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In this paper, we investigated the dynamics of the interaction between Microcystis aeruginosa
and filter-feeding fish in a new aquatic ecological model and considered the effects of aggregation
and harvesting and focused on studying the critical threshold conditions through the analysis
of saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. We also con-
ducted numerical simulations to illustrate our findings and provided biological interpretations.
The results obtained indicate that the aggregation effect or harvesting can disrupt the coexis-
tence of Microcystis aeruginosa and filter-feeding fish. The filter-feeding fish population may go
extinct while the Microcystis aeruginosa population could survive. We identified the importance
of finding an appropriate timing for harvesting Microcystis aeruginosa in order to promote the
growth of the filter-feeding fish population. This optimal timing may be influenced by the carry-
ing capacity of Microcystis aeruginosa. Taken together, our study sheds light on the dynamics of
Microcystis aeruginosa and filter-feeding fish in an aquatic ecosystem, highlighting the critical
role of aggregation, harvesting, and timing in determining the coexistence and survival of these
species.
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1. Introduction

In recent years, the severity of algal blooms has
increased due to factors such as global warming,
elevated atmospheric carbon dioxide levels, water
eutrophication, and other environmental changes.
Algal blooms have emerged as a significant global
environmental concern. Biological control has been
proved to be the most effective method for sup-
pressing algal blooms. This approach leverages the
ecological relationships of predation among different
organisms in the ecosystem, specifically using filter-
feeding fish to filter and consume algae, thereby
improving the structure of algal populations and
reducing bloom concentrations. Introducing filter-
feeding fish is an economical, efficient, and rational
solution.

One of the primary causes of algal blooms is
the aggregation and migration of algal populations
within water bodies. In natural lakes and rivers,
Microcystis often exists in aggregated forms. There
are two primary mechanisms for colony formation:
aggregation of individual cells into gel colonies and
the division and colonization of single cells, with the
resulting daughter cells effectively aggregating to
form a population. In complex water environments,
these two aggregation modes coexist. Consequently,
Microcystis continuously accumulates, undergoes
vertical migration, rises to the lake surface to form
algal aggregates, and experiences repeated accumu-
lation and migration under the influence of converg-
ing or diverging lake currents, eventually resulting
in algal blooms. Therefore, studying the dynamic
behavior of Microcystis is essential.

After extensive literature review, we observed a
relative scarcity of research on mathematical mod-
els concerning the aggregation of algae in aquatic
ecosystems. Some researchers have explored the
influence of algal aggregation on algal blooms and
the impact of filter-feeding fish on algae from the
perspectives of aquatic ecology and population sci-
ence [Huang et al., 2023; Xie & Liu, 2001; Zhang
et al., 2011; Zhou et al., 2013; Duan et al., 2019;
Chen & Lurling, 2020; Zhang et al., 2023; Duan
et al., 2020; Pal et al., 2020; Tang et al., 2017;
Kolmakov, 2014]. Huang et al. [2023] conducted
a study on the effects of various growth condi-
tions, such as water temperature, pH value, light,
and nutrients, on the formation of trihalomethanes
(THMFPs) in four components of Microcystis
aeruginosa: hydrophilic extracellular organic mat-
ter (HPI-EOM), hydrophobic EOM (HPO-EOM),

hydrophilic intracellular organic matter (HPI-
IOM), and hydrophobic IOM (HPO-IOM). Their
findings revealed that THMFP in EOM is sensi-
tive to growth conditions and independent of algal
density. Chen and Lurling [2020] investigated the
rapid aggregation and colony formation of Micro-
cystis caused by calcium ions through cell adhe-
sion. Higher concentrations of calcium ions did
not impact the microcystin content but promoted
the binding of extracellular polysaccharides, lead-
ing to the formation of larger colonies and increased
Microcystis accumulation on surfaces. Zhang et al.
[2023] studied the bioaccumulation and detoxifi-
cation of microcystin-LR (MC-LR). Duan et al.
[2020] explored the effects of exposure to Microcys-
tis aeruginosa (MA) and its produced microcystins
(MC-LR) on gut microbiota variation and immune
response in Litopenaeus vannamei. The results
demonstrated significant histological changes and
apoptosis characteristics due to MA and MC-LR
exposure, leading to alterations in histopathology
and gut microbiota, including Lactobacillus albus,
as well as increased oxidative stress in the shrimp
gut. These studies provide valuable insights into the
dynamics and effects of algal aggregation and its
interactions with environmental factors, toxins, and
organisms in aquatic ecosystems. However, further
research is needed to enhance our understanding of
this complex phenomenon.

Harvesting practices are commonly employed
in predator–prey systems, and bifurcation meth-
ods have been utilized in various studies to ana-
lyze these systems [Lu et al., 2022; Yang et al.,
2023; Liu & Zhang, 2016; Auger et al., 2006; Sen
et al., 2022; Cui & Song, 2004; Lv et al., 2013a; Xu
et al., 2020; Lv et al., 2013b; Rihan et al., 2020;
Zhu et al., 2023; Yu et al., 2014]. Lv et al. [2019]
proposed and investigated a predator–prey model
with selective nonlinear harvesting for both the prey
and predator. They developed a Holling II func-
tional response prey–predator model with harvest-
ing in a two-patch environment: a free fishing zone
(patch 1) and a reserve zone (patch 2) where fishing
is strictly prohibited. They also explored two types
of predator–prey models incorporating nonsmooth
and noncontinuous harvesting. Liu et al. [2021] con-
structed an aquatic amensalism model with nonse-
lective harvesting and an Allee effect to study the
inhibitory mechanism of algicidal bacteria on algae.
Li et al. [2021] and Huang et al. [2022] investigated
a new aquatic ecological model that incorporates
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the aggregation effect and Allee effect to describe
the complex dynamics of Microcystis aeruginosa. In
summary, significant progress has been made in the
field of ecological mathematical models and popula-
tion dynamics. However, the development of aquatic
ecological models, particularly those incorporating
the effects of algae aggregation and harvesting, has
been relatively slow. Further research is needed to
advance our understanding in this area.

Li et al. [2021] and Huang et al. [2022] con-
sidered the following aquatic ecological model with
aggregation effect

Ṅ = Nr

(
1 − N

K1

)
− α1P (N − m1)

c1 − m1 + N
,

Ṗ =
α1β1P (N −m1)

c1 −m1 + N
+ d1P

(
1− N

K1

)
− γ1P,

(1)

where N and P represent the density of Microcystis
aeruginosa and filter-feeding fish at time T , respec-
tively. Nr(1− N

K1
) denotes the growth kinetics func-

tion of Microcystis aeruginosa with intrinsic growth
rate r and maximum environmental capacity K1.
The function α1P (N−m1)

c1−m1+N describes the aquatic
ecological mechanism with grazing coefficient α1,
half-saturation constant c1 and Microcystis aerug-
inosa aggregation parameter m1. The function
d1P (1 − N

K1
) describes how Microcystis aeruginosa

affects the abundance of filter-feeding fish with an
intrinsic growth rate d1, and α1β1P (N−m1)

c1−m1+N describes
how Microcystis aeruginosa aggregation affects the
abundance of filter-feeding fish population with the
absorption coefficient β1. The filter-feeding fish pop-
ulation P is subject to a death function γ1P with
a mortality coefficient γ1. This function takes into
account the aggregation of Microcystis aeruginosa
and captures the dynamic relationship between
Microcystis aeruginosa and filter-feeding fish. Since
Microcystis aeruginosa consists of numerous cells,
the model considers the impact of both algal aggre-
gation and algal monomers on filter-feeding fish. In
[Lv et al., 2019], the authors utilized a harvesting
functional form hN

h+N , which represents the harvest-
ing of Microcystis aeruginosa. This harvesting pro-
cess is employed to prevent algal blooms as Micro-
cystis aeruginosa can produce microcystins (MCs)
that are highly hepatotoxic during their growth and
decomposition. These MCs can cause fish poison-
ing and death. Therefore, when algae grow rapidly,
artificial harvesting is performed in lakes to control
the algal population.

Motivated by [Li et al., 2021] and [Huang et al.,
2022], we consider the following aquatic ecological
model with aggregation effect and harvesting

Ṅ = Nr

(
1 − N

K1

)
− α1P (N − m1)

c1 − m1 + N
− hN

h + N
,

Ṗ =
α1β1P (N − m1)

c1 − m1 + N
+ d1P

(
1 − N

K1

)
− γ1P,

(2)

where hN
h+N is the harvesting function with the

maximum harvesting rate of Microcystis aerugi-
nosa h. In the subsequent analysis, our focus will
be on examining the dynamics of an aquatic ecolog-
ical model that incorporates the aggregation effect
and harvesting. This analysis will involve studying
the equilibrium points and conducting bifurcation
analysis to elucidate the transition and interaction
mechanisms between Microcystis aeruginosa and
filter-feeding fish.

The remaining sections of the paper are orga-
nized as follows. In Sec. 2, we examine the existence
and stability of equilibria in the model. In Sec. 3,
we provide a comprehensive bifurcation analysis,
including the investigation of saddle-node bifurca-
tion, Bogdanov–Takens bifurcation, and Hopf bifur-
cation. Section 4 presents numerical simulation
analysis and showcases phase portraits. Finally, the
paper concludes with a summary of findings and a
discussion of the results.

2. Existence and Stability
of Equilibria

We rescale model (2) by

N = c1x, P = hy, T =
t

r
.

Model (2) becomes

dx

dt
= x

(
1 − x

k

)
− py(x − m)

1 + x − m
− qx

x + 1
,

dy

dt
=

ay(x − m)
1 + x − m

+ by
(
1 − x

k

)
− cy,

(3)

where

a =
α1β1

r
, b =

d1

r
, c =

γ1

r
, p =

α1h

c1r
,

q =
h

rc1
, m =

m1

c1
, k =

K1

c1

and a, b, c, p, q, m, k are all positive parameters.
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From model (3), we consider the Microcystis
aeruginosa isocline vertically and the filter-feeding
fish isocline horizontally, and obtain

y =
x(1 + x − m)(x2 + (1 − k)x + k(q − 1))

kp(x + 1)(m − x)
,

a(x − m)
1 + x − m

+ b
(
1 − x

k

)
− c = 0 or y = 0.

(4)
Considering the biological significance and the char-
acteristics of isoclines, we can conclude that the
existence of an internal equilibrium is conditional,
and it requires the conditions m < x < k and x2 +
(1− k)x+ k(q− 1) < 0 to be satisfied. We find that
model (2) has an equilibrium E0(0, 0) if m "= 1 and

two boundary equilibria E01(
k−1+

√
(k+1)2−4kq
2 , 0),

E02(
k−1−

√
(k+1)2−4kq
2 , 0) when (k + 1)2 ≥ 4kq. To

find the positive equilibria of model (2), we set

a(x − m)
x + 1 − m

+ b
(
1 − x

k

)
− c = 0, (5)

which yields

bx2 + (b − bm + ck − ak − bk)x

+ k(am + bm − cm + c − b) = 0. (6)

From (5) and (6), model (2) has at most two posi-
tive equilibria E1(x1, y1) and E2(x2, y2), which may
merge into a unique positive equilibrium E∗(x∗, y∗),
where

x1 =
ak + bk − ck + bm − b −

√
(b − bm + ck − ak − bk)2 − 4bk(am + bm − cm + c − b)

2b
,

x2 =
ak + bk − ck + bm − b +

√
(b − bm + ck − ak − bk)2 − 4bk(am + bm − cm + c − b)

2b
,

x∗ =
ak + bk − ck + bm − b

2b
.

(7)

The discriminant of (6) is

∆ = (b − bm + ck − ak − bk)2

− 4bk(am + bm − cm + c − b) (8)

and we have

x1 + x2 =
ak + bk − ck + bm − b

b
,

x1x2 =
k(am + bm − cm + c − b)

b
.

(9)

Note that ∆ ≥ 0 is equivalent to

ak + bk − ck + b − 2
√

abk

b

≤ m ≤ ak + bk − ck + b + 2
√

abk

b
.

Let

m1 =
ak + bk − ck + b − 2

√
abk

b
,

m2 =
ak + bk − ck + b + 2

√
abk

b
,

m∗ =
(ak + bk − ck + b ± 2

√
abk)

b
,

(10)

then we have the following existence conditions of
equilibria in model (2).

Theorem 1. System (2) may have two boundary

equilibria E01,02(
−1+k±

√
(k+1)2−4kq
2 , 0) if (k + 1)2 −

4kq ≥ 0 and the origin E0(0, 0) exists when m "= 1.
Moreover,

(1) When m1 ≤ m ≤ m2 (i.e. ∆ > 0),
(a) If (a + b − c)m + c − b < 0 and k[(a + b −

c)m + 2c − 2b − a] > bm − 2b, system (2)
has a unique positive equilibrium;

(b) If 0 < k(a+b−c)+b(m−1)
2b < 1, k[(a + b −

c)m + 2c − 2b − a] > bm − 2b and am +
bm − cm + c − b > 0, system (2) has two
positive equilibria.

(2) System (2) has a unique positive equilibrium
if and only if m = m∗ (i.e. ∆ = 0) and
0 < k(a + b − c) + b(m − 1) < 2b.

(3) System (2) has no positive equilibrium in other
conditions. Here m1, m2 and m∗ are defined
by (10).

Now, we will analyze the local stability of the
equilibria of model (2). We start by examining the
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origin E0(0, 0) when m "= 1. The Jacobian matrix
of model (2) at E0(0, 0) is

J(E0) =





1 − q
mp

1 − m

0 − am

1 − m
+ b − c



, (11)

which has two eigenvalues

λ1 = 1 − q, λ2 = − am

1 − m
+ b − c.

We obtain the following results.

Theorem 2. Under the condition m "= 1,

(1) When 1− q < 0, − am
1−m + b− c > 0 or 1− q > 0,

− am
1−m + b − c < 0, E0(0, 0) is a saddle.

(2) When 1 − q < 0, − am
1−m + b − c < 0,

(a) E0(0, 0) is a stable node as q "=
(c−a−b)m+b−c+m−1

m−1 ;
(b) E0(0, 0) is a sink as q = (c−a−b)m+b−c+m−1

m−1 .

(3) When 1 − q > 0, − am
1−m + b − c > 0,

(a) E0(0, 0) is an unstable node as q "=
(c−a−b)m+b−c+m−1

m−1 ;
(b) E0(0, 0) is a source as q = (c−a−b)m+b−c+m−1

m−1 .

Next, we study the type of another two bound-

ary equilibria E01,02(
k−1±

√
(k+1)2−4kq
2 , 0) when (k+

1)2 − 4kq ≥ 0. The Jacobian matrices of model (2)
at E01,02 are, respectively,

J(E01)=




λ3 −p(

√
(k + 1)2 − 4kq− k +2m + 1)√
(k + 1)2 − 4kq − k + 2m− 1

0 λ4





(12)

and

J(E02)=




λ5 −

p(
√

(k + 1)2 − 4kq + k− 2m− 1)√
(k + 1)2 − 4kq + k− 2m + 1

0 λ6



,

(13)

where

λ3 =
√

(k + 1)2 − 4kq + 1
k

− 4q
(−
√

(k + 1)2 − 4kq + k + 1)2
,

λ4 =
a(
√

(k + 1)2 − 4kq − k + 2m + 1)√
(k + 1)2 − 4kq − k + 2m − 1

+
b(
√

(k + 1)2 − 4kq + k + 1)
2k

− c,

λ5 =
1 −

√
(k + 1)2 − 4kq

k

− 4q
(
√

(k + 1)2 − 4kq + k + 1)2
,

λ6 =
a(
√

(k + 1)2 − 4kq + k − 2m − 1)√
(k + 1)2 − 4kq + k − 2m + 1

+
b(−

√
(k + 1)2 − 4kq + k + 1)

2k
− c.

Then the eigenvalues of the Jacobian matrix (12)
are λ3,λ4 and the eigenvalues of the Jacobian
matrix (13) are λ5,λ6. We can obtain the follow-
ing results.

Theorem 3. When (k + 1)2 − 4kq ≥ 0,

(1) If λ3λ4 < 0, E01(
−1+k−

√
(k+1)2−4kq
2 , 0) is a

saddle;

(2) If λ3 > 0, λ4 > 0, E01(
−1+k−

√
(k+1)2−4kq
2 , 0) is

an unstable focus or node;

(3) If λ3 < 0, λ4 < 0, E01(
−1+k−

√
(k+1)2−4kq
2 , 0)

is a stable focus or node;

(4) If λ5λ6 < 0, E02(
−1+k+

√
(k+1)2−4kq
2 , 0) is a

saddle;

(5) If λ5 > 0, λ6 > 0, E02(
−1+k+

√
(k+1)2−4kq
2 , 0) is

an unstable focus or node;

(6) If λ5 < 0, λ6 < 0, E02(
−1+k+

√
(k+1)2−4kq
2 , 0) is

a stable focus or node.

Next, we consider stability and type of the pos-
itive equilibria of model (2). The Jacobian matrix
of model (2) at a positive equilibria E(x, y) is given

2350180-5
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by

J(E) =





−2x
k

− py

(x + 1 − m)2
− q

(x + 1)2
+ 1

p(m − x)
x + 1 − m

ay

(x + 1 − m)2
− by

k
0




. (14)

The determinant of J(E) is

det(J(E)) =
x[x2 + (1 − k)x + (q − 1)][b(−m + x + 1)2 − ak]

k2(x + 1)(−m + x + 1)2
(15)

and its sign is determined by

SD(x) = [x2 + (1 − k)x + (q − 1)][b(−m + x + 1)2 − ak]. (16)

The trace of J(E) is

tr(J(E)) = −2x
k

− py

(−m + x + 1)2
− q

(x + 1)2
+ 1 (17)

and its sign is determined by

ST (x) =
−2x5 + (k + 4m − 5)x4 + d1x3 + d2x2 + d3x + d4

k(x + 1)2(m − x − 1)(m − x)
, (18)

where

d1 = −2km + 2k − 2m2 + 10m − 4,

d2 = km2 − 5km + k − 4m2 + 8m − 1,

d3 = (2k − 2)m2 + m(2kq − 4k + 2),

d4 = (m2 − m)(k − kq).

To discuss the topological type of the positive equilibria of model (2), we let

q∗ =
(k(a + b − c) +

√
a
√

b
√

k + b)2(2a3/2
√

b
√

k + a2k + ab + ck(b − c))
b2k(a + b − c)(k(a + b − c) + 2

√
a
√

b
√

k + b)
. (19)

Theorem 4. When m = m∗ and 0 < k(a +
b − c) + b(m − 1) < 2b, model (2) has a unique
positive equilibrium E∗(x∗, y∗). Moreover,

(1) If q "= q∗, then E∗(x∗, y∗) is a saddle-node,
which is attracting (or repelling) if q < q∗ (or
q > q∗);

(2) If q = q∗, then E∗(x∗, y∗) is a cusp of codimen-
sion two.

Proof. Substituting x∗ and m1 (m2 is the same)
into SD and ST , we deduce that SD(x∗) = 0.

Letting ST (x∗) = 0, we have

q∗ =
(k(a + b − c) +

√
a
√

b
√

k + b)2(2a3/2
√

b
√

k + a2k + ab + ck(b − c))
b2k(a + b − c)(k(a + b − c) + 2

√
a
√

b
√

k + b)
. (20)

Next, we prove the assertion (2). Let X = x − x∗, Y = y − y∗, m = m2 and q = q∗. Then model (2) is
transformed into (we still denote X,Y by x, y, respectively)

dX

dt
= A1Y + A2XY + A3X

2 + o(|X,Y |3), dY

dt
= B1X

2 + o(|X,Y |3), (21)

2350180-6
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where

A1 = p

( √
b√
ak

− 1

)

, A2 = − bp

ak
, A3 =

aA′′√abk + A′

ak(a + b − c)
√

abk(k(a + b − c) −
√

abk + b)
,

B1 =
√

a(
√

k(a + b − c) −
√

a
√

b)2(−2
√

abk + 2ak + bk + b − 2ck)
kp

√
bk(a + b − c)(−2

√
abk + ak + bk + b − ck)

and

A′ = −ab2 − bk(−c(5a + 2b) + (2a + b)2 + c2)

− k2(2a + b − 2c)(a + b − c)2,

A′′ = 3a2k + ab(5k + 3) − 6ack

+ (b − c)(2bk + b − 3ck).

Letting dτ = A1dt, model (21) is transformed into

dX

dτ
= Y +

A2

A1
XY +

A3

A1
X2 + o(|X,Y |3),

dY

dτ
=

B1

A1
X2 + o(|X,Y |3).

(22)

By Remark 1 in Sec. 2.13 of [Perko, 1996], we
obtain an equivalent system of system (22) in the
small neighborhood of (0, 0) as follows:

dX

dτ
= Y + o(|X,Y |3),

dY

dτ
=

B1

A1
+

2A3

A1
XY + o(|X,Y |3) + o(|X,Y |3).

(23)

Then E∗(x∗, y∗) is a cusp of codimension two when
B1
A1

"= 0 and 2A3
A1

"= 0, i.e.

b(−k + 2m − 1) "= 6
√

abk and

a
√

bk(7k − 39m + 32)

+ 36ak
√

ak + b3/2(m − 1)2(k − 2m + 1)

"= 5b(m − 1)
√

ak(k − 3m + 2). !

Theorem 5. When 0 < k(a+b−c)+b(m−1)
2b < 1,

k[(a + b − c)m + 2c − 2b − a] > bm − 2b and
(a + b − c)m + c − b > 0 are satisfied, model (2)
has two positive equilibria E1(x1, y1) and E2(x2, y2)
(x2 < x1). Moreover, E2(x2, y2) is always a saddle,
and E1(x1, y1) is

(1) a stable focus (or node) if ST (x1) > 0;
(2) a unstable focus (or node) if ST (x1) < 0;
(3) a center if ST (x1) = 0.

Here ST (x1) is defined in (19).

Proof. The Jacobian matrix of system (2) at Ei

(i = 1, 2) is

J(Ei) =





−2xi

k
− pyi

(xi − m + 1)2
− q

(xi + 1)2
+ 1

p(xi − m)
−xi + m − 1

ayi

(xi − m + 1)2
− byi

k
0




. (24)

Then we can get

det(J(Ei)) =
yip(xi − m)
xi + 1 − m

(
a

(xi + 1 − m)2
− b

k

)
. (25)

The sign of det(J(Ei)) is determined by
a

(xi+1−m)2 −
b
k . Additionally, to determine the types

of E1(x1, y1) and E2(x2, y2), we need to consider the
signs of SD(x1), SD(x2) and ST (x1).

For

SD(x1) = − 2b
√

∆
k(ak + bk − ck + b − bm −

√
∆)

,

we find that SD(x1) > 0 due to the existence of
E1(x1, y1). Thus, if ST (x1) > 0, E1(x1, y1) is locally
asymptotically stable; if ST (x1) < 0, E1(x1, y1) is
unstable.

Similarly, since

SD(x2) = − 2b
√

∆
k(ak + bk − ck + b − bm +

√
∆)

,
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we can get that SD(x2) < 0. Therefore, E2(x2, y2)
is a saddle whenever it exists. !

3. Bifurcation Analysis

3.1. Saddle-node bifurcation

Lemma 1 (Sotomayor’s Theorem [Liu & Huang,
2018]). The system ẋ = F (x,m) experiences a
saddle-node bifurcation at the equilibrium xSN as
the control parameter m passes through the bifur-
cation value m = mSN, if the following conditions
are satisfied :

FmW T (ESN;mSN) "= 0,

W TD2Fm(ESN;mSN)(V, V ) "= 0.

According to Theorem 5, we know that E1

is locally asymptotically stable if tr(J(E1)) < 0
and E2 is a saddle whenever it exists. By control-
ling the parameter m, the collision of E1 and E2

can result in an overlapping equilibrium, denoted
as ESN(xSN, ySN), when ∆ = 0. As the value of
the parameter m changes, the internal equilibria

disappear when ∆ < 0. Model (2) undergoes a
saddle-node bifurcation at m = mSN, where

mSN =
k(a + b − c) − 2

√
abk + b

b
,

xSN =
k(a + b − c) −

√
abk

b
,

ySN =
xSN(xSN − k)(xSN + 1 − m)

kp(m − xSN)
.

Theorem 6. Under the condition

max
{

b,
k2(a − c)(a + b − c) + bk(2a + bq − c)

k(2a + b − 2c) + b

}

<
√

abk <
1
2
(k(a + b − c) + b)

model (2) undergoes a saddle-node bifurcation at

m = mSN " k(a + b − c) − 2
√

abk + b

b
.

Proof. When m = mSN " k(a+b−c)−2
√

abk+b
b , the

Jacobian matrix at ESN is as follows:

J(ESN) =




1 − 2xSN

k
− pySN

(xSN + 1 − m)2
− q

(xSN + 1)2
− p(xSN − m)

xSN + 1 − m

0 0



. (26)

The eigenvectors of the zero eigenvalues of JESN and JT
ESN

are given by:

V =

[
v1

v2

]

=





1

(−m + xSN + 1)
(
−2xSN

k
− pySN

(−m + xSN + 1)2
− q

(xSN + 1)2
+ 1
)

p(xSN − m)




, W =

[
w1

w2

]

=

[
0

1

]

.

Then

Fm(ESN;mSN)

=

[
F1m

F2m

]
=





py

(−m + x + 1)2

− ay

(−m + x + 1)2





(ESN;mTC)

=





(
√

k(a+ b− c)−
√

ab)(
√

k(b(k + 1)(a− c)+ b(a+ bq)+ k(a− c)2)+
√

ab(2k(c− a)− b(k + 1)))√
k
√

ab(b−
√

abk)(k(a+ b− c)−
√

a
√

b
√

k + b)

−
√

a(
√

k(a+ b− c)−
√

ab)(
√

k(b(k + 1)(a− c)+ b(a+ bq)+ k(a− c)2)+
√

ab(2k(c− a)− b(k +1)))√
b
√

kp(b−
√

abk)(k(a+ b− c)−
√

a
√

b
√

k + b)




,
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D2Fm(ESN;mSN)(V, V )

=





∂2F1m

∂x2
v2

1 + 2
∂2F1m

∂x∂y
v1v2 +

∂2F1m

∂y2
v2

2

∂2F2m

∂x2
v2

1 + 2
∂2F2m

∂x∂y
v1v2 +

∂2F2m

∂y2
v2

2




=





6py

(−m + x + 1)4
− (4p)v2

(−m + x + 1)3

(4a)v2

(−m + x + 1)3
− 6ay

(−m + x + 1)4





(ESN;mSN)

,

W TFm(ESN;mSN)

= [0, 1]





py

(−m + x + 1)2

− ay

(−m + x + 1)2





(ESN;mSN)

= −
√

a(
√

k(a+ b− c)−
√

ab)(
√

k(b(k + 1)(a− c)+ b(a+ bq)+ k(a− c)2)+
√

ab(2k(c− a)− b(k + 1)))√
b
√

kp(b−
√

abk)(k(a+ b− c)−
√

a
√

b
√

k + b)

"= 0,

W TD2Fm(ESN;mSN)(V, V )

= [0, 1]





6py

(−m + x + 1)4
− (4p)v2

(−m + x + 1)3

(4a)v2

(−m + x + 1)3
− 6ay

(−m + x + 1)4





(ESN;mSN)

=
(4a)v2

(−m + xSN + 1)3
− 6aySN

(−m + xSN + 1)4
.

According to Lemma 1, model (2) undergoes a saddle-node bifurcation around ESN(xSN, ySN) at
m = mSN when v2 < 0, where

v2 =
ak

p(ak −
√

abk)

(
1 − b2q

(k(a + b − c) −
√

abk + b)2
− 2(k(a + b − c) −

√
abk)

bk

)
− v2

and

v2 =
(k(a + b − c) −

√
abk)(k2(a − c)(a + b − c) + bk(2a + bq − c) −

√
abk(k(2a + b − 2c) + b))√

abk(b −
√

abk)(k(a + b − c) −
√

abk + b)
. !

3.2. Bogdanov–Takens bifurcation

Theorem 7. When m = m∗, q = q∗, b(−k + 2m −
1)−6

√
abk "= 0 and 36a3/2k3/2−5

√
ab
√

k(m−1)(k−
3m + 2) +a

√
bk(7k − 39m + 32) + b3/2(m− 1)2(k −

2m + 1) "= 0, E∗(x∗, y∗) is a cusp of codimension
two. If we choose m and q as bifurcation parameters,
then model (2) undergoes Bogdanov–Takens bifurca-
tion of codimension two in a small neighborhood of
the unique positive equilibrium E∗(x∗, y∗).

Proof. Consider

dx

dt
= x

(
1 − x

k

)
− py(x − λ2 − m)

x + 1 − λ2 − m
− x(λ1 + q)

x + 1
,

dy

dt
=

ay(x − λ2 − m)
x + 1 − λ2 − m

+ by
(
1 − x

k

)
− cy,

(27)

where λ = (λ1,λ2) ∼ (0, 0).
Let u = x − x∗, v = y − y∗. Then model (27)

can be rewritten as
du

dt
= α1 + α2u + α3v + α4u

2 + α5uv,

dv

dt
= β1 + β2u + β3v + β4u

2 + β5uv

+ P1(u, v,λ1,λ2),

(28)
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where

α1 = x∗

(
1 − x∗

k

)
− py∗(λ2 + m − x∗)

λ2 + m − x∗ − 1

− x∗(λ1 + q)
x∗ + 1

,

α2 = −2x∗
k

− py∗
(λ2 + m − x∗ − 1)2

+
−λ1 − q

(x∗ + 1)2
+ 1,

α3 = − p(λ2 + m − x∗)
λ2 + m − x∗ − 1

,

α4 = −1
k
− py∗

(λ2 + m − x∗ − 1)3
+

λ1 + q

(x∗ + 1)3
,

α5 = − p

(λ2 + m − x∗ − 1)2
,

β1 =
ay∗(λ2 + m − x∗)
λ2 + m − x∗ − 1

+ by∗
(
1 − x∗

k

)
− cy∗,

β2 =
ay∗

(λ2 + m − x∗ − 1)2
− by∗

k
,

β3 =
a(λ2 + m − x∗)
λ2 + m − x∗ − 1

+ b
(
1 − x∗

k

)
− c,

β4 =
ay∗

(λ2 + m − x∗ − 1)3
,

β5 =
a

(λ2 + m − x∗ − 1)2
− b

k
,

P1(u, v,λ1,λ2) is a power series in (u, v) with terms
uivj satisfying i+j ≥ 3, and the coefficients depend
smoothly on λ1 and λ2.

Let n1 = u, n2 = α1 + α2u + α3v + α4u2 +
α5uv. The model (28) becomes

dn1

dt
= n2,

dn2

dt
= ξ1 + ξ2n1 + ξ3n2 + ξ4n

2
1 + ξ5n1n2

+ ξ6n
2
2 + P2(n1, n2,λ1,λ2),

(29)

where

ξ1 = α3β1 − α1β3,

ξ2 = α5β1 + α3β2 − α2β3 − α1β5,

ξ3 = α2 −
α1α5

α3
+ β3,

ξ4 = α5β2 − α4β3 + α3β4 − α2β5,

ξ5 =
α2

3β5 + 2α4α2
3 − α2α5α3 + α1α2

5

α2
3

,

ξ6 =
α5

α3

and P2(n1, n2,λ1,λ2) is a power series in (n1, n2)
with terms ni

1n
j
2 satisfying i + j ≥ 3, and the coef-

ficients depend smoothly on λ1 and λ2.
Let dt = dτ(1−ξ6n1). Then model (29) becomes

dn1

dτ
= n2(1 − ξ6n1),

dn2

dτ
= 1 − ξ6n1(ξ1 + ξ2n1 + ξ3n2 + ξ4n

2
1

+ ξ5n1n2 + ξ6n
2
2 + P2(n1, n2,λ1,λ2)).

(30)

Letting z1 = n1, z2 = n2(1 − ξ6n1), we obtain

dz1

dτ
= z2,

dz2

dτ
= η1 + η2z1 + η3z2 + η4z

2
1 + η5z1z2

+ P3(z1, z2,λ1,λ2),

(31)

where

η1 = ξ1, η2 = ξ2 − 2ξ1ξ6, η3 = ξ3,

η4 = ξ1ξ
2
6 − 2ξ2ξ6 + ξ4, η5 = ξ5 − ξ3ξ6

and P3(z1, z2,λ1,λ2) is a power series in (z1, z2)
with terms zi

1z
j
2 satisfying i + j ≥ 3, and the coeffi-

cients depend smoothly on λ1 and λ2.
When η4 > 0, we let u1 = z1, u2 = z2√

η4
,

τ1 = √
η4τ . Then model (31) can be written as

du1

dτ1
= u2,

du2

dτ2
= θ1 + θ2u1 + θ3u2 + u2

1

+ θ4u1u2 + P4(u1, u2,λ1,λ2),

(32)

where

θ1 =
η1

η4
, θ2 =

η2

η4
, θ3 =

η3√
η4

, θ4 =
η5√
η4

and P4(u1, u2,λ1,λ2) is a power series in (u1, u2)
with terms ui

1u
j
2 satisfying i + j ≥ 3, and the coef-

ficients depend smoothly on λ1 and λ2.
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Further, letting

ω1 =
θ2

2
+ u1, ω2 = u2,

model (32) can be written as
dω1

dτ1
= ω2,

dω2

dτ2
= γ1 + γ2ω2 + ω2

1 + γ3ω1ω2

+ P5(ω1,ω2,λ1,λ2),

(33)

where

γ1 = θ1 −
θ2
2

4
, γ2 = θ3 −

θ2θ4

2
, γ3 = θ4

and P5(ω1,ω2,λ1,λ2) is a power series in (ω1,ω2)
with terms ωi

1ω
j
2 satisfying i + j ≥ 3, and the coef-

ficients depend smoothly on λ1 and λ2.
Making the final change of variables by setting

x = γ2
3ω1, y = γ3

3ω1, τ =
τ1

γ3
,

we finally obtain
dx

dτ
= y,

dy

dτ
= ζ1 + ζ2y + x2 + xy + P6(x, y,λ1,λ2),

(34)

where

ζ1 = γ1γ
4
3, ζ2 = γ2γ3

and P6(x, y,λ1,λ2) is a power series in (x, y) with
terms xiyj satisfying i + j ≥ 3, and the coefficients
depend smoothly on λ1 and λ2.

We can express ζ1 and ζ2 in terms of λ1 and λ2

as follows:
ζ1 = λ1s1 + λ2s2 + λ2

1s3 + λ1λ2s4

+ λ2
2s5 + o(|(λ1,λ2)|),

ζ2 = λ1t1 + λ2t2 + λ2
1t3 + λ1λ2t4

+ λ2
2t5 + o(|(λ1,λ2)|).

(35)

Then
∣∣∣∣
∂(ζ1, ζ2)
∂(λ1,λ2)

∣∣∣∣ = −32ρ4
1(ab2 + k2(a + b − c)2(2a + b − 2c) + ρ2

√
abk + bkρ3)5

a2ρ6
4ρ

3
5ρ

7
6(a + b − c)

√
abk(

√
b −

√
ak)4

,

where

ρ1 = k(a + b − c) − 2
√

abk + b,

ρ2 = −ab(5k + 3) + ak(6c − 3a) − ((b − c)(k(2b − 3c) + b)),

ρ3 = c(−5a − 2b + c) + (2a + b)2,

ρ4 =
√

k(a + b − c) −
√

ab,

ρ5 = k(2a + b − 2c) − 2
√

abk + b,

ρ6 = k(a + b − c) −
√

abk + b.

Only when

c "= −bk(b(k − 1)2 − 9ak) − 3
√

abk + 6ak + 5bk + b

12k 3

√
3
√

3
√

ab3k7ρ7 + 27ab2(k − 1)k4 + 54abk4
√

abk + b3(k − 1)3k3
,

where

ρ7 = 135a2k2 + 18ab(k − 1)2k + 4b(k − 1)3
√

abk

+ 108a(k − 1)k
√

abk + 3b2(k − 1)4,

we have
∣∣∣∣
∂(ζ1, ζ2)
∂(λ1,λ2)

∣∣∣∣ "= 0.

Model (2) undergoes a Bogdanov–Takens bifurca-
tion of codimension two when λ = (λ1,λ2) is in a
small neighborhood of the origin. !

3.3. Hopf bifurcation

Firstly, letting

dt = k2p(x + 1)(x + 1 − m)(m − x1)(x1 + 1)dτ,
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we obtain
dx

dτ
= kp(x1 + 1)(m − x1)[kp(x + 1)y(m − x)

+ x(m − x − 1)(k(q − x − 1) + x2 + x)],

dy

dτ
= −kpy(x + 1)(x1 + 1)(x1 − m)[ak(m − x)

+ b(k − x)(m − x − 1) + ck(−m + x + 1)].
(36)

Noticing that

y1 =
x1(−m + x1 + 1)(k(q − x1 − 1) + x2

1 + x1)
kp(x1 + 1)(m − x1)

,

we use the following scalings of the coordinates,

x =
x

x1
, y =

y

y1
, τ =

t

x5
1

, (37)

under which model (2) is transformed to
dx

dt
=

kp

x3
1

[q1y(x1x + 1)(−m + x1 + 1)(m − x1x)

− q2x(x1 + 1)(m − x1)(x1x − m + 1)],

dy

dt
= −q3kpy

x3
1

(x1 + 1)(x1x + 1)(m − x1),

(38)

where

q1 =
kq − kx1 − k + x2

1 + x1

x2
1

,

q2 =
−kx1x + x2

1x
2 + x1x + kq − k

x2
1

,

q3 =
x1x(bx1x + k(c − a) − b(k + m − 1)) + k(m(a + b − c) − b + c)

x2
1

.

Then taking the parameter scaling as follows:

a =
a

x1
, b =

b

x1
, c =

c

x1
, m =

m

x1
,

k =
k

x1
, q =

q

x1
, g =

1
x1

,

after dropping the bars, we obtain

dx

dt
=

kp

g
[q4y(g − m + 1)(g + x)(m − x)

+ q5(g + 1)(m − 1)x(−g + m − x)],

dy

dt
=

q6kpy

g
(g + 1)(1 − m)(g + x),

(39)

where

q4 = g(−k) + g + kq − k,

q5 + 1 = −gk + gx + kq − kx + x2,

q6 =
km(a + b − c) − kx(a + b − c) − bmx + bx2

g

− bk + bx + ck.

Since model (39) has an equilibrium Ẽ1(1, 1) (i.e.
E1(x1, y1) of model (2), we have

k =
b(g − m + 1)

(1 − m)(a + b − c) + g(b − c)
,

which is then substituted into (39) to finally yield
the following model

dx

dt
=

bp(−q7 + q8 − q9)(g − m + 1)
g[a − am + (b − c)(g − m + 1)]2

,

dy

dt
=

b2py(g + 1)(1 − m)(q10 + q11)(x − 1)(g − m + 1)(g + x)
g2[a − am + (b − c)(g − m + 1)]2

,

(40)

where

q7 = x2(g + 1)(1 − m)(g + x)(g − m + x)[a(m − 1) + c(g − m + 1)],

q8 = b(g − m + 1)[g(x − 1) + q + (x − 1)x],

q9 = y(g − m + 1)(g + x)(m − x)[a(g + 1)(m − 1) + (g − m + 1)(−bq + cg + c)].

2350180-12



December 6, 2023 18:40 WSPC/S0218-1274 2350180

Bifurcation Analysis of a New Aquatic Ecological Model

In the following, we study the Hopf bifurcation
around Ẽ1(1, 1) in model (40), which corresponds to
the Hopf bifurcation around E1(x1, y1) in model (2).

Theorem 8. Model (40) has an equilibrium at
Ẽ1(1, 1). Moreover,

(1) when q = q+, Ẽ1(1, 1) is a focus or center;
(2) when q > q+, Ẽ1(1, 1) is a locally asymptotically

stable hyperbolic node or focus;

(3) when q < q+, Ẽ1(1, 1) is an unstable hyperbolic
node or focus.

Proof. The Jacobian matrix of model (40) at
Ẽ1(1, 1) is

J(Ẽ1(1, 1)) =

[
a11 a12

a21 0

]
, (41)

where

a11 =
bp(q10 − q11)(g − m + 1)

g[a − am + (b − c)(g − m + 1)]2
,

a12 = −bp(g + 1)(m − 1)(g − m + 1)2[a(g + 1)(m − 1) + (g − m + 1)(−bq + cg + c)]
g[a(1 − m) + (b − c)(g − m + 1)]2

,

a21 = −b2p(g + 1)2(m − 1)(g − m + 1)[a(m2 + 1) − (g + 2)am + (b − c)(g − m + 1)2]
g2[a(1 − m) + (b − c)(g − m + 1)]2

and
q10 = a(g + 1)2(m − 1)[g(2m − 1) − 2(m − 1)2],

q11 = (g − m + 1)[(g + 1)2(b(m − 1)(g − m + 1)

+ c(−2(g + 2)m + g + 2m2 + 2))

+ bgmq(g − m + 2)].
The determinant of J(Ẽ1(1, 1)) is

det(J(Ẽ1))

=
b3p2q12q13(g + 1)3(m − 1)2(g − m + 1)3

g3[a − am + (b − c)(g − m + 1)]4
,

where

q12 = a[−(g + 2)m + m2 + 1]+ (b− c)(g −m +1)2,

q13 = a(g + 1)(1 − m) − (g − m + 1)(−bq + cg + c)

and the trace of J(Ẽ1(1, 1)) is

tr(J(Ẽ1)) = a11

=
bp(q10 − q11)(g−m + 1)

g[a− am + (b− c)(g −m + 1)]2
.

We can see that det(J(Ẽ1)) > 0 and tr(J(Ẽ1)) = 0
if q = q+, where

q+ = −

(g + 1)2{a(m − 1)(−2gm + g + 2(m − 1)2) + (g − m + 1)(b(m − 1)(g − m + 1)
+ c(−2(g + 2)m + g + 2m2 + 2))}

bgm(g − m + 1)(g − m + 2)
.

The leads to the conclusions.
Next, we check the transversality condition

d

dq
tr(J)

∣∣∣∣
q=q+

= − b2mp(g − m + 1)2(g − m + 2)
[a(1 − m) + (b − c)(g − m + 1)]2

< 0.

Let u = x − 1, v = y − 1 and q = q+. Model (40) can be written as

du

dt
= a1v + a2u

2 + a3uv + a4u
3 + a5u

2v,
dv

dt
= b1u + b2u

2 + b3uv + b4u
3 + b5u

2v, (42)

where

a1 =
(g + 1)k(m − 1)p(g − m + 1)(g(−k) + g + kq − k + 1)

g
,

2350180-13
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a2 =

kp((−g + m − 1)(g(−k) + g + kq − k + 1) + (g + 1)(m − 1)((g − k + 2)(−g + m − 2)
+ gk − 2g − kq + k + m − 2))

g
,

a3 =
kp(g − m + 1)(−g + m − 2)(g(−k) + g + kq − k + 1)

g
,

a4 =
(g + 1)k(m − 1)p(−2g + k + m − 4)

g
,

a5 =
b(g + 1)(m − 1)p(g − m + 1)3((g − m + 1)(b(g + 1) − c(g + 2)) − a(g + 2)(m − 1))

g2m(g − m + 2)(a(−m) + a + (b − c)(g − m + 1))2
,

b1 =

(g + 1)k(m − 1)p((g + 1)(k(a − c) + b(−g + k + m − 2)) + k(−a(m − 1) − c(g − m + 1))
+ b(k − 1)(g − m + 1))

g2
,

b2 =
(g + 1)k(m − 1)p(k(a − c) + b(−g + k + m − 2) − b(g + 1))

g2
,

b3 =

(g + 1)k(m − 1)p((g + 1)(k(a − c) + b(−g + k + m − 2)) + k(−a(m − 1) − c(g − m + 1))
+ b(k − 1)(g − m + 1))

g2
,

b4 = −b(g + 1)k(m − 1)p
g2

,

b5 =
(g + 1)k(m − 1)p(k(a − c) + b(−g + k + m − 2) − b(g + 1))

g2
.

Let

ω =
(g + 1)Gk(m − 1)p(g − m + 1)(g(1 − k) + kq − k + 1)

g

and make transformations of u = X, v = GY and dt = dτ
ω , where

G =
(g + 1)

√
(m − 1)(g − m + 1)

√
−bm(−g + m − 2)(a(−(g + 2)m + m2 + 1) + (b − c)(g − m + 1)2)√

(g + 1)2(m − 1)2(g − m + 1)3(a(g + 2)(m − 1) − (g − m + 1)(b(g + 1) − c(g + 2)))
.

Model (42) becomes

dx

dt
= y + f(x, y),

dy

dt
= −x + g(x, y), (43)

where

f(x, y) = ã21x
2y + ã30x

3 + ã20x
2 + ã12xy2 + ã11xy + ã2y

2 + ã3y
3,

g(x, y) = b̃21x
2y + b̃30x

3 + b̃20x
2 + b̃12xy2 + b̃11xy + b̃2y

2 + b̃3y
3

and

ã20 =
(g − k + 2)(−g + m − 2) + (g + 1)(k − 2) − kq + m

G(g − m + 1)(g(−k) + g + kq − k + 1)
+

1
(g + 1)G(1 − m)

,

ã11 =
−g + m − 2

(g + 1)(m − 1)
,
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ã30 =
−2g + k + m − 4

G(g − m + 1)(g(−k) + g + kq − k + 1)
,

ã21 =
b(g − m + 1)2((g − m + 1)(b(g + 1) − c(g + 2)) − a(g + 2)(m − 1))

gkm(g − m + 2)(g(−k) + g + kq − k + 1)(a(−m) + a + (b − c)(g − m + 1))2
,

b̃20 =
ak − 2bg + bk + bm − 3b − ck

gG2(g − m + 1)(gk − g − kq + k − 1)
,

b̃11 = −(g + 1)(k(a − c) + b(−g + k + m − 2)) + k(−a(m − 1) − c(g − m + 1)) + b(k − 1)(g − m + 1)
gG(g − m + 1)(g(−k) + g + kq − k + 1)

,

b̃30 =
b

gG2(g − m + 1)(g(−k) + g + kq − k + 1)
,

b̃21 =
ak − 2bg + bk + bm − 3b − ck

gG(g − m + 1)(gk − g − kq + k − 1)
, ã02 = ã12 = ã03 = b̃02 = b̃12 = b̃03 = 0.

We obtain the first Lyapunov coefficient as follows:

σ1 =
(ã20(2b̃20 − ã11) + 3ã30 + b̃11b̃20 + b̃21)

8

=
bm2(g − m + 2)2(M2(g + 1)2(m − 1)2(g − m + 1)3)3/2(a2ϕ3 + aϕ2 + ϕ1)

8M 2
2M

3/2
1 (g + 1)5(m − 1)3(g − m + 1)4((m − 1)(g − m + 1))3/2

,

where

ϕ1 = (g + 1)(m − 1)M3(b − c)(g − m + 1)3 − gM4M6(b − c)(g − m + 1)2

g − m + 2
,

ϕ2 =
g(g − m + 1)((m − 1)M6M7(b − c) + M8(M11 − cM7))

g − m + 2
+ (g + 1)(m − 1)(g − m + 1)

× (M5(b − c) − 3gM10),

ϕ3 = (g + 1)(m − 1)M9(−(g + 2)m + m2 + 1) − g(m − 1)M7M8

g − m + 2

and
M1 = bm(g − m + 2)(a(−(g + 2)m + m2 + 1)

+ (b − c)(g − m + 1)2),

M2 = a(g + 2)(m − 1)

− (g − m + 1)(b(g + 1) − c(g + 2)),

M3 = 2b(b − c)(2g − m + 2)

− 3g(b(2g − m + 3) + c(−2g + m − 4)),

M4 = bb(g3 + 5g2 + (g + 2)m2

− (g + 2)(2g + 3)m + 9g + 5) − cM7,

M5 = 2bM12 + 3g(m − 1)(g − m + 1)

× (2g − m + 4),

M6 = 2gm + (g − 1)g − m2 + 3m − 2,

M7 = (g + 3)m2 − (g + 3)(2g + 3)m + (g + 2)3,

M8 = g2m + 2g(m − 1)m + g

− (m − 2)(m − 1)2,

M9 = 2b(−2gm + g + m2 − 3m + 2)

+ 3g(m − 1)(2g − m + 4),

M10 = (−(g + 2)m + m2 + 1)(b(2g − m + 3)

+ c(−2g + m − 4)),

M11 = b(g3 + 5g2 + (g + 2)m2

− (g + 2)(2g + 3)m + 9g + 5),

M12 = g2(1 − 4m) + g(6(m − 2)m + 5)

− 2(m − 2)(m − 1)2.
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We can determine the sign of M1 and M2, both
of which are positive. Therefore, we only need to
determine the sign of the expression φ = a2ϕ3 +
aϕ2 + ϕ1.

If φ > 0 (i.e. σ1 > 0), model (40) exhibits a
supercritical Hopf bifurcation, and a stable limit
cycle appears around Ẽ1(1, 1). If φ < 0 (i.e. σ1 < 0),
model (40) exhibits a subcritical Hopf bifurcation,
and an unstable limit cycle appears around Ẽ1(1, 1).
If φ = 0 (i.e. σ1 = 0), model (40) may exhibit
a degenerate Hopf bifurcation, and multiple limit
cycles may appear around Ẽ1(1, 1). !

4. Numerical Simulations

To illustrate the obtained results, we conducted
numerical simulations using Auto07 [Doedel & Olde-
man, 2007] with the parameter values employed in
[Li et al., 2021], as follows:

a = 0.6, b = 0.2, c = 0.55,

k = 15, m = 1.9, p = 1, q = 0.5.
(44)

4.1. m, q and k as primary
bifurcation parameters

Firstly, if we consider the aggregation effect of
Microcystis aeruginosa (m) as the bifurcation
parameter, we observe the following bifurcation
points: At m = 6.33359, there is a saddle-
node bifurcation point SN(1.20418×10−1 , 2.24830);
At m = 2.21613, we have a supercritical Hopf
bifurcation point HB(4.33867, 3.93880); A quasi-
transcritical bifurcation point QTC(14.4529, 0)
occurs at m = 4.88623. Furthermore, there exists
a family of stable limit cycles approaching a hete-
roclinic cycle that connects the equilibria (0, 0) and
(14.5166, 0). It is important to note that the aggre-
gation effect of Microcystis aeruginosa may ulti-
mately lead to the extinction of both Microcystis
aeruginosa and filter-feeding fish. For more detailed
information, refer to Figs. 1(a)–1(c).

Secondly, if we consider b = 0.3 and the
maximum harvesting rate of Microcystis aerugi-
nosa (q) as the bifurcation parameter, we observe
the following bifurcation points: At q = 1.72752,
there is a supercritical Hopf bifurcation point
HB(2.96382, 2.10784); At q = 1, there are two
transcritical bifurcation points: TC1(0, 0) and
TC2(2.96382, 0); At q = 4.26667, we have a saddle-
node bifurcation point SN(7.0, 0). Similar to the
previous case, there exists a family of stable limit

cycles approaching a heteroclinic cycle connect-
ing the equilibria (0, 0) and (14.5166, 0). Please
refer to Figs. 2(a)–2(c) for visual representation.
Biologically, when the maximum harvesting rate
of Microcystis aeruginosa increases, the density of
filter-feeding fish also increases. However, there is a
critical threshold at q = 4.26667, indicating that the
filter-feeding fish may go extinct if it exceeds this
threshold. It is worth noting that the number of
filter-feeding fish starts to decrease when Microcys-
tis aeruginosa is harvested. Hence, finding an appro-
priate timing for Microcystis aeruginosa harvesting
is crucial to promote the number of filter-feeding
fish, which may be influenced by the carrying capac-
ity of Microcystis aeruginosa.

Next, we use the maximum environmental
capacity of Microcystis aeruginosa (k) as the bifur-
cation parameter. We observe the following bifur-
cation points: A transcritical bifurcation point
TC(1.12112×101 , 0) at k = 1.16899×101, a saddle-
node bifurcation point SN(6.11425, 1.92959) at k =
9.06280, and a supercritical Hopf bifurcation point
HB(4.15171, 3.45064) at k = 1.26805×101 . A family
of stable limit cycles bifurcates from the Hopf bifur-
cation point HB and approaches a homoclinic cycle.
Interestingly, the density of filter-feeding fish con-
tinues to increase with sustained oscillations as the
density of Microcystis aeruginosa increases. This
suggests that both populations will coexist with sus-
tainable oscillations. Refer to Figs. 3(a) and 3(b) for
more details.

4.2. k and a as primary bifurcation
parameters

Now, we consider the carrying capacity of Microcys-
tis aeruginosa (k) and the absorption coefficient (a)
as the primary bifurcation parameters. As a result,
we obtain a two-parameter bifurcation diagram
that includes a Hopf bifurcation curve H (red), a
saddle-node bifurcation curve SN (green), and a
homoclinic bifurcation curve Hom (black). We iden-
tify a BT bifurcation point BT(7.49330, 4.37120) at
k = 1.67914 × 101, a = 5.17783 × 10−1, as well
as a codimension-2 cusp point CP(5.38100, 0) at
k = 5.83849, a = 6.87827 × 10−1. It is noteworthy
that despite both parameters k and a being posi-
tive, the number of filter-feeding fish will reach zero.
In other words, if the carrying capacity is below
the threshold of k = 5.83849, the filter-feeding
fish will go extinct. Refer to Fig. 4 for a visual
representation.
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(a) (b)

(c)

Fig. 1. One-parameter bifurcation diagram of system (3) with respect to the carrying capacity of Microcystis aeruginosa (k):
(a) m versus x; (b) m versus y and (c) a family of limit cycles approaching a heteroclinic cycle.
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(a) (b)

(c)

Fig. 2. One-parameter bifurcation diagram of system (3) with respect to the maximum harvesting rate of Microcystis aerug-
inosa (q). (a) q versus x; (b) q versus y and (c) a family of limit cycles approaching a heteroclinic cycle.
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(a) (b)

Fig. 3. One-parameter bifurcation diagram of system (3) with respect to the carrying capacity of Microcystis aeruginosa (k).
(a) k versus x and (b) k versus y.

The entire phase plane depicted in Fig. 4 is
divided into four regions: I–IV. The corresponding
phase portraits are as follows:

(I) a = 0.555752, k = 10.8145: An unstable node
at (0, 0) and a stable node at (10.3376, 0);

(II) a = 0.564029, k = 12.1542: An unstable node
at (0, 0), a stable node at (11.6747, 0), a sta-
ble focus at (5.4149, 3.3145), and a saddle at
(8.4918, 2.4318);

Fig. 4. Two-parameter bifurcation diagram of system (3)
with respect to the carrying capacity of Microcystis aerugi-
nosa (k) and the absorption coefficient (a).

(III) a = 0.632307, k = 19.8129: An unstable node
at (0, 0), a saddle at (19.3255, 0), and a stable
limit cycle containing the unstable focus at
(3.4555, 4.0498);

(IV) a = 0.54005089, k = 15.5000905: An unstable
node at (0, 0), a stable node at (15.0162, 0),
a homoclinic cycle containing the unstable
focus at (5.374, 3.9785), and a saddle at
(10.2551, 3.3754).

When the carrying capacity of Microcystis
aeruginosa is small, a large absorption coefficient
of the filter-feeding fish cannot guarantee their
survival. Similarly, when the carrying capacity of
Microcystis aeruginosa is large enough, a small
absorption coefficient of the filter-feeding fish may
lead to their extinction. In other words, the filter-
feeding fish may go extinct whether the carrying
capacity of Microcystis aeruginosa is sufficiently
small or sufficiently large. Refer to Fig. 5 for a
detailed illustration.

It is worth noting that the coexistence of Micro-
cystis aeruginosa and filter-feeding fish occurs when
the absorption coefficient is less than a = 0.530151
or when the death rate of filter-feeding fish exceeds
the threshold of c = 0.609115. In other words, as
long as the absorption coefficient remains below the
specified value or the death rate of filter-feeding fish
remains above the threshold, both populations can
coexist.
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I II

III IV

Fig. 5. Phase portraits of regions I–IV shown in Fig. 4.
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5. Conclusion and Discussion

This paper focuses on conducting a detailed bifur-
cation analysis of a new aquatic ecological model
that incorporates Microcystis aeruginosa and filter-
feeding fish, taking into account factors such as
aggregation effect and harvesting. The analysis
utilizes a dynamical system approach and inves-
tigates various types of bifurcations, including
saddle-node bifurcation, Bogdanov–Takens bifurca-
tion, and Hopf bifurcation.

The paper presents one-parameter bifurcation
diagrams and two-parameter bifurcation diagrams
involving the carrying capacity of Microcystis
aeruginosa (k), harvesting (a), and the maximum
harvesting rate of Microcystis aeruginosa (q). It is
observed that the density of filter-feeding fish con-
sistently increases with sustained oscillations as the
density of Microcystis aeruginosa increases. How-
ever, if the maximum environmental capacity of
Microcystis aeruginosa (k) is too small, it can lead
to the extinction of filter-feeding fish.

Furthermore, the number of filter-feeding fish
decreases progressively and eventually leads to
extinction as the maximum harvesting rate of
Microcystis aeruginosa (q) increases. To prevent the
adverse consequences of blindly eliminating Micro-
cystis aeruginosa, it becomes crucial to identify an
optimal timing for harvesting Microcystis aerug-
inosa. This approach aims to enhance the yield
of filter-feeding fish while maintaining ecological
balance.
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