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“Big data” gives markets access to previously unmeasured characteristics of indi-
vidual agents. Policymakers must decide whether and how to regulate the use of
this data. We study how new data affects incentives for agents to exert effort in
settings such as the labor market, where an agent’s quality is initially unknown
but is forecast from an observable outcome. We show that measurement of a new
covariate has a systematic effect on the average effort exerted by agents, with the
direction of the effect determined by whether the covariate is informative about
long-run quality versus a shock to short-run outcomes. For a class of covariates
satisfying a statistical property that we call strong homoskedasticity, this effect is
uniform across agents. More generally, new measurements can impact agents un-
equally, and we show that these distributional effects have a first-order impact on
social welfare.
Keywords. Big data, forecasting, effort incentives, career concerns.
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1. Introduction

Online platforms and data brokers extensively track, record, and aggregate consumer
activities, producing measurements of everything from the size of an individual’s so-
cial network,1 to how often they move residences,2 to the amount of time they spend
playing video games.3 These new measurements are increasingly available to firms and
organizations, who may find them useful as predictors of economic outcomes, such as
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1The finance startup Lenddo evaluated borrowers on the basis of factors such as “how many friends or
followers they have on their social networks” (Gage, 2012).

2The alternative credit scoring company ZestFinance used borrowers’ frequency of residence changes to
predict their creditworthiness (Lippert, 2014).

3China’s widely-publicized social credit scoring system reportedly plans to incorporate data on how
many video games a consumer purchases and how much time they spend playing them (Canales and Mok,
2022).
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a worker’s future productivity in a new job.4 Regulating such uses of personal data has
emerged as an important policy issue,5 but our understanding of when and how to do
so remains preliminary. The use of new data in such settings may have far-ranging so-
cial impacts beyond direct privacy concerns, reshaping the creation and distribution of
economic surplus.

In this paper, we study the impact of new data on markets in which moral hazard
is an important concern.6 A motivating application is the labor market, where wages
and job opportunities are commonly tied to market forecasts of a worker’s productivity
based on past output. A well-recognized consequence of this practice is that workers are
incentivized to work hard to improve the market’s forecast. Since output is typically so-
cially valuable, new data which impacts workers’ effort incentives may negatively affect
labor market productivity absent regulation.

We propose a simple model of reputational incentives that isolates the effect of new
data on moral hazard. Our model builds on the classic “career concerns” framework
of Holmström (1999), in which an agent exerts effort to improve an outcome used by a
market to forecast his type. Different from Holmström (1999), we suppose that the mar-
ket additionally bases its forecast on auxiliary data consisting of covariates describing
the agent, which are observed prior to his choice of effort.

We separate covariates into two categories: Some covariates, which we call at-
tributes, describe the agent’s type; while others, which we call circumstances, are in-
formative about a transient shock to his outcome. For example, a worker’s creativity is
an attribute, while an illness or injury is a circumstance. We model the acquisition of
new data as an expansion of the set of covariates that are measured and may be used for
forecasting. Measurement of new covariates updates the market’s beliefs about a given
agent’s type and shock, reshaping incentives for effort.

Our main results characterize how measurement of a new covariate impacts the
population distribution of effort and aggregate welfare. Our basic positive result is that
incorporating a new covariate into the market’s type forecast leads to both a system-
atic reduction in uncertainty across the population and a redistribution of uncertainty
between agents. While the systematic effect moves the effort of all agents in the same
direction, the redistributionary effect leads to heterogeneous effort responses, which
may differ even directionally across agents. Each of these effects has a first-order effect
on aggregate welfare, and we find that the redistributionary effect can oppose and even
overturn the welfare impact of reducing uncertainty.

4Employers already widely use similar information collected from internet searches to screen potential
hires on the basis of factors such as social media activity (CareerBuilder, 2018).

5For instance, proposed European Union rules for artificial intelligence have flagged automated employ-
ment screening systems as “high risk” applications subject to strict regulation, in particular regarding the
data sets they rely on (European Commission, 2021).

6Our approach complements recent work focusing on how data collection impacts markets shaped by
asymmetric information. See, for instance, Bergemann, Bonatti, and Gan (2022), Elliott, Galeotti, and Koh
(2022), Yang (2022) for price discrimination; Ichihashi (2019), Hidir and Vellodi (2021), Gomes and Pavan
(2022) for matching on platforms; and Braverman and Chassang (2022), Brunnermeier, Lamba, and Segura-
Rodriguez (2021) for insurance pricing.
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We formalize our positive findings through a pair of theorems. Theorem 1 shows

that quite generally, measurement of a new attribute reduces average effort in the popu-

lation, while measurement of a new circumstance increases average effort. Importantly,

this result does not guarantee that all agents change their effort by the same amount,

or even in the same direction. Theorem 2 shows that any heterogeneity in the effort

responses of different agents is entirely attributable to a redistribution of uncertainty

across the population.

Our normative findings are summarized in Theorem 3. It establishes that, in the ab-

sence of redistribution of uncertainty, the directional effect on welfare of a newly mea-

sured covariate is jointly determined by its classification as an attribute or circumstance

along with the weight that agents place on their future reputations. It further shows

that greater redistribution of uncertainty leads to reduced welfare gains from measure-

ment of a covariate, and that this reduction can be so extreme that the measurement

of some covariates is never welfare-enhancing, regardless of the magnitude of agents’

reputational concerns.

Our work contributes to an emerging literature studying the use of personal data for

forecasting. Existing work has highlighted incentives for agents to game forecasts by dis-

torting (Ball (2022), Bonatti and Cisternas (2020), Frankel and Kartik (2022), Haghtalab,

Immorlica, Lucier, and Wang (2020), Hu, Immorlica, and Vaughan (2019)) or misreport-

ing (Eliaz and Spiegler (2019, 2022)) their covariates. Such incentives are especially im-

portant when a small number of covariates shape forecasts in a well-understood way.

We study the complementary question of how data usage impacts incentives for agents

to directly improve outcomes. These incentives are particularly relevant when outcomes

are a primary forecasting input, making them a natural target for manipulation; or when

algorithms used to incorporate additional covariates into forecasts are opaque, obscur-

ing effective strategies for gaming them.

Additionally, our model builds on the career concerns literature. Compared to the

original Holmström (1999) model, we focus on a two-period model which incorporates

auxiliary signals and non-Gaussian information structures. We share these modeling

features with the closely related work of Dewatripont, Jewitt, and Tirole (1999) and Ro-

dina (2018).7 These papers show that under certain conditions, signals about a single

agent’s type lower his effort while signals about the shock raise it.8 In our model with

a population of heterogeneous agents, a similar result holds on average across agents

7An adjacent literature on relative performance comparisons, e.g., Meyer and Vickers (1997), considers
settings in which the additional signal is not exogenous, but is instead generated by the outcome of another
agent with correlated unobservables. See also Tirole (2021), in which the additional signal is an outcome in
another domain in which the agent exerts effort.

8Rodina (2018) additionally studies whether garbling the outcome signal can improve agent incentives,
a question also examined by Hörner and Lambert (2021) and Smolin (2021) in related contexts. By contrast,
we assume that the agent’s outcome is perfectly observable and focus on regulation of access to additional
covariates.
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(Theorem 1). But additionally, introduction of new data potentially changes the cross-
sectional dispersion of effort in the population. As we show in Section 3.3, this distribu-
tional effect has a first-order effect on welfare, and in some cases it can override the wel-
fare effect of an average change in effort. Our results therefore highlight the importance
of explicitly modeling the heterogeneity across agents that is present in applications.

The remainder of this paper proceeds as follows. Section 2 describes our model; Sec-
tion 3 establishes our main results about the impact of new measurements on effort and
welfare; Section 4 discusses extensions; and Section 5 concludes. Supporting analyses
and all proofs are collected in the Appendix.

2. Model

In Section 2.1, we describe our basic model of reputational incentives for effort, which
is a 2-period version of the Holmström (1999) career concerns model with general in-
formation structures. In Section 2.2, we augment the model by introducing auxiliary
data.

2.1 Effort and welfare

An agent participates in a market across two periods t = 1, 2. He possesses a quality type
θ ∼ Fθ, which is persistent across time and unknown to himself and the market.

In period 1, the agent privately chooses an effort level e ∈R+ at cost C(e) = 1
2e

2. (We
extend our results to general cost functions in Section 4.3.) The agent’s effort choice,
along with his quality θ and a transient shock ε ∼ Fε, determine the realization of an
observable outcome

Y = e+ θ+ ε.

We assume that E(θ) = μ> 0 while E(ε) = 0. The agent’s reward from his period-1 inter-
action is independent of Y and normalized to be 0.9 His period-1 payoff is therefore

U1 = −1
2
e2.

In period 2, the agent receives a reputational payoff standing in for returns from
future participation in the market. This payoff is equal to the market’s expectation of
his quality conditional on the outcome variable Y .10 Since the agent’s effort choice is
private, the market’s forecast is based on a conjectured level of effort ê. Letting Y ê ≡
ê + θ + ε be the outcome supposing that the market’s effort conjecture is correct, the
agent’s second-period payoff conditional on the realized outcome Y = y is

U2 = E
ê(θ | Y = y ),

9This normalization does not rule out wage payments which depend on the market’s forecast of period-1
effort, as in Holmström (1999). Such effects do not impact equilibrium effort or social surplus, and so we
do not explicitly model them.

10None of our results would change if the agent’s reputational payoff were instead the market’s expecta-
tion of any strictly increasing function of θ. Our model therefore accommodates a variety of interpretations
for the source of reputational returns from effort.
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where E
ê(θ | Y = y ) denotes the market’s (potentially misspecified) expectation of θ,

updated based on the realized outcome assuming that Y = Y ê.
The agent’s ex post payoff from participating in the market in both periods is a

weighted sum of payoffs across the two periods:

U = (1 −β) ·U1 +β ·U2,

where β ∈ (0, 1) is the reputation weight, which denotes the importance to the agent
of future reputational rewards versus current effort costs. The agent’s expected payoff
under effort level e is therefore

E
e(U ) = β ·Ee

(
E
ê(θ | Y )

) − (1 −β) · e
2

2
,

where E
e denotes the expectation operator given the true effort level e.

In equilibrium, the agent must have no incentive to deviate from the market’s con-
jectured level of effort. Let e∗ denote equilibrium effort. Then in equilibrium the
marginal value of effort (i.e., the equilibrium marginal impact of effort on the expected
reputational reward), discounted by its relative weight β/(1 − β), equals the marginal
cost of effort:

β

1 −β
· ∂

∂e
E
e
(
E
e∗

(θ | Y )
) ∣∣∣∣

e=e∗
= e∗.

Because effort impacts the outcome additively, the marginal value of effort appearing in
this first-order condition is independent of e∗ and may be written as

MV ≡ E
0
(

∂

∂Y
E

0(θ | Y )

)
, (1)

where E
0 denotes the expectation operator assuming that the agent does not exert effort

to distort the outcome (see Appendix D.1 for details). As (1) does not depend on e∗, the
unique effort level satisfying the first-order condition is then e∗ = β

1−β ·MV . Throughout
this paper, we will assume that the first-order approach is valid, so that e∗ constitutes the
unique equilibrium effort choice.

We measure welfare using a standard criterion that treats both the outcome variable
Y and the agent’s effort cost C(e) as welfare-relevant.11 An agent whose type is θ and
effort choice is e thus generates welfare

w(θ, e) ≡ E
e(Y | θ) −C(e) = θ+ e− 1

2
e2. (2)

This function is strictly concave in effort and maximized at the “first-best” effort level
eFB = 1 no matter the agent’s type. Appendix A extends our analysis to alternative wel-
fare specifications incorporating learning-by-doing and unproductive gaming.

11The assumption that Y contributes to social welfare is appropriate for settings such as the labor mar-
ket, in which the outcome captures productive output or some other socially valuable activity. We do not
include the agent’s equilibrium reputational payoff in the welfare calculation because on average that pay-
off is fixed at Ee∗

(Ee∗
(θ | Y )) = μ, independent of the equilibrium effort level. (This property continues to

hold when the model is augmented with data.).
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2.2 Data and beliefs

We now augment the basic model by supposing that θ and ε are predictable from un-
derlying (and potentially measurable) covariates, with data revealing a subset of these
covariates. We refer to those covariates which predict θ as attributes, denoted by the
random variables (a1, � � � , aJ ), and those covariates which predict ε as circumstances,
denoted by the random variables (c1, � � � , cK ). Specifically, the type θ and shock ε satisfy

θ = f 1(a1 ) + · · · + f J(aJ ) + uθ

ε = g1(c1 ) + · · · + gK(cK ) + uε

where each f j , j ∈ {1, � � � , J}, and gk, k ∈ {1, � � � , K}, is a deterministic and one-to-one
effect size function. (This specification nests the standard linear regression model as a
special case when all effect size functions are affine.) For convenience, we will define
the type components θj ≡ f j(aj ) for each j = 1, � � � , J and shock components εk ≡ gk(ck )
for each k= 1, � � � , K.12

The idiosyncratic noise terms uθ and uε are independent of one another and of all
covariates, and have full support on the reals.13 We allow for correlation between at-
tributes and between circumstances, but assume that the vector of attributes is inde-
pendent of the vector of circumstances, i.e., (a1, � � � , aJ ) ⊥⊥ (c1, � � � , cK ), implying in par-
ticular that θ ⊥⊥ ε. (We consider covariates which are correlated with both the type and
shock in Section 4.1.)

Some covariates are measured, making them observable to the agent and the mar-
ket. We use J ⊆ {1, � � � , J} to denote the set of measured attributes and K ⊆ {1, � � � , K} to
denote the set of measured circumstances. All measured covariates are observed at the
outset of the interaction, leading the agent and market to share a common belief that the
agent’s type and shock follow their distributions conditional on the agent’s measured co-
variate values. We view symmetric uncertainty as a natural conceptual benchmark that
allows us to cleanly disentangle moral hazard from issues of selection. In Section 2.3, we
discuss how our results would change if either side had additional private information.

The interaction then proceeds as described in Section 2.1, with appropriate adjust-
ments to the calculation of equilibrium effort. Conditioning on the measured covariates,
the agent’s marginal value of effort changes from (1) to the quantity

MVJ ,K ≡ E
0
(

∂

∂Y
E

0(θ | Y , aJ , cK ) | aJ , cK

)
(3)

and equilibrium effort becomes

e∗
J ,K = β

1 −β
·MVJ ,K. (4)

12Invertibility of the effect size functions implies that observation of a new covariate aj or ck is equivalent
to observation of the corresponding type or shock component θj or εk. Some of our results, particularly
those involving strong homoskedasticity, do not depend on invertibility.

13The full support assumption ensures that the distributions of θ and ε conditional on any family of mea-
sured covariates have full support, simplifying our proofs. All of our results continue to hold in the absence
of full support, and so we will make free use of examples which do not feature full-support idiosyncratic
noise terms.
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Note that both the marginal value of effort and equilibrium effort may vary with the
values of the agent’s measured covariates, and they are therefore both random quanti-
ties. We interpret this randomness from a population perspective, by supposing that the
market interacts with a continuum of agents possessing varying attributes and circum-
stances. From this perspective, random variation in e∗

J ,K corresponds to a distribution
of effort across the population of agents.

Aggregate welfare given measured covariates (J , K) is the expectation of realized
welfare w(θ, e∗

J ,K ) as defined in (2), averaging over variation in the type θ and effort
e∗
J ,K across the population:

W (J , K) ≡ E
(
w

(
θ, e∗

J ,K
)) = μ+E

(
e∗
J ,K − 1

2

(
e∗
J ,K

)2
)

.

(Recall that μ ≡ E(θ) is the unconditional average quality in the population.) Aggregate
welfare is maximized when all agents exert the first-best level eFB = 1.

Our main results compare effort and welfare when the set of measured covari-
ates changes from some baseline family (J , K) to an expanded family (J ∪ {j′}, K) or
(J , K ∪ {k′}) containing one additional covariate. To simplify exposition, throughout
the main text we develop our results assuming that the baseline family is (J , K) =
(∅, ∅), while the expanded family is either ({1}, ∅) or (∅, {1}), corresponding to measure-
ment of attribute 1 or circumstance 1. (Our results extend straightforwardly to general
baselines—see Appendix B for details.) In this context, we define η ≡ ∑

j>1 f
j(aj ) + uθ

and δ≡ ∑
k>1 g

k(ck ) + uε and decompose the type and shock as

θ = θ1 +η, ε = ε1 + δ,

so that the type component θ1 and shock component ε1 summarize the information
revealed by a new measurement, while η and δ are the residual unknowns.

We impose a set of standard regularity conditions on the distributions of these vari-
ables.

Assumption 1 (Admissibility). The random variables θ and ε have log-concave density
functions, and the conditional randomvariablesη | a1 and δ | c1 have log-concave density
functions for every realization of a1 and c1.

Assumption 2 (Differentiability). For every effort level e, the derivative ∂
∂Y E

e(θ | Y ) ex-
ists and is uniformly bounded across all realizations of Y . Additionally, for every effort
level e and realization of (a1, c1 ), the derivatives ∂

∂Y E
e(θ | Y , a1 ) and ∂

∂Y E
e(θ | Y , c1 ) exist

and are uniformly bounded across all realizations of Y .

In additive statistical inference models, log-concavity is a canonical assumption en-
suring that better outcomes correspond to improved inferences about latent variables.14

14Specifically, if an analyst observes an outcome Z which is decomposable as Z = X + Y , where both
X and Y are unobserved, and if X and Y are statistically independent and have log-concave density func-
tions, then upon observing Z his posterior beliefs about X and Y are higher (in the first-order stochastic
dominance order) for larger realizations of Z (Milgrom (1981))..
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Assumption 1 ensures that in both the baseline and the expanded environments, better
(worse) realizations of Y lead to higher (lower) posterior beliefs about both the type and
shock. Assumption 2 ensures that conditional expectations are sufficiently smooth that
we can take derivatives and exchange derivatives and expectations where required.

2.3 Discussion of modeling choices

Private information on the side of the market Our model assumes that the market does
not know more about an agent’s type or shock than the agent does himself. In some
applications, private information on the side of the market is possible if the market has
access to data on past outcomes for other agents with similar covariates. (This view of
big data is embedded in, for instance, the “inverse selection” model of Brunnermeier,
Lamba, and Segura-Rodriguez (2021).) We show in Section 4.2 that our results continue
to hold under this sort of informational asymmetry, so long as measurement of a new
covariate leads the agent to believe that the market has gained new information about
his type or shock.

Private information on the side of the agent Another possibility is that the agent knows
more about his type and shock than the market. This asymmetry implies not only that
the agent knows more about his own covariates, but also that he can discern how these
covariates impact his type and shock distributions (via the effect size functions f j and
gk), a demanding assumption in many applications. Nevertheless, our results continue
to hold with private information on the agent’s side whenever the market’s posterior
type expectation is linear in the outcome signal (for instance, whenever (θ1, � � � , θJ ) and
(ε1, � � � , εK ) follow elliptical distributions). Beyond these settings, the agent’s perceived
marginal value of effort may vary with private information about his type or shock, com-
plicating the analysis, but we conjecture that our main results extend more broadly.

Exogeneity of covariates Our model contrasts covariates, which are fixed characteristics
of the agent (at least in the short run); and the outcome Y , which is susceptible to ma-
nipulation by effort. We view this dichotomy as a useful one for several reasons. First, θ
and ε may be determined by the aggregation of many covariates, each of which individ-
ually plays only a small role. In such contexts, our exercise can be viewed as focusing on
the agent’s incentives to influence the relatively informative outcome signal Y , while ab-
stracting from any costly distortion of less-informative individual covariates. Second, to
compute the value of manipulating a covariate, the agent must know the precise shape
of the effect size function describing how that covariate impacts the outcome, which is
more demanding than the knowledge requirements that we impose.

3. Main results

Our main results characterize the impact of measuring a new covariate on population
effort and welfare. We first show that for a broad class of covariates, measuring a new
attribute decreases population effort on average, while measuring a new circumstance
increases it (Section 3.1). However, outside a narrower class of covariates, new mea-
surements may yield effort responses of heterogeneous magnitude and even direction



Theoretical Economics 19 (2024) Data and incentives 415

across agents (Section 3.2). In Section 3.3, we combine these insights to study the ef-
fect of measuring a new covariate on aggregate welfare, taking into account both the
resulting average effect on effort as well as the induced heterogeneity.

3.1 The average impact of newmeasurements

Our first main result demonstrates that in a wide class of models, measuring a new co-
variate leads to a systematic shift in average effort across the population. Further, the
direction of this shift depends solely on whether the covariate is an attribute or a cir-
cumstance: Attributes reduce average effort, while circumstances increase it.

Our result applies to covariates that satisfy the following condition.

Definition 1 (Affiliation). Attribute 1 is affiliated if (θ1, η) are statistically affiliated.15

Circumstance 1 is affiliated if (ε1, δ) are statistically affiliated.

Affiliation describes settings in which a good realization of a measured covariate
(e.g., θ1) also implies good realizations (on average) of unmeasured covariates (e.g., η).
Examples of settings in which attribute 1 is affiliated include:

Example 1. (θ1, � � � , θJ ) follow a multivariate normal distribution, and all correlation
coefficients are nonnegative. ♦

Example 2. (θ1, � � � , θJ ) are i.i.d. draws from an exponential distribution with rate pa-
rameter λ, where λ∼ Gamma(α0, β0 ) with α0 ≥ 1. ♦

The following result establishes that a newly measured affiliated attribute lowers av-
erage effort, while a newly measured affiliated circumstance raises it.16

Theorem 1. Suppose Assumptions 1–2 hold. If attribute 1 is affiliated, then measuring
it weakly reduces average effort. If circumstance 1 is affiliated, then measuring it weakly
increases average effort.

To understand the result, consider the simplest setting in which all covariates are
independent of one another. (Independence is a sufficient condition for attribute 1 and
circumstance 1 to be affiliated.) In this case, measuring a new attribute reduces the mar-
ket’s ex post uncertainty about the agent’s type. As a result, the market infers less about
the agent’s type from the outcome, decreasing the marginal value of improving the out-
come through costly effort and therefore also the equilibrium level of effort. Measuring
a new circumstance instead reduces the market’s ex post uncertainty about the agent’s

15A pair of random variables (Z1, Z2 ) is statistically affiliated if Z2 | Z1 satisfies the monotone likeli-
hood ratio property with respect to Z1. When (Z1, Z2 ) possess a strictly positive, twice-differentiable joint
density function ρ(z1, z2 ), this condition is equivalent to ∂2 logρ/∂z1∂z2 ≥ 0 everywhere.

16 We formally establish weak monotonicity. At the cost of a more involved proof, it can further be shown
that when a covariate is nondegenerate, affiliation implies strict monotonicity.
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shock, leading it to infer more about the agent’s type from the outcome and boosting the
agent’s equilibrium effort.

When covariates are correlated, measuring a new covariate need not reduce the mar-
ket’s ex post uncertainty about all agents in the population. (See Section 3.3 for an exam-
ple.) To sign the average change in effort, we must show that even if uncertainty about
some agents increases, their effort does not change by so much as to outweigh the op-
posing effort changes by all other agents. Affiliation ensures enough comovement of
covariates to guarantee this result.

Theorem 1 is closely related to a result of Dewatripont, Jewitt, and Tirole (1999)
(hereafter DJT) in a related setting where a single agent exerts effort prior to the realiza-
tion of an auxiliary signal. (Recall that in contrast, covariates in our model are observed
before each agent chooses their effort, so the market holds heterogeneous beliefs about
agents at the time of effort choice.) DJT show that, under certain statistical conditions,
the agent’s effort drops in anticipation of a signal about his type and rises in anticipation
of a signal about the shock.17

Both results employ the same basic logic, but they rely on different statistical condi-
tions. Our condition is formulated for our additive setting and highlights the role played
by correlation between covariates, while DJT derive a more abstract condition in a set-
ting with less structure on signals. Additionally, DJT assume technical regularity condi-
tions that we are able to relax through an alternative proof technique.18 Finally, in our
setting the change in average effort induced by a new measurement is only one aspect
of its impact on the population distribution of effort and on aggregate welfare. Our next
results explore these implications in more depth.

3.2 Redistribution of uncertainty

We now show that redistribution of uncertainty across agents is necessary for measure-
ment of a new covariate to impact higher moments of the population effort distribution.
Formally, whenever a covariate reduces uncertainty about the corresponding outcome
component in the same way for all agents, the average effect identified in Theorem 1 is
the sole effect of a new measurement.

The condition we identify requires that the variance as well as all higher moments of
the unmeasured component are independent of the covariate realization. It strengthens
the notion of homoskedasticity commonly imposed in linear regression models, which
requires independence only of the residual variance. By analogy, we refer to it as strong
homoskedasticity.

Definition 2 (Strong homoskedasticity). Attribute 1 satisfies strong homoskedasticity
if the random variable η−E(η | a1 ) is independent of a1. Circumstance 1 satisfies strong
homoskedasticity if the random variable δ−E(δ | c1 ) is independent of c1.

17See, for example, Example 5.3 in DJT for an instance of this result in an additive model.
18Specifically, DJT implicitly assume sufficient regularity of the distributions of all random variables to

permit two successive exchanges of an effort derivative and an expectation (see their Proposition 2.2). Our
proof avoids one of these exchanges, and as a result we require only the weaker regularity condition im-
posed in Assumption 2.
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Strong homoskedasticity does not eliminate correlation between covariates, since
the expectations of η and δ are allowed to depend (respectively) on a1 and c1. It does,
however, rule out the possibility that the spread of an unmeasured covariate may de-
pend on the measured covariate. To give a concrete example, suppose the measured
covariate “zip code” is correlated with the unmeasured covariate “income.” Strong ho-
moskedasticity allows the average income level to differ across zip codes, but is violated
if income levels are more heterogeneous in some zip codes than in others.

Additional examples of strongly homoskedastic models include:

Example 3. (θ1, � � � , θJ ) and (ε1, � � � , εK ) each follow multivariate normal distributions.
♦

Example 4. The type and shock components satisfy θj = Fj(θ1 ) +Xj for j ≥ 2 and εk =
Gk(ε1 ) +Zk for k≥ 2, for functions Fj and Gk and random variables Xj ⊥⊥ θ1 and Zk ⊥⊥
ε1. ♦

Under strong homoskedasticity, a strong version of Theorem 1 ensures a uniform
change of effort across agents.19 Since strong homoskedasticity encompasses correla-
tion structures outside the class of affiliated covariates (for instance, multivariate nor-
mal models with negative correlation coefficients), this result further broadens the find-
ing of Theorem 1.

Theorem 2. Suppose Assumptions 1–2 hold. If attribute 1 satisfies strong homoskedas-
ticity, then measuring it weakly reduces every agent’s effort. If circumstance 1 satisfies
strong homoskedasticity, then measuring it weakly increases every agent’s effort.

In either case, the magnitude of the effort change is the same for every agent, irrespec-
tive of their covariate realization.

When strong homoskedasticity fails, measurement of a new covariate induces het-
erogeneity in the spread of the market’s beliefs about different agents, an effect we refer
to as redistribution of uncertainty. This redistribution can lead to heterogeneous effort
changes across the population, and may even exert a directional effect on effort which
for some agents overturns the average effect identified in Theorem 1. We provide an
illustration of this possibility through an example in Section 3.3.

Our results therefore highlight an important connection between redistribution of
uncertainty and inequality generated by data usage. When a new measurement redis-
tributes uncertainty across agents, its payoff impact may differ across agents with dif-
ferent covariate realizations, leading some agents to become better off at the expense of
others.20 A social planner may care intrinsically about this disparate impact, especially

19 As in Theorem 1, we formally establish only weak monotonicity. When a covariate is additionally
nondegenerate, strong homoskedasticity further implies strict monotonicity. (See footnote 16.).

20If agents do not receive any up-front payments in period 1, they become better or worse off to the
extent their effort falls or rises. In some contexts, agents might be compensated for the value generated by
their equilibrium effort. (See, for instance, the competitive labor market of Holmström (1999).) In that case,
agents’ payoffs increase in effort over some range. Nonetheless, redistribution of uncertainty still benefits
some agents at the expense of others.
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since these payoff changes may be correlated with sensitive social or demographic char-
acteristics via the measured covariates.21 In the next section, we show that even when
the social planner does not have any intrinsic distributional concerns, this dispersion
harms aggregate welfare.

3.3 Social welfare and data regulation

An important question faced by regulators is whether to allow firms in particular mar-
kets to use new covariates for forecasting. We now apply our positive results to answer
this normative question. We characterize the welfare impact of measuring regular co-
variates, a class encompassing all covariates exhibiting the systematic impact on average
effort identified in Theorems 1 and 2.22

Definition 3. Attribute 1 is regular if measuring it weakly reduces the marginal value
of effort on average. Circumstance 1 is regular if measuring it weakly increases the
marginal value of effort on average. If the change is strict, we call the covariate strictly
regular.

It follows from Theorems 1 and 2 that all affiliated and strongly homoskedastic co-
variates are regular.23

To develop some intuition for the impact of a new measurement on welfare, sup-
pose first that effort in both the baseline and expanded environments is deterministic,
e.g., because the newly measured covariate is strongly homoskedastic. Let MV ≡ MV∅,∅
and MV+A ≡ MV{1},∅ denote the marginal value of effort before and after attribute 1 is
measured. We will similarly let e and e+A denote effort in these two environments. The
agent’s effort is related to his marginal value of effort via

e= β

1 −β
·MV , e+A = β

1 −β
·MV+A.

If attribute 1 is regular, then MV+A ≤ MV and so correspondingly e+A ≤ e. Whether
this change is welfare-improving depends on the size of β. If β is sufficiently large, then
measuring the attribute moves the agent’s effort closer to the first-best level eFB = 1,
increasing welfare; in contrast, if β is sufficiently small, then effort moves away from
first-best and welfare is reduced. This logic is reversed for circumstances. See Figure 1
for an illustration.

When agents react heterogeneously to a newly measured covariate, aggregate wel-
fare depends on details of the distribution of effort beyond the mean. Signing the effect

21Automated prediction algorithms have recently come under scrutiny for unintentionally discriminat-
ing against protected social groups such as racial minorities on the basis of such correlations (Kearns and
Roth (2019)). Our analysis highlights a new channel through which such correlations might harm disad-
vantaged groups.

22To facilitate nonquadratic effort costs (see Section 4.3), we define regularity with respect to the
marginal value of effort rather than effort itself. Since equilibrium effort is proportional to the marginal
value of effort when costs are quadratic, the two notions are equivalent in our baseline setting.

23As noted in footnotes 16 and 19, when a covariate is additionally nondegenerate, it can be shown to be
strictly regular.
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Figure 1. The welfare impact of measuring a new covariate when effort is deterministic.

of a covariate on welfare therefore requires aggregating the systematic effort effect iden-
tified above and the additional impact of redistributing uncertainty.

The following theorem shows that even in the presence of disparate impact, the ef-
fect of a newly measured covariate on aggregate welfare depends in a simple way on the
size of the reputation weight. Specifically, for every regular attribute, there is a threshold
reputation weight β∗ such that measuring the covariate is welfare-improving only for
reputation weights above β∗.24 Analogously, for every regular circumstance, there is a
threshold reputation weight β∗ such that measuring the covariate is welfare-improving
only for all reputation weights below β∗.

Theorem 3. Suppose attribute 1 is regular. Then there exists a threshold reputation
weight β∗ ∈ (0, 1] such that measuring the attribute is welfare-improving if and only if
β>β∗. Moreover, β∗ < 1 if and only if

E
(
MV 2

+A

)
< E

(
MV 2). (5)

Suppose circumstance 1 is regular. Then there exists a threshold reputation weight
β∗ ∈ [0, 1) such that measuring the circumstance is welfare-improving if and only if β <

β∗. Moreover, β∗ > 0 if and only if the circumstance is strictly regular.

Despite the apparent symmetry between the two parts of this result, they are not
perfectly mirrored. Every (strictly) regular circumstance is welfare-improving for suffi-
ciently small β, but some attributes fail to improve welfare even for large β. This asym-
metry stems from the fact that a larger reputation weight leads to increased effort disper-
sion in the presence of uncertainty redistribution, and hence increased aggregate effort

24We say that a covariate is welfare-improving if aggregate welfare strictly increases when the covariate
is measured.
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costs. For attributes, this effect is largest precisely when the average effort decrease from
measuring the covariate is most beneficial to welfare, leading to an ambiguous relation-
ship between reputational concerns and total welfare. For circumstances, by contrast,
the dispersion effect is most pronounced when the effort increase from measurement is
most harmful to welfare, and so the two forces reinforce one another.

Condition (5) characterizes when the dispersion effect overwhelms the average ef-
fect of measuring a new attribute. If the attribute decreases the marginal value of effort
for all agents, then a fall in the expected marginal value of effort implies that the ex-
pectation of its square falls as well, satisfying (5). The theorem then guarantees that the
attribute improves welfare for all sufficiently large reputation weights. By contrast, when
the newly measured attribute increases effort for some agents and decreases it for oth-
ers, the dispersion of the marginal value of effort MV+A generated by redistribution of
uncertainty may be sufficiently large that (5) fails. In this case, measuring the attribute
diminishes welfare regardless of the weight agents place on their future reputation.

This result highlights the role that redistribution of uncertainty plays in determining
welfare. Even if measuring a new covariate leads to a welfare-improving shift in aggre-
gate effort, it may be optimal to prohibit the use of this covariate for forecasting if the
aggregate shift is achieved at the cost of large welfare losses associated with particular
groups of agents. We conclude our analysis with a simple example demonstrating this
possibility.

Example Worker productivity θ is a function of two attributes: residential stability
a1 ∈ [0, 1] and worker reliability a2 ∈ [0, 1]. These attributes determine the worker’s pro-
ductivity via θ = f 1(a1 ) + f 2(a2 ), where

f 1(a1 ) = a1/10, f 2(a2 ) = 10 · a2

There are no measurable circumstances, and the total shock to output ε follows the stan-
dard normal distribution N (0, 1).

Residential stability and worker reliability are positively correlated, with residential
stability a1 distributed uniformly on [0, 1], while the conditional distribution of worker
reliability a2 given a1 is

a2 | a1 ∼
{
U

(
[0.9, 1]

)
, ∀a1 ≥ 0.05

U
(
[0, 1]

)
, ∀a1 < 0.05

That is, workers with very low residential stability (bottom 5%) are less reliable on aver-
age, but are also substantially more heterogeneous.25

In a labor market in which neither attribute is measured, the market learns about
worker productivity solely through output. All workers then exert a common level of ef-
fort, which can be numerically computed to be e∗ ≈ 0.16 · β

1−β . If the market begins mea-
suring residential stability, equilibrium effort for workers with high residential stability

25On the one hand, some workers may move frequently due to evictions, reflecting low reliability. On
the other hand, the exceptionally prolific mathematician Paul Erdős famously possessed no permanent
residence (Cofield, 2013).
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(a1 > 0.05) falls by roughly 50%, to e∗∗
H ≈ 0.077 · β

1−β , while effort for all remaining work-

ers rises fivefold to e∗∗
L ≈ 0.82 · β

1−β . Intuitively, although residential stability has only
a small direct impact on job performance, it has a large impact on the market’s uncer-
tainty about worker reliability. The market’s uncertainty about workers who move very
frequently (residential stability falls below the bottom 5% percentile) increases, while the
market’s uncertainty about the type of all remaining workers decreases. Since, moreover,

E
(
MV 2

+A

) ≈ 0.039 >MV 2 ≈ 0.026,

Theorem 3 implies that aggregate welfare decreases upon measuring attribute 1 for any
reputation weight β.

4. Extensions

We now analyze several extensions of our framework. Section 4.1 studies the effect of
covariates, which are correlated with both the type and shock. Section 4.2 establishes
that our results are robust to agent uncertainty about the market’s beliefs. Section 4.3
relaxes the assumption that the agent’s effort costs are quadratic.

4.1 General covariates

Our main results have assumed that individual covariates are informative about the
agent’s type θ or shock ε, but not both. In some applications, covariates may plausi-
bly lie somewhere between these two extremes. We now show how our results can be
adapted to accommodate such covariates.

As in our main results, we focus on a baseline in which no covariates are observed
and an expanded data set consisting of a single covariate, whose value we will denote
by the random variable X . We allow this covariate to be correlated with both θ and
ε in a very general way, which we summarize by its effect on the conditional mean of
the outcome. Let Y 0 ≡ θ + ε be the baseline outcome ignoring the agent’s effort, and
define the random variable Ȳ 0 ≡ E(θ+ ε |X ) to be the conditional mean of the baseline
outcome given the covariate. We maintain an invertibility assumption ensuring that
measuring X is equivalent to observing the conditional mean outcome Ȳ 0.

Assumption 3 (General invertibility). E(θ+ ε | X = x) is a one-to-one function of x.

This condition is analogous to the invertibility assumptions imposed on the effect
size functions f j and gk in the baseline model, and it serves the same purpose.

We additionally impose admissibility and differentiability assumptions analogous to
Assumptions 1 and 2 in the baseline analysis.

Assumption 4 (General admissibility). (Ȳ 0, Y 0 ) are statistically affiliated.

Assumption 5 (General differentiability). For every effort level e, the derivative ∂
∂Y E

e(θ |
Y ) exists and is uniformly bounded across all realizations of Y . For every effort level e and
realization ofX , the derivative ∂

∂Y E
e(θ | Y , X ) exists and is uniformly bounded across all

realizations of Y .
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Assumption 4 serves the same role as Assumption 1 in ensuring that better outcomes
correspond to improved inferences about latent variables. In particular, if the “net resid-
ual” �Y 0 ≡ Y 0 − Ȳ 0 is independent of the realization of X , affiliation of (Ȳ 0, Y 0 ) reduces
to log-concavity of the density function of �Y 0. Meanwhile, Assumption 5 is a straight-
forward adaptation of Assumption 2.

Finally, we impose an assumption ensuring that θ and ε are correlated only through
the covariate X . We maintain it to focus on the simplest context in which correlation
between the type and shock might arise.

Assumption 6 (General independence). (θ, ε) are independent conditional onX .

We now derive conditions under which measuring X increases or decreases effort,
extending the results of Theorem 1 to this setting.

Proposition 1. Suppose that Assumptions 3–6 hold.

1. If (Ȳ 0, θ) and (Ȳ 0, −ε) are each statistically affiliated, then measuring X reduces
average effort.

2. If (Ȳ 0, −θ) and (Ȳ 0, ε) are each statistically affiliated, then measuring X increases
average effort.

This result establishes that a covariate which is positively associated with one com-
ponent of the outcome, and is simultaneously negatively associated with the remaining
component, has an unambiguous impact on the expected marginal value of effort. The
positive association condition here is a direct analog of the affiliation condition in The-
orem 1, and is needed for the same reason. Meanwhile, the negative association condi-
tion rules out scenarios in which a good covariate realization implies both a high type
and a high shock. Since these inferences have conflicting effects on the marginal value
of effort, the net effect of measuring such a covariate is inherently ambiguous. By con-
trast, if a good covariate realization suggests a high type and a low shock, or vice versa,
the two effects reinforce and the measurement has an unambiguous impact on average
effort.

This result can be strengthened to obtain a uniform effect on effort under ho-
moskedasticity conditions similar to those imposed in Theorem 2. In particular, let
�θ ≡ θ − E(θ | X ) be the residual unobserved type component after measuring X . De-
fine �ε similarly with respect to the shock. Then if the joint distribution of (�θ, �ε)
is independent of the realization of X , measuring X affects effort uniformly across all
agents.

To illustrate these forces concretely, we analyze the effect of measuring a new covari-
ate in a multivariate Gaussian setting. Suppose that θ and ε are decomposable as

θ = μ+ b ·X +Z, ε = d ·X +W
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where X ∼ N(0, σ2
x ), Z ∼ N(0, σ2

z ), and W ∼ N(0, σ2
w ) are mutually independent and

μ, b, and d are known constants. The following lemma ensures that the regularity as-
sumptions imposed in Proposition 1 are satisfied in this setting whenever b + d �= 0, a
condition we will maintain going forward.26

Lemma 1. Assumptions 3–6 are satisfied in amultivariate Gaussian settingwith a general
covariate whenever b+ d �= 0.

We now check when the conditions identified in Proposition 1 under which mea-
suring X increases or decreases effort are satisfied. (Ȳ 0, θ) and (Ȳ 0, ε) are each jointly
Gaussian, and (Ȳ 0, ±θ) are positively correlated if and only if sign(b + d) = ± sign(b).
Similarly, (Ȳ 0, ±ε) are positively correlated if and only if sign(b + d) = ± sign(d). Then
whenever b > 0, Proposition 1 implies that measuring X reduces effort if b + d > 0 ≥ d,
i.e., d ∈ (−b, 0]. Similarly, whenever d > 0, measuring X increases effort if b+ d > 0 ≥ b,
i.e., b ∈ (−d, 0].

The bounds d ≤ 0 and b ≤ 0 illustrate the general point made earlier: Measuring X

has an unambiguous effect on effort only if its informativeness about one component of
the outcome is reinforced rather than opposed by its informativeness about the remain-
ing component. The remaining condition b + d > 0 ensures that better outcomes cor-
respond to improved inferences about the type or shock in the baseline, without which
the expected directional effect of a measurement can reverse.

We can verify these results by explicitly calculating MV and MV+, the marginal value
of effort before and after measuring X . The following result summarizes the calculation.

Proposition 2. sign(MV −MV+ ) = sign((b+ d)( b
σ2
z

− d
σ2
w

)).

If b > 0 and d ∈ (−b, 0], this result implies that MV+ <MV , in line with the predic-
tion of Proposition 1. Similarly, if d > 0 and b ∈ (−d, 0], then MV+ >MV . Conversely,
if both b and d are positive, the sign of MV − MV+ is ambiguous. Depending on the
sizes of these coefficients relative to the residual uncertainty about θ and ε, measuring
X could move the marginal value of effort in either direction.

4.2 Model uncertainty and misspecification

Suppose that, contrary to our assumptions in the baseline model, the agent is subjec-
tively uncertain about the market’s perceived distribution of (θ, ε) given his measured
covariates. Such a situation may arise if he does not know which set of covariates the
market observes, or if he does not know how the market maps his covariate values into
perceived type and shock distributions.

This subjective uncertainty can be modeled by supposing the agent possesses beliefs
over possible joint distributions of (θ, ε) that the market might hold when forecasting
the agent’s type. (It is not important that the market’s true model be contained in the

26If b+ d = 0, then X does not impact Y and cannot be estimated by observing the outcome. As a result,
measuring it has no impact on the marginal value of effort.
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support of the agent’s beliefs, so the agent may be misspecified.) We will continue to
maintain the assumption that the agent is not asymmetrically informed about his type,
and so his own subjective belief about the distribution of his type and outcome is the
expectation of his belief about the market’s distribution.

In this setting, all of our results extend in the following sense: If the agent becomes
convinced that the market’s statistical model has become “better-informed” about the
agent’s type or shock, his effort will move in the direction predicted by our results, so
long as the corresponding statistical assumptions hold for each model in the support
of the agent’s beliefs. More precisely, an agent believes the market has become “better-
informed” if he thinks that, regardless of what statistical model it is in fact using, the
market has gained access to an additional attribute or additional covariate. In that case,
the marginal value of effort moves in the same direction for every model in the support
of the agent’s beliefs, and the expected marginal value of effort therefore moves in this
direction as well. Our main results therefore continue to hold in this environment.

4.3 General convex cost functions

We have established our main results under the assumption that effort costs take the
form C(e) = 1

2e
2. Under this cost function, equilibrium effort is identical to the marginal

value of effort, allowing us to characterize the former by analyzing the latter. More gen-
erally, when C is a strictly convex cost function, equilibrium effort is a uniquely deter-
mined, strictly increasing function of the marginal value of effort:

e∗
J ,K = (

C ′)−1
(

β

1 −β
·MVJ ,K

)
,

where MVJ ,K is as defined in (3). As a result, under such a cost function, a deterministic
shift in the marginal value of effort implies a change in effort in the same direction. This
implies in particular that the results of Theorem 2 under strong homoskedasticity extend
immediately.

Theorem 1 for affiliated covariates extends so long as all agents change their effort in
the same direction, and more generally under a condition on the third derivative of the
effort cost function.27 (In Appendix C, we present similar, but more restrictive, general-
izations of the welfare results from Section 3.3.)

Proposition 3. Suppose Assumptions 1–2 hold.

(a) If attribute 1 is affiliated, then measuring it reduces average effort if C ′′′ ≥ 0 or all
agents change their effort in the same direction.

(b) If circumstance 1 is affiliated, then measuring it increases average effort if C ′′′ ≤ 0
or all agents change their effort in the same direction.

27The proof of this result is a straightforward application of the proof of Theorem 1, combined with the
logic of the discussion following the proposition statement.
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The new force which arises under general cost functions is that average effort may
respond to mean-preserving spreads of the marginal value of effort. To illustrate this
possibility, consider any cost function C(e) ∝ ek, where k > 1. If k > 2, then under
such a cost function the marginal cost of effort is convex, so equilibrium effort is a con-
cave function of the marginal value of effort. Hence, any mean-preserving spread of the
marginal value of effort reduces average effort. Conversely, if 2 >k> 1, effort is a convex
function of the marginal value of effort, and a mean-preserving spread of the marginal
value of effort increases average effort.

Measuring a new affiliated covariate has two effects: It shifts the average marginal
value of effort, and (whenever strong homoskedasticity fails) it may additionally intro-
duce a spread in the distribution of marginal values. If the marginal cost of effort is con-
vex, this second effect tends to reduce equilibrium effort. Thus, when a new attribute
is measured, these two forces work together to lower average effort, and the results of
Theorem 1 continue to hold. A similar outcome holds when the marginal cost of effort
is concave and a new circumstance is measured. When the two forces conflict, the net
effect on effort is ambiguous. In particular, if agents change their effort in different di-
rections, average effort could move in the opposite direction from the average marginal
value of effort.

5. Conclusion

As firms and governments move toward collecting large consumer data sets as inputs
to decision-making, the question of whether and how to regulate the usage of personal
data has emerged as an important policy question. Recent regulations, such as the Euro-
pean Union’s General Data Protection Regulation, have focused on protecting consumer
privacy and improving transparency regarding what kind of data is being collected. An
important complementary consideration is how data impacts economic outcomes. In
this paper, we have focused on one such factor—the effect that market access to novel
covariates has on incentives for hidden effort.

Our results indicate that forecasting from data on enduring personal attributes de-
creases average effort across the population, while conversely data reflecting short-lived
circumstances boosts effort. It is therefore important to distinguish between these two
classes of data when regulating data usage. Further, new data may lead to increased
variation in effort across workers, an outcome which has a first-order impact on welfare.
This finding suggests that regulators should also take into account the distributional
effects of new data when deciding whether to permit its use in particular markets.

One way to interpret the attributes and circumstances in our model is as stand-
ins for covariates with different levels of persistence in a dynamic model, where the
agent exerts effort over multiple periods and his type evolves over time. Generalizing
our results to a many-period setting is technically challenging under non-Gaussian in-
formation structures, since effort deviations today may distort future returns to effort.
Nonetheless, doing so would permit a richer study of the welfare implications of fore-
casting from data with varying persistence, making it an important avenue for future
research.
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Appendix A: Alternative welfare specifications

In this appendix, we extend our welfare analysis to consider alternative environments
in which effort improves future as well as current outcomes (“learning-by-doing”) or is
partially dissipative (“gaming” effort).

A.1 Learning-by-doing

In some applications, effort may improve future as well as current outcomes, for in-
stance in labor market settings featuring learning-by-doing. In that case, the agent’s
type is not constant over time but instead improves with past effort, and effort has so-
cially beneficial effects over multiple periods.

Our model can be modified to accommodate this feature by allowing the agent’s
type θ(t ), which determines the average outcome in period t, to be time-dependent.
Concretely, we will suppose that θ(2) = θ(1) + γ · e, where γ > 0 is a learning-by-doing
parameter. Period-1 output is

Y = e+ θ(1) + ε,

while the agent’s period-2 reputational reward is E(θ(2) | Y ).
The presence of learning by doing does not affect equilibrium effort, because the

agent’s reputational reward is based on the market’s forecast of his effort (which is fixed)
rather than his true effort. This expectation is

E
e∗(

θ(2) | Y ) = (1 + γ) · e∗ +E
e∗(

θ(1) | Y )
.

Exerting additional effort is therefore valuable to the agent only insofar as it improves
the market’s forecast of θ(1), exactly as in our main model. Thus, equation (4) continues
to characterize equilibrium effort.

The socially optimal effort level, however, becomes eFB = 1 + γ in this model. Equi-
librium effort therefore falls below the first-best level for a broader range of reputation
weights β as the learning-by-doing parameter γ increases. An analogue of Theorem 3
continues to hold, where the threshold reputation weights β∗ and β∗ are increasing in
γ. In other words, increased learning-by-doing makes circumstances (which boost ef-
fort) more attractive and attributes (which reduce it) less so at any given reputational
weight.

A.2 “Gaming” effort

In other applications, effort may be dissipative and serve to distort a signal of quality
without producing social value. This possibility may arise, for instance, in labor market
settings in which a worker can spend time performing “influence activities” to increase
the visibility of his accomplishments (as in Milgrom and Roberts (1988)). It may also
arise in educational settings where the outcome variable is a test score that can be im-
proved by test prep with no further educational value (as in Frankel and Kartik (2022)).
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To accommodate this possibility, our welfare criterion can be modified to discount
the welfare benefits of effort:

w(θ, e) = θ+ δ · e− 1
2
e2,

where δ ∈ [0, 1) measures the proportion of effort which is socially beneficial. When
δ = 0, effort is totally unproductive, while δ ∈ (0, 1) captures situations in which some
fraction of effort contributes social value.

The dissipative nature of effort has no impact on equilibrium effort, but reduces
the first-best effort level to eFB = δ. Equilibrium effort will therefore exceed the first-
best level for a broader range of reputation weights β as effort becomes increasingly
dissipative. A result analogous to Theorem 3 can be established in this setting, with the
threshold reputation weights β∗ and β∗ increasing in δ. One interesting case is δ = 0, in
which effort is fully dissipative effort. In that case, measuring new attributes improves
welfare while measuring new circumstances diminishes it, regardless of the reputation
weight β. (The one exception is for an attribute with significant disparate impact, which
may still be welfare-reducing for all β.)

Appendix B: Results for a general baseline

The results of Section 3 can be straightforwardly generalized to accommodate set-
tings in which some covariates are initially measured by the market. Given any sets
J ⊆ {1, � � � , J} of measured attributes and K ⊆ {1, � � � , K} of measured circumstances,
define

ηJ ≡
∑
j /∈J

θj + uθ, δK ≡
∑
k/∈K

εk + uε

to be the sums of all unmeasured components of the agent’s type and shock.
Fix a baseline family (J , K) of measured covariates. Affiliation and strong ho-

moskedasticity may be generalized to this environment as follows.

Definition B.1 (Affiliation). The attribute j′ /∈ J is J -affiliated if (θj′ , ηJ∪{j′} ) is affili-
ated conditional on aJ . The circumstance k′ /∈ K is K-affiliated if (εk′ , δK∪{k′} ) is affili-
ated conditional on cK.

Definition B.2 (Strong homoskedasticity). The attribute j′ /∈ J satisfies J -strong ho-
moskedasticity if ηJ∪{j′} − E(ηJ∪{j′} | aJ∪{j′} ) is independent of aj′ conditional on aJ .
The circumstance k′ /∈ K satisfies K-strong homoskedasticity if δK∪{k′} − E(δK∪{k′} |
cK∪{k′} ) is independent of ck′ conditional on cK.

As formulated, these definitions apply across all (J , K)-subpopulations of agents,
where each subpopulation consists of all agents sharing a particular realization of
(aJ , cK ). They could alternatively be formulated more narrowly to apply only for a par-
ticular set of realized covariates, if the analyst is primarily interested in the impact of a
new covariate on a particular subpopulation of agents.
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Assumptions 1 and 2, which imposed log-concavity on latent variables and bound-
edness of derivatives of conditional expectations, must also be extended for a general
set of baseline measured covariates. We split these conditions into an assumption we
maintain in the baseline environment, and a condition imposed on newly measured
covariates.

Assumption B.1 (Baseline admissibility). The conditional distributions θ | aJ and ε |
cK have log-concave density functions, and for every effort level e and realization of
(aJ , cK ), the derivative ∂

∂Y E
e(θ | Y , aJ , cK ) exists and is uniformly bounded across all

realizations of Y .

Definition B.3 (Admissible covariates). An attribute j′ /∈ J is J -admissible if: (1)
ηJ∪{j′} | aJ∪{j′} has a log-concave density function for every realization of aJ∪{j′}; and (2)
for every effort level e and realization of covariates (aJ∪{j′}, cK ), the derivative ∂

∂Y E
e(θ |

Y , aJ∪{j′}, cK ) exists and is uniformly bounded across all realizations of Y .
A circumstance k′ /∈ K is K-admissible if: (1) δK∪{k′} | cK∪{k′} has a log-concave den-

sity function for every realization of cK∪{k′}; and (2) for every every effort level e and
realization of covariates (aJ , cK∪{k′} ), the derivative ∂

∂Y E
e(θ | Y , aJ , cK∪{k′} ) exists and is

uniformly bounded across all realizations of Y .

With these concepts, we can generalize Theorems 1 and 2 as follows.

Theorem B.1. Suppose Assumption B.1 holds.

(a) If attribute j′ is J -admissible and satisfies J -affiliation, then measuring it weakly
reduces average effort within each (J , K)-subpopulation.

(b) If circumstance k′ is K-admissible and satisfies K-affiliation, then measuring it
weakly increases average effort within each (J , K)-subpopulation.

Theorem B.2. Suppose Assumption B.1 holds.

(a) If attribute j′ is J -admissible and satisfies J -strong homoskedasticity, then mea-
suring it weakly reduces every agent’s effort. Further, the magnitude of the effort
change is the same for every agent in each (J , K)-subpopulation.

(b) If circumstance k′ is K-admissible and satisfies K-strong homoskedasticity, then
measuring it weakly increases every agent’s effort. Further, the magnitude of the
effort change is the same for every agent in each (J , K)-subpopulation.

These results can be applied repeatedly to assess the impact of measuring multiple
covariates, so long as admissibility and the corresponding statistical condition (affilia-
tion or strong homoskedasticity) holds for each of the measured covariates relative to
its respective baseline. Note in particular that the exponential and multivariate normal
settings of Examples 2 and 3 satisfy affiliation and strong homoskedasticity, respectively,
for any baseline and newly measured covariate.

Our welfare results also hold under general baselines using appropriate notions of
regularity and strict regularity.
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Definition B.4. Fix a baseline family of measured covariates (J , K). Then:

• An attribute j′ /∈ J is (J , K)-regular if, conditional on any realization of (aJ , cK ),
measuring j′ weakly reduces the marginal value of effort on average. It is strictly
(J , K)-regular if the reduction is strict for a positive fraction of realizations of
(aJ , cK ).

• A circumstance k′ /∈ K is (J , K)-regular if, conditional on any realization of
(aJ , cK ), measuring k′ weakly increases the marginal value of effort on average. It
is strictly (J , K)-regular if the increase is strict for a positive fraction of realizations
of (aJ , cK ).

Weak regularity imposes monotonicity separately on each subpopulation of agents.
Strict regularity imposes the stronger requirement of strict monotonicity for a positive
fraction of agents. (In the special case of a baseline with no observed covariates, strict
regularity trivially implies strict monotonicity for all agents, corresponding to Defini-
tion 3.)

The following result generalizes Theorem 3 to general baselines.

Theorem B.3. Fix a baseline family of measured covariates (J , K).

(a) For every (J , K)-regular attribute j′ /∈ J , there exists a threshold reputation weight
β∗ ∈ (0, 1] such that measuring j′ is welfare-improving if and only if β>β∗. More-
over, β∗ < 1 if and only if

E
(
MV 2

J∪{j′},K
)
< E

(
MV 2

J ,K
)

(B.1)

whereMVJ ,K is as defined in (3).

(b) For every (J , K)-regular circumstance k′ /∈ K, there exists a threshold reputation
weightβ∗ ∈ [0, 1) such thatmeasuring k′ is welfare-improving if and only ifβ<β∗.
Moreover, β∗ > 0 if and only if k′ is strictly (J , K)-regular.

Appendix C: Welfare under general convex costs

Theorem 3, our main welfare result, can be extended to nonquadratic effort cost func-
tions under the same conditions as Proposition 3, assuming that effort costs follow a
power law. We state and prove this result for general baselines, as in the analysis of
Appendix B.

Proposition C.1. Suppose that C(e) = Aek for some A > 0 and k > 1. Fix a baseline
family of measured covariates (J , K).

(a) Suppose that the market measures the additional regular attribute j′ /∈ J . If either
k ≥ 2 or else all agents change their effort in the same direction, then there exists
a threshold reputation weight β∗ ∈ (0, 1] such that the measurement is welfare-
improving if and only if β > β∗. If j′ is strictly regular and all agents change their
effort in the same direction, then β∗ < 1.
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(b) Suppose that the market measures the additional regular circumstance k′ /∈ K. If
either k≤ 2 or else all agents change their effort in the same direction, then there ex-
ists a threshold reputation weight β∗ ∈ [0, 1) such that the measurement is welfare-
improving if and only if β<β∗. If k′ is strictly regular, then β∗ > 0.

For general cost functions, fully characterizing how aggregate welfare changes with β

becomes intractable. However, it can be shown that if the effort cost function is approxi-
mately quadratic near zero, then when β is small, newly measured regular attributes re-
duce aggregate welfare and newly measured regular circumstances increase them; while
for large β, these effects reverse.

Proof of Proposition C.1. If a newly measured covariate is regular but not strictly
regular, then expected effort is unchanged while the distribution of effort in each sub-
population undergoes a mean-preserving spread under the measurement. Then since
effort costs are strictly convex, aggregate welfare must at least weakly decrease no matter
the value of β, corresponding to β∗ = 1 for an attribute and β∗ = 0 for a circumstance.
For the remainder of the proof, we assume that the newly measured attribute is strictly
regular.

Let δ ≡ β/(1 − β). Note that e∗
J ,K depends on β only through δ, and we will write

e∗
J ,K(δ) to make this dependence explicit.

We first consider the case in which the market measures a new attribute j′. All nota-
tion is as in the proof of Theorem B.3. Define

�W (δ) ≡ E
[
w0

(
e∗
J ′,K(δ)

) −w0
(
e∗
J ,K(δ)

)]
,

where

w0(e) ≡ e−C(e).

Recall that given any family of measured covariates, equilibrium effort in a given sub-
population satisfies e∗ = (C ′ )−1(δ ·MV ), where MV is the corresponding subpopulation
marginal value of effort. Thus,

∂e∗

∂δ
= MV

C ′′((C ′)−1
(δ ·MV )

)
and

∂

∂δ
w

(
e∗) = (

1 −C ′(e∗))∂e∗

∂δ
= (1 − δ ·MV ) ·MV · 1

C ′′((C ′)−1
(δ ·MV )

) .

When C(e) =Aek, we have

1

C ′′((C ′)−1
(δ ·MV )

) =A′ · (δ ·MV )
1

k−1 −1,

where A′ ≡ 1/((k− 1)(Ak)1/(k−1) ) > 0. Hence,

∂

∂δ
w

(
e∗) =A′ · δ 1

k−1 −1 · (1 − δ ·MV ) ·MV
1

k−1 .
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Using this identity, the derivative of �W may be written

∂

∂δ
�W (δ) =A′ · δ 1

k−1 −1 ·E[
(1 − δ ·MVJ ′,K ) ·MV

1
k−1
J ′,K

− (1 − δ ·MVJ ,K ) ·MV
1

k−1
J ,K

]
.

This expression crosses zero at most once for δ > 0, and

lim
δ→0

δ1− 1
k−1

∂

∂δ
�W (δ) = E

[
MV

1
k−1
J ′,K −MV

1
k−1
J ,K

]
(C.1)

while

lim
δ→∞

δ− 1
k−1

∂

∂δ
�W (δ) = E

[
MV

k
k−1
J ,K −MV

k
k−1
J ′,K

]
. (C.2)

Strict regularity of j′ requires that E[MVJ ′,K | aJ , cK] ≤ MVJ ,K for all realizations of
(aJ , cK ), with the inequality strict with positive probability. If all agents change their ef-
fort in the same direction, MVJ ′,K ≤MVJ ,K everywhere. This inequality combined with
the previous implication of strict regularity implies that MVJ ′,K <MVJ ,K with positive
probability, in which case (C.1) is strictly negative while (C.2) is strictly positive. And in
general, if k≥ 2 then Jensen’s inequality and strict regularity imply that

E
[
MV

1
k−1
J ′,K | aJ , cK

] ≤ E[MVJ ′,K | aJ , cK]
1

k−1 ≤MV
1

k−1
J ,K,

with the final inequality strict with positive probability. Hence,

E
[
MV

1
k−1
J ′,K

]
< E

[
MV

1
k−1
J ,K

]
.

Thus, the derivative of �W is strictly negative near zero if either k ≥ 2 or all agents
change their effort in the same direction, and in the latter case it eventually becomes
positive for large δ.

Next, observe that when δ = 0, e∗ = 0 no matter the value of MV , and so �W (0) = 0.
Then given single-crossing of the derivative of �W (δ), it must be that �W (δ) crosses
zero at most once for δ > 0, and any crossing point is from below. Let δ∗ > 0 denote
this crossing point, with δ∗ = ∞ in the case that no crossing occurs. Then �W (δ) < 0
for δ < δ∗, while W (δ) > 0 for δ > δ∗. Additionally, if all agents change their effort in
the same direction, for large δ the derivative of �W (δ) is positive and approximately

proportional to δ
1

k−1 , and thus becomes unboundedly large. It follows that eventually
�W (δ) > 0 for δ sufficiently large, so δ∗ < ∞ in this case. Letting β∗ ≡ δ∗/(1 + δ∗ ) yields
the desired reputation weight threshold.

The case of a newly measured circumstance k′ follows along similar lines, with two
main differences. First, strict regularity and Jensen’s inequality imply that

E
[
MV

k
k−1
J ,K′ | aJ , cK

] ≥ E[MVJ ,K′ | aJ , cK]
k

k−1 ≥MV
k

k−1
J ,K,
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with the final inequality strict with positive probability. Hence,

E
[
MV

k
k−1
J ,K −MV

k
k−1
J ,K′

]
< 0

and the derivative of �W is negative for large δ, whether or not all agents change their
effort in the same direction. Thus, δ∗ < ∞ always. Second, the parameter restriction
under which Jensen’s inequality implies that the derivative of �W is positive near zero is
k≤ 2.

Appendix D: Proofs of results from the main text

D.1 Preliminary work: Characterization of MV

Fix a family of measured covariates (J , K).

Lemma D.1. Suppose that Assumption B.1 holds. Then the equilibrium marginal value
of effort is

MVJ ,K = E

[
∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK

] ∣∣∣∣ aJ , cK

]
,

where Y 0 ≡ θ+ ε.

Proof. Throughout this proof, fix a set of realizations of (aJ , cK ), and condition all
distributions on these realizations. To economize on notation, we will suppress explicit
conditioning on these covariates.

Let ρy|η,e(y | t, e) be the conditional density of Y | ηJ , e and ρy|e(y | e) be the
conditional density of Y | e. Because effort affects the outcome as an additive shift,
ρy|η,e(y | t, e) = ρy|η,e(y − e | t, 0) and ρy|e(y | e) = ρy|e(y − e | 0) for every (y, t, e). So,
let ρη|y,e(t | y, e) be the conditional density of ηJ | Y , e, and let ρη(t ) be the conditional
density of ηJ . Then by Bayes’ rule,

ρη|y,e(t | y, e) = ρy|η,e(y | t, e)ρη(t )
ρy|e(y | e)

= ρy|η,e(y − e | t, 0)ρη(t )
ρy|e(y − e | 0)

= ρη|y,e(t | y − e, 0).

Hence,

E
e∗

[θ | Y = y] =
∑
j∈J

θj +E
e∗

[ηJ | Y = y]

=
∑
j∈J

θj +
∫

tρη|y,e
(
t | y, e∗)dt

=
∑
j∈J

θj +
∫

tρη|y,e
(
t | y − e∗, 0

)
dt

=
∑
j∈J

θj +E
0[ηJ | Y = y − e∗].
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Under the measure corresponding to e = 0, the variable Y is equal to Y 0 almost surely.
So,

E
0[ηJ | Y = y − e∗] = E

[
ηJ | Y 0 = y − e∗].

Now,

E
e
[
E
e∗

[θ | Y ]
] =

∫
dy ρy|e(y | e)Ee∗

[θ | Y = y]

=
∫

dy ρy|e(y | e)

(∑
j∈J

θj +E
[
ηJ | Y 0 = y − e∗])

=
∫

dy ρy|e(y − e | 0)

(∑
j∈J

θj +E
[
ηJ | Y 0 = y − e∗]),

and so by making the variable substitution y ′ = y − e we may write

E
e
[
E
e∗

[θ | Y ]
] =

∫
dy ′ ρy|e

(
y ′ | 0

)(∑
j∈J

θj +E
[
ηJ | Y 0 = y ′ − e∗ + e

])
.

Differentiating with respect to e and invoking Assumption B.1 to justify applying the
dominated convergence theorem yields

∂

∂e
E
e
[
E
e∗

[θ | Y ]
] ∣∣∣∣

e=e∗
=

∫
dy ′ ρy|e

(
y ′ | 0

) ∂

∂Y 0 E
[
ηJ | Y 0] ∣∣∣∣

Y 0=y ′
.

Recall that Y = Y 0 conditional on e= 0, so ρy|e(y ′ | 0) is the density of Y 0. The rhs of the
previous expression may therefore be written

∂

∂e
E
e
[
E
e∗

[θ | Y ]
] ∣∣∣∣

e=e∗
= E

[
∂

∂Y 0 E
[
ηJ | Y 0]],

as desired.

D.2 Proofs of Theorems 1 and B.1

We prove Theorem B.1, from which Theorem 1 follows immediately as a corollary.

D.2.1 Part (a) Fix a baseline family of measured covariates (J , K). As established in
Lemma D.1, the marginal value of effort in the baseline is

MVJ ,K = E

[
∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK

] ∣∣∣∣ aJ , cK

]
,

where Y 0 ≡ θ + ε is the baseline value of the outcome after subtracting out the agent’s
effort.

Now suppose the market additionally observes the additional attribute j′ /∈ J , and
let J ′ ≡ J ∪ {j′}. Under the expanded family of measured covariates, the marginal value
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of effort becomes

MVJ ′,K = E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, aJ ′ , cK

] ∣∣∣∣ aJ ′ , cK

]
.

Note that conditional on (aJ , cK ), MVJ ′,K is a random variable whose value is a func-
tion of the realization of aj′ .

Because f j
′

is a one-to-one mapping, conditioning on the value of aj′ is equivalent
to conditioning on the value of θj′ = f j

′
(aj′ ). So, we may equivalently write the agent’s

marginal value of effort under the expanded set of covariates as

MVJ ′,K = E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, θj′ , aJ , cK

] ∣∣∣∣ θj′ , aJ , cK

]
.

Lemma D.2. (ηJ , θj′ , Y 0 ) are affiliated conditional on (aJ , cK ).

Proof. Fix a set of realizations of (aJ , cK ), and condition all distributions on their val-
ues. To economize on notation, explicit conditioning on these covariates will be sup-
pressed. Let ρη,θ,Y (u, t, y ) be the joint density of (ηJ , θj′ , Y 0 ). We will show that ρη,θ,Y

is log-supermodular.28

Let ρθ(t ) be the density of θj′ , ρη|θ(u | t ) be the conditional density of ηJ | θj′ , and
ρY |η(y | u) be the conditional density of Y 0 | ηJ . Note that conditional on ηJ , Y 0 is
independent of θj′ , and so

ρη,θ,Y (u, t, y ) = ρθ(t )ρη|θ(u | t )ρY |η(y | u).

It is therefore sufficient to show that ρY |η and ρη|θ are log-supermodular.
First, consider ρY |η. Define

μ(J ,K) ≡
∑
j∈J

θj +
∑
k∈K

εk +ηJ .

Then Y 0 may be decomposed as

Y 0 = μ(J ,K) +ηJ + δK,

where μ(J ,K) is a constant. Let ρδ(z) be the density of δK. Then

ρY |η(y | u) = ρδ(y −μ(J ,K) − u).

Under Assumption 1, ρδ is log-concave, meaning ρY |η is log-supermodular.
As for ρη|θ, let ρη′|θ(w | t ) be the conditional density of ηJ ′ | θj′ . As ηJ = θj′ +ηJ ′ , it

follows that

ρη|θ(u | t ) = ρη′|θ(u− t | t ).

28A vector of random variables possessing a joint density function is affiliated if and only if its density
function is log-supermodular, that is, the logarithm of its density function is supermodular. We make
use of the following well-known facts: any product of log-supermodular functions is log-supermodular,
and a twice continuously differentiable, strictly positive function f (x) is log-supermodular if and only if
∂2 log f/∂xixj ≥ 0 for every pair of components i �= j and all x.
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Hence, by the chain rule,

∂2

∂u∂t
logρη|θ(u | t ) =

[
∂2

∂w∂t
logρη′|θ(w | t ) − ∂2

∂w2 logρη′|θ(w | t )

]
w=u−t

.

Under Assumption 1, ρη′|θ is log-concave and so the second term is nonnegative. Mean-
while, J -affiliation of j′ implies that the first term is also nonnegative. Hence,

∂2

∂u∂t
logρη|θ(u | t ) ≥ 0,

establishing the desired log-supermodularity.

The marginal value of effort given observation of attribute j′, MVJ ′,K, can be com-
pared to the marginal value of effort in the baseline, MVJ ,K, as follows. Fix a set of
realizations of (aJ , cK ), and define

Fθ(t | y ) ≡ Pr
(
θj′ ≤ t | Y 0 = y, aJ , cK

)
to be the conditional distribution function of θj′ given the outcome Y 0, and

φ(y, t ) ≡ E
[
ηJ ′ | Y 0 = y, θj′ = t, aJ , cK

]
to be the conditional expectation of ηJ ′ given Y 0 and θj′ .

By the law of total probability,

E
[
ηJ | Y 0 = y, aJ , cK

] =
∫

dFθ(t | y )
(
t +φ(y, t )

)
,

and so the change in the conditional expectation of the unobserved ηJ as Y 0 moves
from y to y ′ > y is

E
[
ηJ | Y 0 = y ′, aJ , cK

] −E
[
ηJ | Y 0 = y, aJ , cK

]
=

∫
dFθ

(
t | y ′)(t +φ

(
y ′, t

)) −
∫

dFθ(t | y )
(
t +φ(y, t )

)
. (D.1)

This difference can be signed using Lemma D.2: Since (ηJ , θj′ ) are affiliated condi-
tional on Y 0, the expression t +φ(y, t ) is nondecreasing in t. And since (θj′ , Y 0 ) are af-
filiated, the expectation E[π(θj′ ) | Y 0, aJ , cK] is nondecreasing in Y 0 for any increasing
function π. Thus, ∫

dFθ
(
t | y ′)(t +φ(y, t )

)
is nondecreasing in y ′, and so the expression in (D.1) can be bounded below by∫

dFθ(t | y )
(
φ

(
y ′, t

) −φ(y, t )
)
.
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It follows that

∂

∂y
E

[
ηJ | Y 0 = y, aJ , cK

] ≥
∫

dFθ(t | y )
∂φ

∂y
(y, t ).

The lhs is the marginal improvement in the posterior expectation of ηJ when the real-
ization of Y 0 is increased. The rhs is the expected marginal improvement in the poste-
rior expectation of ηJ ′ when it is conditioned on the manipulated realization of Y 0 as
well as the unmanipulated realization of θj′ .

To complete the proof, rewrite this inequality as

∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK

] ≥ E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, θj′ , aJ , cK

] ∣∣∣∣ Y 0, aJ , cK

]
.

Taking the expectation of each side conditional on (aJ , cK ) yields

MVJ ,K ≥ E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, θj′ , aJ , cK

] ∣∣∣∣ aJ , cK

]
.

By the law of iterated expectations, the rhs may be expanded as

E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, θj′ , aJ , cK

] ∣∣∣∣ aJ , cK

]
= E

[
E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, θj′ , aJ , cK

] ∣∣∣∣ θj′ , aJ , cK

] ∣∣∣∣ aJ , cK

]
= E[MVJ ′,K | aJ , cK].

Therefore,

MVJ ,K ≥ E[MVJ ′,K | aJ , cK].

This inequality holds for every realization of (aJ , cK ). Thus, the marginal value of effort
in every (J , K)-subpopulation is weakly larger than the expected marginal value once
attribute j′ is additionally measured, as desired.

D.2.2 Part (b) Suppose that the market observes the additional circumstance k′ /∈ K.
Let K′ ≡ K∪ {k′}. Under the expanded family of measured covariates, the marginal value
of effort becomes

MVJ ,K′ = E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, aJ , cK′

] ∣∣∣∣ aJ , cK′
]

.

Because gk
′

is a one-to-one-mapping, conditioning on ck′ is equivalent to conditioning
on εk′ = gk

′
(ck′ ). We may therefore equivalently write the agent’s marginal value of effort

under the expanded set of covariates as

MVJ ,K′ = E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, εk′ , aJ , cK

] ∣∣∣∣ εk′ , aJ , cK

]
.

Lemma D.3. (εk′ , δK, Y 0 ) are affiliated conditional on (aJ , cK ).
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Proof. This is established along very similar lines to the proof of Lemma D.2. Fix re-
alizations of (aJ , cK ), condition all distributions on their values, and suppress explicit
conditioning. Let ρη(u) be the density of ηJ and ρδ′|ε(x | z) be the conditional density of
δ−K′ | εk′ . The conditions required for the steps of the proof of Lemma D.2 to go through
are that ρη(u) is log-concave, ρδ′|ε(x | z) is log-concave in x for all z, and (δK′ , εk′ ) are
affiliated. The first two properties follow from Assumption B.1, while the final property
holds by K-affiliation of circumstance k′.

We compare MVJ ,K′ with MVJ ,K in a manner very similar to the case of an addi-
tional attribute. Fix realizations of (aJ , cK ), and define

Fε(z | y ) ≡ Pr
(
εk′ ≤ z | Y 0 = y, aJ , cK

)
to be the conditional CDF of εk′ given the outcome Y 0. Decompose Y 0 as

Y 0 = μ(J ,K) +ηJ + δK.

Taking expectations of each side conditional on (Y 0, εk′ , aJ , cK ) yields

Y 0 = μ(J ,K) +E
[
ηJ | Y 0, εk′ , aJ , cK

] +E
[
δK | Y 0, εk′ , aJ , cK

]
.

Hence, ∫
dFε(z | y )E

[
ηJ | Y 0 = y, εk′ = z, aJ , cK

]
= y −μ(J ,K) −

∫
dFε(z | y )E

[
δK | Y 0 = y, εk′ = z, aJ , cK

]
. (D.2)

Lemma D.3 directly implies that∫
dFε(z | y )E

[
δK | Y 0 = y, εk′ = z, aJ , cK

]
is weakly increasing in y, so (D.2) is weakly decreasing in y.

Following the same logic as in the attributes case, monotonicity of (D.2) implies that

∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK

] ≤ E

[
∂

∂Y 0 E
[
ηJ | Y 0, εk′ , aJ , cK

] ∣∣∣∣ Y 0, aJ , cK

]
,

and it follows that

MVJ ,K ≤ E[MVJ ,K′ | aJ , cK].

Thus, the marginal value of effort in each subpopulation in the baseline is weakly lower
than the expected marginal value of effort when the circumstance k′ is additionally mea-
sured.

D.3 Proofs of Theorems 2 and B.2

We prove Theorem B.2, from which Theorem 2 follows immediately as a corollary.
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D.3.1 Part (a) Fix a baseline family of measured covariates (J , K). As established in
Lemma D.1, the marginal value of effort is

MV (J , K) = E

[
∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK

] ∣∣∣∣ aJ , cK

]
,

where Y 0 ≡ θ + ε is the baseline value of the outcome after subtracting out the agent’s
effort.

Now suppose the market additionally observes the attribute j′ /∈ J , and let J ′ ≡ J ∪
{j′}. Under the expanded family of measured covariates, the marginal value of effort
becomes

MVJ ′,K = E

[
∂

∂Y 0 E
[
ηJ ′ | Y 0, aJ ′ , cK

] ∣∣∣∣ aJ ′ , cK

]
,

where, conditional on (aJ , cK ), MVJ ′,K is a random variable whose value is a function
of the realization of aj′ .

The outcome Y 0 may be decomposed as

Y 0 = μ(J ,K) +ηJ + δK, (D.3)

where

μ(J ,K) ≡
∑
j∈J

θj +
∑
k∈K

εk

is constant conditional on (aJ ′ , cK ). The residual type component ηJ may be further
decomposed as

ηJ = η̄J |j′ +�ηJ ′ ,

where

η̄J |j′ ≡ E[ηJ | aJ ′ ], �ηJ ′ ≡ θ−E[θ | aJ ′ ].

We may therefore rewrite (D.3) as

Y 0 = μ(J ,K) + η̄J |j′ +�ηJ ′ + δK.

Now, note that

ηJ ′ −E[ηJ ′ | aJ ′ ] =
∑
j∈J ′

θj′ +ηJ ′ −E

[∑
j∈J ′

θj′ +ηJ ′ | aJ ′
]

= �ηJ ′ .

Hence, J -strong homoskedasticity of attribute j′ is equivalent to the assumption that
�ηJ ′ is independent of aj′ conditional on (aJ , cK ). Therefore, under J -strong ho-
moskedasticity, Y 0 depends on aj′ only through η̄J |j′ . It follows that under J -strong
homoskedasticity, E[�ηJ ′ | Y 0, aJ ′ , cK] = E[�ηJ ′ | Y 0, η̄J |j′ , aJ , cK], and the latter ex-
pectation depends on aj′ only through η̄J |j′ .

Using this fact, we may write

E
[
ηJ ′ | Y 0, aJ ′ , cK

] = η̄J |j′ +E
[
�ηJ ′ | Y 0, η̄J |j′ , aJ , cK

]
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and

MVJ ′,K = E

[
∂

∂Y 0 E
[
�ηJ ′ | Y 0, η̄J |j′ , aJ , cK

] ∣∣∣∣ η̄J |j′ , aJ , cK

]
.

The theorem holds if can we show that the conditional expectation of �ηJ ′ is less
responsive to the realization of the outcome Y than the conditional expectation of the
original residual ηJ . Note that ηJ is the sum of the (conditionally) independent vari-
ables η̄J |j′ and �ηJ ′ , so uncertainty about �ηJ ′ is mechanically lower than uncertainty
about ηJ . But this does not directly translate into a statement that the posterior ex-
pectation of �ηJ ′ is less sensitive to the realization of Y . In general, we are not even
guaranteed that higher realizations of Y lead to higher inferences about �θJ once we
have conditioned on the realization of η̄J |j′ .29 We next prove a key technical lemma,
which will imply an analogue of admissibility for our transformed environment.

Lemma D.4. (ηJ , η̄J |j′ , Y 0 ) are affiliated conditional on (aJ , cK ).

Proof. Fix a set of realizations of (aJ , cK ), and condition all distributions on these
values. To economize on notation, we suppress explicit conditioning on these co-
variates throughout this proof. Let ρ̃η,θ,Y (u, t, y ) be the conditional joint density of
(ηJ , η̄J |j′ , Y 0 ). We will show that ρ̃η,θ,Y is log-supermodular.

Use ρ̃θ(t ) to denote the density of η̄J |j′ , ρ̃η|θ(u | t ) to denote the conditional density
of ηJ | η̄J |j′ , and ρ̃Y |η(y | u) to denote the conditional density of Y 0 | ηJ . Note that Y 0

is independent of η̄J |j′ conditional on ηJ . So, ρ̃η,θ,Y may be decomposed as

ρ̃η,θ,Y (u, t, y ) = ρ̃θ(t )ρ̃η|θ(u | t )ρ̃Y |η(y | u).

It is therefore sufficient to show that ρ̃Y |η and ρ̃η|θ are log-supermodular.
First, consider ρ̃Y |η. Decompose Y 0 as

Y 0 = μ(J ,K) +ηJ + δK.

Let ρδ(z) be the density of δK. Then

ρ̃Y |η(y | u) = ρδ(y −μ(J ,K) − u).

Under Assumption B.1, ρδ is log-concave, meaning ρ̃Y |η is log-supermodular.
As for ρ̃η|θ, let ρ̃η′(w) be the density of �ηJ ′ . Decompose ηJ as

ηJ = η̄J |j′ +�ηJ ′ ,

and recall that if j′ is J -strongly homoskedastic, then �ηJ ′ is independent of aj′ and
hence η̄J |j′ . It follows that

ρ̃η|θ(u | t ) = ρ̃η′(u− t ),

29Recall that our admissibility assumptions are imposed on the original type component θj′ , and not on
the constructed η̄J |j′ .
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and hence,

∂2

∂u∂t
log ρ̃η|θ(u | t ) = − ∂2

∂w2 log ρ̃η′(w)

∣∣∣∣
w=u−t

= − ∂2

∂u2 log ρ̃η|θ(u | t ).

Now, let ρη|a(u | α) denote the conditional density of ηJ | aj′ . Define

ζ(α) ≡ f j
′
(α) +E[ηJ ′ | aj′ = α],

so that

ηJ = ζ(aj′ ) +�ηJ ′ .

Strong homoskedasticity implies that

ρη|a(u | α) = ρ̃η′
(
u− ζ(α)

) = ρ̃η|θ
(
u | ζ(α)

)
.

Let �̃ ≡ {t : ζ(α) = t for some α ∈ Aj′ } denote the support of η̄J |j′ . Fix any t ∈ �̃. Then
for all u and every α ∈Aj′ such that ζ(α) = t,

∂2

∂u2 log ρ̃η|θ(u | t ) = ∂2

∂u2 logρη|a(u | α).

Let ρη′|a denote the conditional density of ηJ ′ | aj′ . Then ρη|a(u | α) = ρη′|a(u − f j
′
(α) |

α), so that

∂2

∂u2 log ρ̃η|θ(u | t ) = ∂2

∂w2 logρη′|a(w | α)

∣∣∣∣
w=u−f j

′ (α)
.

Under Assumption B.1, ρη′|a is log-concave and this final derivative is nonpositive,
meaning

∂2

∂u∂t
log ρ̃η|θ(u | t ) = − ∂2

∂u2 log ρ̃η|θ(u | t ) ≥ 0

for every u and t ∈ �̃. Hence, ρ̃η|θ is log-supermodular, as desired.

Following arguments identical to those used for the proof of Theorem B.1 (with �ηJ ′
and η̄J |j′ playing the roles of ηJ ′ and θj′ , respectively), Lemma D.4 implies

MVJ ,K ≥ E[MVJ ′,K | aJ , cK].

Thus, the marginal value of effort in each subpopulation in the baseline setting is weakly
higher than the expected marginal value once attribute j′ is additionally measured, for
any realizations of (aJ , cK ).

To complete the proof, we must establish that monotonicity holds uniformly across
realizations of aj′ , and not just on average. This follows immediately from the fact that
MVJ ′,K is independent of aj′ conditional on (aJ , cK ). To see this, decompose Y as

Y = e+μ(J ,K) + η̄J |j′ +�ηJ ′ + δK.
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Strong homoskedasticity implies that �ηJ ′ is independent of aj′ conditional on (aJ ,
cK ). Hence, aj′ enters the market’s inference problem only via a known additive shift
η̄J |j′ to the agent’s type distribution and, its value therefore does not impact incentives
for effort. So, these incentives must be independent of aj′ , as claimed.

D.3.2 Part (b) Suppose the market observes the additional circumstance k′ /∈ K. Let
K′ ≡ K ∪ {k′}. Under the expanded family of measured covariates, the marginal value of
effort is

MVJ ,K′ = E

[
∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK′

] ∣∣∣∣ aJ , cK′
]

.

Define

δ̄K,k′ ≡ E[δK | cK′ ], �δK′ ≡ ε−E[ε | cK′ ].

Then Y 0 may be decomposed as

Y 0 = μ(J ,K) +ηJ + δ̄K,k′ +�δK′ .

Under strong homoskedasticity, �δK′ is independent of ck′ conditional on (aJ , cK ), and
so the distribution of Y 0 depends on ck′ only through δ̄K,k′ . Thus,

E
[
ηJ | Y 0, aJ , cK′

] = E
[
ηJ | Y 0, δ̄K,k′ , aJ , cK

]
,

and the latter random variable depends on ck′ only through δ̄K,k′ . Therefore, in a man-
ner analogous to the attribute case, the marginal value of effort after measuring j′ de-
pends on ck′ only through δ̄K,k′ and may be written

MVJ ,K′ = E

[
∂

∂Y 0 E
[
ηJ | Y 0, δ̄K,k′ , aJ , cK

] ∣∣∣∣ δ̄K,k′ , aJ , cK

]
.

Lemma D.5. (δ̄K,k′ , δK, Y 0 ) are affiliated conditional on (aJ , cK ).

Proof. This proof follows along very similar lines to the proof of Lemma D.4. Fix
realizations of (aJ , cK ), condition all distributions on their values, and suppress ex-
plicit conditioning on these covariates. Let ρη(u) be the conditional density of ηJ and
ρδ′|c(x | z) be the conditional density of δK′ | ck′ . The conditions required for the steps
of the proof of Lemma D.4 to go through are that ρη(u) is log-concave, ρδ′|c(x | z) is
log-concave in x for all z, and �δK′ is independent of δ̄K|k′ . The first two properties are
ensured by Assumption B.1, while the final property holds under strong homoskedastic-
ity.

We compare MVJ ,K′ and MVJ ,K in a manner very similar to the attribute case. Fix
realizations of (aJ , cK ). Define

F̃ε(z | y ) ≡ Pr
(
δ̄K,k′ ≤ z | Y 0 = y, aJ , cK

)
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to be the distribution function of δ̄K,k′ conditional on the outcome Y 0. Decompose Y 0

as

Y 0 = μ(J ,K) +ηJ + δK.

Taking expectations of each side conditional on (Y 0, δ̄K,k′ , aJ , cK ) yield

Y 0 = μ(J ,K) +E
[
ηJ | Y 0, δ̄K,k′ , aJ , cK

] +E
[
δK | Y 0, δ̄K,k′ , aJ , cK

]
.

Hence, ∫
dF̃ε

(
z | y ′)

E
[
ηJ | Y 0 = y, δ̄K,k′ = z, aJ , cK

]
= y −μ(J ,K) −

∫
dF̃ε

(
z | y ′)

E
[
δK | Y 0 = y, δ̄K,k′ = z, aJ , cK

]
. (D.4)

Lemma D.5 directly implies that∫
dF̃ε(z | y )E

[
δK | Y 0 = y, δ̄K,k′ = z, aJ , cK

]
is nondecreasing in y, so (D.4) is nonincreasing in y.

Following the same logic as in the attributes case, monotonicity of (D.4) implies that

∂

∂Y 0 E
[
ηJ | Y 0, aJ , cK

] ≤ E

[
∂

∂Y 0 E
[
ηJ | Y 0, δ̄K,k′ , aJ , cK

] ∣∣∣∣ Y 0, aJ , cK

]
,

and it follows that

MVJ ,K ≤ E[MVJ ,K′ | aJ , cK].

Thus, the marginal value of effort in each subpopulation in the baseline is weakly lower
than the expected marginal value of effort when the circumstance k′ is additionally mea-
sured.

The final step in the proof is to establish that monotonicity holds uniformly across
realizations of the additional circumstance, and not just on average. This follows from
arguments nearly identical to those used for the attributes case.

D.4 Proof of Theorem 3

Define δ≡ β/(1 −β). Then given any set of measured covariates, equilibrium effort can
be written as e∗

J ,K = δ ·MVJ ,K. We will characterize the aggregate welfare change from
measuring a new covariate as a function of δ, which can be mapped onto an equivalent
characterization in terms of β.

Consider first the case in which the market observes the new attribute j′. Let J ′ ≡
J ∪ {j′}. The aggregate change in welfare from measuring j′, as a function of δ, is

�W (δ) = E
[
w0(δ ·MVJ ′,K ) −w0(δ ·MVJ ,K )

]
,
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where

w0(e) ≡ e− 1
2
e2.

The aggregate change in welfare is a quadratic function of δ, whose first derivative is

d

dδ
�W (δ) = E[MVJ ′,K −MVJ ,K] − δ ·E[

MV 2
J ′,K −MV 2

J ,K
]
.

Observe that W (0) = 0 and

d

dδ
�W (δ)|δ=0 = E[MVJ ′,K −MVJ ,K

]
≤ 0

with the inequality implied by regularity of j′. So, �W (δ) is a quadratic function that
vanishes at δ = 0 and is nonincreasing there. Suppose first that j′ is strictly regular, so
that �W is strictly decreasing at 0. Then its shape must then satisfy either of:

• �W (δ) is strictly convex and intersects zero exactly once for δ > 0,

• �W (δ) is weakly concave and does not intersect zero for any δ > 0.

Define δ∗ ≡ inf{δ > 0 : �W (δ) ≥ 0}. This threshold lies in (0, ∞), and has the property
that �W (δ) > 0 for δ > δ∗, and �W (δ) ≤ 0 for δ ∈ (0, δ∗]. Further, δ∗ < ∞ if and only if
�W is strictly convex. Convexity is determined by the sign of

d2

dδ2�W (δ) = E
[
MV 2

J ,K −MV 2
J ′,K

]
.

Hence, δ∗ < ∞ if and only if E[MV 2
J ,K] > E[MV 2

J ′,K]. Letting β∗ ≡ δ∗/(1 + δ∗ ) therefore
yields a reputation weight threshold with the desired properties.

Suppose instead that j′ is weakly but not strictly regular. Write

E
[
MV 2

J ′,K | aJ , cK
]

= E
[(
MVJ ′,K −E[MVJ ′,K | aJ , cK]

)2 | aJ , cK
] +E[MVJ ′,K | aJ , cK]2

= Var(MVJ ′,K | aJ , cK ) +E[MVJ ′,K | aJ , cK]2.

Hence,

E
[
MV 2

J ′,K | aJ , cK
] −MV 2

J ,K

= E[MVJ ′,K | aJ , cK]2 −MV 2
J ,K +Var(MVJ ′,K | aJ , cK ).

Weak but not strict regularity implies that MVJ ,K = E[MVJ ′,K | aJ , cK] with probability
1, so that

E
[
MV 2

J ′,K | aJ , cK
] −MV 2

J ,K = Var(MVJ ′,K | aJ , cK ) ≥ 0

with probability 1. Therefore, �W is at least weakly concave. Weak but not strict
regularity additionally implies that �W has zero slope at δ = 0. Hence, in this case
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�W (δ) ≤ 0 for all δ > 0, and we set δ∗ = ∞ and β∗ = ∞. We may summarize the work
for the strictly and weakly regular cases with the conclusion that β∗ < ∞ if and only if
E[MV 2

J ,K] > E[MV 2
J ′,K]. Indeed, in the strictly regular case, this equivalence was di-

rectly established, while in the weakly regular case, it is true both that β∗ = ∞ and that
the latter inequality cannot hold.

Now suppose the market observes the new circumstance k′. Calculations very simi-
lar to those for the attribute case show that �W is a quadratic function of δ which van-
ishes at δ= 0 and is weakly increasing there, and strictly increasing if k′ is strictly regular.
It is concave if and only if E[MV 2

J ,K′ ] ≥ [MV 2
J ,K], with the concavity strict if and only if

the inequality is.
If k′ is only weakly regular, then the calculations for the attribute case show that

E[MV 2
J ,K′ ] ≥ E[MV 2

J ,K], meaning that �W must be at least weakly concave, in which

case �W (δ) ≤ 0 for all δ > 0. In this case, we set δ∗ = 0 and β∗ = δ∗/(1 + δ∗ ) = 0.
Going forward, suppose that k′ is strictly regular. Defining δ∗ ≡ inf{δ > 0 : �W (δ) ≤

0} yields a threshold in (0, ∞] with the property that �W (δ) < 0 for all δ > δ∗ and
�W (δ) > 0 for all δ ∈ (0, δ∗ ). This threshold is finite if and only if �W is a strictly concave
function. Calculations very similar to the attribute case imply that

E
[
MV 2

J ,K′ | aJ , cK
] −MV 2

J ,K

= E[MVJ ,K′ | aJ , cK]2 −MV 2
J ,K +Var(MVJ ,K′ | aJ , cK ).

Strict regularity implies that the difference between the first two terms on the rhs is non-
negative for every realization of (aJ , cK ), and positive with positive probability. Further,
the conditional variance of MVJ ,K′ must be nonnegative. Therefore,

E
[
MV 2

J ,K′ | aJ , cK
] ≥MV 2

J ,K,

with the inequality strict with positive probability. Taking the unconditional expectation
of both sides yields the desired strict concavity of �W , implying δ∗ < ∞. Letting β∗ ≡
δ∗/(1 + δ∗ ) yields a reputation weight with the desired properties.

D.5 Proof of Proposition 1

We prove the first part of the result, with the second following from nearly identical ar-
guments. To streamline notation, throughout this proof we will drop superscripts on Y 0

and Ȳ 0.
Under Assumption 3, conditioning on the value of X is equivalent to conditioning

on the value of Ȳ . The desired result can therefore be established using a technique
very similar to the one employed in the proof of Theorem B.1(a) subsequent to Lemma
D.2, with Ȳ playing the role of θj′ . That argument requires two conditions: (A) (Ȳ , Y )
are statistically affiliated, and (B) (Ȳ , θ) are statistically affiliated conditional on Y . We
maintain condition A by hypothesis, so it remains only to establish condition B.

Let ρY |Ȳ ,θ(y | y ′, t ) be the conditional density of Y given (Ȳ , θ), ρȲ ,θ be the joint

density of (Ȳ , θ), and ρY be the marginal density of Y . Then by Bayes’ rule,

ρȲ ,θ|Y
(
y ′, t | y) = ρY |Ȳ ,θ

(
y | y ′, t

)
ρȲ ,θ

(
y ′, t

)
ρY (y )

.
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Because (Ȳ , θ) are affiliated, the density ρȲ ,θ is log-supermodular. To establish condi-
tion B, it is therefore sufficient to show that ρY |Ȳ ,θ(y | y ′, t ) is log-supermodular in (y ′, t ),
holding y fixed.

Let ρε|Ȳ ,θ(e | y ′, t ) and ρε|Ȳ (e | y ′ ) be the conditional densities of ε given (Ȳ , θ) and

Ȳ , respectively. Given the conditional independence of θ and ε given X and the invert-
ibility of E(Ȳ | X ), it follows that θ and ε are independent conditional on Ȳ . Therefore,

ρε|Ȳ ,θ

(
e | y ′, t

) = ρε|Ȳ
(
e | y ′)

for all t, allowing us to write

ρY |Ȳ ,θ

(
y | y ′, t

) = ρε|Ȳ ,θ

(
y − t | y ′, t

) = ρε|Ȳ
(
y − t | y ′).

Let ρε,Ȳ (e, y ′ ) be the joint density of (ε, Ȳ ) and ρȲ (y ′ ) be the marginal density of Ȳ .
Then using Bayes’ rule, we have

ρY |Ȳ ,θ

(
y | y ′, t

) = ρε,Ȳ

(
y − t, y ′)

ρȲ
(
y ′) .

Condition B therefore follows if ρε,Ȳ is log-submodular. Equivalently, ρ−ε,Ȳ must be log-
supermodular, where ρ−ε,Ȳ is the joint density of (−ε, Ȳ ). This condition is equivalent
to affiliation of (−ε, Ȳ ), as hypothesized.

D.6 Proof of Lemma 1

In a multivariate Gaussian environment, the conditional mean of output is

Ȳ 0 = μ+ (b+ d)X ,

satisfying Assumption 3 whenever b + d �= 0. Since (X , Z, W ) are jointly Gaussian and
Ȳ 0 and Y 0 are each linear combinations of (X , Z, W ), the pair (Ȳ 0, Y 0 ) are also jointly
Gaussian. Additionally,

Y 0 = Ȳ 0 +Z +W ,

and since Ȳ 0 is independent of Z + W it follows that Y 0 and Ȳ 0 are positively corre-
lated. Therefore, (Ȳ 0, Y 0 ) are affiliated, satisfying Assumption 4. Moreover, conditional
expectations in multivariate Gaussian environments are linear in the conditioning vari-
able, ensuring that Assumption 5 is satisfied. Finally, mutual independence of X , Z, and
W implies that (θ, ε) are independent conditional on X , satisfying Assumption 6.

D.7 Proof of Proposition 2

Prior to the measurement, (θ, Y 0 ) have joint distribution(
θ

Y 0

)
∼N

((
μ

μ

)
,

(
σ2
θ σθ,Y

σθ,Y σ2
Y

))
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where

σ2
θ = b2σ2

x + σ2
z , σθ,Y = b(b+ d)σ2

x + σ2
z , σ2

Y = (b+ d)2σ2
x + σ2

z + σ2
w.

The market’s type forecast given equilibrium effort e∗ is therefore

E
e∗

(θ | Y ) = E
(
θ | Y 0 = Y − e∗) = μ+ σθ,Y

σ2
Y

· (Y −μ− e∗),

implying that the baseline marginal value of effort is

MV = σθ,Y

σ2
Y

= b(b+ d)σ2
x + σ2

z

(b+ d)2σ2
x + σ2

z + σ2
w

.

Meanwhile, after measuring X , the conditional joint distribution of (θ, Y 0 ) is(
θ

Y 0

)∣∣∣∣∣X ∼ N
((

μ+ bX

μ+ (b+ d)X

)
,

(
σ2
z σ2

z

σ2
z σ2

z + σ2
w

))
.

Given equilibrium effort e∗∗, the market’s posterior type forecast after measuring X is

E
e∗∗

(θ | X , Y ) = E
(
θ | X , Y 0 = Y − e∗∗) = μ+ bX + σ2

z

σ2
z + σ2

w

(
Y − e∗∗ −μ− (b+ d)X

)
.

The agent’s marginal value of effort under the expanded data set is therefore

MV+ = σ2
z

σ2
z + σ2

w

.

Comparing the expressions for MV and MV+ just derived yields the identity in the
proposition statement.
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