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In this paper, we investigated the dynamics of the interaction between Microcystis aeruginosa
and filter-feeding fish in a new aquatic ecological model and considered the effects of aggregation
and harvesting and focused on studying the critical threshold conditions through the analysis
of saddle-node bifurcation, Hopf bifurcation, and Bogdanov—Takens bifurcation. We also con-
ducted numerical simulations to illustrate our findings and provided biological interpretations.
The results obtained indicate that the aggregation effect or harvesting can disrupt the coexis-
tence of Microcystis aeruginosa and filter-feeding fish. The filter-feeding fish population may go
extinct while the Microcystis aeruginosa population could survive. We identified the importance
of finding an appropriate timing for harvesting Microcystis aeruginosa in order to promote the
growth of the filter-feeding fish population. This optimal timing may be influenced by the carry-
ing capacity of Microcystis aeruginosa. Taken together, our study sheds light on the dynamics of
Microcystis aeruginosa and filter-feeding fish in an aquatic ecosystem, highlighting the critical
role of aggregation, harvesting, and timing in determining the coexistence and survival of these
species.
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1. Introduction

In recent years, the severity of algal blooms has
increased due to factors such as global warming,
elevated atmospheric carbon dioxide levels, water
eutrophication, and other environmental changes.
Algal blooms have emerged as a significant global
environmental concern. Biological control has been
proved to be the most effective method for sup-
pressing algal blooms. This approach leverages the
ecological relationships of predation among different
organisms in the ecosystem, specifically using filter-
feeding fish to filter and consume algae, thereby
improving the structure of algal populations and
reducing bloom concentrations. Introducing filter-
feeding fish is an economical, efficient, and rational
solution.

One of the primary causes of algal blooms is
the aggregation and migration of algal populations
within water bodies. In natural lakes and rivers,
Microcystis often exists in aggregated forms. There
are two primary mechanisms for colony formation:
aggregation of individual cells into gel colonies and
the division and colonization of single cells, with the
resulting daughter cells effectively aggregating to
form a population. In complex water environments,
these two aggregation modes coexist. Consequently,
Microcystis continuously accumulates, undergoes
vertical migration, rises to the lake surface to form
algal aggregates, and experiences repeated accumu-
lation and migration under the influence of converg-
ing or diverging lake currents, eventually resulting
in algal blooms. Therefore, studying the dynamic
behavior of Microcystis is essential.

After extensive literature review, we observed a
relative scarcity of research on mathematical mod-
els concerning the aggregation of algae in aquatic
ecosystems. Some researchers have explored the
influence of algal aggregation on algal blooms and
the impact of filter-feeding fish on algae from the
perspectives of aquatic ecology and populatlon sci-

et al. - ; Tanq et _al.,
Kolmakov,, 201 4 Huang Qt al. ﬂ2£)23 conducted

a study on the effects of various growth condi-
tions, such as water temperature, pH value, light,
and nutrients, on the formation of trihalomethanes
(THMFPs) in four components of Microcystis
aeruginosa: hydrophilic extracellular organic mat-
ter (HPI-EOM), hydrophobic EOM (HPO-EOM),

hydrophilic intracellular organic matter (HPI-
IOM), and hydrophobic IOM (HPO-IOM). Their
findings revealed that THMFP in EOM is sensi-
tive to growth conditions and independent of algal
density. Chen and Lurling | investigated the
rapid aggregation and colony formation of Micro-
cystis caused by calcium ions through cell adhe-
sion. Higher concentrations of calcium ions did
not impact the microcystin content but promoted
the binding of extracellular polysaccharides, lead-
ing to the formation of larger colonies and increased
Microcystis accumulation on surfaces.

] studied the bioaccumulation and detoxifi-
cation of microcystin-LR (MC-LR).
ﬂ2£12d] explored the effects of exposure to Microcys-
tis aeruginosa (MA) and its produced microcystins
(MC-LR) on gut microbiota variation and immune
response in Litopenaeus vannamei. The results
demonstrated significant histological changes and
apoptosis characteristics due to MA and MC-LR
exposure, leading to alterations in histopathology
and gut microbiota, including Lactobacillus albus,
as well as increased oxidative stress in the shrimp
gut. These studies provide valuable insights into the
dynamics and effects of algal aggregation and its
interactions with environmental factors, toxins, and
organisms in aquatic ecosystems. However, further
research is needed to enhance our understanding of
this complex phenomenon.

Harvesting practices are commonly employed
in predator—prey systems, and bifurcation meth-
ods have been utilized in various studies to ana-

lyze these systems , ; bfa,ng_e_uL,

|2_Q2£’J; i Ld lZD_O_d Sen

et al.,|12022: |Cui & Song. [2004;

et al.,

v_et 2013 : Xu

Zo o L, 202% Yu ot all, 2014] Mm;

proposed and investigated a predator—prey model
with selective nonlinear harvesting for both the prey
and predator. They developed a Holling II func-
tional response prey—predator model with harvest-
ing in a two-patch environment: a free fishing zone
(patch 1) and a reserve zone (patch 2) where fishing
is strictly prohibited. They also explored two types
of predator—prey models incorporating nonsmooth
and noncontinuous harvesting. iu]] et al. | con-
structed an aquatic amensalism model with nonse-
lective harvesting and an Allee effect to study the
inhibitory mechanism of algicidal bacteria on algae.

i Lﬂﬂﬂ and [Huan | investigated
a new aquatic ecological model that incorporates
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the aggregation effect and Allee effect to describe
the complex dynamics of Microcystis aeruginosa. In
summary, significant progress has been made in the
field of ecological mathematical models and popula-
tion dynamics. However, the development of aquatic
ecological models, particularly those incorporating
the effects of algae aggregation and harvesting, has
been relatively slow. Further research is needed to
advance our understanding in this area.

Li et al. [2021] and [Huang et al. [2022] con-
sidered the following aquatic ecological model with
aggregation effect

N> _ alP(N —my)

Nene(1- N |
< 1 —mi;+ N

1
181 P(N —my) W

pP=
—mi1+N

N
diP{1—— | —mP
+dp ( K1> V1L,

where N and P represent the density of Microcystis
aeruginosa and filter-feeding fish at time 7T, respec-
tively. Nr(1 — %) denotes the growth kinetics func-
tion of Microcystis aeruginosa with intrinsic growth
rate r and maximum environmental capacity Kj.
The function % describes the aquatic
ecological mechanism with grazing coefficient aq,
half-saturation constant ¢; and Microcystis aerug-
inosa aggregation parameter mi. The function
dP(1— —) describes how Microcystis aeruginosa
affects the abundance of filter- feeding fish with an
intrinsic growth rate d;, and % describes
how Microcystis aeruginosa aggregation affects the
abundance of filter-feeding fish population with the
absorption coefficient 3. The filter-feeding fish pop-
ulation P is subject to a death function ~; P with
a mortality coefficient ~;. This function takes into
account the aggregation of Microcystis aeruginosa
and captures the dynamic relationship between
Microcystis aeruginosa and filter-feeding fish. Since
Microcystis aeruginosa consists of numerous cells,
the model considers the impact of both algal aggre-

ation and al al monomers on filter-feeding fish. In
m the authors utilized a harvesting
functional forrn h = N, which represents the harvest-
ing of Microcystis aeruginosa. This harvesting pro-
cess is employed to prevent algal blooms as Micro-
cystis aeruginosa can produce microcystins (MCs)
that are highly hepatotoxic during their growth and
decomposition. These MCs can cause fish poison-
ing and death. Therefore, when algae grow rapidly,
artificial harvesting is performed in lakes to control
the algal population.

Bifurcation Analysis of a New Aquatic Ecological Model

Motivated by [Li et al.,2021] and [Huang et al.,

], we consider the following aquatic ecological

model with aggregation effect and harvesting

g N Ctlp(N —ml) hN
N=Nr{l——]— —
T( K1> cq—mi1+N h+ N’
5 i P(N —my) N
P= diPl1l—— ) —mP
—m1+N + dq Kl Y14,
(2)
where hﬁ—NN is the harvesting function with the

maximum harvesting rate of Microcystis aerugi-
nosa h. In the subsequent analysis, our focus will
be on examining the dynamics of an aquatic ecolog-
ical model that incorporates the aggregation effect
and harvesting. This analysis will involve studying
the equilibrium points and conducting bifurcation
analysis to elucidate the transition and interaction
mechanisms between Microcystis aeruginosa and
filter-feeding fish.

The remaining sections of the paper are orga-
nized as follows. In Sec. 2, we examine the existence
and stability of equilibria in the model. In Sec. B,
we provide a comprehensive bifurcation analysis,
including the investigation of saddle-node bifurca-
tion, Bogdanov—Takens bifurcation, and Hopf bifur-
cation. Section 4] presents numerical simulation
analysis and showcases phase portraits. Finally, the
paper concludes with a summary of findings and a
discussion of the results.

2. Existence and Stability
of Equilibria

We rescale model ([2) by

-1
r

N =cx, P =hy,

Model (2) becomes
dx x
a=-7)-

dy _ ay(e —m)
dt 14+x—m

py(x —m)  qx
l4z—-—m ax+1’

(3)
+ by(l — %) —cy,

where
By b— dy M _aih
a = ) — T c=—), b= )
T T T car
h ma K1
g —_—, m = —, k = —
rc1 C1 C1

and a, b, ¢, p, q, m, k are all positive parameters.
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From model (3), we consider the Microcystis
aeruginosa isocline vertically and the filter-feeding
fish isocline horizontally, and obtain

Cz(l+tz-—m)@®+ (1 —k)z+k(g—1))

two boundary equilibria E01(k—1+v (l;+1)2_4kq,0),
Eoz(kflf" (ZH)L%(],O) when (k + 1)2 > 4kq. To

find the positive equilibria of model (2)), we set

kp(z + 1)(m — x) ’ a(r —m) rN
a(x —m) x x+1—m+b<1 k:) ¢c=0, (5)
1+x—m+b<1_E)_c:O or y=0. which yields

(4)
Considering the biological significance and the char-
acteristics of isoclines, we can conclude that the
existence of an internal equilibrium is conditional,
and it requires the conditions m < = < k and 2% +
(1—k)z+k(g—1) <0 to be satisfied. We find that
model ([2) has an equilibrium Ey(0,0) if m # 1 amdI

bz® 4 (b — bm + ck — ak — bk)z
+k(em+bm—cm+c—0)=0. (6)
From (5) and (6), model (2) has at most two posi-
tive equilibria Ey(x1,y1) and Ea(z2,y2), which may

merge into a unique positive equilibrium FE, (z, y.),
where

ak + bk — ck +bm — b — /(b — bm + ck — ak — bk)? — 4bk(am + bm — em + ¢ — b)

Tr =

2b ’

ak + bk — ck +bm — b+ /(b — bm + ck — ak — bk)? — 4bk(am + bm — em + ¢ — b) (7)
2b ’

T =

ak + bk —ck+bm —b
2b '

Ty =

The discriminant of () is
A = (b—bm + ck — ak — bk)?
—4bk(am 4+ bm — cm + ¢ — b) (8)

and we have

ak + bk —ck +bm —b
T+ x9 = b )

k(am 4+ bm —cm +c—b)
5 :
Note that A > 0 is equivalent to

ak 4+ bk — ck + b — 2v/ abk

(9)

T1T2 =

b
ak + bk — ck + b + 2V abk
<m< .
-~ b
Let
ak + bk — ck + b — 2V abk
my = )
b
ak + bk — ck + b+ 2V abk (10)
mo = ;
b
_— (ak + bk — ck + b £ 2v/abk)
k T b Y

then we have the following existence conditions of
equilibria in model (12).

Theorem 1. System (Z) may have two boundary
equilibria EOLOQ(_H_ki . (2k+1)2_4kq, 0) if (k+1)% —

4kq > 0 and the origin Ey(0,0) exists when m # 1.
Moreover,

(1) When my <m <mg (i.e. A >0),

(@) If (a+b—c)m+c—b <0 and k[(a +b —
c)m + 2¢ —2b — a] > bm — 2b, system (2)
has a unique positive equilibrium;

(b) If 0 < Hletbmaldbm=l) - — 9 pi(a + b —

c)m + 2¢ — 2b — a] > bm — 2b and am +

bm —cm+c—b > 0, system (2) has two

positive equilibria.

(2) System (Z) has a unique positive equilibrium
if and only if m = m, (i.e. A = 0) and
0<k(a+b—c)+blm—1)<2b.

(3) System (2) has no positive equilibrium in other
conditions. Here my, ms and ms are defined

by (L0).

Now, we will analyze the local stability of the
equilibria of model (2). We start by examining the
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origin Ey(0,0) when m # 1. The Jacobian matrix

of model () at Ey(0,0) is

mp
1—g¢q —
1—m
J(Ey) = - ;o (1)
0 — +b—c
1—-m
which has two eigenvalues
)\121—(], )\QZ— am +b—c
1—m

We obtain the following results.

Theorem 2. Under the condition m # 1,

(1) Whenl1l—¢<0, —*>+b—c>00rl1l—q>0,

1-m

—1% 4 b—c <0, Ey(0,0) is a saddle.

(2) Whenl—-¢ <0, -~ +b—c <0,

1-m

(a) Eo(0,0) is a stable node as q  #
(c—a—b)m+b—c+m—1
m—1 )
(b) Ep(0,0) is a sink as ¢ = (C_a_b)n%tl)l_c+m_l.

(3) When1l—q>0, =42 +b—c >0,

(a) Eo(0,0) is an wunstable
(c—a—b)m+b—c+m—1 |
m—1 )

(b) Ep(0,0) is a source as q = (Cfafb)%tbfﬁm*l.

node as q #

Next, we study the type of another two bound-
— / 2_
ary equilibria EOLOQ(k = (k;l) 4kq, 0) when (k+

1)2 — 4kq > 0. The Jacobian matrices of model (2)
at Fo1,02 are, respectively,

) p(v/(k+1)2 —4kq—k+2m+1)
-

J(E(n): \/(k+1)2—4kq—k+2m—1
0 A
(12)
and
) p(\/(k+1)? —4kq+k—2m—1)
-
J(Eo2) = (k+1)2 —4kg+k—2m+1

0 X6
(13)

Bifurcation Analysis of a New Aquatic Ecological Model

where

V(k+1)? —4kqg+1
A3

- k

4q

C(—Er D)2 —dkqtk+1)2

N a(y/(k+1)2—4kq—k+2m+1)
YTt 1) kg —k+2m—1

b(v/(k+1)2 — dkq + k+ 1
+((+)2k gtk+1)

)

1—/(k+1)2 —4dkq
k

4q
(V(k+1)2 —4kq + k+ 1)’
N a(y/(k+1)2—4kq+k—2m —1)
O k12 dkgt+k—2m+1

b(—/(k+1)2 —4dkq+k+1)
* 2k

Then the eigenvalues of the Jacobian matrix (12])
are A3, A4 and the eigenvalues of the Jacobian
matrix (L3) are A5, \¢. We can obtain the follow-
ing results.

Theorem 3. When (k + 1)? — 4kq > 0,

(1) If Mhs < 0, Eop(—HoViothe )
saddle;
9) If A3 > 0, Ay > 0, Egy(—HAV D =aka )
2
an unstable focus or node;
(8) If As < 0, Ay < 0, Eop(—H=vE2otha
is a stable focus or node;
(4) If Ashs < 0, Egp(—-EvUTDEotha
saddle;
5) If As > 0, A > 0, Egp( itV =aka )
2
an unstable focus or node;
(6) If As < 0, Ag < 0, Epg(—EEVERDT Ak g 4

a stable focus or node.

s a

s a

Next, we consider stability and type of the pos-
itive equilibria of model (). The Jacobian matrix
of model (2) at a positive equilibria E(z,y) is given

2350180-5
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by

2z Py . p(m — )

E(z+1-—m)2 (z+1)2 x+1—m

_w by 0
(x+1-m)2 k

The determinant of J(E) is
[z + (1 —Kk)z + (g — D][b(—m + = + 1)% — ak]

det(J(FE)) = 1
et(J(E)) s (15)
and its sign is determined by
Sp(z) = [2+ (1 — k)z + (¢ — D][b(=m + = + 1)* — ak]. (16)
The trace of J(E) is
2x Py q
t E)=——-— — 1 1
H(J(E)) ko (-m+z+1)?2 (z+1)? + (17)
and its sign is determined by
—22° 4+ (k + 4m — 5)z* + dy2® + dox® + dsz + d
Sp(x) = x° + (k +4m —5)z* + diz° + dox® + dsz + dy (18)

k(z +1)2(m —z —1)(m — x) ’
where

dy = —2km + 2k — 2m? + 10m — 4,

dy = km? — 5km + k — 4m? +8m — 1,

d3 = (2k — 2)m? + m(2kq — 4k + 2),

dy = (m? — m)(k — kq).
To discuss the topological type of the positive equilibria of model (2)), we let

_ (k(a+b—¢) + avViVE + )2 (203 2V0VE + a®k + ab + ck(b — ¢)) 19)
= b2k(a+b—c)(k(a +b—¢) + 2y/avVbVk + b) '

Theorem 4. When m = my, and 0 < k(a + | ' .
b—c)+blm—1) < 2b, model (2) has a unique (2) Ifq = qx, then E(x.,y.) is a cusp of codimen-
positive equilibrium E,(z.,y.). Moreover, ston two.

(1) If ¢ # q«, then E.(x.,yx) is a saddle-node,
which is attracting (or repelling) if ¢ < q« (or
q> qx);

Proof. Substituting =, and m; (mg is the same)
into Sp and S, we deduce that Sp(z,) = 0.
| Letting S7(z.) = 0, we have

_ (k(a+b—¢) + avViVE + )2 (203 2V0VE + a®k + ab + ck(b — ¢)) (20)
= b2k(a+b—c)(k(a +b—¢) + 2y/avVbVk + b) '

Next, we prove the assertion (2). Let X = x — x4, Y =y — y«, m = mgy and ¢ = ¢,. Then model (2) is
transformed into (we still denote X,Y by x,y, respectively)

dX dY
== AY + Ao XY + A3 X%+ o(|X,Y]?), o= B1X? +o(|X,Y]?), (21)

2350180-6
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ak(a +b—c)Vabk(k(a+b—c) — Vabk +b)’

where
./ /
Alzp \/5_1 ) A2:_b_pv A3: add abk+A
vak ak
B Va(Vk(a+b — ¢) — Vavb)2(—2Vabk + 2ak + bk + b — 2ck)
' kpv/Dk(a + b — ¢)(—2v/abk + ak + bk + b — ck)
and |

A = —ab® — bk(—c(5a + 2b) + (2a + b)* + ¢*)
—k*(2a+b—2¢)(a+b—c)?

A" = 30k + ab(5k + 3) — 6ack
+ (b —¢)(2bk + b — 3ck).

Letting d7 = A;dt, model (21)) is transformed into

dX A2 Ag 2 3

— =Y+ XY +—X XY

— + XY+ X+ o(IX, YT,

dy B (22)
1 y2 3

— = —X X, Y|7).

= X X YP)

By Remark 1 in Sec. 2.13 of [Perkd, [1996], we
obtain an equivalent system of system (22)) in the
small neighborhood of (0,0) as follows:

Then E,(z.,y.) is a cusp of codimension two when
%#Oand%#(), ie.

b(—k +2m — 1) # 6Vabk and
aVbk(Tk — 39m + 32)
+36akVak + b2 (m — 1)%(k — 2m + 1)

# 5b(m — 1)Vak(k — 3m +2). |

Theorem 5. When 0 < %{j‘b(m_l) < 1,

kl(a +b—c¢)m + 2¢c — 2b — a] > bm — 2b and
(a+b—cm+c—>b > 0 are satisfied, model (2)
has two positive equilibria Eq(x1,y1) and Es(x2,ys2)
(xo < x1). Moreover, Eo(x2,y2) is always a saddle,
and E1(x1,y1) is

(1) a stable focus (or node) if St(x1) > 0;

dxX 3 (2) a unstable focus (or node) if Sp(x1) < 0;
dr =Y +o(IX, Y], (3) a center if Sp(x1) = 0.
Y B 2A i i
ccll_ _ A_1 n A—BXY Fo(IX,YP) + o[ X, Y ). Here St (x1) is defined in (I9).
T 1 1
(23) Proof. The Jacobian matrix of system (2) at E;
L (i=1,2) is
2z PYi 4 g _plEimm)
ko (i —m+1)2  (z;+1)2 —z;i+m—1
J(E;) = (24)
ayi _byi 0
(ki —m+1)2  k
Then we can get
yip(x; —m) a b
E)) = 7). 2
() = 2B () (25)

The sign of det(J(E;)) is determined by
m — %. Additionally, to determine the types
of Eq(z1,y1) and FEo(x2,y2), we need to consider the
signs of Sp(z1), Sp(x2) and Sr(x1).

For

20/ A
k(ak + bk — ck +b—bm — VA)’

SD(.’Bl)

|
we find that Sp(z1) > 0 due to the existence of
Ei(z1,y1). Thus, if Sp(z1) > 0, E1(z1,y1) is locally
asymptotically stable; if Sp(z1) < 0, Ei(x1,y1) is
unstable.

Similarly, since

20/ A

Sp(ze) = — ,
olz2) k(ak + bk — ck + b — bm + VA)

2350180-7
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we can get that Sp(za) < 0. Therefore, Fs(xa,y2)
is a saddle whenever it exists. W

3. Bifurcation Analysis
3.1. Saddle-node bifurcation

Lemma 1 (Sotomayor’s Theorem ,
2018]). The system & = F(x,m) experiences a
saddle-node bifurcation at the equilibrium xsy as
the control parameter m passes through the bifur-
cation value m = mgn, if the following conditions
are satisfied:

F, W (Esn;msn) # 0,
WTD?F,,(FEsx;msn)(V, V) # 0.

According to Theorem [B] we know that Fj
is locally asymptotically stable if tr(J(E7)) < 0
and Fs is a saddle whenever it exists. By control-
ling the parameter m, the collision of Fy and FEs
can result in an overlapping equilibrium, denoted
as Esn(zsn,ysn), when A = 0. As the value of
the parameter m changes, the internal equilibriaI

disappear when A < 0. Model (Z) undergoes a
saddle-node bifurcation at m = mgy, where

k(a+b—c)—2vabk +b

msN = b )
k(a4 b—c) — Vabk
TSN = b 5
_ asn(zsy — k) (zsn +1—m)
YSN kp(m — xSN)

Theorem 6. Under the condition

] b k*(a —c)(a+b—c) + bk(2a + bg — c)
e k(22 +b—2c) + b

1
< Vabk < §(k5(a+b—c) +b)
model (2) undergoes a saddle-node bifurcation at

A k(a+b—c)—2Vabk +b

m = 1SN — b

Proof. When m = mgy = k(a+bfc);2‘abk+b, th

Jacobian matrix at Egy is as follows:

e

2oy PYSN g _ plzsy —m)
J(Esn) = k (zsn +1—m)?  (zgn +1)2 rzsN+1—m | (26)
0 0

The eigenvectors of the zero eigenvalues of Jgg, and J §SN are given by:

_ 1 -
V= v 2xsN DYSN q W = Wi 0 .

va] (m+ 2o + 1) (‘ E Cmtaosn+ 12 (@sn 1) 1> ’ [wJ H

I p(rsn —m) ]

Then
Fn(EsN; msn)

] -

Fip, (—m+x+1)2

- | Fom - _ ay
(=m e+ D% ] (g

(VE(a—+b—c) —Vab)(vVEDb(k+1)(a— ¢) + b(a+bqg) + k(a — ¢)2) + Vab(2k(c — a) — b(k +1)))

VEvab(b—vabk)(k(a+b— ¢) — /avVbvk +b)
Va(VE(a+b—c) —Vab)(VEb(k+1)(a—¢) + bla+bg) + k(a— ¢)?) +Vab(2k(c — a) — b(k +1)))

VovEkp(b — Vabk)(k(a +b— ¢) — /avVbVk +b)

2350180-8



Bifurcation Analysis of a New Aquatic Ecological Model

D?F,(Esn; msn)(V, V)

aQFlm 2 82F&m 82}Wlm 2 6py (4]))’[)2
2— - —

822 'L * 0xdy vz 0y? 2 (—m+z+1)* (—m+42x+1)3
Fom, +262F2m PFom (4a)vs Gay
—0 — vy + ———0 —

ox2 ! droy 7 0y 2 (—m+z+1)3 (—m+4zx+1)*

(Esn;msN)
W' Fp(Esn; ms)
by
(—m+2x+1)2

ay
(—m+x+1)2

= [07 1]

(Esn;msn)

Va(Vk(a+b—c) —vVab)(VEDb(k+1)(a —¢) + b(a+bq) + k(a — ¢)2) +Vab(2k(c — a) — b(k +1)))
VovEkp(b — Vabk)(k(a +b— ¢) — /avVbVk +b)

# 0,
WTD?F,,(Esn; msn)(V, V)
6py _ (4p)v2
o (—m+z+1)* (—mtaz+1)3 _ (4a)vs N Gaysn
7 (4a)vy 6ay (=m+asn +1)2 (—m+asy +1)4

(—m+ax+13 (—m+az+1)"

(Esn;msn)

According to Lemma [I] model ([2) undergoes a saddle-node bifurcation around FEgn(xsn,ysn) at
m = msn when vy < 0, where

e ak - b2q ~ 2(k(a+b—c) — Vabk) s
27 plak — Vabk) (k(a + b —c) — Vabk + b)2 bk ?
and
_— (k(a+b—c) — Vabk)(k*(a — ¢)(a +b— c) + bk(2a + bqg — ¢) — Vabk(k(2a + b — 2¢) + b)) -
? Vabk(b — Vabk)(k(a + b — c) — Vabk + b) '
3.2. Bogdanov—Takens bifurcation I
dy ay(r — A2 —m) x
Theorem 7. When m = my, ¢ = qs, b(—k + 2m — a T+1— X —m +b?/<1_ E) -y,
1)—6v/abk # 0 and 36a%2k3/2 —5\/abVk(m—1)(k— (27)
3m +2) +avbk(Tk — 39m + 32) + b3/ (m — 1) (k —
2m + 1) # 0, Ex(xy,ys) is a cusp of codimension  where \ = (A1, A2) ~ (0,0).
two. If we choose m and q as bifurcation parameters, Let u =  — T4, v = ¥y — Y« Then model (21))
then model (2) undergoes Bogdanov—Takens bifurca- can be rewritten as
tion of codimension two in a small neighborhood of du
the unique positive equilibrium E,(z., ys). i a1 + asu + asv + agu® + azu,
Proof. Consider d
d_v = b1 + Pau + Bsv + Bau® + Pruv (28)
d_CU:x(l_f)_P?/(JU—)\z—m)_95(>\1+C]) ¢
dt k z+1—X—m r+1 7 + Pr(u,v, A\, A2),

2350180-9
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where

* *>\ - *
al:x*<1_x_)_py( 2+ m— 1)

k Ao+m—x,—1
zi(Mtg)
Te+1 7
2Ty DY
a9 = — —
? k (A2 +m — x, — 1)2
—-A1—¢q
——+1
CAESTER
a3 = — 5
Ao+m—x,—1
o _ 1 DY+ A1 +q
4 E (Aa+m—x,—1)3  (z,+1)%
a5 = — P
° (A2 +m —x,—1)%’
ay*()\Q +m — x*) Tx
: (1) o
B Ao+m—x,—1 oy k Y
ays by
By = Y -

(Ao +m — z, — 1)2 k'’
a(Aa +m — xy) Ty
- (1 L) -
P )\2+m—$*—1+< k) G

ays
(Ao +m —x, —1)37

By =

a _
Ao+ m—x,—1)2

)

E S

Bs =

Py (u,v, A1, \2) is a power series in (u,v) with terms
u'vd satisfying i+j > 3, and the coefficients depend
smoothly on A\ and As.

Let n1 = u, ng = a1 + asu + azv + auu® +
asuv. The model (28]) becomes

dn1
@ _
dt 2
dn 2
al—t2 = &1+ any + E3ng + &40t + Esning (29)
+&n3 + Py(ng,n2, A1, \a),
where

&1 = azf — a1,
& = a5 + azfa — anfls — a1 s,

105 + ﬂg
b

§3=ag —
as

§4 = a5B2 — cufl3 + a3y — aafs,

2 2 2
€ — a3l + 2a405 — azasaz + a0
- )

2
asz

g = =
Qg
and Py(nq,ng, A1, A2) is a power series in (ng,ns2)
with terms nin? satisfying i + j > 3, and the coef-
ficients depend smoothly on A; and As.

Let dt = dr(1—&gn1). Then model (29) becomes

d
% =na(1 — &n1),
e 1 —&eni(& + Eany + E3ng + Eang
+&nang + &n3 + Pa(ni,n2, A, A2)).
(30)
Letting z1 = nq, 22 = na(1 — &gny), we obtain
le
— =7z
dr 2
dz 31
d—f = Myt oz Tz - aEd Fszize ¢ )
+ P3(21, 22, A1, A2),
where
m =&, m=~E& —2&, 1n3=2E3,
M= &1€g — 26086 + a5 =& — E3&6

and Ps(z1, 29,1, A2) is a power series in (z1,22)
with terms z¢ zg satisfying ¢ + 7 > 3, and the coeffi-
cients depend smoothly on A1 and As.

When 7y > 0, we let vy = 21, ug =
71 = /N47. Then model [BI)) can be written as

z2

Vna’

du1

=

dr Z

du

o2 01 4+ Ouq + O3ug + u% (32)

d’7'2

+ Qququg + Py(ur, uz, A1, A2),
where

Uil 12 13 Ub)
91:_7 92:_7 93:—7 94:—

M4 N4 vz v/ 14

and P4(u1,u2,)\‘1,>\2) is a power series in (uy,us)
with terms ufuj satisfying i + j > 3, and the coef-
ficients depend smoothly on A; and As.

2350180-10



Further, letting

wy = 72-1-“1, w2 = U2,
model (32) can be written as
dw1
— =W ,
dm 2
dwo 33
an + Yows + Wi + Y3wiws (33)
T2
+ P5(w1, w2, A1, A2),
where
62 0204
71291—127 V2=93—77 V3 = 04

and Ps(wy,ws, A1, A2) is a power series in (wy,ws)
with terms ww) satisfying i + j > 3, and the coef-
ficients depend smoothly on A\; and As.

Making the final change of variables by setting

Bifurcation Analysis of a New Aquatic Ecological Model

we finally obtain

dx
- =Y,
d
dT (34)
% =( +<2y+562 +xy+P6(xaya>‘1’>‘2)’
where

G=m73 =177

and Pg(z,y, A1, A2) is a power series in (x,y) with
terms z'y/ satisfying i + j > 3, and the coefficients
depend smoothly on A1 and A\o.

We can express (1 and (o in terms of A\ and Ao
as follows:

C1 = Ai1s1 4+ Aaso + Ms3 + A\ Aasy
+ X355+ o(|(A1, A2)]),

(35)
Co = Ait1 + dato + Atz + Aoty

T=73wi, Y=7jwi, T= %7 + A5ts + o(|(A1, A2) )
| Then
l 0(¢1,G) | 32p(ab® + K*(a + b — 0)*(2a + b — 2c) + ppv/abk + bkps)°
(A1, A2) a2p$pipi(a+ b — c)Vabk(v/b — Vak)* ’
where
p1 = k(a+b—c)—2Vabk +b,
p2 = —ab(5k + 3) 4+ ak(6¢c — 3a) — ((b — ¢)(k(2b — 3¢) + b)),
p3 = c(—5a — 2b +¢) + (2a + b)?,
ps = Vk(a+b—c)— Vab,
ps = k(2a + b — 2¢) — 2V abk + b,
pe = k(a+b—c) — Vabk +b.
Only when
¢ —bk(b(k —1)% — 9ak) — 3v/abk + 6ak + 5bk + b
12k{’/3\/§\/m + 27ab?(k — 1)k* + 54abk*/abk + b3(k — 1)3143’
where |

pr = 135a2k? + 18ab(k — 1)%k + 4b(k — 1)>Vabk
+108a(k — 1)kv/abk + 36> (k — 1)*,
we have

0(¢1,¢2)
|5(>\17/\2) #0

Model (2) undergoes a Bogdanov—Takens bifurca-
tion of codimension two when A = (A1, A2) is in a
small neighborhood of the origin. W

3.3. Hopf bifurcation
Firstly, letting

dt = K?p(z + 1)(z + 1 — m)(m — z1)(zy + 1)dr,

2350180-11
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we obtain
A — kplaer + 1)(m — ) kp(x + y(m — )
+aim—a—1)(k(g—x—1) + 2 +2)],
Y — k(o + (e + 1)l = m) okl — o)

+b(k—x)(m—2z—1)+ck(—m+z+1)].
(36)
Noticing that
ri(—m+x1+1)(k(qg — 21 — 1) + 23 + 1)
kp(z1 4+ 1)(m — x1)

Y1 =

)

kq—kxy —k+ 22 + 4

q1 =
z? ’

—kx1T + 23T + 1T+ kg — k

g2 =
ag

21Z(br1T + k(c—a) —b(k+m —1)) + k(m

we use the following scalings of the coordinates,

T v t

T=—, 7 T=—, 37
il A 5 (37)
under which model (2) is transformed to
dr k
= = SlaF@F + )(—m+ 1 + D(m - 17)
txy
—@Z(z1 + 1) (m — x1) (21T — m + 1)],
dy kpy
d_?t/ _ _qufy (21 + 1)(217 + 1)(m — 21),
1
(38)
where

9

(a+b—c)—b+c).

q3 =

Then taking the parameter scaling as follows:

_ a - b _ c . m
a=—, b=—, ¢=—, m=—
1 x1 1 1
_ B q 1
k = — q = — g g —,
1 1 1

after dropping the bars, we obtain

= Dlawlg —m -+ 1)(g +2)m )

+45(9 +1)(m = Da(=g +m —x)],

2
L1

|
where

o= g(=k) + g+ kq—k,

g5 + 1= —gk + gz + kq — kx + 22,
km(a+b—c) — kx(a+b—c) — bz + bz?
g

d6 =

— bk + bz + ck.

Since model (39) has an equilibrium F;(1,1) (i.e.
Eq(x1,y1) of model (2), we have

b(g—m+1)
(1—m)a+b—c)+gb—c)
which is then substituted into ([B9) to finally yield
the following model

k=

—D(g-m+1)(g+2)

9

—)lg—m+1)J?

d qekp
& = B (g 1) (1 - m)(g + ),
(39)
|
dr_ bp(=gr+as—qo)(g—m+1)
dt  gla—am+(b—c)(g—m+ 1P
dy _ b*py(g + 1)1 —m)(qi0 + qu)(z
dt g?la—am + (b
where

gr =2*(g+1)(1

—m)(g+z)(g —m+x)la(m

-1 4+c(lg—m+1)],

gs =blg—m+1)[g(x — 1)+ g+ (x — 1)z,

=y(lg —m+1)(g+x)(m—

z)[a(g +1)(m —

1) + (g — m+1)(=bq + cg + ¢)].
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In the following, we study the Hopf bifurcation
around F1(1,1) in model ([40]), which corresponds to
the Hopf bifurcation around Ej (x1,y1) in model (2).

Theorem 8. Model (40) has an equilibrium at
Eq(1,1). Moreover,

(1) when q=q", El(l, 1) is a focus or center,
(2) when q > q", F1(1,1) is a locally asymptotically

stable hyperbolic node or focus; |

bp(qi0 — qi1)(g —m+1)

Bifurcation Analysis of a New Aquatic Ecological Model
(3) when q < q™, Ei(1, 1) is an unstable hyperbolic
node or focus.
Proof. The Jacobian matrix of model (40) at
El(l, 1) is

41
- (41)

J(Ey(1,1)) = [a’” "’”],

where

ailp = g[a—am+(b—0)(g—m+1)]2’

o (g 1)(m = 1)(g —m+1)*alg + 1)(m — 1) + (g — m+1)(=bg + cg + 0)]
12 gla(l —m) + (b—c)(g —m + 1)]2 )

P CWplg+1)2(m—1)(g = m+ D[a(m? +1) = (g + 2am + (b — c)(g — m + 1)*]

and
q10 = a(g + 1)*(m — 1)[g(2m — 1) — 2(m — 1)?],
q1=(g—m+1D[g+1)*b(m—1)(g—m+1)
+c(=2(g +2)m + g+ 2m* +2))

+bgmq(g — m + 2)].
The determinant of J(E1(1,1)) is
det(J(Ey))

Vp?qiaqis(g +1)2(m —1)% (g —m +1)3
Pla—am+(b—c)(g—m+1*

(g + 1)%{a(m — 1)(=2gm + g + 2(m
- +c(—=2(g +2)m + g +2m? + 2))}

g*[a(l —m) +

(b—c)(g —m+1)?

|
where

q2 = a[—(g+2m+m* + 1]+ (b—c)(g—m+1)*,
q3=a(lg+1)(1—m)—(g—m+1)(=bg+cg+c)
and the trace of J(E1(1,1)) is
tr(J(Er)) = an
bp(qi0 —qu1)(g —m+1)
gla—am+(b—c)(g—m+1)]>

We can see that det(.J(E;)) > 0 and tr(J(Ey)) = 0
if ¢ = ¢, where

—D)H+(g—m+1)(b(m—1)(g—m+1)

bgm(g —m +1)(g —m+2)

The leads to the conclusions.
Next, we check the transversality condition

d b*mp(g —m+1)*(g —m +2)

— tr(J) =—

< 0.

dq q=q*

[a(1—m)+ (b—1c)(g—m+1)]?

Let u=2—1,v=y—1and ¢ = g+. Model (40]) can be written as

d
v _ biu + bau? + byuv + bau® + bsuv,

(42)

d_u = a1V + a u2+a uv+a4u3+a u’v
dt 1 2 3 5 ) dt
where
g = G+ DEm = plg —m+1)(g(=k) +g+ke—k+1)

9

)
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kp((=g+m —1)(g(=k) +g+kqg—k+ 1)+ (g+1)(m—1)((g —k+2)(~g +m —2)

+gk — 29 —kq+k+m—2))
a9 =

g
4y = TPl = m A V(=g +m—2)(g(=k) + gt hg -kt 1)
g
0y — (g4 Dk(m —1)p(—2g + k +m —4)
p 7
o = Mg+ 1)(m = Dplg —m+1)*((g —m+ D)(b(g + 1) — c(g +2)) —a(g +2)(m — 1))
5 g*m(g—m+2)(a(—m)+a+ (b—c)(g—m+1))2 ’
(g+Dk(m—Dp((g+1)(k(a—c)+b(—g+k+m—2))+k(—a(m—1) —c(g —m+1))
+b(k—1)(g—m+1))
1= 92
by — (g+ 1Dk(m—1Dplk(a—c)+b(—g+k+m—2)—b(g+1))
92 ’
(g+Dk(m—1Dp((g+ D (k(a—c)+b(—g+k+m—2))+k(—a(m —1) —c(g—m+1))
+b(k—1)(g—m+1))
by = >
g
by — _b(g+Dk(m —1)p
4 — 92
by — (g+ Dk(m—1Dplk(a—c)+b(—g+k+m—2)—b(g+1))

g? '

Let
(g+1D)Gk(m —1Dplg—m+1)(g(1 — k) +kq—k+1)
g

and make transformations of u = X, v = GY and dt = i—T, where

(g+DV(m-Dlg—m+1)y/-bm(—g+m—2)(a(-(g+2Jm+m’ + 1)+ (b —)(g—m+1)?)
Vg +12(m—1)2(g —m+1)3(alg + 2)(m — 1) — (g — m+ 1)(b(g + 1) — c(g +2)))
Model ([@2) becomes

G:

dx dy
- - — _ 43
— y+ f(z,y), p r+g(x,y), (43)
where
f(x,y) = agrz’y + agor® + agox? + arpry® + anwy + agy® + azy’,
g(x,y) = 521362?; + bgoa® + bagz? + 51236112 + any + 521/2 + 533/3
and
. (g k+2)(—g+m -2+ (g+1)(k—2)—kg+m 1
* Glg—m+1)(g(—k) +g+kqg—k+1) (9+ DG —m)’
~ —g+m—2
aj) = —————,
(g+1)(m—1)
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- 294+ k+m—4

aso = ,

O Glg—m+1)(g(—k)+g+kqg—Fk+1)

iy — g =m A D ((g —m+Dlg +1) —clg +2) ~alg +2)(m —1))
gkm(g—m+2)(g(=k) + g+ kqg—k+1)(a(—m) +a+ (b—c)(g—m+1))?’

. ak — 2bg + bk +bm — 3b — ck

T G2 g—m+1)(gk —g—kq+k—1)

; __(g—i—l)(k(a—c)—i—b(—g—i—k—i—m—?))—i—k(—a(m—l)—c(g—m—i—l))—i—b(k—l)(g—m—i—l)

1 9Glg—m+1)(g(—k) + g+ kq—k+1) :

. b

P 9G2 g —m+ 1)(g(—k) + g+ kg —k+1)’

~ ak — 2bg + bk +bm — 3b — ck . N N ~ ~ ~

b1 = g (g2 = a1z = Gp3 = boz = b2 = bp3 = 0.

9G(g—m+1)(gk —g —kq+k—1)
We obtain the first Lyapunov coefficient as follows:

(&20(2620 —an) + 3aso + br1bao + 521)
8
~bm2(g—m+2)2(Ma(g + 1)%(m — 1)2(g — m + 1)3)32(ap3 + apa + ¢1)
8M3M (g +1)3(m — 1)3(g — m + 1)4((m — 1)(g — m + 1))3/2

o] =

where
—c)(g—m 2
o1 = g+ Dom = D)Mo — g —m+ 1)} - LLROZNEm LT
p2 = AU 1)]\56_]\{;(1_2 o ¢ Mo — M) +(g+1)(m—-1)(g—m+1)
X (M5(b—C) —39]\410)7
3 = (g +1)(m = 1)Mo(~(g +2)m +m? +1) — g(n;:rlyzﬂszg
and |
My =bm(g — m+ 2)(a(—(g + 2)m + m? + 1) Mz = (g+3)m® — (g +3)(2g + 3)m + (9 +2)°,
+(b—c)(g—m+1)2)7 M8292m+2g(m—1)m+g
M = a(g+2)(m — 1) —(m —2)(m —1)%,
~(g=m+1)(blg +1) ~ (g +2). My = 2b(=2gm + g+ m” = 3m +2)
Mz = 2b(b — ¢)(2g — m + 2) +3g(m —1)(29g —m +4),
—39(b(29g —m +3) + c(—29 + m — 4)), Mg = (=(g + 2)m +m® + 1)(b(2g — m + 3)
My = bb(g® + 5g° + (g + 2)m? +c(=2g9 +m —4)),
—(9+2)(29 +3)m +9g + 5) — M7, Myy = b(g® + 5¢° + (g + 2)m?
Ms = 2bMi5 + 3g(m — 1)(g —m + 1) —(9+2)(29 +3)m + 99 +5),
x (29 — m +4), My = g*(1 — 4m) + g(6(m — 2)m +5)
M6:2gm+(g—1)g—m2+3m—2, —2(m—2)(m—1)2.
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We can determine the sign of M7 and Ms, both
of which are positive. Therefore, we only need to
determine the sign of the expression ¢ = a3 +
apz + 1.

If ¢ >0 (ie. 01 > 0), model (4Q) exhibits a
supercritical Hopf bifurcation, and a stable limit
cycle appears around Ey(1,1). If ¢ < 0 (i.e. o7 < 0),
model (40) exhibits a subcritical Hopf bifurcation,
and an unstable limit cycle appears around Fj(1,1).
If ¢ = 0 (i.e. o1 = 0), model (40) may exhibit
a degenerate Hopf bifurcation, and multiple limit
cycles may appear around E1(1,1). H

4. Numerical Simulations

To illustrate the obtained results, we conducted
numerical simulations using Auto07 [Doedel & Olde-
man, 2007] with the parameter values employed in

(Li et aL, 2021], as follows:
a=06, b=0.2, c=0.55,
(44)
k=15, m=19, p=1 ¢q=0.5.

4.1. m, q and k as primary
bifurcation parameters

Firstly, if we consider the aggregation effect of
Microcystis aeruginosa (m) as the bifurcation
parameter, we observe the following bifurcation
points: At m = 6.33359, there is a saddle-
node bifurcation point SN(1.20418 x 107!, 2.24830);
At m = 2.21613, we have a supercritical Hopf
bifurcation point HB(4.33867,3.93880); A quasi-
transcritical bifurcation point QTC(14.4529,0)
occurs at m = 4.88623. Furthermore, there exists
a family of stable limit cycles approaching a hete-
roclinic cycle that connects the equilibria (0,0) and
(14.5166,0). It is important to note that the aggre-
gation effect of Microcystis aeruginosa may ulti-
mately lead to the extinction of both Microcystis
aeruginosa and filter-feeding fish. For more detailed
information, refer to Figs. [1{a)-{L(c).

Secondly, if we consider b = 0.3 and the
maximum harvesting rate of Microcystis aerugi-
nosa (q) as the bifurcation parameter, we observe
the following bifurcation points: At ¢ = 1.72752,
there is a supercritical Hopf bifurcation point
HB(2.96382,2.10784); At ¢=1, there are two
transcritical bifurcation points: TC;(0,0) and
TC2(2.96382,0); At ¢ = 4.26667, we have a saddle-
node bifurcation point SN(7.0,0). Similar to the
previous case, there exists a family of stable limit

cycles approaching a heteroclinic cycle connect-
ing the equilibria (0,0) and (14.5166,0). Please
refer to Figs. 2(a)-2(c) for visual representation.
Biologically, when the maximum harvesting rate
of Microcystis aeruginosa increases, the density of
filter-feeding fish also increases. However, there is a
critical threshold at ¢ = 4.26667, indicating that the
filter-feeding fish may go extinct if it exceeds this
threshold. It is worth noting that the number of
filter-feeding fish starts to decrease when Microcys-
tis aeruginosa is harvested. Hence, finding an appro-
priate timing for Microcystis aeruginosa harvesting
is crucial to promote the number of filter-feeding
fish, which may be influenced by the carrying capac-
ity of Microcystis aeruginosa.

Next, we use the maximum environmental
capacity of Microcystis aeruginosa (k) as the bifur-
cation parameter. We observe the following bifur-
cation points: A transcritical bifurcation point
TC(1.12112 x 10, 0) at k& = 1.16899 x 10, a saddle-
node bifurcation point SN(6.11425,1.92959) at k =
9.06280, and a supercritical Hopf bifurcation point
HB(4.15171, 3.45064) at k = 1.26805x 10*. A family
of stable limit cycles bifurcates from the Hopf bifur-
cation point HB and approaches a homoclinic cycle.
Interestingly, the density of filter-feeding fish con-
tinues to increase with sustained oscillations as the
density of Microcystis aeruginosa increases. This
suggests that both populations will coexist with sus-
tainable oscillations. Refer to Figs.B(a) and[3(b) for
more details.

4.2. k and a as primary bifurcation
parameters

Now, we consider the carrying capacity of Microcys-
tis aeruginosa (k) and the absorption coefficient (a)
as the primary bifurcation parameters. As a result,
we obtain a two-parameter bifurcation diagram
that includes a Hopf bifurcation curve H (red), a
saddle-node bifurcation curve SN (green), and a
homoclinic bifurcation curve Hom (black). We iden-
tify a BT bifurcation point BT(7.49330,4.37120) at
k = 1.67914 x 10!, ¢ = 5.17783 x 107!, as well
as a codimension-2 cusp point CP(5.38100,0) at
k = 5.83849, a = 6.87827 x 10~L. It is noteworthy
that despite both parameters k and a being posi-
tive, the number of filter-feeding fish will reach zero.
In other words, if the carrying capacity is below
the threshold of &k = 5.83849, the filter-feeding
fish will go extinct. Refer to Fig. M for a visual
representation.
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Fig. 1. One-parameter bifurcation diagram of system (B]) with respect to the carrying capacity of Microcystis aeruginosa (k):
(a) m versus x; (b) m versus y and (c) a family of limit cycles approaching a heteroclinic cycle.
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Fig. 2. One-parameter bifurcation diagram of system (3) with respect to the maximum harvesting rate of Microcystis aerug-
inosa (q). (a) q versus x; (b) ¢ versus y and (c) a family of limit cycles approaching a heteroclinic cycle.
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Fig. 3.
(a) k versus x and (b) k versus y.

The entire phase plane depicted in Fig. 4] is
divided into four regions: I-IV. The corresponding
phase portraits are as follows:

(I) @ =0.555752, k = 10.8145: An unstable node
at (0,0) and a stable node at (10.3376,0);

(IT) @ = 0.564029, k = 12.1542: An unstable node
at (0,0), a stable node at (11.6747,0), a sta-
ble focus at (5.4149,3.3145), and a saddle at
(8.4918, 2.4318);

0.65

0.45

0.40

20 20 80 80 100
k

Fig. 4. Two-parameter bifurcation diagram of system (3)

with respect to the carrying capacity of Microcystis aerugi-

nosa (k) and the absorption coefficient (a).
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(b)

One-parameter bifurcation diagram of system (3]) with respect to the carrying capacity of Microcystis aeruginosa (k).

(III) a = 0.632307, k = 19.8129: An unstable node
at (0,0), a saddle at (19.3255,0), and a stable
limit cycle containing the unstable focus at
(3.4555,4.0498);

(IV) a = 0.54005089, k& = 15.5000905: An unstable
node at (0,0), a stable node at (15.0162,0),
a homoclinic cycle containing the unstable
focus at (5.374,3.9785), and a saddle at
(10.2551,3.3754).

When the carrying capacity of Microcystis
aeruginosa is small, a large absorption coefficient
of the filter-feeding fish cannot guarantee their
survival. Similarly, when the carrying capacity of
Microcystis aeruginosa is large enough, a small
absorption coefficient of the filter-feeding fish may
lead to their extinction. In other words, the filter-
feeding fish may go extinct whether the carrying
capacity of Microcystis aeruginosa is sufficiently
small or sufficiently large. Refer to Fig. [5 for a
detailed illustration.

It is worth noting that the coexistence of Micro-
cystis aeruginosa and filter-feeding fish occurs when
the absorption coefficient is less than a = 0.530151
or when the death rate of filter-feeding fish exceeds
the threshold of ¢ = 0.609115. In other words, as
long as the absorption coefficient remains below the
specified value or the death rate of filter-feeding fish
remains above the threshold, both populations can
coexist.
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Fig. 5. Phase portraits of regions I-IV shown in Fig. @
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5. Conclusion and Discussion

This paper focuses on conducting a detailed bifur-
cation analysis of a new aquatic ecological model
that incorporates Microcystis aeruginosa and filter-
feeding fish, taking into account factors such as
aggregation effect and harvesting. The analysis
utilizes a dynamical system approach and inves-
tigates various types of bifurcations, including
saddle-node bifurcation, Bogdanov—Takens bifurca-
tion, and Hopf bifurcation.

The paper presents one-parameter bifurcation
diagrams and two-parameter bifurcation diagrams
involving the carrying capacity of Microcystis
aeruginosa (k), harvesting (a), and the maximum
harvesting rate of Microcystis aeruginosa (¢q). It is
observed that the density of filter-feeding fish con-
sistently increases with sustained oscillations as the
density of Microcystis aeruginosa increases. How-
ever, if the maximum environmental capacity of
Microcystis aeruginosa (k) is too small, it can lead
to the extinction of filter-feeding fish.

Furthermore, the number of filter-feeding fish
decreases progressively and eventually leads to
extinction as the maximum harvesting rate of
Microcystis aeruginosa (q) increases. To prevent the
adverse consequences of blindly eliminating Micro-
cystis aeruginosa, it becomes crucial to identify an
optimal timing for harvesting Microcystis aerug-
inosa. This approach aims to enhance the yield
of filter-feeding fish while maintaining ecological
balance.
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