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Robotic search often involves teleoperating vehicles into unknown environments. In such scenarios, prior
knowledge of target location or environmental map may be a viable resource to tap into and control other
autonomous robots in the vicinity towards an improved search performance. In this paper, we test the
hypothesis that despite having the same skill, prior knowledge of target or environment affects teleoperator
actions, and such knowledge can therefore be inferred through robot movement. To investigate whether prior
knowledge can improve human-robot team performance, we next evaluate an adaptive mutual-information
blending strategy that admits a time-dependent weighting for steering autonomous robots. Human-subject
experiments show that several features including distance travelled by the teleoperated robot, time spent
staying still, speed, and turn rate, all depend on the level of prior knowledge and that absence of prior
knowledge increased workload. Building on these results, we identified distance travelled and time spent
staying still as movement cues that can be used to robustly infer prior knowledge. Simulations where an
autonomous robot accompanied a human teleoperated robot revealed that whereas time to find the target
was similar across all information-based search strategies, adaptive strategies that acted on movement cues
found the target sooner more often than a single human teleoperator compared to non-adaptive strategies.
This gain is diluted with number of robots, likely due to the limited size of the search environment. Results
from this work set the stage for developing knowledge-aware control algorithms for autonomous robots in
collaborative human-robot teams.

CCS Concepts: • Human-centered computing → HCI theory, concepts and models; Empirical studies
in HCI; • Computer systems organization → Robotics.
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1 INTRODUCTION
Knowledge about a situation plays an important role in how we respond and learn from it [30], [59].
Indeed, when making decisions under time constraint, humans are expected to possess and utilize
prior knowledge towards an optimal solution [56]. Examples of tasks that involve critical decision
making in the real world include search and rescue, where prior knowledge about missing person
behavior or terrain [61] may lead to quicker times to find [2], medical surgery where knowledge
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about system capabilities can aid surgical tasks that require precision [58, 67], and satellite control
where knowledge about contact dynamics between two satellites may help in maintaining pose
stability during servicing and rendezvous [14, 45].
Determining how that prior knowledge affects human actions can play an integral role in

building efficient human-robot interaction (HRI) systems, where robots must respond intelligently
to human behavior. Inferring human prior knowledge indirectly through actions can advance
control blending strategies in HRI systems [10, 22] and enable new control sharing architectures
for large collaborative systems [4, 16]. For example, in the case of multi robot systems where a
human may operate one of many robots [38, 42], the ability to detect, infer, and act on human
prior knowledge provides a meaningful way to make other autonomous robots respond to human
actions directly in the field [35, 66]. However, communicating prior knowledge directly to robots
(for example, by responding to survey questions [7]) poses additional burden on the human and
makes an unreasonable assumption that prior knowledge remains constant over the course of the
mission. In this context, inferring prior knowledge directly from the motion of the teleoperated
robot can enable new human-aware swarm control strategies in the field [32, 40].
Prior knowledge may not necessarily translate to skill [3, 47]. For example, a skillful drone

operator may still methodically explore a new environment looking for a missing person. Accord-
ingly, their search strategy would be different compared to someone who knows the region or
high-probability target locations. Indeed, it is possible that existence of prior knowledge could lead
to differences in intent and therefore actions during a search operation. The underlying hypothesis
of this paper is that different search strategies translate to different actions and therefore movement
of the teleoperated robot on the field. Furthermore, we expect that such differences in movement
can provide the means to inform the actions of other autonomous robots towards a more effective
human-robot team.
Inferring skill from actions is not new. Studies in driver modeling, aircraft piloting, and teler-

obotics have shown that skill and intent can be inferred from observing the trajectories of the
vehicle or robotic manipulator [11, 54, 64, 65]. Compared to using physiological data [33], estimating
human knowledge from robot movement has the potential for tighter integration of autonomous
inputs with human commands in the field, and fewer concerns for privacy. With respect to teleop-
eration for example, it has been shown that teleoperators perform differently depending on skill in
operating the robot. Experiments within a variety of environments and setups [23, 27, 34, 55, 69]
have shown that tasks such as obstacle avoidance, navigation, and control depend on the experience
with the system at hand, camera placement, and presence of haptic feedback. To the best of our
knowledge, whether similar differences in teleoperation exist with respect to prior knowledge of
the mission have not been explored.
With respect to search by teleoperating a mobile robot, prior knowledge may be related to

environmental map and target location. This is similar to search scenarios where searchers are
either aware of the target’s (missing person or animal) behavior, and therefore likely regions to
look for, or the local terrain [13, 41], or both. In addition to mission performance, we expect that
prior knowledge can also affect teleoperation actions and in turn robot movement on the field. If
inferred reliably, the estimated prior knowledge can then be used to drive control actions of other
autonomous robots in the field.
Accordingly, in this paper, we address the following questions: (i) does prior knowledge affect

teleoperated robot movement during a search scenario? (ii) what robot movement cues can be
extracted from limited observation to infer prior knowledge reliably? and (iii) whether such prior
knowledge inference can be used to weight information-based objectives in shared control of
autonomous robots assisting in search within a human-robot team?
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We address the first question by performing laboratory experiments where participants are
asked to search for a missing target as information about target location and environment is varied.
In addition to tracking robot movement we survey participant workload and their reactions to
possible inaccuracies in prior knowledge. Prior knowledge is inferred by analyzing features of robot
movement that are found to be statistically different between conditions. In particular, we optimize
for trajectory length that provides the maximum difference, in terms of Wasserstein distance,
between probability distributions of select features conditioned on prior knowledge. These features
are then used in a simulation study of human-robot teams where the autonomous robots observe
and adaptively assist the teleoperated robot moving per experimental trajectories in searching
for the missing target. In particular, we expand an information-based control strategy that blends
two mutual information objectives for determining the control actions of autonomous robots. This
involves an adaptive strategy that performs real-time weighting of objectives for autonomous
robots competing between assisting the teleoperator or searching independently. Performance of
this approach is measured in terms of the average time to find the target, fraction of trials in which
the human-robot team is able to find the target sooner than the teleoperated robot only, and the
average time gained in those trials where the team found the target earlier than a single teleoperated
robot. We simulate the adaptive search strategy informed by three different sets of movement
cues with two- and three-member human-robot teams. Their performance is compared with three
non-adaptive strategies where autonomous robots: (i) move randomly in the environment, (ii)
search independently and (iii) only assist the human teleoperated robot.

Our experimental results show that prior knowledge affects search behavior and robot movement
on the ground. In particular, robot distance moved, time spent staying still (also called freezing
time), speed, and turn rate, all differ significantly based on prior knowledge. Out of these, distance
moved and freezing time calculated for 15- and 30-second segments show largest difference between
probability distributions arising from different types of prior knowledge.When these values are used
in real time to infer prior knowledge and update the weighting of objectives, they register the most
improvement with a one-human one-autonomous robot team in terms of early finding of the target
when the human teleoperator had no knowledge of target location.When the number of autonomous
robots are increased to two, there is no significant gain in performance over independent search,
likely due to additional collision avoidance strategies taking over the navigation in the relatively
small and cluttered search environment.

This paper is organized as follows: Section 2 highlights related work on the role of human skill in
search and rescue, and inferring human intent and strategies for human-robot teaming. In Section 3
we provide the preliminary material on mutual information based control and information blending
strategy for robotic assistance during search. The experiments are presented next in Section 4 with
details on the experimental setup and results comparing average values of features related to robot
movement cues as tracked across different conditions. Section 5 describes the prior knowledge
classification based on movement cues and sets up the adaptive search strategy utilizing such
cues. This is followed by a study built on experimental data that simulates human-robot teams
comprising autonomous and teleoperated robots. We conclude in Section 6 with a discussion of the
main results.

2 RELATEDWORK
The proposed work of inferring prior knowledge and acting on it belongs to the general body of
literature focusing on the role of humans in search and rescue missions, and intent estimation for
human-robot teaming to find missing persons.
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2.1 Role of human skill in search and rescue
In a missing person search, humans are expected to assimilate and utilize complex spatial infor-
mation about maps and missing person behavior in limited time [53]. Within the mission itself,
humans are expected to reliably identify victims [6], and navigate successfully in low-light environ-
ments with stairs. Humans are also expected to be situationally aware of the mission at hand, ask
questions to reduce ambiguity [8], and quickly adapt to changing requirements [51]. Extracting and
quantifying these aspects of human involvement for shared autonomy approaches where robots
and humans work together is an open area of research [9, 39].

2.2 Inferring human intent and strategies towards human-robot teaming in search
Human intent inference plays an integral role in human-robot interaction [25, 43], enabling robot
interaction strategies that can respond to human actions naturally in real time. Intent inference
has been possible by modeling human dynamics as Markov processes [29], Gaussian processes
[65], and neural networks [63]. Many of the underlying models rely on movement or behavioral
cues as observations to predict human actions [62]. Within the search and rescue applications,
human intent or actions are generally measured in terms of where they may search next. For
example, Ognibene et al. [46] has proposed an active intention recognition paradigm that enables
robots to perceive responders’ intentions, thereby enhancing joint exploration strategies. They use
Monte-Carlo Tree Search algorithms in partially observable environments to predict the movements
of human responders and identify critical areas for exploration. In terms of predicting rescuer’s
actions and goals, Guo et al. use transfer learning and attention-based Long-short-term memory
(LSTM) networks in urban search and rescue missions to predict navigation and triage strategies
[19]. Heintzman et al. integrate predictive models of lost person behavior, anticipated human
searcher trajectories, and UAV sensor data using a Gaussian process model to optimize search
paths that significantly lower target location uncertainty compared to lawn mower sweeps [24].
The mutual information based strategy for independent search used in this work is similar to
the approach in [24] in the sense that maximizing mutual information amounts to minimizing
uncertainty. A key distinction however is the use of particle filters which relaxes the Gaussian
assumption on target location making it possible to search within obstacle-ridden environments
that can give rise to multi-modal distributions. Recent modeling efforts also focus on modeling and
inferring human trust in a mobile robot team using dynamic Bayesian networks as they perform
search [15] or area coverage [68] tasks. In [68], measured trust is used to either alter the number of
interventions or increase the coverage area assigned to individual robot.

3 PRELIMINARIES
3.1 Mutual information based control
Information theory provides a meaningful objective for robot search strategies in the form of
mutual information [26, 28]. For example, maximizing information gain, as opposed to reaching
a goal location, provides a task-invariant objective for missions that can differ greatly in terms
of environments and target locations. To understand mutual information, we briefly introduce
information entropy, defined as the amount of uncertainty within a random variable 𝑋 ∈ X and
is calculated as 𝐻 (𝑋 ) = −∑︁

𝑥 𝑝 (𝑋 = 𝑥) log𝑝 (𝑋 = 𝑥). Correspondingly, joint entropy 𝐻 (𝑋,𝑌 ) =
−∑︁

𝑥,𝑦 𝑝 (𝑥,𝑦) log𝑝 (𝑥,𝑦) and conditional entropy is 𝐻 (𝑋 |𝑌 ) = −∑︁
𝑥,𝑦 𝑝 (𝑥,𝑦) log𝑝 (𝑥 |𝑦). Mutual

information quantifies the information shared between two random variables and is defined as
𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ).
In our context, the random variable 𝜽𝑘 ∈ 𝚯 ⊂ R2 represents the unknown target location at

time step 𝑘 , and Z𝑘 ∈ Z represents measurements taken by the robot such as range and bearing.
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Denoting predicted location of the target before the next measurement is taken as 𝜽 −
𝑘
and possible

target measurement as Z−
𝑘
, the mutual information 𝐼 (𝜽 −

𝑘
;Z−

𝑘
) represents the information gained

about the target by taking that measurement [32]. Because the robot has different options in terms
of where to take the next measurement at any time step, maximizing this mutual information
serves as a meaningful, trajectory independent, way to achieve the objective of finding the target.
Specifically, the control input at each time step is determined as [26]

u𝑘 = max
u∈𝑈

𝐼 (𝜽 −
𝑘
;Z−

𝑘
), (1)

where𝑈 is the range of control inputs to choose from. In our case, for example,𝑈 represents the
combination of speed and turn rate for moving a differentially driven ground robot.
Implementing a mutual information based control in an obstacle rich environment involves

calculating non-Gaussian joint probability distributions such as 𝑝 (𝜽 −
𝑘
,Z−

𝑘
) at every time step. A

particle filter, which is a sequential Monte Carlo technique, where the probability density functions
are represented as discrete distributions of instances of state called particles and associated weights,
is best suited for handling nonlinear, non-Gaussian estimation problems [1]. Specifically, denoting
the state X𝑘 ∈ R3, of a robot moving in two dimensions in terms of position (𝑥𝑘 , 𝑦𝑘 ) and orientation
𝜓𝑘 , the probability of X̃𝑘 in a particle filter can be written as 𝑝 (X̃𝑘 ) =

∑︁𝑁𝑝

𝑞=1𝑤𝑞𝛿 (X𝑘,𝑞 − X̃𝑘 ), where
𝑁𝑝 is the number of particles, 𝑤𝑞 is the weight of the 𝑞 − 𝑡ℎ particle and 𝛿 denotes the Dirac
delta function. The weights are updated at each step using a likelihood function, which relates
measurements to state as𝑤𝑘,𝑞 = 𝑝 (Z𝑘 |X𝑘,𝑞), where X𝑘,𝑞 denotes the 𝑞−the particle for the estimate
at time-step 𝑘 .

3.2 Weighted strategy for robot assistance during search
In a search scenario where both human teleoperated and autonomous robots are involved, human
prior knowledges serves as a resource that can be utilized to improve performance. This is explored
in [32] where a weighted strategy is used to control autonomous robots who search along with a
reference robot modeled to represent human search. The reference robot uses (1) to search a target
with some prior knowledge about its location. Simulations are performed as the prior knowledge
accuracy is varied by changing the center of a Gaussian probability distribution representing the
believed target location across multiple scenarios. This work proposes a information blending
strategy where the normalized mutual information with respect to the predicted locations of the
teleoperated robot and the target are blended in varying proportions to see its effect on search
performance. In doing so, this approach assumes that a) the human teleroperator searches in
regions proximal to it and b) searching close to the teleoperated robot is equivalent to maximizing
relevant information content that may be implicitly available to the teleoperator. Furthermore,
maximizing mutual information with respect to teleoperated robot location serves as a proxy to
take a measurement near it.

The information blending approach suggests picking a control input for autonomous robots that
maximizes a weighted normalized mutual information based objective [32]

u𝑘 = max
u∈𝑈

[︂
𝛼ˆ︁𝐼 (𝜽 −

𝑘
;Z𝜽 ,−

𝑘
) + (1 − 𝛼)ˆ︁𝐼 (Xℏ,−

𝑘
;Zℏ,−

𝑘
)
]︂
, (2)

where Z𝜽 ,−
𝑘

denotes the predicted target measurement, Xℏ,−
𝑘

denotes teleoperated robot’s predicted
location, and Zℏ,−

𝑘
denotes the predicted teleoperated robot measurement obtained upon applying

control input u; the quantity ˆ︁𝐼 (𝜽 −
𝑘
;Z𝑖,𝜃,−

𝑘
) = 𝐼 (𝜽 −

𝑘
;Z𝑖,𝜃,−

𝑘
)/𝐻 (Z𝑖,𝜃,−

𝑘
), for example, represents the

mutual information between the predicted target measurement and predicted target location and
measurement normalized with respect to the entropy of the target measurement. This normalization
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ensures that different entropy values of target and teleoperated robot measurements, due to possibly
different dynamics, do not bias the mutual information comparisons; 𝛼 ∈ [0, 1] is the weighting
parameter, where 𝛼 = 1 implies that the autonomous robots will search for the target independent of
the teleoperated robot, and 𝛼 = 0 implies that autonomous robots will search near the teleoperated
robot. This is because with bearing measurements, minimizing the uncertainty with respect to a
position amounts to coming close to it [26]. Note that measurements are obtained only if the target
is within the sensor range and teleoperated robot is within the communication range. Furthermore,
an information blending approach seeks to maximize information through two complementary
sources rather than weigh between two opposing strategies. In other words, one may search
independently near the teleoperated robot.
Because it is derived directly from mutual information, such a strategy provides a natural

abstraction of human robot interaction in multi-robot settings. Realistic simulations in two different
scenarios show that the search performance depends on the weighting parameter 𝛼 , and the
accuracy of prior knowledge of the reference robot. Furthermore, an information-blending strategy
performs better than mixed initiative strategy, where robots switch roles, and similar to linear
blending of control inputs in scenarios where prior knowledge is inaccurate. Unlike the latter,
however, where different control inputs with dissimilar effects are combined, information blending
attempts to combine mutual information gain from different strategies thereby making it more
amenable for linear blending. Building on these results, a natural next question is what would 𝛼
represent in an adaptive strategy? In this work, we argue that 𝛼 can be a measure of prior knowledge
related to the mission. In particular, with 𝛼 as a measure of prior knowledge, the autonomous robot
will be able to effectively weigh between exploration, or searching the environment independently
and exploitation, which here implies contributing to the perceptual range of the teleoperated robot.

4 EXPERIMENTS

Fig. 1. Mosaic image (a) created using all ten overhead camera images of the search environment. Screen
capture (b) of first person view as streamed from the camera on the robot to a participant in the control room,
and the teleoperated robot (c) with an onboard camera. A fiducial marker placed on top of the robot allowed
it to be tracked at all times.

In this section, we describe the experimental study performed to artificially create prior knowl-
edge and study its effect on the movement of the teleoperated robot movement and physical and
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mental workload of the teleoperator. By altering one of the experimental conditions we additionally
investigate the effect of inaccuracy in prior knowledge on robot movement. The human-subject
experiments focus on teleoperating a robot to find a missing target in a 9×18 m room. The experi-
ments are motivated by the following hypotheses: H1: The time to find a missing target depends on
the knowledge of environment and target location; H2: The movement of the teleoperated robot
depends on the participants’ prior knowledge about environment and target location.

4.1 Setup
The experimental setup consisted of a differentially driven ground robot that was teleoperated
in an indoor search environment and tracked using overhead cameras. The ground robot (iRobot
Create 2) had a webcamera (Logitech, C920, 78 degrees horizontal field of view) attached using a
serial connection to a microcomputer (Raspberry Pi 4) shown in Figure 1c. The microcomputer
was powered with a 10000 mAh portable power bank. The indoor search environment was a 9
meter wide and 18 meter long robotics laboratory room situated within the Engineering academic
building. The room consists of six large laboratory workbenches, several chairs, and tables that
serve as obstacles (Figure 1). Ten webcams (Logitech C920) mounted on the ceiling 4 meters high
were used to track the position and orientation of the robot, in real time, with a custom tracking
system (programmed in Python with OpenCV), implemented on a dedicated tracking computer
(Ubuntu Linux 18.04 operating system, 16 GB Memory, 3.4 GHz processor).

(a)

 

(b)

 

This Photo by 

(c)
 

 

This Photo by 

(d)

 

 

This Photo by 

(e)

Fig. 2. Schematic of the search environment (a). The red ‘X’ is the robot location for conditions xMyT, yMxT,
and yMyT. For condition xMxT only, the blue ‘O’ marks one of two robot locations and the green rectangles
denote the boxes placed within the lab. Sample maps provided to the participant during each condition (b-e),
where (b) is for (No Map, No Target), (c) is for (No Map, Yes Target), (d) is for (Yes Map, No Target), and (e) is
for (Yes Map, Yes Target). Whenever applicable, a high-probability region for target location was shown as a
circle with cross-hair.

The robot was teleoperated from a desktop computer (Ubuntu Linux 16.04 operating system, 16
GB Memory, 3.4 GHz processor) that had a wide display monitor (2560 × 1080 pixels resolution)
and was located in a smaller (4 m × 6 m) control room adjacent to, but isolated from, the search
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environment. The display provided a first person view from the camera onboard the robot, along
with a timer placed at the top left corner (Fig. 1b). A WiFi router (ASUS, Nighthawk) placed in
the control room and a receiver (TP-Link, Archer T3U Plus) plugged into the robot was used to
establish a strong wireless connection between the desktop computer and the robot. Further details
on teleoperation and overhead tracking are provided in the supplementary material.

4.2 Design
The experimental conditions were designed to study the effects of prior knowledge of target location
and environmental map on search behavior. In a repeated measures design, we let each participant
find a missing target as their prior knowledge of map and environment was varied. To further
investigate if inaccuracy in prior knowledge of target location played a role in search behavior, one
of the conditions was altered to have the target located in a place different from that indicated on
the map provided prior to the trial. The following experimental conditions were considered (Fig. 2):

xMxT or No Map, No Target, where the participant was provided neither a map of the environment,
nor a target location. The robot was initially placed at one of the corners facing the wall in
the room (B or C in Fig. 2a), with the target placed on one of the corners on the far side of
the environment. To further ensure that the participant did not associate any environmental
features with the layout in subsequent conditions, several 0.3 × 0.75 × 1 m sized boxes were
placed at random locations within the environment.

xMyT or No Map, Yes Target, where the participant was given a map with only the outer boundaries
of the environment, initial robot position and orientation, and target location with a “high
probability”. The target was always placed in the high probability location.

yMxT or YesMap, No Target, where the participantwas given a fully detailedmap of the environment
with the location and orientation of the robot, but the target location was not provided.

yMyT or Yes Map, Yes Target, where the participant was given a fully detailed map of the environ-
ment with the location and orientation of the robot, and a “high probability” target location.
The target location could be accurate (yMyT𝐴) or inaccurate (yMyT𝐼 ) in which case the target
was place in a location different from the high-probability region. yMyT𝐼 was tested for about
half of the participants.

Participants for this study (𝑁 = 30, 5 Females, 22 ± 3.3 years old), were recruited through flyers
posted throughout the campus and through email announcements. Data from one participant had
to be excluded owing to the robot battery getting discharged in the middle of a trial, leaving a total
of N=29 participants. The experiment was approved by the Institutional Review Board at Northern
Illinois University under protocol # HS21-0372. Exclusion criteria included that participants be
above 18 years of age, had not visited the robotics engineering laboratory in the past year, and
had not been part of any training in that room before that for more than six hours. The last two
exclusion criteria ensured that participants were not familiar with the laboratory layout and could
therefore not possess prior knowledge of the environment.

4.3 Procedure
Prior to arrival, each participant was assigned a random identifier to record all information anony-
mously. Upon arrival, participants were asked to go through the consent form and sign if they wish
to proceed. They were then shown the robot they will be teleoperating, how it will be communicat-
ing with the computer through a microcomputer, and that they will see a first person view from a
webcamera attached on the robot. They were also shown the fiducial marker on top of the robot
which will assist in tracking their movements through the environment.
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Next, participants were trained to operate the robot while in the control room. A training time of
2-5 minutes was allocated to each participant during which they were encouraged to maneuver the
robot from within the control room steering it past objects and also leave the room into the hallway
if they desired. A participant was free to end the training at any time after two minutes when they
felt comfortable. The goal of the training phase was to ensure that any changes in robot navigation
observed during the experiment were only because of knowledge of the unknown environment or
target location, and not from operating skill.
Before starting the experiment the participant was shown the target (a stuffed toy) and was

informed that they will have to find that target located in a different room as soon as possible. A
stopwatch was displayed on the left corner of the first person view (Fig. 1b) to keep participants
motivated to find the target as soon as possible. The target was placed in a random location (A,B,C
or D in Fig. 2) for every trial except the first, when the target was only placed on B or C. Once
found, participants were instructed to enter a randomly generated 4-digit numeric code, different
for each trial, on the target to successfully terminate the search. Each participant was asked to find
the target four times, once for each condition, in the order xMxT, xMyT, yMxT, yMyT. We selected
this order, as opposed to counterbalancing conditions, to avoid participants having knowledge of
the map before they were supposed to, such as for example if yMyT were to occur before xMyT. In
each condition, once the target was found, a NASA TLX questionnaire [5] was prompted on the
screen posing questions related to workload related to the task.

After all conditions within the experiment were completed, participants were requested to fill a
post-experiment questionnaire regarding the levels of trust they placed in the experimenter when
told about the high probability target location, prior teleoperating and video gaming experience,
and degree of delay they experienced in operating the robot. The first two questions in the post-
experiment questionnaire were asked to determine the role that trust in experimenter played in
regulating target prior knowledge. In other words, a high trust in the experimenter would ensure
that the participants believed that the target was located where the experimenter told them, and
any change in behavior during the yMyT𝐼 condition would be due to ultimately realizing that the
location pointed out on the map was inaccurate. Finally, participants were compensated $10 for
their time and requested not to share the knowledge of the environment with others.

4.4 Teleoperation viability

Table 1. Comparison of post-experiment questionnaire responses. Question responses were scaled between
1-7, where for questions 1 and 2, 1 represented low, and 7 represent high; for questions 3 and 4, 1 represented
rare, and 7 represented frequent; and for question 5, 1 represented high latency and 7 represented low latency.
For reference, the second trial was No Map, Yes Target (xMyT) and the fourth trial was Yes Map, Yes Target
(yMyT).

Question Value
How would you describe your trust in the experimenter the first time (second trial) ... 6.3103 ± 1.3655
How would you describe your trust in the experimenter the second time (fourth trial) ... 6.2759 ± 1.4367
How would you describe your past experience with teleoperation 2.7931 ± 1.897
How would you describe your past experience with video games 5.3103 ± 1.9839
How would you rate the latency of the video stream ... 4.2414 ± 1.3537

Table I shows average responses to post experimental survey asking participants to rate their
trust in the experimenter as they indicated the “high probability” target locations, prior experience
with teleoperation and video games, and latency of the video stream. Participants indicated high
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trust levels in the accuracy of the target locations indicated, had little experience with teleoperation,
albeit much more experience with video games, and considered the video stream to be low latency.

4.5 Data Analysis
Because condition yMyT had half of the trials altered to put the target at a different location than
that indicated on the map, data from the corresponding condition, yMyT𝐼 , was temporally split
and included with yMyT𝐴 towards increased sample size. Specifically, the trajectory in yMyT𝐼 was
split temporally into yMyT𝐼1

and yMyT𝐼2
to mark the time when the participant first reached the

target location indicated on the map (see supplementary material). The first part, yMyT𝐼1
, of the

trajectories was then combined with yMyT𝐴 for increased sample size. We computed the following
measures based on trajectory data to analyze the differences between conditions:
(1) Performance was calculated in terms of time to find the target and total distance travelled by

the robot. To compensate for the effect of obstacles in xMxT, we teleoperated the robot five
times across the environment from different locations with and without obstacles. This gave
us a factor of 1.135 that denoted the additional time spent navigating the environment due to
obstacles. Distance travelled and time to find the target in xMxT were divided by this scaling
factor to ensure a meaningful comparison with the remaining conditions (see Supplementary
material).

(2) Robot speed and turn ratewere calculated tomeasure teleoperation efficiency [11] andmotivate
the selection of movement cues. These were calculated from filtered trajectory data 𝑥̂𝑘 , 𝑦̂𝑘 ,
and 𝜓̂𝑘 as

𝑣𝑘 =
1
Δ𝑡

√︂
(𝑥̂𝑘 − 𝑥̂𝑘−1)2 +

(︁
𝑦̂𝑘 − 𝑦̂𝑘−1

)︁2
,

𝜔̂𝑘 =
Δ𝜓̂𝑘

Δ𝑡

(3)

where 𝑣𝑘 , 𝜔̂𝑘 denote the robot linear and angular speeds calculated as the difference between
estimated position and orientation on successive time steps with a Δ𝑡=0.5s.

(3) Situational awareness seeking behaviors were quantified in terms of tendency to stay in one
place, turn in place [57], stay still, and frequency of stops. Specifically, we calculated the
number of time steps spent staying in place when the estimated robot speed 𝑣𝑘 ≤ 0.1 m/s.
This was further divided into time spent turning in place calculated as the number of time
steps when the robot estimated speed 𝑣𝑘 ≤ 0.1 m/s and robot estimated turn rate 𝜔̂𝑘 ≥ 0.1
rad/s; time spent staying still (freezing) was calculated as 𝑣𝑘 ≤ 0.1 m/s and robot estimated
turn rate 𝜔̂𝑘 ≤ 0.1. We expected participants without any prior knowledge would stay in
place, turn, or simply stay still more than when they knew the environment layout or target
location.

Statisical analyses were performed using Friedman non-parametric repeated measures tests after
verifying non-normality of data. In each test, prior knowledge about map or target location was the
independent variable and the corresponding measure (e.g. time to find, speed, etc.) as the dependent
variable. Significance was noted for 𝑝 value less than 0.05. Posthoc pair-wise comparisons were
performed with Bonferroni correction. All analyses were performed in MATLAB.

4.6 Experimental results
Existence of prior knowledge affected mental and physical workload and effort. Figure 3 shows

results of non-parametric repeatedmeasures Friedman tests with Bonferroni correction for questions
on the NASA-TLX survey taken after every trial. We find that the existence of prior knowledge
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Fig. 3. Responses to questions in the NASA-TLX survey for all participants. Question responses were scaled
between 0-100, where 0 represents Low and 100 represents high. For question 4 (Performance), 0 represents
perfect and 100 represents failure. For (Yes Map, Yes Target) darker bars denote responses for all participants
(yMyT) and lighter bars denote the responses for those participants only whose prior knowledge of target
location was inaccurate (yMyT𝐼 ). Statistical comparisons are only shown for darker bars. Overhead bars
indicate pairwise difference 𝑝 < 0.05∗, 𝑝 < 0.01∗∗, 𝑝 < 0.01∗∗∗ if significant difference was found in Friedman
non-parametric repeated measures test.

had a significant effect on responses to five out of six questions within the survey, that is across
all questions except performance. For all participants, post-hoc comparisons for mental demand
revealed that all participants found (No Map, No Target) more mentally demanding than (No Map,
Yes Target) and (Yes Map, Yes Target). The same was observed in the case of physical demand. In
the case of effort, post-hoc comparisons revealed that participants who did not have any knowledge
(No Map, No Target) felt that they put more effort in the search of the missing target in the
environment than all other conditions (No Map, Yes Target; Yes Map, No Target; Yes Map, Yes
Target). Finally, participants felt more frustrated when they did not have any knowledge than
when they had knowledge of target location only (No Map, Yes Target). Wilcoxon rank sum test
between participants who had different types of target knowledge (15 accurate samples versus 14
inaccurate samples with an expected rank𝑊 = 225 if values are not significantly different) in the
yMyT condition revealed that participants who had inaccurate knowledge of the target (yMyT𝐼 ,
light colored bars in Figure 3) felt that the task was more mentally demanding (𝑊 = 170, 𝑝 = 0.014),
required more effort (𝑊 = 163, 𝑝 = 0.007) and caused more frustration (𝑊 = 155, 𝑝 = 0.002) than
when they had accurate knowledge (yMyT𝐴, not shown explicitly). When only considering the
subset of participants who only had accurate knowledge in (Yes Map, Yes Target), that is yMyT𝐴,
we still found a significant effect on five out of six questions, albeit these comprised a different set
(not shown here).

Qualitative analysis of trajectory data. Figure 4 shows trajectory data, and robot speeds and
turn rates from each condition of a randomly selected participant. A visual inspection reveals that
the participant spent much of the time exploring the environment and looking for the target in
(No Map, No Target). However, looking at (No Map, Yes Target) (second row from top), when the
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Fig. 4. Robot position, speed, and turn rate for a single participant who was informed of a target location
different from actual one in condition 4. The first column shows the robot trajectory within the search
environment and columns 2 and 3 show robot speed and turn rate over time. Rows 1-3 denote conditions
xMxT, xMyT, and yMxT, and rows 4 and 5 denote trajectory data before yMyT𝐼1 and after yMyT𝐼2 the split
for corresponding to the moment when the participant realizes that the target location knowledge was
inaccurate.

participant knew target location only, the trajectory is directed towards the true target location
accompanied by fewer turns. These observations are corroborated when comparing the trajectories
of all participants in each condition (Fig. 5). Specifically, participants had fewer turns when they
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Fig. 5. Robot trajectories for all participants in conditions 1-4 with (a) for (No Map, No Target), (b) for (No
Map, Yes Target), (c) for (Yes Map, No Target), and (d) for (Yes Map, Yes Target). In (d), dotted trajectories
denote when participants did not have an accurate knowledge (yMyT𝐼 ) of the target location. Target locations
are shown as green squares, and trajectory start and end locations are shown as blue circles and blue crosses.

knew the target location (including an inaccurate location) than when they only knew the map.
(See supplementary material for sample overhead videos for each condition.) Robot speed for when
target location was known (Fig. 4, rows 2 and 4) exhibits frequent delays in movement with longer
delays in (No Map, Yes Target) compared to (Yes Map, Yes Target) prior to realizing that the target
was not located where it was indicated. Furthermore, the number of instances where the robot
start-and-stopped appear to be more in xMxT compared to xMyT, and in xMxT compared to yMyT;
in each case the participants did not have prior knowledge about the target location compared to
the next condition. These visual analyses set the stage for statistical comparisons for testing our
hypotheses next.

Search performance depends on prior knowledge. Expectedly, the level of prior knowledge had
significant effect on time to find the target (𝜒2 (3, 29) = 63.08, 𝑝 < 0.001, Fig. 6a). Post-hoc pair-wise
comparisons revealed that the participants without prior knowledge of map and target (No Map,
No Target) took longer time (scaled) to find the target than when they knew either the location
of the target, or the map, or both (No Map, Yes Target; Yes Map, No Target; Yes Map, Yes Target).
Furthermore, knowing target location further reduced the time to find if map was known (Yes Map,
No Target, versus Yes Map, Yes Target). The distance the robot traveled across all conditions also
revealed a significant effect (𝜒2 (3, 29) = 48.60, 𝑝 < 0.001, Fig. 6b). Post-hoc pairwise comparisons
revealed that the participants who did not have any knowledge (No Map, No Target) traveled more
distance than when they knew the target location or map or both (No Map, Yes Target; Yes Map,
No Target; Yes Map, Yes Target). We also see that knowing target location and map (Yes Map, Yes
Target) led to less distance travelled than when only map was known (Yes Map, No Target).
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Fig. 6. Data showing time to find the target in seconds (a) and total distance traveled by the teleoperated
robot in meters (b). Time to find and distance travelled for xMxT (No Map No Target) are scaled by a factor
of 1.135 to account for the presence of obstacles in the environment. Data is shown for the four different
conditions corresponding to the four different types of prior knowledge a participant was given prior to
the experiment. For (Yes Map, Yes Target) darker bars denote data from yMyT𝐴 and yMyT𝐼1 , and lighter
bars denote the data from yMyT𝐼2 . Statistical comparisons are only shown for darker bars. Overhead bars
indicate pairwise difference 𝑝 < 0.05∗, 𝑝 < 0.01∗∗, 𝑝 < 0.01∗∗∗ if significant difference was found in Friedman
non-parametric repeated measures test.

Search behavior depends on prior knowledge. With respect to fraction of time staying in place we
found significant effect of prior knowledge (𝜒2 (3, 29) = 10.77, 𝑝 = 0.013) with post-hoc comparisons
revealing that the robot stayed more in place when no prior knowledge was present (No Map, No
Target) than when both target location and map was known (Yes Map, Yes Target). Looking at
different components of the time spent in place, Figures 7a and b compare the fraction of time spent
turning in place, and fraction of the time spent staying still (freezing). Whereas the fraction of time
spent turning in place produced no significant effect (𝜒2 (3, 29) = 2.669, 𝑝 = 0.445, Fig. 7a), freezing
revealed a significant effect (𝜒2 (3, 29) = 18.60, 𝑝 < 0.001, Fig. 7b). Post-hoc pairwise comparisons
revealed participants spent more time freezing when map knowledge was absent (No Map, No
Target; No Map, Yes Target) than when both target and map knowledge was present (Yes Map, Yes
Target). Frequency of stops made during a trial were not found to significantly depend on the prior
knowledge (𝜒2 (3, 29) = 6.558, 𝑝 = 0.087).

Teleoperated robot speed significantly depended on prior knowledge (𝜒2 (3, 29) = 22.77, 𝑝 < 0.001,
Fig. 7c). Post-hoc pair-wise comparisons revealed that when both target location and map was
known (Yes Map, Yes Target), the robots were faster than when only map was known (Yes Map, No
Target) or when neither map nor target location was known (No Map, No Target). Having only
target location knowledge (No Map, Yes Target) resulted in a higher speed than when neither map
nor target knowledge was known (No Map, No Target). Robot turn rate also registered a significant
effect (𝜒2 (3, 29) = 10.613, 𝑝 = 0.014, Fig. 7d). Post-hoc pair-wise comparisons revealed that when
both target location and map was known (Yes Map, Yes Target), teleoperated robots had a higher
turn rate than when only target location was known (No Map, Yes Target).

Inaccuracy in prior knowledge affected some search behavior. The data to investigate the effect
of inaccuracy of prior knowledge were drawn from yMxT, yMyT𝐴 combined with yMxT𝐼1

, and
yMyT𝐼2

to create three independent factors: No target, Accurate target, and inaccurate target. For
comparison, note that the lighter bars in Figure 7 denote yMyT𝐼2

. Friedman repeated measures
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Fig. 7. Data showing fraction of time the teleoperated robot spent turning in place (a), and fraction of time
the robot spent staying still (b), robot speed (c) and absolute robot turn rate (d). Overhead bars indicate
pairwise difference. Data is shown for the four different conditions corresponding to the four different types
of prior knowledge a participant was given prior to the experiment. For (Yes Map, Yes Target) darker bars
denote data from yMyT𝐴 and yMyT𝐼1 , and lighter bars denote the data from yMyT𝐼2 . Statistical comparisons
are only shown for darker bars. Overhead bars indicate pairwise difference 𝑝 < 0.05∗, 𝑝 < 0.01∗∗, 𝑝 < 0.01∗∗∗
if significant difference was found in Friedman non-parametric repeated measures test.

with accuracy of prior knowledge of target location as the independent factor revealed significant
effect of prior knowledge accuracy on robot speed (𝜒2 (2, 14) = 9.571, 𝑝 = 0.008) but not on
turn rate (𝜒2 (2, 14) = 1.00, 𝑝 = 0.606). Post-hoc comparisons put robot speed with accurate
knowledge to be higher than when target location was not known (Accurate target versus No
target). Although staying in place was found to be dependent on the accuracy of prior knowledge
(𝜒2 (2, 14) = 7.00, 𝑝 = 0.030), neither fraction of time turning in place (𝜒2 (2, 14) = 3.00, 𝑝 = 0.223),
nor fraction time staying still (𝜒2 (2, 14) = 1.85, 𝑝 = 0.395) was found to significantly depend on the
accuracy of prior knowledge about target location.

The experimental results can be summarized as follows:
• Participants experienced more mental and physical workload when no prior knowledge was
available compared to when at least target knowledge was available. Participants also felt
that they exerted significantly more effort when no prior knowledge was available than when
any knowledge (Map or Target) was provided.

• Performance in terms of time to find the target was significantly affected by prior knowledge
(H1) with map or target knowledge significantly reducing the time to find compared to when
no such knowledge was available.
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• Search behavior was also significantly affected by prior knowledge (H2) with participants
spending significantly less time staying in a place with no movement when they knew both
the target location and the map than when they didn’t know the map.

• The robot was teleoperated at a high speed and turn rate when prior knowledge was available
(H2). Speed was significantly lower when target location was unknown and turn rate was
significantly lower when map was unknown.

• While target location played a role in the speed of the teleoperated robot, it was not affected
when the participants realized that the target location may be inaccurate.

5 PRIOR KNOWLEDGE BASED CONTROL OF AUTONOMOUS ROBOTS
In this section we describe the prior knowledge inference from movement cues and perform simu-
lations to evaluate control strategies that utilize such inference. First, building on the experimental
results, we identify movement cues that can be used to classify prior knowledge about target
location and environment. Next, we present a Bayesian inference strategy to directly calculate the
weighting parameter within the mutual information objective function that adaptively blends two
complementary search strategies for autonomous robots who are searching for the same target as
the teleoperated robot. We finally use this framework to test hypothesis H3: a human-robot team,
where autonomous robots apply an adaptive strategy that involves inferring and acting on prior
knowledge performs better than other strategies where such inference is not used.

5.1 Inferring prior knowledge from movement cues
The dependence of various movement cues on prior knowledge motivates the possibility of directly
inferring such knowledge from teleoperated robot motion. To make such inference practical for
use in a control strategy, however, such inference should be possible from a smaller observation
window. Therefore, we sought to quantify the difference between distributions of a movement cue
(feature) conditioned on the type of prior knowledge. Specifically, denoting a feature observed for
past 𝜏 time steps by 𝑓𝜏 , we used experimental data to calculate 𝑝 (𝑓𝜏 |K) where K denotes the prior
knowledge state. In our case, prior knowledge is represented by a random variable that can take
values in the sample space {xMxT, xMyT, yMxT, yMyT}. We limited the observation window 𝜏 to
range between 5 and 30 seconds to allow a usable strategy to develop within reasonable time as the
teleoperated robot is observed. When calculating these distributions, data from the last 5 seconds
of the trial was ignored to avoid considering behaviors after the target was likely spotted by the
participant. Motivated by experimental results, where we see dependence of distance, speed, turn
rate, and freezing time on prior knowledge, probability distributions were built using features such
as average speed, distance travelled, and freezing, calculated on 𝜏-second sections within a moving
window ending at the current time step.

To achieve a robust classification of prior knowledge, only those features were selected for
inference that had maximum difference in probability distributions conditioned on the two extreme
scenarios xMxT, and yMyT, in terms of the Wasserstein distance. Although we calculate probability
of all four levels of prior knowledge, we selected the two extreme scenarios to maximize the
distinguishability between having no prior knowledge and having all available prior knowledge.
The Wasserstein distance, also known as the earth-mover’s distance, is a distance metric between
probability distributions that calculates the cost of turning one distribution, viewed as a pile of
sand, into another [48]. Figure 8 shows that we attain the maximum Wasserstein distance between
𝑝 (𝑓𝜏 |K = xMxT) and 𝑝 (𝑓𝜏 |K = yMyT) for freezing and distance covered, with an observation time
of 30 and 15 seconds respectively. We therefore select these two features as movement cues to infer
prior knowledge. To investigate if combining features provided better performance, we additionally
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Fig. 8. Wasserstein distance between conditional probability distributions (a) of having complete or no prior
knowledge for four different movement features as a function of observation time. Sample distributions for
all four types of prior knowledge considered in this study for 15-second observation time (b)–(e).

select a combined two-dimensional feature set of freezing and distance covered with an observation
time of 15 seconds.
A natural choice to set the weighting parameter would be the probability 𝑝 (K = xMxT|𝑓𝜏 ) of

not having prior knowledge of target location or environment conditioned on observations of the
feature 𝑓𝜏 . This would ensure that the parameter (a) stays between 0 and 1 permitting a linear
blending and (b) directly relates to the need for additional assistance in the form of increased
perceptual range from the autonomous robot. In particular, if 𝑝 (K = xMxT|𝑓𝜏 ) is low, implying
that the teleoperator has good prior knowledge of target location or environmental map or both, it
may be efficient to assist the teleoperated robot (low 𝛼𝑘 ) by staying close by and increase its field of
view; conversely, a high value of 𝑝 (K = xMxT|𝑓𝜏 ) implies that the human robot may be searching
inefficiently and therefore an effective strategy would be to search independently (high 𝛼𝑘 ). Given
the observation of a particular feature, this probability can be calculated using Bayes’ rule as

𝑝 (xMxT|𝑓𝜏 ) =
𝑝 (𝑓𝜏 |xMxT)𝑝 (xMxT)∑︁

𝑖 𝑝 (𝑓𝜏 |K𝑖 )𝑝 (K𝑖 )
, (4)

where 𝑝 (xMxT|𝑓𝜏 ) is abbreviated from 𝑝 (K = xMxT|𝑓𝜏 ), and 𝑝 (K𝑖 ), 𝑖 = 1, . . . , 4 denotes the
probability of prior knowledge being in one of the four possible states so that for example 𝑝 (K1) =
𝑝 (K = xMxT).

For an adaptive control strategy, the parameter can be time-varying as 𝛼𝑘 , and can be set to
𝑝 (K = xMxT𝑘 |𝑓 𝑘𝜏 ) with 𝑓 𝑘𝜏 denoting the collection of feature measurements all the way up to 𝑘 ;
the value of 𝛼𝑘 is then recursively updated as

𝛼𝑘 =
𝑝 (𝑓𝜏,𝑘 |xMxT𝑘 )𝛼𝑘−1∑︁
𝑖 𝑝 (𝑓𝜏,𝑘 |K𝑖,𝑘 )𝑝 (K𝑖,𝑘−1)

, (5)

where the normalization factor is calculated by estimating and adding the probability for each of
the four states at each time step. The value 𝑝 (K𝑖,𝑘−1), 𝑖 = 1, . . . , 4 are all set to 1/4 for 𝑘 = 1, . . . , 𝜏 ,
until enough observations are available to make an inference.
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5.2 Controlling autonomous robots in response to teleoperated robot movement
Compared to a control strategy that presupposes prior knowledge, we now propose a mutual
information based objective function that responds to varying prior knowledge over the course of
the experiment. In particular 𝛼𝑘 , same for all autonomous robots, is computed at every time step
and used to determine the control input that optimizes the blended mutual information objective

u𝑘 = max
u∈𝑈

[︂
𝛼𝑘ˆ︁𝐼 (𝜽 −

𝑘
;Z𝜽 ,−

𝑘
) + (1 − 𝛼𝑘 )ˆ︁𝐼 (Xℏ,−

𝑘
;Zℏ,−

𝑘
)
]︂
, (6)

where again, as before, the normalized mutual information is computed based on predicted mea-
surements obtained by applying control input u. To further assess the effect of number of robots,
we conduct the simulation study with one and two autonomous robots.

5.3 Simulation setup
The simulation setup consisted of human-robot teams where one robot (teleoperated robot) followed
a predetermined trajectory from the actual experiments as the autonomous robots adapt their search
behavior according to the control law (6). The autonomous robots themselves were simulated to
match the ground robot platform used in the experiments with a 360-degree field of view. Specifically,
the robots were assigned differential drive dynamics, a bearing-only sensor with a limited range of
1.5 m (such as calibrated omnidirectional camera), and a collision handing algorithm that turned
the robots away from the point of collision.

Specifically, the position, (𝑥𝑘 , 𝑦𝑘 ), and orientation,𝜓𝑘 , of an autonomous robot 𝑖 was updated at
every time step 𝑘 as

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘
+ 𝑣𝑖

𝑘+1 cos𝜓
𝑖
𝑘
Δ𝑡

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘
+ 𝑣𝑖

𝑘+1 sin𝜓
𝑖
𝑘
Δ𝑡

𝜓 𝑖
𝑘+1 = 𝜓 𝑖

𝑘
+ Ω𝑖

𝑘+1Δ𝑡

(7)

where Ω𝑖
𝑘+1 ∈ Ψ denotes the turn rate and 𝑣𝑖

𝑘+1 ∈ 𝑉 denotes the speed, with Ψ =
[︁
−0.25, 0.25

]︁
rad/s

and 𝑉 =
[︁
0, 0.833

]︁
m/s denoting the range of possible turn rates and speeds. At each step, solving

(6) gave the value of Ω𝑖
𝑘+1 and 𝑣

𝑖
𝑘+1. The length of the simulation time step Δ𝑡 = 0.5 second was set

to match the observation sampling rate from the experiments.
Collision handling was performed so that upon a collision at an angle 𝛾𝑘 with respect to heading

𝜓𝑘 , the robots changed their instantaneous turn rate Ω𝑘 to −1.5𝛾𝑘 , thus turning them opposite to
the angle at which a collision is detected.

Autonomous robots took target (if it was visible) and teleoperated robot location measurements
using a bearing-only sensor with measurement noise set to a zero mean Gaussian random variable
with 0.1 rad standard deviation. We note that, even though the teleoperated robot location was
available directly from the overhead tracker (or by communication), it was converted into a bearing
measurement to assign an information value to a measurement taken at the teleoperated robot
location.

All autonomous robots ran a particle filter similar to the one in [32] with 1200 particles represent-
ing a combined state consisting of self pose X𝑖

𝑘
=
[︁
𝑥𝑖
𝑘
, 𝑦𝑖

𝑘
,𝜓 𝑖

𝑘

]︁
, two dimensional target location 𝜽𝑘

and two dimensional teleoperated robot location Xℏ
𝑘
. State estimates were updated using likelihood

functions for target 𝑝 (𝑍𝜃
𝑘
|X𝑘 ), and teleoperated robot 𝑝 (𝑍 ℏ

𝑘
|X𝑘 ) measurement both of which were

modeled as Gaussian density functions when a measurement was obtained (note the change in
font of 𝑍 ℏ

𝑘
, 𝑍 ℏ

𝑘
from bold to normal indicating that they are scalar for our setup). The bearing-only

sensor obtained a measurement only if the target was within 1.5 meters visible range selected to be
slightly more than the distance of 1.33 m at which the 4-digit numeric code on the target can be
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identified by human participants. When a measurement was not obtained, the likelihood function
for target measurement excluded all particles that lied within its sensor range thus pushing target
estimates further into the unexplored region.
Autonomous robots shared their estimates of target and human teleoperated robot location

through a combined likelihood function. Specifically, when there are 𝑛𝑟 > 1 autonomous robots,
each autonomous robot 𝑖 updates its weights as

𝑝 (𝑍 𝑖,𝜃 , 𝑍 𝑖,ℏ |X𝑖
𝑘
) =

𝑛𝑟∏︂
𝑗=1

[︂
𝑝 (𝑍 𝑗,𝜃

𝑘
|X𝑗

𝑘
) · 𝑝 (𝑍 𝑗,ℏ

𝑘
|X𝑗

𝑘
)
]︂
, (8)

indicating that all robots are able to communicate with each other. This is a viable setup in an
indoor environment even in the absence of an overhead tracker where robots are able to perform
localization and mapping and communicate wirelessly through radio. In a larger GPS-denied
environment, the number of robots that share measurements may be limited based on wireless
communication range.
To evaluate the adaptive control strategy (6) we adopted a cross-validation approach where 𝛼𝑘

is computed from probability distributions generated from data from 90% of the participants and
then used to control the autonomous robots in the remaining 10%. Human-robot teams with two
and three robots (with one and two autonomous robots respectively) were simulated to search the
same environment for the target.

Based on our analysis, we evaluated the robot assistance control strategy based on prior knowl-
edge built on a) distance travelled with observation time 𝜏 = 15 seconds, b) freezing with observation
time 𝜏 = 30 seconds, and c) distance travelled and freezing with observation time 𝜏 = 15 seconds.
The target was considered found by an autonomous robot if it came within its visual sensor range.
Because we were comparing similar setups, search time in condition xMxT was no longer divided
by a scaling factor. Furthermore, to ensure that autonomous robots were not favored in terms of
finding the target earlier than the teleoperated robot when the corresponding participant whose
trajectory was being followed were simply entering the 4-digit numeric code, the simulation time
(also the search time for the teleoperated robot) for comparison was reduced by five seconds. The
performance of a control strategy was measured in terms of the average time to find the target, the
fraction of simulations where the human-robot team found the target earlier than a single human,
and the average time gained over those trials. The adaptive search strategies based on different
movement cues were compared with three other strategies where the autonomous robots (i) search
randomly, (ii) search independently (𝛼 = 1) and (iii) search always assisting the teleoperated robot
(𝛼 = 0).

With respect to hypothesis H3, we expect that when the teleoperated robot is moving slowly
(less distance travelled over the observation window of 15 seconds), then it would imply a high
probability of not knowing where the target or map is so that 𝛼𝑘 = 𝑝 (xMxT𝑘 |𝑓 𝑘𝜏 ) close to 1; the
accompanying autonomous robots will search for the missing target independently and sometimes
further away from the teleoperated robot. Conversely, we expect that a fast moving teleoperated
robot would imply a low 𝛼𝑘 close to 0 with the autonomous robots searching in a region close by.
This should result in higher exploration when the teleoperated robot is slow and higher exploitation
when the teleoperated robot is moving fast.

5.4 Simulation results
Figures 9 and 10 show sample simulation trajectories of one and two autonomous robots along
with 𝛼𝑘 values inferred on the basis of distance travelled for each condition. In most instances,
𝛼𝑘 is dynamic suggesting that movement behaviors evolve over time for the same levels of prior
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Fig. 9. Sample trials showing the teleoperated (black) and one autonomous robots (green) trajectories. Start
and end positions are shown as circle and cross. Target location is shown as a square. The instantaneous 𝛼𝑘
values computed based on distance travelled by the teleoperated robot in the past 15 seconds are shown next
to each trajectory plot.
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Fig. 10. Sample trials showing the teleoperated (black) and two autonomous robots (green) trajectories. Start
and end positions are shown as circle and cross. Target location is shown as a square. The instantaneous 𝛼𝑘
values computed based on distance travelled by the teleoperated robot in the past 15 seconds are shown next
to each trajectory plot.

knowledge during a search mission. In terms of prior knowledge inference, we note that 𝛼𝑘 is closer
to 1 for a majority of the time for No Map, No Target condition, which is expected because the
teleoperator has no knowledge of either. This in turn leads to the autonomous robots generally
searching for the target away from the teleoperated robot. When two autonomous robots are
searching along with the human teleoperator in this sample trial, it results in an early finding of the
target, likely because of the high amount of exploration. At the same time, because 𝛼𝑘 is inferred
based on movement data, it may be close to 1 even if the target knowledge is known (as in Yes
Map, Yes Target in Fig. 10), when the teleoperated robot is moving slowly. We also note that when
𝛼𝑘 is closer to 0, the robots tend to stay close to the human but not necessarily searching in the
same corner (one autonomous robot, Fig. 9, No Map, Yes Target) which exemplifies the capability
of an information-based search which seeks to lower the overall target uncertainty, as opposed to a
distance based search, where an autonomous robot would simply stay close.

Figures 11 and 12 summarize the performance of the two- and three-member human-robot team
for a set of hundred experiments each consisting of four conditions, tested on randomly selected
three participants whose data was not used to build the pdfs 𝑝 (𝑓𝜏 |K). This resulted in a total of
1200 simulations per team (300 per condition). We measure search performance in terms of the
average time to find the target (Fig. 11a and Fig. 12ba), fraction of trials where the human-robot
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Fig. 11. Average ± standard deviation of time to find the target (a) over all trials by the human robot team of
2 robots (one teleoperated, one autonomous); fraction of trials (b) where the human robot team found the
target before the single human teleoperated robot and (c) the time saved by the team over the single robot.
Adaptive search strategies are denoted by 𝛼𝑘 , and search strategies that involve mutual information based
control with a fixed objective (assist or search independently) are denoted by the value assigned to 𝛼 .
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Fig. 12. Average ± standard deviation of time to find the target (a) over all trials by the human robot team of
3 robots (one teleoperated, two autonomous); fraction of trials (b) where the human robot team found the
target before the single human teleoperated robot and (c) the time saved by the team over the single robot.
Adaptive search strategies are denoted by 𝛼𝑘 , and search strategies that involve mutual information based
control with a fixed objective (assist or search independently) are denoted by the value assigned to 𝛼 .

team found the target before single human did (Fig. 11b and Fig. 12b), and time gained over those
trials (Fig. 11c and Fig. 12c).
For a two-robot team (one human teleoperated and one autonomous, (Fig. 11)), we find that

the time to find the target depends on the prior knowledge associated with the teleoperated
robot. If prior knowledge was absent, all strategies perform similar except the random search
which took a longer time to find. When evaluating search performance in terms of how the team
does in comparison to a single robot (the value of assistance), we see that search performance of
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autonomous robots depends on the type of prior knowledge associated with the teleoperated robot,
with the largest gain registered when there was no knowledge of the target location or environment
(xMxT=triangles). In terms of fraction of trials where the human-robot team found the target prior
to a single human, the team where autonomous robots operated on prior knowledge based on
distance outperformed all other strategies when target location was not known. Specifically, when
there was no knowledge of target location (xMxT=triangles, yMxT=diamonds), the team where
autonomous robot acted on prior knowledge inferred from distance had the best performance
followed by the team that searched on the basis of freezing time; robot that searched randomly
had the lowest performance for all conditions except when only the map was known; in that
particular case, the team where the robot fully assisted the teleoperated robot performed worse.
When both target location and map was known, the autonomous robot that always assisted had
the best performance followed by the team where the robot searched independently or one that
acted on prior knowledge based on distance.

In terms of time gained, all strategies had similar gain in search time with most time gained when
target and environment knowledge was absent. Specifically, searching with an autonomous robot
gave more than 100 seconds lead time when no prior knowledge was available and up to 45 seconds
lead time when all prior knowledge was available. For the latter case, the highest time gained at
45.2 seconds was when the robot searched based on prior knowledge inferred from distance and
the lowest time gained was when the robot searched randomly at 29.8 seconds.

For a three-robot team (one teleoperated and two autonomous), we expectedly see lower times
to find the target compared to two-robot team. When comparing with a single human trials where
the participant had no prior knowledge, all mutual information based control strategies perform
at the same level (Fig. 12b and c), with adaptive search performing the best when informed by a
combined features of distance and freezing, only slightly better than full assist and independent
search. When all the prior knowledge was available, the adaptive search strategy based on distance
performed the best and slightly better than independent search.
In terms of time gained among trials where the autonomous robots found the target earlier

than the single human, all strategies gained approximately 150 seconds when there was no prior
knowledge on target location and environment. When target location was known, the random
search had the least gain in time compared to other mutual information based search strategies.

6 DISCUSSION
Search is a time-intensive task where members of search team may possess varying degrees of
prior knowledge about the environment and the missing target. When searching for a missing
target using teleoperated robots, autonomous robots can intelligently contribute to the search if
they are able to infer human prior knowledge from the robot movement in the field.
Whereas there are several works that have utilized intent [25, 43] or trust [15, 68] inference

to improve the performance of a human-robot team, inference of prior knowledge has not been
explored. When such inference is available they are integrated into the robot control strategy
through mixed initiative approaches [21], increased interventions [68], or risk minimization [24].
In this context, this work presents two contributions: (i) we conduct an experimental study that
investigates the role of prior knowledge on search performance and behavior as a ground robot is
teleoperated through a obstacle ridden environment; the results of this study allows us to isolate key
movement cues that can be used to infer prior knowledge, and (ii) we test, validate, and compare
an adaptive search strategy that blends mutual information combining independent search and
human assistance.

Our experimental results indicate that prior knowledge of target location and environment can
influence teleoperated robot movement in the field. Prior knowledge also affected mental and
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physical demands and the perceived effort and frustration during a search task. Moving further,
integrating this prior knowledge into an adaptive information blending strategy for an autonomous
robot accompanying a teleoperated robot showed improvement in search efficiency when target
location was unknown in terms of being able to find the target earlier than a human when compared
to blind assistance, independent search or random search strategies. Increasing the number of
autonomous robots in the same environment appears to dliute this gain in performance by adaptive
strategies over blind assist and independent search.

6.1 Effect of Prior knowledge
Performance. Having prior knowledge of target location helped improve search performance

in terms of time to find the target as well as the distance travelled. As expected, knowing target
location beforehand produced lower times than when no such knowledge was available. When
target location was known, the least time to find and distance travelled was attained when a map
of the environment was available suggesting an efficient navigation around the environment. This
result is consistent with the lost-person literature where it is generally agreed that searchers who
have knowledge about the missing person behavior can influence the mission performance [49].
When target location was known, knowledge of the map reduced search time. At the same time,
when target location was not known, knowledge of the environment did not significantly reduce
the time to find. It is possible that for such a difference to manifest in an exploration-heavy mission,
the environment should be even more complex. Our search environment had many obstacles, and
we expected to see a significant effect of environmental knowledge on performance. However,
based on the straight trajectories in subsequent trials, it appears that participants soon realized that
they could explore certain areas between the benches and corners without actually entering them.

Behavior. Per our expectations we found that participants spent less time staying in place when
they had prior knowledge about target location and the environment, than when they knew neither.
Looking closely at conditions where the only difference was knowledge of target location, it is
unlikely that knowing where to search reduced these behaviors. This was somewhat unexpected
since part of being situationally aware is to know where to go and the lower search times from (No
Map, No Target) condition to (No Map, Yes Target) suggested that participants may have stayed
still much less. A likely explanation is that even though participants stayed still as often when
target location was known they were much faster in between such times, more confident of their
path. This may be seen through the differences in the speed probability distributions in Figure 8 for
these two conditions. Specifically, we note that (No Map, Yes Target) has a heavier tail towards
high speeds and lower probability of smaller speeds compared to (No Map, No Target). Participants
were found freezing (staying still) more often when they did not know the map. It is also unlikely
that they spent this time staying still reading the map given to them in the control room because it
was very sparse during the first two tasks. On the other hand, it is likely that freezing was more
indicative of an effort to gain situational awareness in our experiments possibly trying to remember
their position with respect to the environment or locations they may have already visited.

Teleoperated robot speed increased with prior knowledge of target location. Differently, however,
robot turn rate did not reduce with target knowledge. It is possible that as participants sped up with
increased knowledge sudden stops and starts registered as high turn rates in the tracked data. We
note that this is less likely due to tracking errors, which were small (see Supplementary material),
and more likely a result of operating a robot with inertial mass. While some of these differences in
robot movements could be reduced by designing better control gains, we note that in a real-world
setting, this is an entirely expected phenomenon [60]. Situations where robot movement diverges
significantly from user input may affect human perception of the robot even if they continue to
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teleoperate it to search [52]. Knowledge of the environment resulted in higher turn rates when
searching for a known target location. Again, this is possibly due to starts and stops at high speeds
registering as sudden turns in the robot movement.

Accuracy of target prior knowledge. With respect to accuracy of target location, variations in
speed as the trial progressed suggest that participants moved with frequent stop-and-go motions
accompanied by high turn rate immediately after they realized that their prior knowledge about
target knowledge was inaccurate. That these changes are most likely due to inaccuracy in prior
knowledge, and not due to mistrust in the experimenter, is supported by participant response to
the post-experiment survey questions where they indicated by their similar responses to the two
questions related to trust in experimenter when they indicated the high-probability region. We
also see that the trajectories (Figure 5) for such trials have more instances of moving in corners
close to the possible target location. It is likely that this was due to repeated observations made
by the participants who were trying to confirm that they properly checked the region. A similar
behavior has been reported in reading studies when individuals are faced with information that
is inconsistent with their beliefs [50]. We didn’t find any difference in robot speed likely because
(a) the participant knew the map well enough to not pause for situational awareness and (b) the
participant could still easily guess the target location in the relatively small search environment by
process of elimination.

6.2 Differences in perceived workload
Participants perceived a difference in all but one components of the NASA-TLX workload as-
sessment. In particular, participants perceived differences in mental demand, physical demand,
temporal demand (how rushed they felt), effort (how hard did they work to accomplish the level of
performance), and frustration as a function of prior knowledge.
With respect to mental demand, participants felt that searching for a missing target with no

prior knowledge in an unknown environment was more mentally demanding than when they knew
where target was located. In addition to searching without any prior knowledge, participants in
this task also had to navigate throughout the entire search environment with more obstacles. A
significant drop in mental demand as participants proceeded through the conditions also suggests
that familiarity with the environment played an important role. At the same time, because such
a drop was not witnessed when participants had no target but good environmental knowledge
suggests that familiarity with the environment was not the only factor at play. Finally, any possible
frustration participants may have felt due to not finding the target in the expected high-probability
location in (Yes Map, Yes Target) did not contribute to high overall mental demand.

These trends were somewhat mirrored in physical demand and effort with the additional differ-
ence that participants felt that they worked less hard in searching for a missing target in a known
environment compared to in an unknown environment. As with mental demand, participants
who found their prior knowledge to be inaccurate contributed to a sudden rise in these factors.
It is possible that the additional time spent searching for the target amidst obstacles in the first
condition created an impression of high physical demand and the need for extra effort, even though
the experimental setup remained the same throughout conditions. Frustration among participants
was only reduced when they had accurate prior knowledge of the target location. The reason we
do not see a further lowering of frustration when participants had both target and environment
knowledge is likely due to placement of target in a different location than where they expected.
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6.3 Search performance with adaptive strategies
Two-member human robot teams comprising one teleoperated who did not know apriori where the
target was located and one autonomous robot that adpatively blended its mutual information based
objective function performed better than teams where the autonomous robot searched randomly
or did not adapt their movement to prior knowledge. The largest improvements were found to be
for when the teleoperator had no knowledge of target location.
When target location was known, the full-assist strategy worked best as it is the most likely

strategy to effectively increase the field of view once the teleoperated robot reaches close to
the target. The gain in performance by adaptive strategies over non-adaptive ones, especially
independent search was diluted when the number of robots increased. This is likely because of the
size and structure of the environment which made it relatively efficient for three robots searching
independently to find the target. In particular, the relatively small environment coupled with visible
sensing range of the robots made it easier for independently searching robots to quickly resolve
the target location estimate to one of the four corners in the environment, where the target was
always placed.

We also find that the full assist strategy no longer proved to have the best gain in performance
when everything was known. This is likely because with more robots collision avoidance behav-
iors take precedence over search strategies. Among the three adaptive strategies, the one where
weighting was inferred based on distance did generally better than the other two. This is possibly
due to freezing time calculated over a larger time window of 30 seconds making it less responsive
than a distance based inference which was calculated over a window of 15 seconds; a combined
feature of distance and freezing would be suboptimal compared to distance or freezing at their
respectively different observation periods.

6.4 Limitations
Limitations of this study include a relatively small environment which took on an average about two
minutes to search by the participants; a larger search time could have revealed the behaviors more
distinctly. Specifically, in a larger building with multiple rooms or multiple floors, prior knowledge
about the map could have resulted in quicker navigation to different areas revealing differences in
turn rate in addition to speed. While the inference of prior knowledge frommovement data presents
an opportunity for application in larger and more complex settings, using the same features across
different environments may entail similarity in terms of obstacle density, size and type of robots.
A second limitation is the possibility that despite the presence of randomly placed obstacles,

some participants may have understood the environment better than the others during the xMxT
condition. Such differences in prior knowledge can be obtained in future by posing survey questions
prior to every trial within an experimental session.
Another limitation is that the search environment was adequately lighted which may not

realistically represent a real-world search. A low light environment could also have increased
search time and added false positives, making the search process more complicated, and possibly
revealing additional differences in search strategies. The generalizability of these results to broader
search scenarios remains to be tested. In this context, virtual reality or augmented reality setups
[17, 34, 44] may prove useful in creating a large variety of situations and robots including ground,
walking, underwater, and aerial robots.

A fourth limitation of this study is the qualitative assessment of prior knowledge through
movement cues. This is most evident in the constantly changing values of 𝛼𝑘 as inferred during a
trial. Without a deeper assessment and quantification of how knowledge states evolve during a
search mission it becomes difficult to say if the dynamic 𝛼𝑘 are a true reflection of prior knowledge
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state of a teleoperator or a result of how the distributions of movement cues such as distance and
freezing time overlap for all knowledge states.

A fifth limitation of this study is related to how we measure situational awareness and trust in the
robot. While general measures of situational awareness that can provide continuous measurements
involve eye tracking or physiological metrics [12], we favored a surrogate measure with the goal
of directly inferring prior knowledge state from robot movement cues. Regarding trust in the
robot, the only question in the post-experiment survey that measured if participants rated the
performance of the teleoperation well was the question on latency. A broader set of questions
adapted from validated metrics and measures [18, 20, 36] could have helped identify behavioral
correlates of trust in teleoperation.

6.5 Conclusion and future directions
Results from this study show the potential of inferring meaningful information about human prior
knowledge from robot movement during search with a teleoperated robot. Despite the same skill,
teleoperated robot movement and operator workload was found to differ as a function of prior
knowledge. Furthermore, limited time observation of select movement features were found to aid
in autonomous robot assistance during a mutual-information based search. The response of human
operators to the control strategies as proposed here remains to be evaluated. In particular, future
work can compare an information-blending strategy with blind followership, independent search,
and mixed initiative strategies in terms of human situational awareness, workload and trust.
The results of this study also set the stage for a data-driven dynamical model of human search

that incorporates realistic representations of prior knowledge. A reliable dynamical model of human
search can be used to test complex hypotheses in human-robot teams [37]. Direct inference of
human prior knowledge from robot movement has applications in human swarm robotics [31]
where autonomous robots could adopt leader-follower strategies based on field observations of
teleoperated robot movement [32, 37].
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