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Abstract

This study compared and analyzed the usability, performance, and
cost-efficiency of deploying Machine Learning (ML) models in two
ML-AI platforms in Google Cloud: BigQuery ML and Vertex Al
Through the experiments with two separate cases, the analysis
was conducted with MIMIC-IV datasets of hospitalized patients
to deploy regression models on each platform to predict mortality
and progression of diseases. The documentation, learning curve,
and resource suitability of the platforms were evaluated to access
their usability. The study evaluated the total running times and
resource utilizations, including storage and compute, to analyze
their performance and cost efficiency. The analysis results showed
that BigQuery ML offers good usability with easy-to-follow docu-
mentation and a moderate learning curve for cloud users, making
it more suitable for SQL-savvy users and large-scale data analytics
tasks. It also showed efficient resource management and deploy-
ment despite its higher initial processing times during the training.
Vertex Al incurred higher costs due to longer training times and
specific resource allocations. The findings indicate that BigQuery
ML seems to be more efficient, particularly in terms of processing
time and cost for the experimented clinical dataset and regression
models, emphasizing its suitability for large-scale data processing
tasks where efficiency is essential.
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1 Introduction

Cloud computing has transformed the operational capabilities of
various sectors by offering scalable, flexible platforms that enable
efficient data processing and storage solutions. Machine Learning
(ML) and Cloud Computing have become popular and widely used
in the tech world. They both can work together to bring several
benefits to organizations as the cloud offers many ML solutions that
help manage Al applications [1]. The convergence of cloud com-
puting with ML technologies has catalyzed significant innovations,
empowering businesses, and researchers to harness sophisticated
data analysis and predictive modelling techniques that were once
beyond reach. This integration is particularly impactful in areas
in healthcare, finance, and manufacturing, where the ability to
rapidly process and analyze large datasets can result in substantial
improvements in efficiency and effectiveness [2, 3]. The on-demand
nature of utilizing cloud resources is also known to be faster and
more efficient than operating hardware and deploying and updating
localized software [4-6] with the availability of computer system
resources, particularly data storage and computing power, without
direct active management by the user. Artificial intelligence (AI)
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is one of the most transformative technologies that has been revo-
lutionizing industries and enterprises around the world. When AI
is combined with Cloud Computing, the way businesses operate,
store, and process data undergoes a remarkable revolution. Al in
cloud computing has provided various advantages to businesses
and industries, including better efficiency, cost savings, scalability,
and productivity [7]. Al has become more affordable with the use of
cloud-based AI-ML services such as cheap data storage, Al-enabled
SDKs, and built-in APIs [5, 8]. With these, organizations are moving
to hybrid or fully cloud to follow the evolving requirements of their
business needs [3, 9], utilizing ML and Al tools and applications.

Major cloud computing services include Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS) [10]. These models allow organizations to avoid upfront
infrastructure costs, focus on core business activities, and scale
resources as needed [11]. Cloud service providers such as AWS,
Microsoft Azure and Google Cloud offer a range of ML algorithms
and Al technologies to enable users to build and deploy intelligent
applications in the cloud. Such resources can be helpful for busi-
nesses and individuals who want to leverage these technologies
without having to invest in their own infrastructure.

Google Cloud Platform (GCP) exemplifies these benefits by of-
fering ML-AI options, including BigQuery ML for both data ware-
housing and data analytics and Vertex Al for advanced machine
learning. BigQuery ML is a fully managed data warehouse that
allows running fast SQL queries using the processing power of
Google’s infrastructure. It is designed to handle large datasets and
enables users to execute complex queries quickly. It provides two
services in one: both storage and analytics. BigQuery ML extends
these capabilities by allowing users to create and execute machine
learning models using SQL queries directly within the data ware-
house environment, facilitating seamless integration between data
storage and analysis [12].

Vertex Al on the other hand, is a comprehensive machine learn-
ing platform that provides tools for training and deploying machine
learning models. It supports AutoML, which automates the process
of building high-quality models, and also allows for custom model
training, offering flexibility for various machine learning tasks.
Vertex Al integrates with other GCP services, making it a robust
choice for scalable and end-to-end machine learning workflows
[13]. Recent technological advancements in cloud-based machine
learning platforms, such as Google Cloud Platform’s BigQuery ML
and Vertex Al, demonstrate a growing trend towards more inte-
grated, user-friendly solutions. These tools not only enhance the
capabilities of data scientists but also broaden the accessibility of
ML technologies to non-experts, promoting wider adoption across
industries [14]. The evolution of these platforms reflects a signifi-
cant shift towards democratizing advanced analytics, making it a
pivotal element in competitive business strategies and informed
decision-making processes.

As the complexity of machine learning applications increases,
the selection of an appropriate deployment architecture becomes
very important. Each architecture offers unique advantages and
challenges, especially concerning performance metrics such as
speed and efficiency as well as cost-efficiency on total expenses,
covering compute time, and storage. The challenges come here in
navigating these architectural choices to optimize for specific needs
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and strategic goals for individuals and businesses. The decision-
making process is critical, as the selected deployment strategy
significantly impacts the project’s success and scalability toward
minimal cost [14].

This study aims to compare and evaluate the efficiency of two
ML-AL platforms on deploying ML models on GCP: BigQuery ML
and Vertex Al Specifically, the objectives include:

o Evaluating the usability of each deployment strategy, focus-
ing on ease of documentation, management simplicity, and
the learning curve for new users.

o Assessing the performance of integrated database functions
versus dedicated machine learning services in terms of pro-
cessing time, storage usage, and training time.

e Evaluating the cost efficiency of deployment strategies, fo-
cusing on overall expenses with compute time, and storage.

The contributions of this research are threefold:

e Presenting systematic analysis through empirical experi-
ments on the performance and cost-efficiency of popular ML
deployment architectures on GCP.

e Developing a set of best practices for deploying ML models
in cloud environments to enhance operational efficiency and
user experience.

e Providing guidelines that help individuals and organizations
choose the most suitable deployment architecture, optimiz-
ing both the cost-effectiveness and functional effectiveness
of their cloud-based ML initiatives. [15, 16]

2 Related Work

This section provides a literature review of previous work on cloud-
based machine learning deployment strategies, their performance
metrics, and cost-efficiency, and identifies gaps that this research
aims to fill. Several studies have highlighted the transformative
impact of cloud computing on machine learning. These studies
emphasize the enhanced computational power, storage capabilities,
and scalability that cloud platforms offer, enabling more complex
and data-intensive machine learning models to be deployed effi-
ciently [17, 18]. Hashem et al. [3] discuss the rise of big data
analytics in cloud environments and outline the opportunities and
challenges associated with integrating machine learning technolo-
gies. Google Cloud Platform (GCP) provides a robust infrastructure
for developing and deploying Al solutions. GCP offers a compre-
hensive suite of tools and services that facilitate various stages of
Al workflows, from data preparation and model training to deploy-
ment and monitoring. GCP’s key services that support Al include
BigQuery ML, a scalable data warehouse with integrated machine
learning and analytic capabilities, and Vertex Al, a unified platform
for building, deploying, and scaling ML models [12, 13]. These plat-
forms are designed to streamline Al workflows and make advanced
analytics accessible to a wider audience. Studies have shown that
the integration of GCP with AI workflows enhances productivity,
scalability, and the ability to handle large-scale data processing
tasks [19, 20].

Deployment strategies for machine learning models on cloud
have been a critical area of research. Polyzotis et al. [14] specifically
address the data management challenges when deploying machine
learning models at scale, providing insights into the complexities
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of managing data and model lifecycle in production environments.
These insights are crucial for understanding the performance im-
plications of different deployment architectures. Additionally, the
utilization of advanced techniques such as the analytical hierarchy
process helps in evaluating various cloud platforms to determine
the most suitable one for specific data science workflows, emphasiz-
ing a structured decision-making approach. Performance metrics
and cost-efficiency are paramount in evaluating the effectiveness
of machine learning deployment strategies. Studies often focus
on specific metrics such as processing speed and resource utiliza-
tion [21, 22]. Cost-efficiency involves analyzing the total expenses
associated with compute time, and storage. Understanding both
performance and cost-efficiency helps practitioners optimize their
deployment strategies for both operational efficiency and budget
constraints [23]. While the adoption of cloud-based machine learn-
ing solutions increases, there are also security concerns. Systematic
reviews of security in cloud machine learning platforms highlight
the prevalence of attacks such as data poisoning and model theft
and emphasize the importance of robust security measures and
countermeasures to protect sensitive ML/DL models [24]. The stud-
ies that integrate security measures into the deployment strategies
are also needed, to ensure the integrity and confidentiality of the de-
ployed models. While extensive research has been conducted on the
technical aspects of deploying machine learning models, there are
not many studies that comprehensively compare the performance
and cost-efficiency of deploying ML/AI services in cloud. This gap
in literature presents an opportunity for this study to contribute
valuable insights into the decision-making processes involved in
selecting optimal deployment strategies for cloud-based machine
learning [25].

3 Methodology

The study is designed to compare and evaluate the easy-to-use,
performance, and cost-efficiency of integrated database-machine
learning functions on BigQuery ML versus dedicated machine learn-
ing services on Vertex Al in Google Cloud. BigQuery ML uses
integrated SQL-based functions on queries to create and execute
ML models while Vertex AI builds models with relatively less or
no code with dedicated Auto ML capabilities and eservices. The
selection is based on its comprehensive suite of machine learning
and big data tools. These services are well-integrated within the
GCP ecosystem, providing a robust environment for deploying,
executing, and analyzing machine learning models and big data
operations. This setup enables direct comparison in a controlled
cloud-native environment, ensuring that the findings are relevant
to current cloud-based ML deployment strategies [26]. This study
used the MIMIC-IV dataset in experiments, which is a large, pub-
licly available database of de-identified health information. The
dataset includes clinical data such as demographics, lab results,
diagnosis codes, and treatment records from a diverse patient pop-
ulation. The use of MIMIC-IV allows for a realistic simulation of
clinical workflows and decision-making processes in a healthcare
setting. It also provides a rich ground for testing and comparing the
effectiveness of BigQuery ML and Vertex Al in handling real-world,
data-intensive tasks in healthcare analytics.
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Experiments were structured to assess key performance metrics
such as easy-to-use, training time, and cost-efficiency like total ex-
penses associated with storage utilization and compute times. For
instance, using BigQuery ML and Vertex Al experiments involving
the MIMIC-IV dataset focused on tasks of patient mortality pre-
diction and disease progression modeling [27]. These experiments
were conducted under similar conditions. Performance monitoring
and cost-efficiency evaluation were facilitated by GCP’s integrated
monitoring tools, which provide real-time insights into resource
consumption, cost analysis, and system performance metrics [28].

The prepared datasets and Google’s primary tools, and services
used in this study are:

e MIMIC-IV Datasets: MIMIC-IV (Medical Information Mart
for Intensive Care IV) dataset is a comprehensive, publicly
available resource that includes de-identified health infor-
mation from hospitalized patients admitted to critical care
units. It provides detailed clinical data such as patient demo-
graphics, vital signs, laboratory test results, medications, and
diagnostic codes, making it available for healthcare research
and ML applications [29].

e BigQuery ML: Utilized for its capabilities in handling large
datasets and executing SQL-like queries for data analysis
and ML model training directly within the data warehouse
environment [30, 31]

e Vertex AI: Employed for its advanced machine learning
services that support the training and deployment of com-
plex models using AutoML, custom ML training, and ready
deployment to production environments.

¢ Google Cloud Storage: Served as the data repository for
storing and retrieving large datasets efficiently, ensuring
seamless integration with BigQuery ML and Vertex Al

o Logistic Regression: A statistical method used for binary
classification problems. It models the probability of a binary
outcome based on one or more predictor variables. The
logistic function, also known as the sigmoid function, is
used to map predicted values to probabilities, which are
then used to classify the outcome [32]. In this study, logistic
regression was used within BigQuery ML to predict patient
mortality and model disease progression. This method was
chosen for its simplicity, interpretability, and efficiency in
handling large datasets directly within the data warehouse
and analytics environment.

e Tabular Regression: AutoML in Vertex Al is a versatile tool
that supports a range of machine learning tasks, including
both classification and regression. Specifically, for tabular
data, Vertex Al can automatically handle different types of
data transformations and model selection to optimize the
machine learning pipeline. In the context of tabular regres-
sion, AutoML can be configured to solve tasks that would
traditionally be handled by logistic regression models. This
study used AutoML in Vertex Al in its analysis. While it may
use more complex algorithms under the hood, it is known
to effectively manage regression tasks, providing compa-
rable or even superior performance to logistic regression
depending on the dataset and specific requirements [33].
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Figure 1: Flowchart Comparison of Deploying ML Models.

3.1 Data Preparation and Cleaning

To prepare the MIMIC-IV dataset for our experiments, we per-
formed data cleaning aimed at creating two distinct tables: one
for predicting patient mortality and another for modeling disease
progression. Both BigQuery ML and Vertex Al used these tables to
ensure a consistent comparison, analyzing their usability, perfor-
mance, and cost-efficiency of deploying the same models between
the two services. The first mortality table integrated patient demo-
graphic information with relevant laboratory results. This involved
selecting key variables such as gender, admission type, and in-
surance details from the patient and admission records. We also
calculated average, maximum, and minimum values for specific
laboratory tests like Sodium, WBC, and Hemoglobin, which are cru-
cial indicators of patient health. This clean and integrated dataset
was used for our patient mortality prediction experiment. The
table included 312,076 rows of records, with logical and physical
sizes of 31.74 MB and 3.59 MB, respectively. The second disease-
progression table was for modeling disease progression. It included
patient demographics, lab test values over time, and outcomes such
as hospital discharge status. We calculated the patient’s age at
admission and tracked the sequence of hospital admissions and
lab test results to model the progression of diseases. This table
provides a detailed temporal view of patient health, that is essential
for understanding how diseases evolve over time. This table has
59,266,165 rows of records, with logical and physical sizes of 3.04
GB and 402.19 MB.

3.2 Model Deployment

BigQuery ML: The process of deploying models in BigQuery ML
starts by importing the dataset into BigQuery environment, which
handles large-scale data storage with querying and analytics. The
entire process involves uploading the data and ensuring it is cor-
rectly formatted for analysis. In BigQuery, the data is cleaned by
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creating training datasets and tables. This involves organizing the
data into a structured format suitable for machine learning analysis,
ensuring that all necessary fields are correctly populated, and any
irrelevant data is removed. Using SQL-like queries, models are
created and trained directly within BigQuery. This leverages Big-
Query’s powerful processing capabilities to handle large datasets
efficiently, optimizing the model parameters to the best perfor-
mance. Once the model is trained, it is used to make predictions.
These predictions can then be used for further analysis or integrated
into applications to provide insights and drive decision-making .
The corresponding flowchart is presented in Figure 1.

Vertex Al: Similar to BigQuery ML, the process in Vertex Al
begins by importing the dataset. However, in this case, the data
is prepared in BigQuery and then transferred to Vertex Al envi-
ronment for further processing. In Vertex Al, a dataset is created
from the imported data. This step includes defining the structure of
the dataset, specifying features, and ensuring that the data is ready
for training. Vertex Al offers a more flexible and powerful envi-
ronment for training machine learning models. Users can select
different training methods, specify model details, set up a feature
store, and choose various training options. Vertex Al handles the
computational aspects, optimizing the model based on the chosen
settings. After training, the model can be deployed. Deployment
involves setting up the model in a production environment where
it can make real-time predictions. The trained model can then be
used to generate predictions that are integrated into applications
or systems for real-time decision-making (Figure 1).

4 Evaluation Results

The experiments on BigQuery ML and Vertex Al utilized the MIMIC-
IV dataset focused on two aspects: patient mortality prediction and
disease progression modeling. Each experiment tested different ca-
pabilities of the machine learning services offered by BigQuery ML
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Table 1: Comparison Results on Easy-to Use.

Ease-to-Use ! BigQuery ML

Vertex Al

Documentation Excellent 4.5/ 5

The learning curve for a beginner
Integration with GCP services

Support for ML models
familiar with SQL.

Moderate learning curve. Templates &
examples available make learning easier.
Seamless integration with other GCP services.

Supports SQL-based ML models, ideal for users

Excellent 4 /5

Steeper learning curve. Extensive tools and
features require more initial effort.
Seamless integration with GCP and support
for complex ML workflows.

Supports a wide range of ML models,
including AutoML and custom models.

1 The ratings of the document and learning curve were solely based on the author’s experience during the study with the two ML services in

Google Cloud.

and Vertex Al From the results of the experiments, this study ana-
lyzed the easy-to-use, performance, and cost-efficiency of deploying
the same models, examining relevant metrics. The following sec-
tions present the results of the analysis on those metrics of the two
services.

4.1 Results on Usability Analysis

The usability analysis focused on the easy-to-use and suitability
of deploying models with two ML services, specifically from the
perspective of a beginner cloud user on ML-AI tasks. This study
was based on the two components regarding the usability: System
Effectiveness, which assesses the users’ ability to accomplish the as-
signed tasks; System Efficiency, which gauges the resources required
by the users to complete the tasks [40, 41]. For this analysis on the
System Effectiveness, we have evaluated the ease or difficulty of
learning and performing the deployment tasks as well as the quality
of documentation available on each service. In terms of System Effi-
ciency, we have taken into consideration suitable resources for their
adaptation to real-world applications. The results of this analysis
are presented in Tables 1 and 2.

Through the analysis, we have discovered that BigQuery ML
shows documents to be relatively easy to read/follow and offers a
moderate learning curve for beginner cloud users. BigQuery ML
offers a streamlined workflow for users who are familiar with SQL,
allowing them to perform machine learning tasks directly within
the environment. This reduces the learning effort and integration
complexity, making it ideal for projects requiring fast deployment
and minimal configuration. On the other hand, Vertex Al covers a
broader range of machine learning tasks and user expertise, provid-
ing a versatile environment that supports both AutoML and custom
model training.

While it offers more extensive tools and flexibility, it requires a
higher level of user engagement and expertise to optimize model
configurations and workflows, making it suitable for complex ML
tasks. For the two cases in the experiments, BigQuery ML can be
suitable for patient mortality prediction tasks as it involves data
manipulation with required quick integration with other GCP ser-
vices. Its SQL-based approach also made it particularly effective
for users with SQL experience, providing a straightforward and
cost-efficient solution on mortality prediction. Vertex Al can be
chosen for more complex machine learning tasks, such as disease
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progression modeling, where its advanced capabilities and flexibil-
ity in handling custom workflows were crucial. Despite its higher
cost and steeper learning curve, Vertex Al's comprehensive toolset
allowed for sophisticated model training and deployment, mak-
ing it ideal for scenarios demanding high accuracy and extensive
customization.

4.2 Results on Performance Analysis

The performance of the services was evaluated with the training
times of the same model deployments on the same datasets that
were deployed on BigQuery ML and Vertex AL On each service,
training times were recorded by the monitoring services on each
platform during the training. Two cases were experimented in each
service:

e Case 1: patients’ mortality prediction using the mortality
table with 312,076 rows of records, and logical and physical
sizes of 31.74 MB and 3.59 MB.

e Case 2: disease progression modeling using disease-
progression table with 59,266,165 rows of records, and logical
and physical sizes of 3.04 GB and 402.19 MB.

4.2.1 Performance on BigQuery ML. Training Time: Table 3 sum-
marizes the training times (Duration) taken for two cases in Big-
Query ML. Figures 2 and 3 illustrate their graphical results with the
training data loss, evaluation data loss, learning rate, and duration
in each iteration for both cases. For the Case 1, the total training
took 11.02 seconds only throughout 1 iteration, with no learning
rate because the amount of data is relatively small for the BigQuery
ML. Both training data loss and evaluation data loss are reported
for one iteration, showing values of 0.0256 and 0.0270 respectively.
Case 2 exhibited a different pattern with the total training time,
48.53 seconds, ranging from 13.99 to 18.25 seconds across 3 itera-
tions with the learn rate consistently increased while both training
and evaluation data loss decreased. Through this analysis, we have
discovered that BigQuery ML can handle large datasets more effi-
ciently in terms of times, with a quite short processing time in Case
1 and the consistent performance in Case 2 indicates the model’s
ability to optimize allocating recourses and process a more complex
model with larger datasets efficiently.

Model Accuracy: The results of the model deployment with
linear regression are presented in Table 4. The model’s accuracy was
evaluated using metrics such as Mean Absolute Error (MAE), Root
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Table 2: Comparison Suitability on Resources.

Feature BigQuery ML Vertex Al
Efficient Handling of Large Datasets v

Consistent and Predictable Training Time

High Recall for Identifying True Positives v

Precision in Reducing False Positives

Stable Performance Across Iterations v

Flexibility in Handling Various Data Types

Comprehensive Automated Machine Learning Workflow

Ease of Integration with SQL-based Environments v
Scalability for Complex Models v

Cost-Efficiency

A N & &

\/

Table 3: Training Times in BigQuery ML.

Iteration Training Data Loss Evaluation Data Loss Learn Rate Duration (seconds)
Case 1 0 0.0256 0.0270 / 11.02
Total: 11.02
Case 2 0 0.0752 0.0753 0.2 16.29
1 0.0721 0.0728 0.4 18.25
2 0.0711 0.0722 0.4 13.99
Total: 48.53
Loss Duration (seconds)

0.02| ¥ Evaluation loss: 0.027

=

0
= Training loss: 0.026

Duration (seconds)
o

Iteration Iteration

Figure 2: Graph Representation for Case 1 in BigQuery ML.

Loss Learn Rate Duration (seconds)

w

Leam rate

0 1 2

Iteration Iteration Iteration

Figure 3: Graph Representation for Case 2 in BigQuery ML.
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Table 4: Model Accuracy.

Case 1 Case 2

Metric BigQuery ML Vertex Al BigQuery ML Vertex Al
Mean Absolute Error (MAE) 0.0542 0.049 0.1532 0.106
Root Mean Squared Error (RMSE) 0.164 0.154 0.2687 0.231
R-squared 0.0285 0.093 0.0682 0.318

Table 5: Training Details in Vertex AL
Details Case 1 Case 2
Training time 2 hr 2 min 2 hr 9 min
Data split 80/10/10 80/10/10
(Randomly assigned)
Algorithm AutoML AutoML
Objective Tabular regression Tabular regression

Mean Squared Error (RMSE), and R-squared. For Case 1, the Mean
Absolute Error (MAE) is 0.0542, indicating a low average magnitude
of errors. The Root Mean Squared Error (RMSE) is 0.164, showing
the average magnitude of errors in a more sensitive way to larger
errors. The R-squared value of 0.0285 indicates that only a small
portion of the variance in the dependent variable is predictable from
the independent variables, suggesting the model could be further
improved. For Case 2, the Mean Absolute Error (MAE) is 0.1532,
indicating a higher average magnitude of errors compared to Case
1. The Root Mean Squared Error (RMSE) is 0.2687, reflecting the
errors’ average magnitude in predicting the continuous outcome.
The R-squared value of 0.0682 suggests that the model explains
a slightly higher proportion of the variance than in Case 1 but
still indicates room for improvement. Overall, the results indicate
that while the model can make predictions with a certain degree
of accuracy, there are significant opportunities for refining the
model to improve its predictive performance, as evidenced by the
relatively low R-squared values in both cases.

4.2.2  Performance on Vertex Al. Training Time: Vertex Al used
AutoML features in its model training and deployment, focusing on
regression metrics to evaluate prediction accuracy. Tabular regres-
sion was used in both experiments, aiming to predict continuous
outcomes based on the prepared tabular data for the Vertex Al
environment. This aligns with the clinical data from the MIMIC-IV
dataset, which includes numerous numerical and categorical vari-
ables pertinent to patient outcomes. We observed that the model’s
results are structured differently, emphasizing error metrics which
are critical for continuous data prediction. For both Cases, the train-
ing times were similar, with Case 1 taking 2 hours and 2 minutes,
and Case 2 taking 2 hours and 9 minutes (Table 5) despite the size
difference on their datasets, utilizing AutoML for tabular regression
with an 80/10/10 data split. The consistent training times and ro-
bust data handling capabilities may implicate Vertex Al’s efficiency
and reliability in managing large-scale machine learning tasks. For
showing the processing capabilities, Vertex Al took longer time
than running those on BigQuery.
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Model Accuracy: Vertex Al reporting provided the metrics of
MAE (0.049) and RMSE (0.154), indicating moderate accuracy in the
model’s prediction for Case 1, with errors suggesting deviations
from actual outcomes. The low R-squared value of 0.093 indicates
that the model leaves a significant amount of variance unexplained.
This shows potential areas for model refinement to better capture
the complexities of the data or possibly the inclusion of more pre-
dictive features. The model displayed improved predictive accuracy
with an MAE of 0.106 and RMSE of 0.231 for Case 2, suggesting
reasonably good error margins given the complexity of the task.
However, the low R-squared value of 0.318 may show a significant
predictive capability given the multifactorial nature of disease pro-
gression (Table 4). Through the analysis on feature importance on
how important each feature is for making a prediction (Figure 4),
we observed the different aspects of patient data that are critical
for mortality prediction and disease progression modeling. In Case
1, there were several key variables that significantly influenced
the model’s predictions for patient mortality. The minimum and
maximum lab values are the most critical features that were most
influential for predicting patient mortality, while age, admission
sequence, and specific lab types were significantly contributing
for making a prediction in modeling disease progression. These
insights can help healthcare providers focus on the most relevant
factors when assessing patient risk and tailoring interventions.

4.3 Results on Cost-Efficiency Analysis

In the analysis of cost-efficiency, the resource utilization with the
usage of storage and node was evaluated. BigQuery ML leverages
the power of Google Cloud’s serverless data warehouse to enable
ML model training directly within the BigQuery environment. This
approach allows users to run machine learning algorithms using
SQL queries without the need to manage any underlying infras-
tructure. The serverless nature of BigQuery automatically scales
compute resources based on the query complexity and dataset size.
This setup is particularly advantageous for users who are familiar
with SQL, as it integrates seamlessly with existing data analysis
workflows. In this study, BigQuery ML was used to train models
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Figure 4: Feature Importance on Vertex Al

for patient mortality prediction, utilizing its robust data handling
and processing capabilities to perform these tasks efficiently and
effectively [9]. Vertex Al automatically handles data preparation,
model training, and hyperparameter. Vertex Al utilized AutoML
for training, allocating resources based on the specified node hours.
Specifically, for tabular data models, Vertex Al leverages virtual
machines (VMs) optimized for machine learning tasks. This plat-
form provides options to select the type of machine, including
general-purpose, compute-optimized, and memory-optimized VMs
[34]. For the experiments set for this study, each training run was
allocated 1 node/hour, and the early stopping feature enabled to
optimize cost-efficiency.

4.3.1 Cost on BigQuery ML. To calculate the cost involving the
experiments using BigQuery, both storage and query utilizations
were considered. The cost of storage utilization is based on the
amount of data stored in the BigQuery data warehouse, while the
cost of query processing is based on the amount of data processed
during the execution of queries on the model deployment. BigQuery
charges approximately $0.02 per GB for storage per month and
approximately $6.25 per TB of data processed [35]. For Case 1, we
stored 0.031 GB of data, resulting in a storage cost of $0.00062 per
month (0.031 GB x $0.02/GB/month). The query processed 0.00003
TB of data, resulting in a query cost of $0.000189 (0.00003 TB x
$6.25/TB). Combining the storage and query costs, the total cost for
Case 11s $0.000251. For Case 2, we stored 3.04 GB of data, resulting
in a storage cost of $0.0608 per month (3.04 GB x $0.02/GB/month).
The query processed 0.00297 TB of data, resulting in a query cost
of $0.018554 (0.00297 TB x $6.25/TB). Combining these costs, the
total cost for Case 2 is $0.079354. The total cost charged for each
case is shown in Table 7 based on the storage utilization in each
case in Table 6.

BigQuery ML seems ideal for cost-sensitive projects and smaller
datasets due to its efficient resource management and lower overall
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Table 6: Storage Utilization Involving Experiments on Big-
Query ML.

Metric Case 1 Case 2
Total logical bytes 31.74 MB 3.04 GB
Total physical bytes 3.59 MB 402.19 MB
Number of rows 312,076 59,266,165

Table 7: Total Cost Involving Experiments on BigQuery ML.

Metric Case 1 Case 2
Storage Cost (USD) $0.00062/month $0.0608/month
Query Cost (USD) $0.000189 $0.018554
Total Cost (USD) $0.000251 $0.079354

costs. The cost analysis reveals that using BigQuery ML for both
cases is highly cost-efficient, even with the significant difference
in data sizes. For Case 1, the total monthly cost is only $0.000814,
making it an extremely cost-efficient option for smaller datasets.
Case 2, which involved a much larger dataset, has a total monthly
cost of $0.079354. This demonstrates that BigQuery ML can handle
large-scale data processing at a relatively low cost. These cost
efficiencies highlight BigQuery ML’s potential for scalable machine
learning applications, providing cost-efficient solutions for both
small and large datasets. When planning and budgeting for machine
learning projects on cloud platforms, by leveraging BigQuery ML,
individuals and organizations can optimize their expenses while
maintaining high performance and scalability in their machine
learning workflows.
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Table 8: Total Cost Involving Experiments on Vertex Al.

Metric Case 1 Case 2

Budget (original) 1 node hour 1 node hour
Algorithm AutoML AutoML

Objective Tabular regression Tabular regression
Training Time (hours) 2.033 hours 2.15 hours

Cost per Node Hour (USD) $21.252 $21.252

Total Cost (USD) $21.25 $21.25

4.3.2 Cost on Vertex Al. Vertex Al's AutoML typically charges
for training based on the node hours used. As of the most recent
pricing scheme, the cost is approximately $21.252 per node hour
for training tabular data [34]. For Case 1, the training time was
2.033 hours. Multiplying this by the cost per node hour, we get
$42.98 (2.033 hours x $21.252/node hour). For Case 2, the training
time was 2.15 hours. Multiplying this by the cost per node hour,
we get $45.69 (2.15 hours x $21.252/node hour). Vertex Al offers
advanced machine learning tools and flexibility but incurs higher
costs due to the use of AutoML and specific resource allocations.
Early stopping can optimize training duration and cost-efficiency
by preventing overtraining and unnecessary computation, ensur-
ing that resources are used more efficiently without compromising
model performance. With this scheme, the total cost involving the
experiments on Vertex Al is shown in Table 8. Vertex Al, while
offering advanced machine learning tools and flexibility, incurred
higher costs of $21.25 each case due to the use of AutoML and spe-
cific resource allocations. The cost reduction in both experiments
due to early stopping highlights the feature’s effectiveness in opti-
mizing training duration and cost-efficiency [42]. By preventing
overtraining and unnecessary computation, early stopping can en-
sure that resources are used more efficiently, reducing overall costs
without compromising model performance [42]. This makes Vertex
Al a cost-effective choice for machine learning tasks, especially
when combined with features that optimize resource usage.

5 Discussion and Limitation

The findings of the experiments provided the implications of choos-
ing deployment strategies between BigQuery ML and Vertex Al,
based on their usability, performance and cost-efficiency. BigQuery
ML’s seamless integration and simple user interface make it suit-
able for environments where rapid data processing and ease of use
are needed and ideal for users who already know SQL [36]. Vertex
AT’s flexibility and extensive toolsets offer advanced capabilities for
complex model training, making it better suited for complex ma-
chine learning tasks where customization is key [36]. The decision
on these platforms should consider the specific requirements of the
application, such as the need for rapid results or the capability for
detailed model tuning, which can significantly impact outcomes
and operational efficiency [36]. While BigQuery ML remains the
more cost-efficient with these specific scenarios, leveraging features
like early stopping can enhance cost-efficiency in Vertex Al [42].
Our research has led to the development of best practices for
deploying machine learning models in cloud environments. These
practices are derived from our experimental findings and aim to
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enhance operational efficiency and user experience. It is crucial to
ensure that the machine learning platform chosen integrates well
with existing data processing workflows. For instance, BigQuery
ML is advantageous for users familiar with SQL and existing SQL-
based workflows, facilitating a smoother transition and quicker
deployment. Regularly monitoring and optimizing resource usage,
including storage and compute resources, helps avoid unnecessary
costs. Employing practices such as early stopping in Vertex Al
can significantly reduce costs without compromising model per-
formance, as our experiments demonstrated [43]. Additionally,
leveraging comprehensive documentation and training resources
provided by the cloud platform can minimize the learning curve.
BigQuery ML offers extensive templates and examples that make
it easier for beginners to get started, thereby reducing the time
and effort required to deploy machine learning models effectively
[44]. These best practices ensure that organizations can efficiently
deploy and manage machine learning models, maximizing both
performance and cost-effectiveness.

To assist organizations in selecting the most suitable deployment
architecture, we provide guidelines based on our comparative anal-
ysis of BigQuery ML and Vertex AL It is important to assess the
specific needs of the project, such as the required level of model
customization, data size, and the expertise of the team. For projects
requiring quick iterations and minimal configuration, BigQuery ML
is suitable. For more complex tasks requiring advanced customiza-
tion, Vertex Al is preferable. Cost implications of each platform
must also be considered. BigQuery ML is highly cost-effective for
SQL-intensive projects, whereas Vertex Al, despite its higher cost,
offers advanced capabilities suitable for complex machine learn-
ing workflows. Understanding these cost dynamics is crucial for
budgeting and resource allocation. Furthermore, evaluating the per-
formance and scalability of the platform in handling large datasets
is essential. BigQuery ML demonstrated efficiency in processing
large-scale data with reduced subsequent iteration times, while
Vertex Al provided consistent performance across iterations but at
a higher computational cost [44]. This insight helps in choosing
a platform that aligns with the scale and performance needs of
the project [45]. By following these guidelines, organizations can
make informed decisions on their cloud-based machine learning de-
ployment strategies, ensuring optimal alignment with their project
goals and resource constraints.

This study has some limitations such as potential biases from
the MIMIC-IV dataset, which may not fully represent all patient
demographics or clinical scenarios [36]. The ratings for documen-
tation and learning curve presented in Table 1, are derived solely
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from the author’s experience with the two ML-AI cloud services.
Thus, these ratings may not necessarily reflect the objective views
or opinions of others. The comparison of deploying models in Big-
Query ML and Vertex Al reveals the challenges in directly applying
and analyzing ML algorithms due to their different operational
frameworks and data handling capabilities. For instance, because
of these differences, the running times on the performance analysis
and cost-efficiency measures may not be objectives.

6 Conclusion and Future Work

In this study, we conducted experiments to compare and analyze
the usability, performance, and cost-efficiency of deploying ma-
chine learning models on Google’s two ML-AI platforms: BigQuery
ML and Vertex Al The experiments used the MIMIC-IV dataset of
hospitalized patients for two model deployments involving regres-
sion in each platform: predicting patient mortality and modeling
disease progression. The usability analysis showed that BigQuery
ML provides documents that are easy to follow, presenting a mod-
erate learning curve for beginner cloud users. While Vertex Al
offers more flexible and extensive services, it requires a deeper level
of user engagement and expertise during model configurations,
making it more suitable for complex ML tasks. The results also
demonstrated that BigQuery ML offers a highly cost-effective so-
lution with efficient resource management and quick deployment
capabilities, particularly suitable for SQL-savvy users and large-
scale data analytics tasks. Vertex Al, with its advanced AutoML and
custom model training options, provided a flexible and robust envi-
ronment for complex machine learning workflows, but at a higher
cost. The cost analysis can be further studied as their document
suggests leveraging early stopping to reduce overall cost on Vertex
Al [42]. Though, Vertex Al stands out for environments where flex-
ibility and extensive customization are necessary, accommodating
a wider range of complex machine learning tasks.

Overall, the performance analysis highlighted the strengths and
limitations of both BigQuery ML and Vertex Al in handling medical
datasets specifically. BigQuery ML demonstrated higher initial pro-
cessing time but maintained efficiency over subsequent iterations,
making it more resource and cost-efficient in the long run. Vertex
Al while consistent and stable, incurred higher costs due to longer
training times and specific resource allocations. The findings indi-
cate that BigQuery ML proved to be more efficient, particularly in
terms of processing time and cost, emphasizing its suitability for
large-scale data processing tasks where efficiency is crucial.

These findings highlight the importance of selecting the appropri-
ate platform based on specific task requirements, user expertise, and
budget constraints, when optimizing both performance and cost-
efficiency in cloud-based machine learning deployments. For cloud
engineers and data scientists selecting deployment methods, it’s
crucial to align the choice of ML-AL platform with specific project
requirements and team capabilities. They may consider BigQuery
ML for projects that require quick iterations and are SQL-intensive,
but Vertex Al when projects demand high customization and are
managed by teams with advanced machine learning expertise.

While this study specifically focused on the performance and cost
of deploying models in Google’s ML-AI platforms, future studies
will explore the integration of ML-AI with emerging technologies
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and its impact on deployment strategies in Cloud. Research can
focus on:

o Developing adaptive models that can continuously learn and
evolve without requiring frequent retraining.

e Enhancing model robustness to changes in data patterns,
known as concept drift, remains a significant challenge in
dynamic environments.

o Exploring the effectiveness of federated learning in health-
care to enhance privacy and data security while utilizing
distributed data sources [39].

These directions could help in overcoming current limitations
and pushing the boundaries of what is achievable with ML deploy-
ments in cloud environments. Furthermore, exploring the impact
of Al in real-world settings will help bridge the gap between model
performance and practical usability, ensuring that ML deployments
deliver benefits in operational settings [39].
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