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—— Abstract

During a natural disaster such as flooding, the failure of a single asset in the complex and inter-

connected web of critical urban infrastructure can trigger a cascade of failures within and across
multiple systems with potentially life-threatening consequences. To help emergency management
effectively and efficiently assess such failures, we design the Utility Connection Ontology Design
Pattern to represent utility services and model connections within and across those services. The
pattern is encoded as an OWL ontology and instantiated with utility data in a geospatial knowledge
graph. We demonstrate how it facilitates reasoning to identify cascading service failures due to
flooding for producing maps and other summaries for situational awareness.
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1 Introduction

The complex web of critical infrastructure that sustains urban environments epitomizes
interconnectedness. From the provisioning of essential utilities like electricity and drinking
water to vital services such as healthcare and transportation, the smooth operation of each
relies upon a network of physical assets interdependent on one another. For instance, the
functionality of a city’s drinking water system hinges on electricity to power pumps and
filtration systems, while its public transportation network requires electricity and operational
communication systems for traffic management and safety protocols. Similarly, healthcare
facilities rely on a steady supply of electricity, water, and effective communication systems.

However, this interconnectedness exposes urban areas to significant vulnerability during
natural disasters. A single failure in any infrastructure asset, triggered by hurricane-force
winds or by accompanying flooding, can trigger a domino effect that results in cascading
failures across multiple systems [3]. These cascading failures can extend far beyond the initial
point of disruption and amplify the overall impact of the original failure. The repercussions
of such failures reverberate throughout communities, affecting residents and businesses alike,
even those seemingly untouched by the initial calamity.

1.1 Use Case Description

A flooding event may disable an electrical substation causing power outages that impact
water supply assets (e.g., pumping stations), wastewater plants, or telecommunications
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infrastructure, which in turn may impact other infrastructure and essential services, such
as medical or food services. Effective emergency management hinges on access to accurate
information about the magnitude and ramifications of the flood. Emergency managers need
to know which infrastructure assets, buildings and facilities have lost which services and
for what direct or indirect reasons to effectively deploy limited resources where the greatest
threats to human life and welfare are.

Likewise, utility providers will be interested in the hidden root causes of outages. A
hospital may have lost water service but not electric service. However, the outage may be
caused because water assets elsewhere, such as pumps, have lost their electric service. The
root cause of the hospital’s water issue is then an electrical one.

The information that emergency and utility managers need to tailor their responses
encompasses details such as (1) the locations where service disruptions occur, (2) the types
of services affected, (3) the direct and indirect impacts on individuals and communities, and
(4) the root causes behind specific facility or service outages. Armed with this comprehensive
understanding, emergency responders can strategically allocate resources, prioritize rescue
and relief efforts, and expedite repairs, focusing on restoring the most critical services and
addressing the areas most severely affected by the flooding.

1.2 Objectives and Contributions

The work presented here is part of a larger effort to construct the Urban Flooding Open
Knowledge Network (UF-OKN) [11], which includes a knowledge graph and decision support
tools to aid emergency management before, during and after natural disasters. Our specific
aim here is to develop and test an ontological model that (1) captures the dependencies
between different types of utility assets and services and their users and that (2) enables
semantic reasoning to quickly answer key questions about cascading failures and their impacts
in a flood event to help direct and prioritize emergency response and restoration efforts with
regards to service outages.

A central contribution is the Utility Connection Pattern, an Ontology Design Pattern
(cf. [2,8,9]) for representing different types of “utility features” and other kinds of geospatial
features in a network-like dependency structure. We implement the pattern as an OWL
ontology and test it in a geospatial knowledge graph specifically for utilities and services
essential to urban environments, such as water, energy, communication and medical services
using data from Hamilton County, Ohio. We develop SPARQL graph query patterns to
demonstrate how to identify and summarize cascading flooding impacts and root causes
from simple flood information — akin to a flood map — on demand using the ontology’s
semantics. The results and visualizations thereof can be recomputed in seconds when new
flood information becomes available without changes to the ontology, graph, queries or
algorithms.

2 Conceptualization: The Utility Connection Pattern

The proposed Utility Connection Pattern, shown in Figure 1, is built around three concepts: (1)
geospatial features (FeatureOrRegionAtRisk) including infrastructure assets and their service
areas as well as features that rely on them, (2) the types of utilities and other services of interest
(Utility Type), and (3) UtilityService as the class that establishes connections between two or
more features or regions. The Turtle encoding of the resulting OWL ontology is available
from https://github.com/UFOKN/Knowledge-Graph/tree/master/ontologies/v2.1.
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Figure 1 The core concepts of the Utility Connection Pattern and their relationships. Rectangles
denote classes and rounded entities individuals. Triangular arrows depict subclass relations, for
example UtilityAsset is a subclass of FeatureAtRisk, meaning that every UtilityAsset is also a Featur-
eAtRisk. All other arrows — for example serves between UtilityService and FeatureOrRegionAtRisk —
denote object properties, which are used in OWL to encode binary relations. The dashed arrows are
semantically inferred (defined) relations, e.g. the servesFeature object property is the specialization
of the serves property where the object is a FeatureAtRisk.

FeatureOrRegionAtRisk encompasses individual features (Feature AtRisk), including
physical utility assets (UtilityAsset) and features that rely on but do not provision services,
and UtilityServiceAreas that represent entire spatial regions served by a particular asset.

Utility Asset represents physical assets, such as entire buildings (e.g., hospitals, grocery
stores), structures (e.g., electric substation, cell phone towers), or specific equipment (e.g.,
communication servers) used in the generation, storage and distribution of services essential
to the functioning of urban systems. Each UtilityAsset is of one particular Utility Type as
exemplified on the right of Fig. 1. The ontology allows modeling utility assets at much greater
levels of detail — down to individual wires or pipes — where such information is available.

Utility Service represents the connection between an asset providing a particular kind
of service, such as drinking water, wastewater, energy, telecommunication, medical, food or
transportation services, and a set of users that use and depend on that service. Each instance
links one or more provider assets, such as an electric substation or cellphone tower, to one
or multiple, possibly thousands, of features that rely on it. The providesUtilityService and
serves relations link the UtilityService instance to the providers and consumers, respectively.
Note that users of particular services do not necessarily rely on those particular services, but
rather on certain types of service. For example a residential building may require electric,
water, telecommunication and sewer services, while an electric asset may require no or only
telecommunication services. This is captured by the requires Utility Type relationship between
Feature AtRisks and Utility Types.

Utility Providers represent the legal entities (e.g., companies) that operate services
(linked to UtilityServices via provided ByProvider) but are not further discussed here.

Utility Service Areas describe an entire spatial region served by a particular asset,
thus aggregating a number of features and not having to link individual features to the
UtilityService instance. The service area might be an entire city or a neighborhood or be
defined by a distance from the asset, such as a cellphone tower, providing the service. The
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relation serves is specialized into servesFeature and servesArea as shown in Figure 1 to
distinguish whether individual features or an area is served by a particular service.

Inferred Relationships In addition to the relationships shown by solid lines in Fig. 1,
additional relationships can be inferred to (1) calculate indirect dependence and, thus,
cascading outages and to (2) distinguish between outages that are critical or not for the
operation of assets and other features’. We add a direct, node-to-node (N2N) relationship
assetServes as the composition of providesUtilityService with serves. assetServesTC is defined
as its transitive version that captures also indirect service dependence, with assetServes
treated as a specialized subproperty thereof. These two relations are automatically populated
as instructed by the following axioms: first, assetServes is declared as a subproperty, i.e.
a more specialized case, of the more general transitive version assetServesTC. Further,
assetServes is declared as a subproperty of any chain of providesUtilityService and serves,
meaning that if some asset A provides a utility service B and that service serves some
Feature AtRisk or UtilityServiceArea C, then the asset A assetServes C. Semantically, the
property chain is also a subproperty of assetServes, but this direction is not needed and
cannot be expressed in OWL for tractability reasons. These kinds of axioms permit leveraging
OWL’s semantic inferencing capabilities to simplify querying and reasoning about cascading
impacts by end users.

ufokn_c:assetServes rdfs:subProperty0f ufokn_c:assetServesTC ;
owl:propertyChainAxiom (ufokn_c:providesUtilityService ufokn_c:serves)
ufokn_c:assetServesTC rdf:type owl:TransitiveProperty .

However, the transitive propagation of outages can go too far when an asset serves an
entire service area. Then, every feature inside that area would be presumed to be impacted
as well. But not all features therein actually depend on all services: e.g., if there is a drinking
water outage, it may not actually affect electric or communication assets because those do
not rely on a drinking water supply. For that reason, we distinguish assetCriticallyServes as
when an asset both serves (assetServes) and is required by another feature. This requirement
is modeled using the relation assetOfTypeRequiredBy, which itself chains assetOfUtility Type —
a specific case of ofUtility Type where the subject is a utility asset — and wutility Type Required By.
We again introduce assetCriticallyServesTC' as the transitive version of assetCriticallyServes.

ufokn_c:assetCriticallyServes rdfs:subProperty0f ufokn_c:assetServes ,
ufokn_c:asset0fTypeRequiredBy ,
ufokn_c:assetCriticallyServesTC .

ufokn_c:assetCriticallyServesTC rdf:type owl:TransitiveProperty .

Because OWL does not provide a construct for defining a relation to be precisely the
intersection of two (or more) relations, which is a stronger constraint than the relation being
declared as a subproperty of each of the two relations above, we instruct our graph database
(GraphDB) to infer assetCriticallyServes relations using an inference rule:

x <ufokn_c:assetServes> y
x <ufokn_c:asset0OfTypeRequiredBy> y

x <ufokn_c:assetCriticallyServes> y

! Following common practice, all relationships are modeled in the ontology as what are called object
properties in the OWL language: https://www.w3.org/TR/owl-overview.
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3 Implementation: Graph Construction

We test our ontology and graph using data about Hamilton County, Ohio, which includes the
City of Cincinnati and is bordered by the Ohio River to the south. Many of its tributaries flow
through the county and it has experienced frequent flooding in the past. All geospatial data
comes from open sources like OpenStreetMaps (OSM: www.openstreetmap.org), municipal
government websites, and the Federal Emergency Management Agency (FEMA).

Features: We use key:value pairs to extract features for three utility types from OSM:
Power stations are used as electric utility assets, water towers as water utility assets, and
hospitals as medical utility assets. We use schools and similar facilities (e.g., childcare,
school, and college) as our non-utility end users®. Overall, our test data contains ~150 utility
assets and ~600 non-utility features. Electric and water service areas are modeled using
Voronoi polygons, while medical service areas are modeled using municipal divisions (outside
Cincinnati proper) and Cincinnati Statistical Neighborhood Approximations®.

After creating an initial knowledge graph from the utility and feature data, it is necessary
to run a pre-processing query that converts utility service areas to node-to-node (N2N)
service connections because the knowledge graph system does not support property chains or
rules that involve GeoSPARQL relations such as sfWithin.

Flood data: Our sample flood areas are derived from FEMA National Flood Hazard
Layer (NFHL) data*. The FEMA flood plain was spatially buffered to ensure a sufficient
number of assets were actually affected in our testing. The flood data is dynamic in that
it includes minimum and maximum flood levels and associated times. If the flood level at

an asset exceeds its critical depth, an outage of the associated utility service is presumed.

Flood data can be added and removed from the knowledge graph as needed. When data is
added, a pre-processing query determines which assets have failed due to the flood level at
their location; i.e., are root cause failures.

4 Results: Graph Querying and Visualization

As previously noted, emergency and utility managers need to know where service disruptions
occur, which services are affected, how individuals and communities are impacted, and why
services are out — the root causes. To produce suitable maps and other summaries we use
simple yet flexible graph queries that rely on the transitivity and the composition of the
dependencies between assets and impacted features as outlined in Listing 1°: Each flooded
UtilityAsset is queried for all features it critically serves and thus are also impacted. It can
be refined to focus on outages among specific classes of assets (e.g., Electric UtilityAsset).

SELECT +* WHERE {

?rootAsset rdf:type ufokn_c: UtilityAsset ;
ufokn_ fl:hasCriticalFloodObservation 7critFloodObs ;
ufokn c:assetCriticallyServesTC “?utilityAsset . }

Listing 1 The core of our SPARQL queries (namespace declarations are omitted for brevity) for
identifying root cause failures (?rootAsset: a UtilityAsset with a CriticalFloodObservation) and any
(transitively) impacted assets (?utilityAsset)

The choice is based on the fact that such facilities often serve as emergency shelters.
https://www.cincinnati-oh.gov/planning/maps-and-data/frequently-requested-maps/
https://www.fema.gov/flood-maps/national-flood-hazard-layer

This is a drastically simplified version; our full queries are available from: https://github.com/UFOKN/
Knowledge-Graph/tree/master/ontologies/sparql

[SAEEE VI V]
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(a) Summary Data (b) Root Cause Map

Figure 2 Summarization of root causes: (a) top: total impact in the area; bottom: summary
of the root cause assets of each service type with the largest number of affected features; (b) all
flooded assets that are the root causes of all outages. Electric assets are yellow, water assets blue,
and medical services red. The marker size is proportional to the number of features affected by
cascades originating there.

More elaborate queries can follow all features that the impacted assets serve, aggregate
and order them as desired, and retrieve additional geospatial and other attributes to produce
summaries and maps like those shown in Figures 2 and 3.

For example, the outages can be aggregated by their root causes to produce the map in
Figure 2b. Each of these root causes are assets that are flooded and thus at the beginning of
any failure cascades. They explain why other assets and features have lost services. The
size of the dots visualizes the urgency of each root outage in terms of the total number of
critically impacted features. The summary in Figure 2a provides even more detail. The
top gives a sense of the scale of the overall impact on communities and people (e.g., what
percentage of residences are impacted). The bottom summarizes for each utility type the
cascade with the largest impact. Another query is used to display an individual cascade as
shown in Figure 3 to provide a more detailed view of its spatial propagation. The requisite
queries simultaneously retrieve additional data including identifiers, flood data, and locations.

Our figures are screenshots of interactive maps automatically produced from the knowledge
graph using Python scripts and the SPARQLWrapper and Folium libraries. They can be
dynamically updated by rerunning the graph queries. The maps contain multiple layers
(e.g., one for each cascade) that users can turn on and off. They provide additional details
via tooltips and popups that could incorporate contextual data, including demographic or
socioeconomic data, to offer deeper insights. The maps are shareable as html pages (see
https://github.com/UFOKN/Knowledge-Graph/tree/master/interactive-maps).
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Figure 3 Visualization of a single cascade: A flooded electric asset is the root cause of its service
area outage (shown as a yellow polygon). A water asset (blue dot) in that service area is impacted

Mount Lookagit ; L]

L nwood -

as well, which in turn affects its service area (blue polygon). That water outage impacts medical
facilities and their service areas (shown as red dots and polygons) as well as end-use features, such
as schools (black dots), that have lost at least one type but possibly multiple types of services. The
indirectly impacted features outside the impacted electric service area do not experience a power
outage but may have lost water or medical service.

5 Related Work and Discussion

Our work leverages prior work on interdependencies within urban systems and on geospatial
knowledge graphs. The various interdependencies between different kinds of urban systems
have been analyzed and categorized comprehensively in, e.g., [3,4,12]. In our work, we do
not try to incorporate and model all nuances and complexities of these interdependencies but
rather choose a simpler model that focuses on what [4] describes as necessity (i.e., critical
dependence) between physical assets to test and demonstrate reasoning over dependencies

more generally as a means to identify the cascading impacts in an emergency. In the past,

modeling and simulation [4,12] were the main computational methods for analyzing and
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tracing infrastructure dependencies while using explicit semantics in the form of an ontology
is new. Du et al’s work [7] is most similar in that they also employ an ontology for analysis
of the propagation of damages in urban environments. However, their approach differs in
multiple ways: it relies on a probabilistic model to infer, weigh, and propagate factors;
it focuses on environmental factors and models dependencies between them rather than
between geospatial features; and thus, it does not spatially propagate cascading impacts
across locations.

Geospatial knowledge graphs, such as [1,5,6,10,13], have gained popularity for sharing and
linking geospatial information using knowledge graph technology. However, the focus has been
on joint retrieval across datasets, which can be accomplished using shallow semantics, such
as unique identifiers (IRIs) and uniform class and property names, following Jim Hendler’s
motto “a little semantics goes a long way”. But these graphs are treated primarily as (graph)
databases with semantic annotation in that the graphs often do not add much non-trivial
inferred knowledge obtained via semantic reasoning. Thus, their utility depends very much
on the users’ ability to construct complex queries. In contrast, we have harnessed OWL
capabilities more fully to facilitate complex and intricate reasoning (using the OWL-RL
profile) that may remain hidden and still benefits users who may not be experts in ontologies
without them having to tinker with it. Our ontology’s advanced semantics enable the graph
to perform cascading reasoning on dependency networks that transcends conventional spatial
operations (e.g., intersections or distance searches) while also simplifying the queries. We
have demonstrated that this requires remarkably little extra but powerful semantics typically
underutilized in ontologies. Through a use case implementation, we have validated that
this is not merely a theoretical option but that it tangibly enhances and simplifies decision
support tools. Importantly, the idea of dependencies and cascades is not restricted to utilities
but is much more broadly applicable to other types of services and supply chains. Also, we
have only scratched the surface with respect to the kind of questions that can leverage the
semantic connections.

The presented cascades are powerful but still simplify the ground truth. For that reason,
issues such as temporal delays in an outage (e.g., the availability of a battery backup),
redundancy (e.g., two electric substations provisioning power to an area or specific facility
or the availability of backup options such as a generator), alternatives (e.g., a functioning
urgent care facility instead of a hospital with limited services), and partial outages (e.g.,
reduced service levels such as a cell phone tower operating on backup power being limited in
the number of connections it can support) have been left for future work.
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