing speech for
MT data using TTS has proven to be more complex and less effec-
tive [1, 3]. So what techniques aside from data augmentation can
leverage textual data towards improving ST systems?

A popular answer amongst recent works is multi-tasked learn-
ing, where models are jointly optimized to perform MT and ST.
Many proposed multi-tasking methods employ varying degrees of
soft parameter sharing [4], where some parameters are shared while
others are task-specific. Generally, these methods use modality-
specific modules that map continuous speech inputs and discrete text
inputs into an eventual common latent space [5–13]. In this work,
we refer to this family of approaches as soft multi-tasking meth-
ods. These methods often require cross-modal regularization [8–12]
to encourage greater similarity between speech and text representa-
tions, demonstrating that the gap speech and text modalities must be
reduced to enable the benefits of soft multi-tasked learning.

An alternative approach to reducing the speech-text modality
gap is to first convert continuous speech signals into discrete se-
quences. Recent works have shown that discrete speech sequences

1Recipes and models are available in ESPnet (egs2/must c v2/st2).

Fig. 1. Illustrative examples of soft (left) vs. hard (right) parameter
sharing approaches to ST/MT multi-tasking.

obtained by applying k-means clustering on self-supervised learning
(SSL) representations contain sufficient semantic information to be
effective system inputs for ASR [14] and ST [15]. Similarly, speech
discretization has been applied in TTS [16–19] and speech-to-speech
translation (S2ST) [15, 20, 21]. These developments in speech dis-
cretization appear to drastically reduce the speech-text modality gap,
suggesting that the modality-specific modules employed by soft pa-
rameter sharing methods may not be necessary.

In this work we investigate hard parameter sharing [4], where
a single unified architecture handles both ST and MT without any
modality-specific modules or cross-modal regularization – we posit
that this hard multi-tasking approach can:

1. Be generally applicable to any sequence-to-sequence model
2. Be used to incorporate external MT data
3. Improve transfer learning from pre-trained textual models
Inspired by the recent AudioPalm work [15] which demonstrates

hard ST/MT multi-tasking via a decoder-only model,2 we investi-
gate a similar concept for attentional encoder-decoder (AED), Con-
nectionist Temporal Classification (CTC), transducer (RNN-T), and
joint CTC/attention (CTC/Attn) models. Our method pre-processes
speech and text inputs to produce two discrete sequences of com-
parable length; doing so allows ST/MT multi-tasking to be real-
ized through a single token-to-token sequence model. Our mod-
els thus ingest speech and text inputs simply using a joint vocab-
ulary. Intuitively, the speech modality is treated as another “lan-
guage” represented by a distinct writing system. Specifically, speech
is discretized via k-means clustering over SSL representations (e.g.
WavLM [22]) and down-sampled via repetition removal and sub-
word tokenization while text is up-sampled via token repetition.

In our experiments, we first show that our hard parameter shar-
ing approach improves AED, CTC, RNN-T, and CTC/Attn mod-
els when trained from scratch by an average of +0.5 BLEU on the

2Please refer to §5 for a full accounting of the novelties in this work.
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Fig. 2. Speech/text pre-processing (left) produces two discrete se-
quences of similar length which are ingested by Seq2Seq models
(right) with hard parameter sharing between ST/MT tasks.

MuST-C ST corpus [23] without any external MT data (§4.1). Next,
we show that leveraging external WMT [24] MT data via our multi-
tasking framework yields an additional +0.8 BLEU (§4.2). Finally,
we show that our multi-tasking approach also improves the efficacy
of transfer learning by +1.8 BLEU from pre-trained textual models
(e.g. mBART [25, 26]) (§4.3).

2. PROPOSED FRAMEWORK

In this section, we first describe our method of converting contin-
uous speech into sequences of discrete units (§2.1) and then ex-
plain how discrete speech inputs enable hard parameter sharing
(§2.2). §2.3 describes the set of sequence-to-sequence (seq2seq)
frameworks which we investigate.

Figure 2 also summarizes our approach. The color-coding in the
figure matches bolded keywords in the following section.

2.1. Speech Discretization

The objective of speech discretization is to convert a continuous
speech signal, XCONT = {xt 2 RD|t = 1, ..., T}, into a discrete
sequence, XDISC = {xl 2 V SPE|l = 1, ..., L} where V SPE is a vo-
cabulary consisting of some discrete units representing chunks of
speech. There are many discretization techniques which can accom-
plish this [18, 27–29]; we opt for the approach described by [14]
which uses k-means clustering and SSL representations in a manner
similar to HuBERT [30].

We first select an appropriate SSL model and intermediate layer
to work with. In this work, we use WavLM which is pre-trained
on 94k hours of English speech with masked prediction and de-
noising objectives [22]. We select the 21st layer from WavLM as
it has the highest canonical correlation analysis (CCA) similarity to
word labels [31], suggesting that these representations contain use-
ful semantic information. Next, we extract these representations for
a portion of our training data and use them to train a k-means model
with 2000 centroids. We then use this k-means model to convert the
entire training set into sequences of k-means cluster assignments;
note that at this point we have a sequence of discrete units but have
only down-sampled the sequence length to 50 kHz via WavLM.

As noted by prior works [14, 20], these sequences of k-means
cluster assignments can be collapsed by removing repeats of the
same consecutive unit. Finally, subword modeling can be applied
to further reduce the sequence length [14]; we use the unigram al-

gorithm from SentencePiece [32] to construct a vocabulary of 4000
tokens. To reduce over-fitting on particular segmentation patterns,
we also apply BPE-dropout [33] during training. Ultimately, we ob-
tain discrete speech sequences with an average length of 122 tokens
from original audio with an average duration of 6.4 seconds.

2.2. ST/MT Multi-Tasking with Hard Parameter Sharing

2.2.1. ST from Discrete Speech Inputs

With discrete speech inputs, the ST task seeks to map a sequence
of tokens XDISC into another sequence of tokens Y TGT = {yTGT

m 2
V TGT|l = 1, ...,M} where V TGT is the subword vocabulary for the
target language – this is analogous to the MT task. We therefore re-
place the convolutional feature extractor typically used by systems
which process continuous speech inputs [34] with a learned embed-
ding layer [35]. Following [14], we apply time-masking to the se-
quences produced by the embedding layer; this is an additional form
of data augmentation similar to SpecAugment [36] which is com-
monly applied to continuous speech inputs.

Our ST data is defined as a set of speech, source text, and target
text triplets {(XDISC, Y SRC, Y TGT)}. Similar to target text, source text
is a sequence of tokens Y SRC = {ySRC

n 2 V SRC|l = 1, ..., N} where
V SRC is the subword vocabulary for the source language.

2.2.2. Incorporating the MT Task

Since the discrete speech sequences XDISC are still longer than their
corresponding source text Y SRC, we repeat the source text tokens by
a factor of 4 to further reduce the gap between speech and text in-
puts (see §4.4 for up-sampling factor ablations). For instance, the
sequence “ a b” becomes “ a a a a b b b b”. This length adjust-
ment approach has been shown to be effective for injecting text into
speech models [37, 38]. We denote this up-sampled source text as
XTEXT and define our MT data as triplets of up-sampled source text,
source text, and target text {(XTEXT, Y SRC, Y TGT)}.

To incorporate textual inputs into our discrete ST models, we
simply extend the input vocabulary VCROSS = V SPE [ V SRC to include
textual subword tokens V SRC from the source language in addition
to the speech subword tokens V SPE. This modification correspond-
ingly expands the embedding layer, but does not impact any other
component in the architecture. Note that this joint speech-text vo-
cabulary allows our models to indiscriminately ingest speech or text
into any seq2seq model, sharing all non-embedding parameters be-
tween ST and MT. The only modality-specific parameters are within
the embedding layer, as speech and text tokens are still disjoint.

Now MT multi-tasking can be achieved by simply combin-
ing ST and MT training data: the training set consists of triplets
{(XCROSS, Y SRC, Y TGT)} where XCROSS = {xl 2 VCROSS|l =
1, ..., L}. Note that the source text Y SRC and the target text Y TGT

are identical for ST and MT examples. The same losses (described
in the following section) are applied with equal weighting between
the two tasks. All parameters are updated in each iteration. Models
do not have any explicit sense of whether a particular example is an
MT or ST task – all are processed in the same manner.

2.3. Seq2Seq Models

In this work, we examine AED [39, 40], CTC [41], RNN-T [42],
and CTC/Attn [43, 44] models. We use a hierarchical encoding
scheme, as in [44], for all of our models. This method applies an
ASR CTC objective at an intermediate encoder layer, denoted as
LSRC CTC, and a second ST CTC objective at the final encoder layer,
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denoted as LTGT CTC. The ASR CTC objective allows our models to
utilize source language transcriptions to improve encoder represen-
tations [45, 46]. The ST CTC objective acts as a form of regular-
ization which encourages encoder representations to be monotonic
with respect to the target sequence; this has been shown to improve
the translation quality of auto-regressive systems [44, 47]. Our AED
and CTC/Attn models use an additional cross-entropy loss, denoted
as LCE, while our RNN-T models use an additional RNN-T loss,
denoted as LRNNT. AED and RNN-T models are jointly trained
with CTC losses but CTC likelihoods are not applied during decod-
ing. All told, our models are optimized using an interpolated loss
defined as L = �1LSRC CTC + �2LTGT CTC + �3LCE/RNNT. We use
�1 = �2 = 0.3 and �3 = 1 for our experiments. For CTC models,
the last term is omitted and we use �1 = �2 = 1.

3. EXPERIMENTAL SETUP

We compare the performance of our hard multi-task models vs.
single-task baselines with identical architectures. The single-task
baselines are also discrete ST systems which allow us to understand
the effects of ST/MT multi-tasking, holding all else equal. Note that
the purpose of this work is not to prove the efficacy of systems with
discrete speech inputs compared to those with continuous spectral
inputs; this aspect has been addressed elsewhere [14]. We use the
ESPnet-ST-v2 toolkit [48] for our experiments.

Data: We use the En-De, En-Es, and En-Fr portions of MuST-C [23]
which consist of 408/504/492 audio hours and 234K/270K/292K
sentences. Experiments using external MT data were conducted on
the En-De language pair using the WMT’16 corpus [24] which con-
sists of 4.6M sentences. Speed perturbation is applied to up-sample
ST data by a factor of 3.
Models: We use separate vocabularies of 4000 subword units built
from MuST-C data for discrete speech, source text, and target text.
Unified multi-tasking models use a combined speech-text vocabu-
lary consisting of 8000 units, obtained by combining discrete speech
and source text vocabularies. Models with mBART initializations
adopt the pre-trained model’s 250K target vocabulary.

All models use input embedding with 1024 dim. We use 18
layer E-Branchformer [49] encoders with ASR CTC applied on the
12th layer. Our base size models (denoted by A-D the following
section) use 256 dim size, 1024 feed-forward dim, and 4 heads. Our
larger models (denoted by E-F the following section) use 512 dim
size, 2048 feed-forward dim, and 8 heads. We use 6 layer Trans-
former decoders for AED and CTC/Attn models with 2048 feed-
forward dim and either 4/8 heads for base/large models. Finally, for
models with mBART we initialize only the decoder while freezing
feed-forward and self-attention parameters and use 2x convolutional
down-sampling after the encoder, following [50, 51].

To ensure fair comparison, all models are trained for the same
number of iterations regardless the training data size. All model con-
verge within 350K iterations and we average the 10 best checkpoints.
AED, RNN-T, and CTC/Attn models use beam search with beam
size 10. CTC models use greedy decoding.
Evaluation: We measure detokenized case-sensitive BLEU [52].

4. RESULTS AND DISCUSSION

The objective of this work is to study several related, yet still dis-
tinct, dynamics within unified ST/MT multi-tasking. We examine
the effects of 1) hard parameter sharing for a set of sequence mod-
els (§4.1), 2) leveraging external MT data (§4.2), and 3) transfer

Table 1. Comparison (BLEU scores) of single-task vs. hard ST/MT
multi-task approaches for CTC, RNN-T, AED, CTC/Attn models.

MUST-C
# MODEL SIZE En-De En-Es En-Fr avg

CTC

A1 Single-Task 50M 23.2 27.9 32.2 27.8
A2 Hard Multi-Task 50M 23.4 28.4 33.6 28.5

RNN-T

B1 Single-Task 60M 26.4 30.4 33.1 30.0
B2 Hard Multi-Task 60M 26.7 31.0 33.8 30.5

AED

C1 Single-Task 60M 27.4 32.8 37.4 32.5
C2 Hard Multi-Task 60M 27.7 33.1 38.0 33.0

CTC/ATTN

D1 Single-Task 60M 28.6 33.0 38.7 33.4
D2 Hard Multi-Task 60M 29.2 33.2 39.2 33.9

learning from pre-trained textual models (§4.3). We also provide
ablations over sequence lengths (§4.4).

4.1. Hard Parameter Sharing

As an alternative to soft parameter sharing methods which manage
the “distance” between speech and text representations [8–12], we
employ a hard parameter sharing approach which uses a single set
of parameters to capture both tasks. To examine the effect of hard
parameter sharing, we train models from scratch and without exter-
nal MT data in this section. Per §2.2.2, we create an MT example
(XTEXT, Y SRC, Y TGT) from each ST example (XDISC, Y SRC, Y TGT) and
combine all ST/MT examples to form a training set.

The results in Table 1 compare our hard multi-tasking method
compared to the single-task baseline for CTC, RNN-T, AED, and
CTC/Attn models. We observe consistent improvements in the range
of +0.2 to +1.4 BLEU points across three different language pairs
and for all model types. We attribute these improvements to primar-
ily to the regularization effect of hard parameter sharing [4], as we
do not explicitly tell the model how to relate corresponding text and
speech inputs. Note that we observed the same trend when using the
hierarchical encoding scheme (described in §2.3) as we did without;
however, since this scheme produced better translation quality for all
models, we chose to only present those results.

4.2. Leveraging External MT Data

The ability to add external MT data into the training mixture is a
major benefit of ST/MT multi-tasking. Our approach is simple:
we simply concatenate data sources and train on the combined
set. The first two horizontal partitions of Table 2 present results on
English-to-German ST with 4.6M sentences of external MT data
from WMT’16. Comparing E1 to E2+, we see the full effect of
multi-tasking with external MT data: +1.1 BLEU. A portion of this
gain must be attributed to that of hard parameter sharing. To under-
stand the impact of the external MT data on its own, we compare
multi-tasking without external data, E2, to multi-tasking with ex-
ternal data, E2+: +0.8 BLEU. Note that we can pre-train our entire
model on this same external MT data, but this constitutes a form of
transfer learning which we will discuss in the subsequent section.
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Table 2. Performance of hard ST/MT multi-task CTC/Attn mod-
els with external MT data or mBART initialization. Single-task
CTC/Attn baselines and soft multi-task models from prior works are
shown for comparison. †Uses WMT16 MT data (4.6M sentences).
‡Uses external MT and unpaired text data via mBART initialization.

EXT DATA
# MODEL SIZE MT Text En-De

- ConST’22 [8] 150M - - 25.7
- M3ST’23 [11] - - - 26.4
E1 Single-Task CTC/Attn 190M - - 29.0
E2 Hard Multi-Task CTC/Attn 190M - - 29.3

- ConST’22 [8] 150M 3† - 28.3
- M3ST’23 [11] - 3† - 29.3
E2+ Hard Multi-Task CTC/Attn 190M 3† - 30.1

F1 Single-Task CTC/Attn 740M 3‡ 3‡ 29.3
F2 Hard Multi-Task CTC/Attn 740M 3‡ 3‡ 31.1

Table 3. Ablation study on the importance of up-sampling MT input
text. MT = Use of MT multi-task. Up = Up-sampling factor of MT
input text. Ratio = Average length ratio of discrete speech to text.

MT Up Ratio BLEU

- - - 28.6
3 - 6.0 28.5
3 2x 3.0 28.8
3 4x 1.5 29.2
3 6x 1.0 28.7

We take two representative works for comparison in this section.
The ConST model [8] is a soft multi-tasking approach which uti-
lizes a contrastive loss to encourage matched speech and text inputs
to be closer, relative to unmatched speech and text inputs. ConST
also uses multiple strategies to create harder examples for the con-
trastive loss. The M3ST model [11] is another soft multi-tasking ap-
proach which utilizes a multi-stage training strategy. The first stage
is a purely textual pre-training stage which incorporates external MT
data while the next two stages are ST fine-tuning stages which per-
form data mix-up and contrastive learning. ConST and M3ST ap-
pear to gain more from the same external MT data, although their
baselines are indeed much weaker. Nonetheless, we suspect that
modality-specific modules can limit interference from extremely un-
balanced MT to ST data ratios, but we leave this for future work.

4.3. Cross-Modal Transfer Learning

Ultimately, we’d like to build ST models which efficiently leverage
not only paired textual data, but also copious amounts of unpaired
textual data. In this section we examine models initialized from
mBART [25, 26], an encoder-decoder pre-trained with text denoising
objectives and then fine-tuned on large-scale MT data.3 The recent
trend is to take the mBART decoder parameters to partially initial-
ize ST encoder-decoder models [50, 51, 53, 54]. This is a form of
heterogeneous transfer learning [55] – there is a cost associated with
the distributional shift between the textual pre-training domain and
the speech-based fine-tuning domain. Cross-modal pre-training [6,
7] has been shown to reduce this cost. We posit that our cross-modal
fine-tuning method has a similar effect.

3https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt

The results in the final horizontal partition of Table 2 presents
models with mBART decoder initialization (see §3). Comparing the
single-task model F1 with the multi-task model F2, we see that the
latter is +1.8 BLEU better. The single-task model only improves by
+0.3 BLEU from mBART initialization (E1 vs. F1); prior works
have also noted similarly muted gains [51, 56], indicating deficien-
cies in transfer learning across modalities. Our method exhibits a
more efficient transfer (E2 vs. F2), yielding +1.8 BLEU. Note that
mBART has been fine-tuned on large scale MT data, so we do not
find it necessary to include WMT data in our training mixture.

4.4. Ablations on Sequence Lengths

Table 3 shows an ablation study on the importance of up-sampling
the lengths of MT inputs to match the lengths of discrete speech in-
puts (per §2.2.2). We found that 4x up-sampling was best. Note that
without any up-sampling, ST/MT multi-tasking was actually slightly
detrimental. 6x up-sampling was not the best even though speech
and text have equal lengths on average, suggesting that the alignment
of each text token to corresponding speech tokens is not uniform.

5. RELATION TO PRIOR WORK

Now that we have presented our approach and results, we’ll highlight
the technical and empirical novelty of our work.

First, our work is closely related to AudioPalm [15]; both of our
methods achieve hard ST/MT multi-tasking by discretizing speech.
On the surface this makes our methods look quite similar, but Au-
dioPalm focuses on initializing speech models from Palm. In fact,
their results show that their models are deficient when trained from
scratch (see Table 6 in their paper). We take the exact opposite ap-
proach: we first confirm that our method improves training from
scratch before adding external MT data and initialization from tex-
tual pre-trained models. This is a major technical difference in it-
self, but it also allows us to investigate several empirical novelties.
Namely, we are able to show the individual effects of hard parameter
sharing, external MT data, and transfer learning. These three effects
are conflated within the experimental setup of the AudioPalm paper
which is more focused on demonstrating performance at scale. All
told, we view these works as complementary – this work focuses on a
set of sequence-to-sequence models commonly used in ST and other
speech processing tasks (CTC, AED, CTC/Attn, RNN-T) which are
distinct from AudioPalm’s decoder-only model.

Second, our work follows a long line of prior works which in-
vestigate ST/MT multi-tasking [5–13]. The common theme amongst
these approaches is soft parameter sharing, which is a major differ-
ence compared to our approach. Further, we examine a larger set of
Seq2Seq models to demonstrate general applicability.

6. CONCLUSION

We present a method for ST/MT multi-tasking with hard parame-
ter sharing, which is not trivially achieved due to the speech-text
modality gap. Our approach resolves this by pre-processing speech
into discrete sequences of tokens. This allows us to build Seq2Seq
models capable of ingesting speech and text via an input vocabulary
consisting of discrete speech and text tokens. Given the consistent
improvements in ST, we will apply this approach to spoken language
understanding and speech summarization in the future.

Brian and Shinji are supported by the HLTCOE at JHU. This work
used NCSA Delta (project CIS210014) from ACCESS through NSF grants
#2138259, #2138286, #2138307, #2137603, and #2138296.
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