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Abstract
Effective management of predator–prey systems is crucial for sustaining ecological
balance and preserving biodiversity, which requires full understanding the dynam-
ics of such systems with harvesting and stocking. This paper aims to investigate the
global dynamics of aRosenzweig–MacArthurmodel considering the interplay of these
intervention practices.We reveal that this model undergoes a sequence of bifurcations,
including cusp of codimensions 2 and 3, saddle-node bifurcation, Bogdanov–Takens
(BT) bifurcation of codimensions 2 and 3, and degenerate Hopf bifurcation of codi-
mension 2. In particular, a codimension-2 cusp of limit cycles is found, which indicates
the coexistence of three limit cycles. An interesting and novel scenario is discovered:
two distinct homoclinic cycle curves connect their respective BT bifurcation points.
This differs frommostmodelswhere a single homoclinic cycle curvemay connect both
BT bifurcation points. Moreover, we find that two families of limit cycles converge
toward a heteroclinic cycle, signaling the risk of overexploitation. From a biological
perspective, the prey population may undergo extinction for all initial states under
large constant harvesting rate. Further, the simultaneous stocking of both populations
is not conducive to the coexistence of both species; the stocking of one population
and the harvesting of the other will promote the coexistence of two populations; while
the simultaneous harvesting of two populations may result in multiple limit cycles,
which effectively underscore the positive effect of harvesting and stocking. Identi-
fying the optimal timing to harvest or stock predators and prey is crucial to prevent
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system collapse. This work promotes to a deeper understanding of the dynamics of
ecosystemswhen harvesting and stocking occurs simultaneously. Further, it reveals the
important roles of harvesting and stocking, contributing to the effective management
of predator–prey systems.

Keywords Constant rate harvesting and stocking · Bogdanov–Takens bifurcation of
codimensions 2 and 3 · Degenerate Hopf bifurcation of codimension 2 ·
Codimension-2 cusp of limit cycles · Overexploitation

Mathematics Subject Classification 34C07 · 34C23 · 34C25 · 34C37

1 Introduction

It is well recognized that the predator–prey interaction has been an important research
issue in ecological systems. This concept originated from the innovative works of
Lotka [1] and Volterra [2], and there have been abundant investigations [3–12] on the
dynamics of predator–prey models in the last few decades. Particularly, harvesting
has received extensive concerns [9, 13–19] because of its wide applications. The
basic harvesting model is usually presented in the form of the following differential
equations

dx
dt

= r x
(
1 − x

K

)
− mφ(x)y − h1,

dy
dt

= y(−d + emφ(x)) − h2, (1)

where x(t) and y(t) represent the population densities of prey and predators, respec-
tively. Parameters r , K > 0 are the intrinsic growth rate and the carrying capacity
of prey population, respectively. e > 0 represents the conversion rate from prey to
predators, while d > 0 is the death rate of predators. Additionally, h1, h2 ≥ 0 are the
harvesting rates of two populations, respectively.

The functional response mφ(x), where m > 0, represents the density of prey
captured per unit time per predator as the density of prey varies. It has different forms
because it is influenced by diverse factors, such as the prey density, the physical state of
predators, and environmental conditions. System (1) with the Holling type-II function

φ(x) = x
a + x

(2)

and constant rate harvesting and stocking (h1, h2 < 0) has garnered considerable
attention [11, 14, 20–27], where a > 0 is the half-saturation constant. In the sce-
nario of h1 = h2 = 0, systme (1) becomes the classical Rosenzweig–MacArthur
model as Lin et al. [28]. Hsu [29] established two criteria for the global stabil-
ity of the locally stable equilibrium. In the case of h1 = 0, Brauer and Soudack
[22] investigated stability regions and transition phenomena for harvested predator–
prey systems, but did not give global bifurcation analysis. Later, Xiao and Ruan [21]
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demonstrated that system (1) with constant rate predator harvesting exists a cusp of
codimension 2 and a Bogdanov–Takens bifurcation, but they did not analyze bifur-
cation with higher codimension. Newly, Ruan and Xiao [27] showed that system (1)
under human interventions (constant harvesting and stocking of predators) undergoes
imperfect bifurcation and Bogdanov–Takens bifurcation, which induces much richer
dynamical behaviors such as the existence of limit cycles or homoclinic loops. How-
ever, the constant harvesting and stocking of prey was not involved. In the context of
h2 = 0, Brauer and Soudack [20] conducted a similar analysis to their previous work
[22] under constant-rate prey harvesting. They delineated the theoretically possible
structures and transitions, and constructed examples to verify which of these transi-
tions can be realized in a biologically plausible model through numerical simulation.
Soon after, in the case where constant rate harvesting and stocking of both species
exist, they provided similar results [14].

Moreover, for system (1) with Hollong II functional response and constant-rate
prey harvesting, Peng et al. [26] analyzed the existence of equilibria and showed that
this model can exhibit various bifurcation phenomena, containing the saddle-node
bifurcation, degenerate Bogdanov–Takens bifurcation of codimension 3, supercritical
and subcritical Hopf bifurcations, and generalized Hopf bifurcation, while the role
of predator harvesting and stocking was not elucidated; Recently, Sarif and Sarwardi
[11] studied the dynamics of system (1) in which both prey and predator are harvested
with constant rate. They pointed out the existence of Hopf bifurcation and Bogdanov–
Takens bifurcation of codimension 2, and showed the effect of harvesting on equilibria,
stability, and bifurcations. However, higher codimension bifurcation analysis (such as
Hopf bifurcation of codimension 2 and Bogdanov–Takens bifurcation of codimension
3) and the function of harvest are not displayed;When the constant rate harvesting and
stocking of both species coexist, Myerscough et al. [24] investigated the qualitative
properties of steady-state solutions, but they didn not analyzed the effects of these
two factors on more complex dynamics. In general, there has been relatively little
discussion of stocking, especially in terms of high-codimension bifurcations.

In order to uncover the effect of harvesting and stocking on the more complex
dynamical behaviors, in this paper, we investigate the harvested system with Holling
II functional response. Specifically, we allow either h1, or h2, or both, to be negative,
representing stocking rather than harvesting of the corresponding species. Our model
is as follows

dx
dt

= r x
(
1 − x

K

)
− mxy

a + x
− h1,

dy
dt

= y
(

−d + emx
a + x

)
− h2, (3)

where parameters r , K ,m, a, d, e have the samemeaning as those inmodel (1), param-
eters h1 and h2 are permitted to be arbitrary nonzero constant representing stocking
(less than 0, which may be viewed as negative harvesting) or harvesting (greater than
0) of both species. For simplicity, we apply the coordinate and time transformations
X = x

K ,Y = my
rK , τ = r t to normalize system (3) as follows (we still denote X ,Y , τ

by x, y, t , respectively)
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dx
dt

= x(1 − x) − xy
α + x

− h,

dy
dt

= y
(

−δ + βx
α + x

)
− H , (4)

where α = a
K ,β = em

r , δ = d
r are always positive, parameters h = h1

r K , H = mh2
r2K

are permitted to be any nonzero constants.
In the remaining sections of this paper, we investigate the complex dynamics of

system (4). In Sect. 2, we present the existence and type of positive equilibria. Section
3 provides a comprehensive bifurcation analysis, encompassing saddle-node bifurca-
tion, cusp of codimensions 2 and 3, Bogdanov–Takens bifurcation of codimensions 2
and 3 for the double positive equilibria, and degenerate Hopf bifurcation of codi-
mension 2 for the simple positive equilibrium. In Sect. 4, we perform numerical
simulations, including bifurcation diagrams and phase portraits, to verify the theo-
retical results. Section 5 offers biological interpretations to elucidate the effect of
harvesting and stocking on both species. Finally, we end this paper with a conclusion.

2 Existence and Type of Positive Equilibria

It is evident that system (4) has no boundary equilibrium, thus, we just focus on the
existence and type of positive equilibria. Following, we will derive specific conditions
for the existence of positive equilibria. Here, we restrict our analysis to the case of
δ #= β to save space; the other case, δ = β, follows a similar method.

Assume that E(x, y) is any positive equilibrium of system (4). From the first equa-
tion of system (4), we can get that y = (α+x)(−x2+x−h)

x , where max{0, 1−√
1−4 h
2 } <

x < 1+√
1−4 h
2 , h < 1

4 to ensure that y > 0. Substituting the expression of y into the
second equation shows that x is a positive root of the following cubic equation

f (x) .= x3 + a2x2 + a1x + a0 = 0, (5)

in which a2 = −αδ+β−δ
β−δ , a1 = αδ+h(β−δ)+H

β−δ , and a0 = αδh
δ−β . Hence, the existence of

positive equilibria for system (4) is equivalent to the existence of positive roots of Eq.
(5) in the interval (x̄1, x̄2), where x̄1 = max{0, 1−√

1−4 h
2 } and x̄2 = 1+√

1−4h
2 . Since

a0 can be positive, based on Vieta’s Theorem, Eq. (5) has at most three positive roots,
which are expressed by size as x1 < x2 < x3. Now, we begin to derive the specific
conditions for the existence of 0, 1, 2 and 3 positive roots.

Differentiating f (x) yields that f ′(x) = 3x2 + 2a2x + a1 and the discriminant
of f ′(x) is & = 4a22 − 12a1. When & ≤ 0, we have that f ′(x) ≥ 0 and f (x) is
an increasing function. Thus, the equation f (x) = 0 has a unique positive root in
the interval (x̄1, x̄2) if f (x̄1) < 0, f (x̄2) > 0; has no positive root if f (x̄1) ≥ 0 or
f (x̄2) ≤ 0.When& > 0, we can concluede that f ′(x) = 0 has two real roots, denoted

by x̂1 = −a2−
√
a22−3a1
3 and x̂2 = −a2+

√
a22−3a1
3 . Based on the positions of x̂1 and x̂2,

we perform our analysis in the following five scenarios.
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Table 1 The distribution of positive roots of f (x) = 0 in the interval (x̄1, x̄2) when x̄1 < x̂1 < x̄2 ≤ x̂2

Signs of f (x̄1), f (x̄2) and f (x̂1) Existence of positive roots of
f (x) = 0 in the interval
(x̄1, x̄2)

f (x̄1) ≥ 0 f (x̄2) < 0 A unique positive root,
denoted by x2

f (x̄2) ≥ 0 No positive root

f (x̄1) < 0 f (x̂1) < 0 No positive root

f (x̂1) = 0 One positive root of
multiplicity 2, denoted by
x̂1 = x1,2

f (x̂1) > 0 f (x̄2) < 0 Two positive roots, denoted
by x1 < x2

f (x̄2) ≥ 0 A unique positive root,
denoted by x1

(I) For x̄2 ≤ x̂1 or x̄1 ≥ x̂2, we can see that f ′(x) > 0, x ∈ (x̄1, x̄2), which shows
that f (x) is monotonically increasing in the interval (x̄1, x̄2). Hence, we can get the
same result as & ≤ 0.

(II) For x̄1 < x̂1 < x̄2 ≤ x̂2, f (x) first increases monotonously in the interval
(x̄1, x̂1), and then decreases monotonously in the interval (x̂1, x̄2). At this point, our
results are summarized in Table 1.

(III) For x̄1 < x̂1 < x̂2 < x̄2, f (x) is first increases monotonously in the interval
(x̄1, x̂1), then decreases monotonously in the interval (x̂1, x̂2), and finally increases
monotonously in the interval (x̂2, x̄2). Under this circumstance, the distribution of
positive roots for the equation f (x) = 0 in the interval (x̄1, x̄2) is summarized as
follows.
(i) when f (x̄1) ≥ 0, f (x) has two positive roots if f (x̂2) < 0 and f (x̄2) > 0, denoted
by x2 < x3; has a unique positive root if f (x̂2) < 0 and f (x̄2) ≤ 0, denoted by x2;
has one positive root of multiplicity 2 if f (x̂2) = 0, denoted by x̂2 = x2,3; and has no
positive root if f (x̂2) > 0.
(ii) when f (x̄1) < 0, see Table 2.

(IV) For x̂1 ≤ x̄1 < x̄2 ≤ x̂2, we can conclude that f ′(x) < 0, x ∈ (x̄1, x̄2), which
suggests that f (x) is monotonously decreasing. Then the equation f (x) = 0 has a
unique positive root if f (x̄1) > 0, f (x̄2) < 0; has no positive root if f (x̄1) ≤ 0 or
f (x̄2) ≥ 0.
(V) For x̂1 < x̄1 < x̂2 < x̄2, the function f (x) is monotonically decreasing in the

interval (x̄1, x̂2), and thenmonotonically increasing in the interval (x̂2, x̄2). According
to the signs of f (x̄1), f (x̂2) and f (x̄2), we can conclude that the distribution of positive
roots of f (x) = 0 in the interval (x̄1, x̄2) is as follows.
(i) When f (x̄1) ≤ 0, the equation f (x) = 0 has a unique positive root if f (x̄2) > 0,
denoted by x3; has no positive root if f (x̄2) ≤ 0.
(ii) When f (x̄1) > 0, the equation f (x) = 0 has two positive roots if f (x̂2) <

0, f (x̄2) > 0, denoted by x2 < x3; has a unique positive root if f (x̂2) < 0, f (x̄2) ≤ 0,
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Table 2 The distribution of positive roots of f (x) = 0 in the interval (x̄1, x̄2) when x̄1 < x̂1 < x̂2 < x̄2
and f (x̄1) < 0

Signs of f (x̂1), f (x̂2) and f (x̄2) Existence of positive roots of
f (x) = 0 in the interval
(x̄1, x̄2)

f (x̂1) > 0 f (x̂2) < 0 f (x̄2) > 0 Three positive roots, denoted
by x1 < x2 < x3

f (x̄2) ≤ 0 Two positive roots, denoted
by x1 < x2

f (x̂2) = 0 Two positive roots, one of
them is a positive root

Of multiplicity 2, denoted by
x1 < x̂2 = x2,3

f (x̂2) > 0 A unique positive root,
denoted by x1

f (x̂1) = 0 f (x̄2) > 0 Two positive roots, one of
them is a positive root

Of multiplicity 2, denoted by
x̂1 = x1,2 < x3

f (x̄2) ≤ 0 One positive root of
multiplicity 2, denoted by
x̂1 = x1,2

f (x̂1) < 0 f (x̄2) > 0 A unique positive root,
denoted by x3

f (x̄2) ≤ 0 No positive root

denoted by x2; has one positive root of multiplicity 2 if f (x̂2) = 0, denoted by
x̂2 = x2,3; and has no positive root if f (x̂2) > 0.

For the positive roots xi , i = 1, 2, 3 (if they exist) of equation f (x) = 0 in
the interval (x̄1, x̄2), system (4) has corresponding positive equilibria Ei (xi , yi ), in

which yi = (α+xi )(−x2i +xi−h)
xi

. Similarly, for the double roots xi,i+1, i = 1, 2 of
equation f (x) = 0, system (4) has corresponding degenerate positive equilibria

Ei,i+1(xi,i+1, yi,i+1), in which yi,i+1 = (α+xi,i+1)(−x2i,i+1+xi,i+1−h)
xi

. Next, we will
discuss the type of these positive equilibria.

Primarily, the linear approximationof system (4) at anypositive equilibrium E(x, y)
can be reduced to

J (E) =




αh−x2(α+2x−1)

x(α+x) − x
α+x

αβ(−x2+x−h)
x(α+x)

x(β−δ)−αδ
α+x



 ,

from which we can derive the determinant and trace of J (E) as follows
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det(J (E)) = −2(β − δ)x3 + (δ(α − 1)+ β)x2 − αδh
x(α + x)

,

= (β − δ)( f (x) − x f ′(x))
x(α + x)

,

= (δ − β) f ′(x)
α + x

.= m(x),

tr(J (E)) = −2x3 + (β + 1 − α − δ)x2 − αδx + αh
x(α + x)

.= n(x). (6)

Since E(x, y) is any positive equilibrium of system (4) and the parameters α, δ and β

are positive, we see that the sign of det(J (E)) is the same as the sign of (δ −β) f ′(x),
which leads to the following conclusions.

Proposition 1 For the simple positive equilibrium E∗(x∗, y∗) of system (4), we have
(i) if (δ − β) f ′(x∗) < 0, then E∗ is a saddle;
(ii) if (δ − β) f ′(x∗) > 0 and tr(J (E∗)) < 0, then E∗ is a stable node or focus;
(iii) if (δ − β) f ′(x∗) > 0 and tr(J (E∗)) > 0, then E∗ is an unstable node or focus.

Remark 1 For the simple positive equilibria Ei (xi , yi ), i = 1, 2, 3 of system (4), we
have that f ′(x1), f ′(x3) > 0 and f ′(x2) < 0 from the analysis of the existence of
positive roots for equation f (x) = 0 in the interval (x̄1, x̄2). As a result, if δ > β,
then the equilibrium E2 is a saddle; if δ < β, then equilibria E1 and E3 are saddles.

3 Bifurcation Analysis

3.1 Saddle-Node Bifurcation, Cusp of Codimensions 2 and 3

Based on the existence of positive equilibria for system (4) and the relationship (6), we
know that for the double roots xi,i+1, i = 1, 2 of equation f (x) = 0, system (4) has
corresponding degenerate positive equilibria Ei,i+1(xi,i+1, yi,i+1), which are marked

as E∗(x∗, y∗) for uniformity, where y∗ = (α+x∗)(−x∗2+x∗−h)
x∗ . In this subsection, we

discuss the type of E∗(x∗, y∗). Actually, we have the following Theorem.

Theorem 1 Assuming that f (x∗) = f ′(x∗) = 0 and f ′′(x∗) #= 0, where
max{0, 1−√

1−4 h
2 } < x∗ < 1+√

1−4 h
2 , h < 1

4 , the following statements hold
(I) if n(x∗) #= 0, then E∗(x∗, y∗) is a saddle-node bifurcation point;
(II) if n(x∗) = 0 and n′(x∗) #= 0, then E∗(x∗, y∗) is a cusp of codimension 2;
(III) if n(x∗) = n′(x∗) = 0 and ' #= 0, then E∗(x∗, y∗) is a cusp of codimension 3.
Here, f (x) and n(x) are defined in (5) and (6), respectively, and

' = (δ − 1)δ3 + 384x∗8 + 64(13δ − 12)x∗7 − 2(δ − 1)δ2(7δ − 2)x∗

−16(δ(3δ + 122) − 36)x∗6 − 2δ((δ − 1)δ((δ − 33)δ + 23)+ 6)x∗2

+16(δ(δ(17δ − 11)+ 111) − 12)x∗5 + 4δ(δ(δ(2(δ − 15)δ + 77) − 48)+ 40)

×x∗3 + 4(δ(δ(δ(13δ − 108)+ 83) − 194)+ 6)x∗4. (7)
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Proof (I) It is easy to derive H= (2x∗−1)(βx∗−δ(α+x∗))2
αδ and h= x∗2(β−δ+δ(α+2x∗)−2βx∗)

αδ
from f (x∗) = f ′(x∗) = 0. Substituting them into system (4) and applying the change
of variables X = x − x∗, Y = y − y∗ to transfer E∗(x∗, y∗) to the origin, one obtains
the Taylor expansion of system (4) around the origin as follows (for convenience, we
still denote X , Y by x, y, respectively)

dx
dt

= â10x + â01y + â20x2 + â11xy + â30x3 + â21x2y + o(|x, y|3),
dy
dt

= b̂10x + b̂01y + b̂20x2 + b̂11xy + b̂30x3 + b̂21x2y + o(|x, y|3),

where âi j and b̂i j are given in Appendix A.

Noting that â10 + b̂01 = −2βx∗2+(βδ+β−δ2)x∗−αδ2

δ(α+x∗) = n(x∗) #= 0, let X =
b̂01x−â01y
â10+b̂01

,Y = â10x+â01y
â10+b̂01

, then it follows that (for convenience, we still denote X , Y
by x, y, respectively)

dx
dt

= ĉ20x2 + ĉ11xy + ĉ02y2 + ĉ30x3 + ĉ21x2y + ĉ12xy2 + ĉ03y3 + o(|x, y|3),
dy
dt

= d̂01y + d̂20x2 + d̂11xy + d̂02y2 + d̂30x3 + d̂21x2y + d̂12xy2 + d̂03y3

+o(|x, y|3), (8)

where ĉi j and d̂i j are given in Appendix A. Particularly, we have

ĉ20 =
â10(â01b̂11 − â11b̂01)+ â01(â20b̂01 − â01b̂20)

â01(â10 + b̂01)
= (δ − β) f ′′(x∗)

2d̂01(α + x∗)
#= 0,

d̂01 =
â10(â10 + b̂01)+ â01b̂10 + b̂201

â10 + b̂01
= n(x∗) #= 0,

which indicates that there exists a center manifold

y = − d̂20x2

d̂01
x2 + o(x2)

in a small neighborhood of the origin. Naturally, a simplified system on this center
manifold can be obtained as follows

dx
dt

= ĉ20x2 + o(x2).

According to Shan and Zhu [30], we can conclude that system (4) undergoes a saddle-
node bifurcation around E∗(x∗, y∗), which completes the proof of Theorem 1 (I);

(I I )Nextwe verify the statement (I I ). By f (x) = f ′(x) = n(x) = 0,we have that
β = δ2(α+x∗)

x∗(δ−2x∗+1) , h = − x∗(αδ(x∗−1)+x∗(2x∗−1)(α+2x∗−1))
α(δ−2x∗+1) and H = δ(α+x∗)2(2x∗−1)3

α(δ−2x∗+1)2 .
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Substituting them into system (4) and implementing the following transformations
successively

X = x − x∗, Y = y − y∗;
u = X , v = dX

dt
, dt = (1 − a02X)dτ ;

x = u, y = (1 − a02u)v;

in which a02 = α
x∗(α+x∗) , system (4) can be written as follows (we still denote τ by t)

dx
dt

= y,

dy
dt

= b20x2 + b11xy + o(|x, y|2),

where

b20 =
δ(2x∗ − 1)(αδ + x∗(α + 3x∗ − 1))

x∗(α + x∗)(δ − 2x∗ + 1)
,

b11 =
αδ2 − δ(α + 2x∗2)+ 2x∗(2x∗ − 1)(α + 3x∗ − 1)

x∗(α + x∗)(δ − 2x∗ + 1)
.

Conditions f ′′(x∗) #= 0 and n′(x∗) #= 0 indicate that b20, b11 #= 0, which shows that
E∗(x∗, y∗) is a cusp of codimension 2.

(I I I ) Finally, we show that E∗(x∗, y∗) is a cusp of codimension 3. Conditions
f (x∗) = f ′(x∗) = n(x∗) = n′(x∗) = 0 lead to α = 2x∗(x∗(δ−6x∗+5)−1)

(δ−1)δ+2x∗(2x∗−1) ,β =
δ2(δ+4x∗−2)

(δ−1)δ+2x∗(2x∗−1) , h = x∗(δ+2x∗(x∗(3δ+2x∗−1)−3δ))
2x∗(−δ+6x∗−5)+2 ,

H = − δx∗(2x∗−1)3(δ+4x∗−2)2
2(x∗(−δ+6x∗−5)+1)((δ−1)δ+2x∗(2x∗−1)) . Similar to (I ), using X = x − x∗,Y =

y − y∗ to shift E∗ to the origin and expanding the resulting system in a power series
around the origin, we have (for convenience, in subsequent steps, we still denote X , Y
and τ by x, y and t , respectively)

dx
dt

= a∗
10x + a∗

01y + a∗
20x

2 + a∗
11xy + a∗

30x
3 + a∗

21x
2y + a∗

40x
4 + a∗

31x
3y

+o(|x, y|4),
dy
dt

= b∗
10x + b∗

01y + b∗
20x

2 + b∗
11xy + b∗

30x
3 + b∗

21x
2y + b∗

40x
4 + b∗

31x
3y

+o(|x, y|4),

in which a∗
i j and b∗

i j are displayed in Appendix A.

By X = x, Y = dx
dt , the system above can be rewritten as
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dx
dt

= y,

dy
dt

= c∗
20x

2 + c∗
02y

2 + c∗
30x

3 + c∗
21x

2y + c∗
12xy

2 + c∗
40x

4 + c∗
31x

3y + c∗
22x

2y2

+o(|x, y|4),

where c∗
i j is displayed in Appendix A.

Letting dt = (1 − c∗
02x)dτ , one obtains

dx
dt

= (1 − c∗
02x)y,

dy
dt

= (1 − c∗
02x)(c

∗
20x

2 + c∗
02y

2 + c∗
30x

3 + c∗
21x

2y + c∗
12xy

2 + c∗
40x

4 + c∗
31x

3y

+c∗
22x

2y2 + o(|x, y|4)). (9)

Introducing X = x, Y = (1 − c∗
02x)y, system (9) becomes

dx
dt

= y,

dy
dt

= c∗
20x

2 + (c∗
30 − 2c∗

02c
∗
20)x

3 + c∗
21x

2y + (c∗
12 − c∗2

02)xy
2

+(c∗
40 − 2c∗

02c
∗
30 + c∗2

02c
∗
20)x

4‘x + (c∗
31 − c∗

02c
∗
21)x

3y

+(c∗
22 − c∗3

02)x
2y2 + o(|x, y|4). (10)

Condition f ′′(x∗) #= 0 tells us c∗
20 #= 0. By carrying out the transformation X =

±x,Y = ± y√
±c∗

20
, τ =

√
±c∗

20t , one gets

dx
dt

= y,

dy
dt

= x2 ± c∗
30 − 2c∗

02c
∗
20

c∗
20

x3 + c∗
21√
±c∗

20
x2y + (c∗

12 − c∗2
02)xy

2

+c∗
40 − 2c∗

02c
∗
30 + c∗2

02c
∗
20

c∗
20

x4 ±
(
c∗
31 − c∗

02c
∗
21√

±c∗
20

)

x3y

±(c∗
22 − c∗3

02)x
2y2 + o(|x, y|4). (11)

According to the Proposition in Lemontagne et al. [31], we know that there exists
a system equivalent to model (11), expressed as

dx
dt

= y,

dy
dt

= x2 + Fx3y + o(|x, y|4),
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where

F = c∗
21(c

∗
02c

∗
20 − c∗

30)+ c∗
20c

∗
31

(±c∗
20)

3
2

= δ'

(±c∗
20)

3
2 x∗4(δ − 2x∗ + 1)3(δ + 4x∗ − 2)3

,

with ' is defined in (7). Condition ' #= 0 shows that E∗(x∗, y∗) is a cusp of codi-
mension 3. The proof is completed. *+

3.2 Bogdanov–Takens Bifurcation of Codimension 2

According to the formula (6), we know that the Jacobian matrix of system (4) at
the positive equilibrium E∗(x∗, y∗) has property det(J (E∗)) = tr(J (E∗)) = 0 if
f (x∗) = f ′(x∗) = n(x∗)=0, which means that Bogdanov–Takens bifurcation may
occur around this equilibrium. Actually, we have the following Theorem.

Theorem 2 Assume that f (x∗) = f ′(x∗) = n(x∗) = 0 and f ′′(x∗), n′(x∗) #= 0,
where max{0, 1−√

1−4 h
2 } < x∗ < 1+√

1−4 h
2 , h < 1

4 , f (x) and n(x) are defined in (5)
and (6), respectively. Further, selecting h and H as bifurcation parameters, system
(4) undergoes a Bogdanov–Takens bifurcation of codimension 2 around E∗(x∗, y∗).

Proof Suppose the disturbed system is represented by

dx
dt

= x(1 − x) − xy
α + x

− (h + λ1),

dy
dt

= βxy
α + x

− δy − (H + λ2), (12)

in which λ = (λ1, λ2) ∼ (0, 0),α,β, δ > 0, and h, H are any nonzero constants.
Same as Theorem 1 (I I ), one can easily have that β = δ2(α+x∗)

x∗(δ−2x∗+1) , h =
− x∗(αδ(x∗−1)+x∗(2x∗−1)(α+2x∗−1))

α(δ−2x∗+1) , H = δ(α+x∗)2(2x∗−1)3

α(δ−2x∗+1)2 from f (x) = f ′(x) =
n(x) = 0. Using X = x − x∗, Y = y − y∗ to transform the positive equilibrium
E∗(x∗, y∗) of system (12) when λ = 0 to the origin and expanding the resulting sys-
tem around the origin, we obtain (for briefness, in all of the following transformations,
we still denote X ,Y , τ as x, y, t , respectively)

dx
dt

= ā00 + ā10x + ā01y + ā20x2 + ā11xy + o(|x, y, λ1, λ2|2),
dy
dt

= b̄00 + b̄10x + b̄01y + b̄20x2 + b̄11xy + o(|x, y, λ1, λ2|2), (13)

where āi j , b̄i j and all coefficients in the transformations below are exhibited in
Appendix B. It should be noted that ā∗

00 = b̄∗
00 = 0 when λ = 0.

By nonsingular transformation X = x,Y = dx
dt , system (13) is changed into
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dx
dt

= y,

dy
dt

= c̄00 + c̄10x + c̄01y + c̄20x2 + c̄11xy + c̄02y2 + o(|x, y, λ1, λ2|2).
(14)

Note that c̄00 = c̄10 = c̄01 = 0 when λ = 0.
Further, by the transformation dt = (1 − c̄02x)dτ, X = x,Y = (1 − c̄02x)y, we

get an equivalent system

dx
dt

= y,

dy
dt

= d̄00 + d̄10x + d̄01y + d̄20x2 + d̄11xy + o(|x, y, λ1, λ2|2). (15)

It worth noting that d̄00 = d̄10 = d̄01 = 0 when λ = 0.
With the change of variables X = x + d̄10

2d̄20
, Y = y, system (15) becomes

dx
dt

= y,

dy
dt

= ē00 + ē01y + ē20x2 + ē11xy + o(|x, y, λ1, λ2|2). (16)

Noting that ē00 = ē01 = 0 when λ = 0.

Under the change of variables and time X = ē211
ē20

x,Y = ē311
ē220

y, τ = ē20
ē11

t , we obtain

the universal unfolding of system (16) as follows

dx
dt

= y,

dy
dt

= µ1 + µ2y + x2 + xy + o(|x, y, λ1, λ2|2), (17)

where µ1 = ē00 ē411
ē320

, µ2 = ē01ē11
ē20

and we have µ1 = µ2 = 0 when λ = 0. Moreover,

we obtain that

∣∣∣
∂(µ1, µ2)

∂(λ1, λ2)

∣∣∣
λ=0

= − α(−αδ − α + 2x∗(2α + x∗))B5

2δ3x∗(α + x∗)3(2x∗ − 1)5(δ − 2x∗ + 1)A5 ,

with A = αδ+x∗(α+3x∗−1), B = αδ2−δ(α+2x∗2)+2x∗(2x∗−1)(α+3x∗−1).
Taking f ′′(x∗), n′(x∗) #= 0 into account, one has A, B #= 0 and thus

∣∣∣ ∂(µ1,µ2)
∂(λ1,λ2)

∣∣∣
λ=0

#=
0. By Bogdanov [32, 33] and Takens [34], system (4) undergoes a Bogdanov–Takens
bifurcation of codimension 2 around E∗. *+
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3.3 Degenerate Bogdanov–Takens Bifurcation of Codimension 3

In this subsection, we will further explore the degree of degradation of Bogdanov–
Takens bifurcation. Before presenting the main result, we first recall the relevant
definition [35] and property [36] to facilitate the understanding of derivation process.

Definition 1 The bifurcation that results from unfolding the following normal form of
a cusp of codimension 3,

dx
dt

= y,

dy
dt

= x2 ± x3y, (18)

is called a cusp type degenerate Bogdanov–Takens bifurcation of codimension 3.

Proposition 2 A universal unfolding of the normal form (18) is expressed by

{
dx
dt = y,
dy
dt = ν1 + ν2y + ν3xy + x2 ± x3y + T (x, y, ε),

(19)

where ε = (ε1, ε2, ε3) ∼ (0, 0, 0), D(ν1,ν2,ν3)
D(ε1,ε2,ε3)

#= 0 for small ε and

T (x, y, ε) = y2O(|x, y|2)+ O(|x, y|5)+ O(ε)(O(y2)+ O(|x, y|3))
+O(ε2)O(|x, y|). (20)

The following Theorem is a crucial result of this paper.

Theorem 3 Assume that f (x∗) = f ′(x∗) = n(x∗) = n′(x∗) = 0 and f ′′(x∗),' #= 0,
where max{0, 1−√

1−4h
2 } < x∗ < 1+√

1−4h
2 , h < 1

4 , f (x), n(x) and ' are given in
(5), (6) and (7), respectively. Further, choosing β, h and H as bifurcation parameters
and supposing that, .= 24x∗4−24x∗3+2(δ(9δ−8)+3)x∗2−2(δ−1)δ(δ+5)x∗+
(δ − 1)δ #= 0, system (4) undergoes a degenerate Bogdanov–Takens bifurcation of
codimension 3 around E∗(x∗, y∗).

Proof Perturbing β, h and H obtains the disturbed system as follows

dx
dt

= x(1 − x) − xy
α + x

− (h + ε1),

dy
dt

= (β + ε2)xy
α + x

− δy − (H + ε3), (21)

in which ε = (ε1, ε2, ε3) ∼ (0, 0, 0),α,β, δ > 0 and h, H are arbitrary nonzero
constant.

Same as Theorem 1 (I I I ), conditions f (x∗) = f ′(x∗) = n(x∗) = n′(x∗) = 0
result in α = 2x∗(x∗(δ−6x∗+5)−1)

(δ−1)δ+2x∗(2x∗−1) ,β = δ2(δ+4x∗−2)
(δ−1)δ+2x∗(2x∗−1) , h = x∗

2x∗(−δ+6x∗−5)+2 (δ +
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2x∗(x∗(3δ+2x∗−1)−3δ)), H = − δx∗(2x∗−1)3(δ+4x∗−2)2
2(x∗(−δ+6x∗−5)+1)((δ−1)δ+2x∗(2x∗−1)) . Substituting

them into system (21) and by a linear coordinate change X = x − x∗, Y = y − y∗,
we can get the Taylor expansion of system (21) around the origin as follows (for
simplicity, in all of the following transformations, we still replace X ,Y and τ with
x, y and t , respectively)

dx
dt

= ā∗
00 + ā∗

10x + ā∗
01y + ā∗

20x
2 + ā∗

11xy + ā∗
30x

3 + ā∗
21x

2y + ā∗
40x

4 + ā∗
31x

3y

+o(|x, y|4),
dy
dt

= b̄∗
00 + b̄∗

10x + b̄∗
01y + b̄∗

20x
2 + b̄∗

11xy + b̄∗
30x

3 + b̄∗
21x

2y + b̄∗
40x

4 + b̄∗
31x

3y

+o(|x, y|4),

in which ā∗
i j , b̄

∗
i j and all coefficients in the transformations below are shown in

Appendix B. Note that ā∗
00 = b̄∗

00 = 0 when ε = 0.
Changing coordinates with

X = x, Y = dx
dt

,

we can rewrite the above system as follows

dx
dt

= y,

dy
dt

= c̄∗
00 + c̄∗

10x + c̄∗
01y + c̄∗

20x
2 + c̄∗

11xy + c̄∗
02y

2 + c̄∗
30x

3 + c̄∗
21x

2y + c̄∗
12xy

2

+c̄∗
40x

4 + c̄∗
31x

3y + c̄∗
22x

2y2 + o(|x, y|4). (22)

Notice that c̄∗
00 = c̄∗

10 = c̄∗
01 = c̄∗

11 = 0 when ε = 0.
Next we will execute seven steps as in Li et al. [36] to transform system (22) into

the universal unfolding form (19).
(I ) Taking away the y2-term from system (22). By making the scaling x = X +

c∗
02X

2

2 , y = Y + c∗
02XY , system (22) is transformed into

dx
dt

= y,

dy
dt

= d̄∗
00 + d̄∗

10x + d̄∗
01y + d̄∗

20x
2 + d̄∗

11xy + d̄∗
30x

3 + d̄∗
21x

2y + d̄∗
12xy

2 + d̄∗
40x

4

+d̄∗
31x

3y + d̄∗
22x

2y2 + o(|x, y|4). (23)

Notice that d̄∗
00 = d̄∗

10 = d̄∗
01 = d̄∗

11 = 0 when ε = 0.
(I I ) Taking away the xy2-term from system (23). Making variable transformation

x = X + d̄∗
12
6 X3, y = Y + d̄∗

12
2 X2Y , we can obtain that
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dx
dt

= y,

dy
dt

= ē∗
00 + ē∗

10x + ē∗
01y + ē∗

20x
2 + ē∗

11xy + ē∗
30x

3 + ē∗
21x

2y + ē∗
40x

4 + ē∗
31x

3y

+ē∗
22x

2y2 + o(|x, y|4). (24)

Notice that ē∗
00 = ē∗

10 = ē∗
01 = ē∗

11 = 0 when ε = 0.
(I I I ) Taking away the x2y2-term from system (24). After a smooth coordinate

change x = X + ē∗
22
12 X

4, y = Y + e∗
22
3 X3Y , system (24) can be rewritten as

dx
dt

= y,

dy
dt

= f̄ ∗
00 + f̄ ∗

10x + f̄ ∗
01y + f̄ ∗

20x
2 + f̄ ∗

11xy + f̄ ∗
30x

3 + f̄ ∗
21x

2y + f̄ ∗
40x

4 + f̄ ∗
31x

3y

+o(|x, y|4). (25)

Notice that f̄ ∗
00 = f̄ ∗

10 = f̄ ∗
01 = f̄ ∗

11 = 0 when ε = 0.
(I V ) Taking away the x3 and x4-terms from system (25). We can easily get that

f
∗
20 = δ2(x∗(10x∗−7)+1)

x∗(δ−2x∗+1)(δ+4x∗−2) + O(ε), f
∗
20 #= 0 for small ε since f ′′(x∗) #= 0. With

x = X − f̄ ∗
30

4 f̄ ∗
20

X2 + 15 f̄ ∗2
30 − 16 f̄ ∗

20 f̄
∗
40

80 f̄ ∗2
20

X3,

y = Y , t =
(

1 − f̄ ∗
30

2 f̄ ∗
20

X + 45 f̄ ∗2
30 − 48 f̄ ∗

20 f̄
∗
40

80 f̄ ∗2
20

X2

)

τ,

we have that

dx
dt

= y,

dy
dt

= ḡ∗
00 + ḡ∗

10x + ḡ∗
01y + ḡ∗

20x
2 + ḡ∗

11xy + ḡ∗
30x

3 + ḡ∗
21x

2y + ḡ∗
40x

4 + ḡ∗
31x

3y

+o(|x, y|4). (26)

Notice that ḡ∗
00 = ḡ∗

10 = ḡ∗
01 = ḡ∗

11 = ḡ∗
30 = ḡ∗

40 = 0 when ε = 0.
(V ) Taking away the x2y-term from system (26). It’s easy to know that ḡ∗

20 =
δ2(x∗(10x∗−7)+1)

x∗(δ−2x∗+1)(δ+4x∗−2) + O(ε), ḡ∗
20 #= 0 for small ε since f ′′(x∗) #= 0. Introducing the

new coordinates and time by

x = X , y = Y + ḡ∗
21

3ḡ∗
20
Y 2 + ḡ∗2

21

36ḡ∗2
20
Y 3, τ =

(

1+ ḡ∗
21

3ḡ∗
20
Y + ḡ∗2

21

36ḡ∗2
20
Y 2

)

t,
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we obtain

dx
dt

= y,

dy
dt

= h̄∗
00 + h̄∗

10x + h̄∗
01y + h̄∗

20x
2 + h̄∗

11xy + h̄∗
31x

3y + T1(x, y, ε). (27)

Notice that h̄∗
00 = h̄∗

10 = h̄∗
01 = h̄∗

11 = 0 when ε = 0 and T1(x, y, ε) possesses the
property of (20).

(V I ) Normalizing h̄∗
20 and h̄∗

31 to 1 in system (27). A simple calculation shows
that h̄∗

20, h̄
∗
31 #= 0 for small ε due to f ′′(x∗),' #= 0. Using the following rescaling

transformation

x = h̄
∗ 1
5

20 h̄
∗− 2

5
31 X , y = h̄

∗ 4
5

20 h̄
∗− 3

5
31 Y , t = h̄

∗− 3
5

20 h̄
∗ 1
5

31 τ,

we have

dx
dt

= y,

dy
dt

= j̄∗00 + j̄∗10x + j̄∗01y + j̄∗11xy + x2 + x3y + T2(x, y, ε). (28)

Notice that j̄∗00 = j̄∗10 = j̄∗01 = j̄∗11 = 0 when ε = 0 and T2(x, y, ε) possesses the
property of (20).

(V I I ) Taking away the h∗
10-term from system (28). Using

x = X − j̄∗10
2
, y = Y ,

we eventually get

dx
dt

= y,

dy
dt

= ν̄1 + ν̄2y + ν̄3xy + x2 + x3y + T3(x, y, ε), (29)

in which ν̄1 = j̄∗00 − j̄∗210
4 , ν̄2 = j̄∗01 − j̄∗10( j̄

∗2
10+4 j̄∗11)
8 , ν̄3 = j̄∗11 +

3 j̄∗210
4 . Noticing that

ν̄1 = ν̄2 = ν̄3 = 0 when ε = 0, system (29) is exactly the form of system (19) and
the item T3(x, y, ε) possesses the property of (20). Moreover, we can calculate that

|∂(ν̄1, ν̄2, ν̄3)
∂(ε1, ε2, ε3)

|ε=0 = −h̄
∗ 4
5

31 h̄
∗− 12

5
20 |ε=0

,

δ2x∗2C
#= 0,

where, = 24x∗4−24x∗3+2(δ(9δ−8)+3)x∗2−2(δ−1)δ(δ+5)x∗+ (δ−1)δ and
C = (2(γ + 1)x∗ − 1)(5(γ + 1)x∗ − 1)(δ − 2(γ + 1)x∗ + 1)3(δ+ 4(γ + 1)x∗ − 2)3.
By the result of Li et al. [36], we know that system (29) is the versal unfolding of
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the Bogdanov–Takens singularity (cusp case) of codimension three. Hence, system
(4) undergoes a degenerate Bogdanov–Takens bifurcation of codimension 3 around
E∗(x∗, y∗), which completes the proof. *+

3.4 Degenerate Hopf Bifurcation of Codimension 2

In accordance with the existence analysis of positive equilibria, we can conclude that
system (4) may undergo a Hopf bifurcation around the positive equilibria Ei (xi , yi )
(i = 1, 3) in the case of δ > β, or around the equilibrium E2(x2, y2) in the case of δ <

β. These equilibria are marked as Ẽ(x̃, ỹ) for consistency in signs. In this subsection,
we devote ourselves to exploring the degree of degradation of Hopf bifurcation around
Ẽ . Firstly, we state the following Theorem.

Theorem 4 Assuming that f (x̃) = n(x̃) = 0 and f ′(x̃) #= 0, wheremax{0, 1−√
1−4 h
2 }

< x̃ < 1+√
1−4 h
2 , h < 1

4 , f (x) and n(x) are given in (5) and (6), respectively, we
have
(I) if σ11 < 0, then Ẽ(x̃, ỹ) is a stable weak focus with multiplicity one and one stable
limit cycle bifurcates from Ē by the supercritical Hopf bifurcation;
(II) if σ11 > 0, then Ẽ(x̃, ỹ) is an unstable weak focus with multiplicity one and one
unstable limit cycle bifurcates from Ẽ by the subcritical Hopf bifurcation;
(III) if σ11 = 0, then Ẽ(x̃, ỹ) is a weak focus with multiplicity at least two and system
(4) may exhibit a degenerate Hopf bifurcation of codimension at least 2, where

σ11 = σ 0
11 + σ 1

11β + σ 2
11β

2, (30)

with

σ 0
11 = (αh − x̃2(α + 2x̃ − 1))(−α2h(h − 2(α − 1)α)+ α x̃3(−α + 10h + 1)

+3α(6α − 1)hx̃2 + 3α2(4α − 1)hx̃ + 2x̃6 + 6α x̃5 + 3(α − 1)α x̃4),

σ 1
11 = α(−α3h2 + x̃5(−2α2 − α + 2h + 1) − x̃4(α3 + α + 2αh)+ 4αhx̃3

+αhx̃2(α − h)+ α3hx̃ + 4x̃7 + (α − 5)x̃6),

σ 2
11 = α2 x̃2(x̃2(α + 2x̃ − 1) − αh). (31)

Proof Based on the choice of Ẽ(x̃, ỹ), it is easy to see that det(J (Ẽ)) > 0. Addition-
ally, we have tr(J (Ẽ)) = n(x̃) = 0. To investigate the degree of degradation of Hopf
bifurcation in system (4), we first define a new time scale dt = (α + x)dτ , which
leads to the polynomial system below (we still refer to τ as t)

dx
dt

= x(1 − x)(α + x) − xy − h(α + x),

dy
dt

= −δy(α + x)+ βxy − H(α + x), (32)
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in which δ = αh+x̃2(−α+β−2x̃+1)
x̃(α+x̃) and H = (h+(x̃−1)x̃)(αh−x̃2(α+2x̃−1))

x̃2 are obtained by
the conditions f (x̃) = n(x̃) = 0. By performing the linear change X = x − x̃, Y =
y − ỹ, we shift Ẽ to the origin and expand the generated system in power series, then
system (32) becomes (we still write X ,Y as x, y, respectively)

dx
dt

= ã10x + ã01y + ã20x2 + ã11xy + ã30x3,

dy
dt

= b̃10x − ã10y + b̃11xy, (33)

where

ã10 =
αh − x̃2(α + 2x̃ − 1)

x̄
, ã01 = −x̃, ã20 = −α − 3x̃ + 1, ã11 = ã30 = −1,

b̃10 = −αβ(h + (x̃ − 1)x̃)
x̃

, b̃11 =
x̃(αβ + x̃(α + 2x̃ − 1)) − αh

x̃(α + x̃)
.

We can deduce that −ã01b̃10 − ã210 > 0 since det(J (Ẽ)) > 0. Letting ω =√
−ã01b̃10 − ã210 and introducing the transformation x = −ã01X , y = ã10X −

ωY , dt = 1
ωdτ , system (32) can be transformed into (we rename X , Y and τ as

x, y and t , respectively)

dx
dt

= y + c̃20x2 + c̃11xy + c̃30x3,

dy
dt

= −x + d̃20x2 + d̃11xy + d̃30x3,

where

c̃20 =
ã10ã11 − ã01ã20

ω
, c̃11 = −ã11, c̃30 =

ã201ã30
ω

,

d̃20 =
ã10(ã01(b̃11 − ã20)+ ã10ã11)

ω2 , d̃11 = − ã01b̃11 + ã10ã11
ω

, d̃30 =
ã201ã10ã30

ω2 .

Utilizing the formula in Perko [35] yields the first Lyapunov coefficient as follows

σ1 =
σ11

8ω3 x̃(α + x̃)2
,

where σ11 is defined in (30) and the sign of σ1 is the same as that of σ11. This completes
the proof. *+

From the third scenario of Theorem 4, we know that system (4) may undergo
a degenerate Hopf bifurcation around Ẽ(x̃, ỹ) when σ11 = 0, i.e., β = β±

.=
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−σ 1
11±

√
(σ 1

11)
2−4σ 2

11σ
0
11

2σ 2
11

, with σ
j
11, j = 0, 1, 2 being defined in (31). Further, the sec-

ond Lyapunov coefficient can be calculated as follows

σ2 =
σ22

288ω7 x̃7(α + x̃)4
,

where σ22 is displayed in Appendix C. We can immediately receive the following
results.

Theorem 5 Assuming that f (x̃) = n(x̃) = 0, f ′(x̄) #= 0 and β = β±
.=

−σ 1
11±

√
(σ 1

11)
2−4σ 2

11σ
0
11

2σ 2
11

, where max{0, 1−√
1−4 h
2 } < x̃ < 1+√

1−4 h
2 , h < 1

4 , f (x), n(x)

and σ
j
11, j = 0, 1, 2 are given in (5), (6) and (31), respectively, we have

(I) if σ22 < 0, then Ē(x̃, ỹ) is a stable weak focus with multiplicity 2. System (4)
undergoes a degenerate Hopf bifurcation of codimension 2 and there can be up to two
limit cycles bifurcating from Ẽ, the outer one being stable;
(II) if σ22 > 0, then Ē(x̃, ỹ) is an unstable weak focus with multiplicity 2. System (4)
undergoes a degenerate Hopf bifurcation of codimension 2 and there can be up to two
limit cycles bifurcating from Ẽ, the outer one being unstable;
(III) if σ22 = 0, then Ē(x̃, ỹ) is a weak focus with multiplicity at least 3 and system
(4) may undergo a degenerate Hopf bifurcation of codimension at least 3.

4 Numerical Simulations

In this section, we will carry out numerical simulations to verify theoretical results and
unveil the detailed transitions among different parameter regions by using the ODE
software in Doedel et al. [37].

4.1 ˇ as the Primary Bifurcation Parameter

Firstly, choose the initial parameter values as follows

α = 1.1, β = 2.62, δ = 0.43, h = −0.0004, H = 0.034, (34)

and select parameter β as the primary bifurcation parameter, while the remaining
parameter values are fixed. We observe two supercritical Hopf bifurcation points:
HB1(1.07459×10−1, 1.08220) at β = 5.18471 and HB2(1.38684×10−2, 1.13055)
at β = 3.69519 × 101. Additionally, there are one saddle-node bifurcation point
SN (7.94669 × 10−1, 3.89989 × 10−1) of equilibrium at β = 1.23308, and two
saddle-node bifurcation points of limit cycles: SNC1(5.13032 × 10−1, 3.47922) at
β = 5.71963 with a period of 1.30984 × 101, and SNC2(7.99950 × 10−1, 6.50564)
at β = 8.11771 with a period of 1.58827 × 101 on their own limit cycle bifurcation
curves (green curve and red curve), respectively. Both families of limit cycles approach
their respective homoclinic cycles. See Fig. 1a, b for details, where the solid and dotted
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Fig. 1 One-parameter bifurcation diagram of system (4) with respect to β. a β versus x ; b β versus y

curves represent the branches of stable and unstable solutions for equilibrium or limit
cycle, respectively.

4.1.1 ˇ and h as the Primary Bifurcation Parameters

Next, using β and h as the primary bifurcation parameters, and the first set of param-
eter values in (34), we construct a two-parameter bifurcation diagram. This diagram
includes the supercritical Hopf bifurcation curve Hs (red), saddle-node bifurcation
curve SN (blue), homoclinic bifurcation curve Hom (green), and the saddle-node
bifurcation curve of limit cycles SN L (black), see Fig. 2 for details. We observe one
Bogdanov–Takens (BT) bifurcation point BT (5.69222 × 10−1, 1.66517 × 10−1) at
β = 1.85972, h = 1.88424× 10−1. Additionally, there is one codimension-2 cusp of
limit cycles CPL(6.60981 × 10−1, 1.48855) at β = 2.39576, h = 2.88069 × 10−2,
with a period of 1.52956 × 101.

The saddle-node bifurcation curve of the limit cycles SN L is presented separately
in Fig. 3. It’s worth noting that there is a saddle-node point SN LC(0.6816, 4.667)
when β = 6.44311, h = −0.0004778. In this case, we can observe that the cusp of
the limit cycles arises from the transition of SNC1 rather than from the transition of
SNC2 as h = −0.0004, where SNC1 and SNC2 are shown in Fig. 1. This implies that
three limit cycles will bifurcate from the Hopf bifurcation point HB1 as the parameter
h or β vary.

The whole bifurcation diagram is divided into eight regions: I–VIII. The corre-
sponding phase portraits are described in Table 3 and given by Fig. 4 (I–VIII).

4.2 h as the Primary Bifurcation Parameter

Now, taking the initial parameter values as follows

α = 1, β = 2.62, δ = 0.43, h = 0.01, H = 0.034, (35)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Global Harvesting and Stocking Dynamics in a… Page 21 of 36 196

Fig. 2 Two-parameter bifurcation diagram of system (4) with respect to β and h. a β versus h; b The first
zoomed diagram of (a); c The second zoomed diagram of (a); d The third zoomed diagram of (a). Here
Hs , SN , Hom, SN L,CPL, BT denote Hopf bifurcation curve, saddle-node bifurcation curve, homoclinic
bifurcation curve, saddle-node bifurcation curve of limit cycles, cusp of limit cycles, and Bogdanov–Takens
bifurcation point, respectively

and selecting parameter h as the primary bifurcation parameter, with the remaining
parameter values fixed as given in (35), we observe the following bifurcation points:
one supercritical Hopf bifurcation point HB(2.17493×10−1, 8.93871×10−1) at h =
1.05086 × 10−2; one saddle-node bifurcation point SN (5.15086 × 10−1, 7.37967 ×
10−2) at h = 2.24684 × 10−1; two saddle-node bifurcation points of limit cycles
SNC1(6.36188× 10−1, 1.73750) at h = 1.15925× 10−2 with a period of 1.40662×
101 and SNC2(8.96509 × 10−1, 1.93445) at h = 1.14295 × 10−2 with a period of
1.80842× 101. Finally, we find that a family of limit cycles approaches a homoclinic
cycle. There exists a bistability region 1.14295 × 10−2 < h < 1.14467 × 10−2,
which indicates the presence of three coexistent limit cycles, with the innermost and
the outermost limit cycles being stable, while the middle one being unstable. See
Fig. 5a–c for details.
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Fig. 3 a The saddle-node bifurcation curve of limit cycles SN L of system (4) with respect to β and h; b
Zoomed diagramof (a); cZoomed diagramof (a). Here SN LC andCPL denote the saddle-node bifurcation
point of limit cycles and cusp of limit cycles, respectively

Table 3 The distribution of phase portraits when β and h as the primary bifurcation parameters

Regions Existence of equilibria Steady state

I No equilibrium –

II A saddle and a stable focus Monostabillity

III A saddle and a stable limit cycle contains an unstable focus Monostabillity

IV A saddle and an unstable focus –

V Saddle and three limit cycles (a big stable limit cycle contains Bistability

A middle unstable limit cycle enclosing a small stable limit cycle)

Contain an unstable focus

VI A saddle and a big stable limit cycle contains a small unstable limit Bistability

Cycle enclosing a stable hyperbolic positive equilibrium

VII A saddle and a big unstable limit cycle contains a small Monostabillity

Stable limit cycle enclosing an unstable focus

VIII A Saddle and an unstable limit cycle contains a stable focus Monostabillity
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Fig. 4 Phase portraits of eight regions: I–VIII in Fig. 2
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Fig. 5 One-parameter bifurcation diagram of system (4) with respect to h. a h versus x ; b Zoomed diagram
of (a). c A family of limit cycles approaches a homoclinic cycle

4.2.1 h and H as the Primary Bifurcation Parameters

Finally, considering h and H as the primary bifurcation parameters, we construct a
two-parameter bifurcation diagram, which includes both supercritical Hs and sub-
critical Hu Hopf bifurcation curves (red), saddle-node bifurcation curve SN (blue),
homoclinic bifurcation curves Hom1 and Hom2 (green), and saddle-node bifurcation
curve of limit cycles SN L (black), see Fig. 6 for details. Within this diagram, we
identify the following bifurcation points: two Bogdanov–Takens bifurcation points
BT1(5.66449×10−2, 6.66732×10−1) at h = 1.76939×10−2, H = −1.93050×10−1

and BT2(6.23087×10−1, 8.68350×10−1) at h = −9.85011×10−2, H = 4.99989×
10−1; one cusp point CP(3.98346 × 10−1,−2.92479 × 10−1) at h = 3.22985 ×
10−1, H = −9.25278 × 10−2; and a codimension-2 cusp point of limit cycles
CPL(7.82190 × 10−1, 1.86995) on the curve SN L at h = 1.12393 × 10−2, H =
3.88902 × 10−2, with a period of 1.55612 × 101, which indicates that there exists
an acute parameter region of three coexistent limit cycles as h > 0 and H > 0. The
branch SN L also tells us that there is one triangle parameter region consists of gener-
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Fig. 6 Two-parameter bifurcation diagram of system (4) with respect to h and H . a h versus H ;
b First zoomed part in (a). c Second zoomed part in (b). Here SN , Hi (i = s, u), Homi (i =
1, 2), SN L,CPL, BTi (i = 1, 2),GH ,1 denote the saddle-node bifurcation curve, supercritical (or sub-
critical) Hopf bifurcation curve, homoclinic cycle bifurcation curve, saddle-node bifurcation curve of limit
cycle, cusp of limit cycle, Bogdanov–Takens bifurcation point, and degenerate Hopf bifurcation point, the
double stocking region, respectively

alized Hopf bifurcation point GH , Hopf bifurcation curve H , degenerate homolinic
bifurcation point, must have at least two limit cycles.

Note that, the homoclinic cycle curves Hom1 and Hom2 bifurcate from two BT
bifurcation points BT1 and BT2, respectively. However, homolcinic cycles on both
branches approach the same heteroclinic cycle connecting two boundary equilibria
E1
0(

1−√
1−4h
2 , 0) and E2

0(
1+√

1−4h
2 , 0) as H = 0. For a more detaild visualization,

please refer to Fig. 6b.
The entire bifurcation diagram is divided into eight regions: I-VIII. The correspond-

ing phase portraits are described in Table 4 and given in Fig. 7. Here, 1 is included in
the region I representing the region of double stocking for both species. It is crucial to
exercise caution in selecting suitable initial conditions to prevent the collapse of the
entire system.
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Table 4 The distribution of phase portraits when h and H as the primary bifurcation parameters

Regions Existence of equilibria Steady state

I A saddle and a stable focus Monostabillity

II No equilibrium −
III A saddle and a stable focus Monostabillity

IV A saddle and a stable limit cycle contains an unstable focus Monostabillity

V A saddle and an unstable limit cycle contains a stable focus Monostabillity

VI A saddle and a big unstable limit cycle contains a small Monostabillity

Stable limit cycle enclosing an unstable focus

VII A saddle and three limit cycles (a big stable limit cycle Bistability

Contains a middle unstable limit cycle enclosing a small stable limit cycle)

Contain an unstable focus

VIII A saddle and a homoclinic cycle contains Monostabillity

An unstable limit cycle enclosing a stable focus

Remark 2 It is evident that system (4) exhibits two boundary equilibria, namely
E1
0(

1−√
1−4h
2 , 0) and E2

0(
1+√

1−4h
2 , 0), if the special case H = 0 holds. The homo-

clinic cycle curve is discontinuous, presenting a new and interesting phenomenon. This
is in stark contrast to many established predator–prey models, where both Bagdanov-
Takens bifurcation points are consistently linked by an uninterrupted homoclinic cycle
curve [12, 38].

However, all the homoclinic cycles bifurcating from BT1 and BT2 converge towards
a heteroclinic cycle that connects the two boundary equilibria, E1

0 and E2
0 . The

significant distinction lies in the fact that homoclinic cycles originating from BT2
converge towards equilibria approaching E1

0 , while those originating from BT1 con-
verge towards equilibria approaching E2

0 . In otherwords, the homoclinic cycles emerge
from a perturbation of a heteroclinic cycle.

5 Biological Interpretations

In this section, we provide latent biological interpretations for the related bifurcation
diagrams and their corresponding phase portraits.

Firstly, we give a detailed explanation of Fig. 5 from a biological perspective. The
solid and dotted curves represent the stable and unstable branches of equilibria or
limit cycles, respectively. We obtain four important parameter values h1, h2, h3, h4
that divide the horizontal axis into five subintervals. For h < h1, system (4) possesses
two equilibria, one stable and the other unstable, which implies that predators and
prey can achieve a state of coexistence by selecting the right initial condition within
this region; For h1 < h < h2 and h3 < h < h4, system (4) has a stable limit cycle,
showing that predators and prey can be kept in a sustained oscillation state, further, the
amplitude of the prey oscillation increases as h increases; For h2 < h < h3, system
(4) has multiple solutions consisting of three limit cycles (a big stable limit cycle
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Fig. 7 Phase portraits of eight regions: I–VIII in Fig. 6
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contains a middle unstable limit cycle including a small stable limit cycle) and two
unstable equilibria, with the unstable limit cycle acting as the separatrix between the
basins of these two stable limit cycles. This shows that we can control the system to
a relatively large or small sustained oscillation by selecting appropriate initial value;
For h > h4, there are two unstable equilibria indicating that the prey population may
face extinction for all initial states under large constant-rate harvesting.

Next, we give the biological interpretations of Figs. 2 and 6. In regions I, IV of
Fig. 2 and region II of Fig. 6, no positive equilibria remain, indicating that the system
will eventually collapse due to the extinction of predators or prey; In regions II, VIII
of Fig. 2 and regions I, III, V, VIII of Fig. 6, there is a stable positive equilibrium,
which shows that predators and prey can reach a stable coexistence; In regions III,
VII of Fig. 2 and regions IV, VI of Fig. 6, there is a stable limit cycle, indicating
that a stable coexistence of two species in the form of persistent oscillations can be
achieved; In regionVof Fig. 2 and regionVII of Fig. 6, there are two stable limit cycles.
This indicates that we can control the system to a relatively large or small sustained
oscillation; In region VI of Fig. 2, there exist a stable limit cycle and a stable positve
equilibrium, showing that we can stabilize the predators and prey to a coexistence
oscillating state or a equilibrium.

It’s worth noting that system (4) may exhibit a heteroclinic cycle with zero predator
harvest rate (i.e., H = 0) and a threshold value for prey harvest rate, which presents
an intriguing new phenomenon and suggests that the predator population may face
extinction, leading to the system to collapse. Hence, the harvesting and stocking of
predators is important and necessary.

Moreover, as shown in Fig. 6, it is crucial to identify an optimal opportunity to
harvest or stock both populations. An ill-timed measure may ultimately cause the
system to collapse. Interestingly, we find that simultaneous stocking for predators and
prey may not necessarily benefit the coexistence of both species. The initial state may
ultimately determine the fate of the predator.

In a word, even small parameter perturbations will have great influence on the
dynamical behaviors of system, indicating the vital roles of these parameters (har-
vesting rate, conversion rate from prey to predators and stocking rate). Of particular
importance, by selecting parameter values within different regions and choosing dif-
ferent initial states, we can stabilize the system to a coexistence oscillating state or
an equilibrium. This work promotes to a deeper understanding of the dynamics of
ecosystems when harvesting and stocking occurs simultaneously, which does benefit
to the effective management of ecological systems through harvesting and stocking.

6 Conclusion

In this paper, we conduct a comprehensive study on the dynamics of a predator–prey
system including harvesting and stocking of both species. Our detailed bifurcation
analysis encompasses saddle-node bifurcation, cusp of high codimension, Bogdanov–
Takens bifurcation of codimensions 2 and 3, as well as degenerate Hopf bifurcation
of codimension 2. The transitions between different regimes are also depicted in the
bifurcation diagrams. Of note, we identify a codimension-2 cusp of limit cycles, a phe-
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nomenon first observed in this harvesting and stocking model, signifying the potential
for the coexistence of three limit cycles. In particular, we observe a intriguing phe-
nomenon that two BT bifurcation points are not always connected by a continuous
homoclinic bifurcation curve.

From a biological perspective, the prey population may face extinction for all
initial states under large constant-rate harvesting. Further, simultaneous stocking
(h < 0, H < 0) may not contribute to the coexistence of both populations; Con-
versely, the cases (h > 0, H > 0) and (h > 0, H < 0) promote such coexistence,
while the case (h > 0, H > 0) may lead to the occurrence of multiple limit cycles.
Additionally, if the special case H = 0 holds, there’s a possibility of coextinction
for both predators and prey. The most meaningful thing is that we can stabilize the
system to different coexistence states (stable equilibria or persistent oscillations) by
selecting parameter valueswithin different regions and choosing different initial states,
which fully indicates the important roles of harvesting and stocking, benefiting to the
management of predator–prey systems.

It’s worth noting that although we have identified the potential for the system to
exhibit three limit cycles, we have not been able to eliminate the possibility of more
limit cycles coexisting. In addition, the boundary between two limit cycles and three
limit cycles warrants further investigation. Taken together, this work provides valuable
insights into understanding the dynamics of ecological systems when harvesting and
stocking occur simultaneously.

Appendix A Coefficients in the Proof of Theorem 1

â10 =
βx∗(1 − 2x∗)

δ(α + x∗)
, â01 = − x∗

α + x∗ , â20 =
(2x∗ − 1)(βx∗ − δ(α + x∗))

δ(α + x∗)2
− 1,

â11 = − α

(α + x∗)2
, â30 =

(2x∗ − 1)(δ(α + x∗) − βx∗)
δ(α + x∗)3

, â21 =
α

(α + x∗)3
;

b̂10 =
β(2x∗ − 1)(βx∗ − δ(α + x∗))

δ(α + x∗)
, b̂01 =

βx∗

α + x∗ − δ,

b̂20 = −β(2x∗ − 1)(βx∗ − δ(α + x∗))
δ(α + x∗)2

, b̂11 =
αβ

(α + x∗)2
,

b̂30 =
β(2x∗ − 1)(βx∗ − δ(α + x∗))

δ(α + x∗)3
, b̂21 = − αβ

(α + x∗)3
;

ĉ11 =
−2â201b̂20 + â01b̂01(2â20 − b̂11)+ â11b̂201 + â10(â01b̂11 − â11b̂01)

â01(â10 + b̂01)
,

ĉ02 =
−â201b̂20 + â01b̂01(â20 − b̂11)+ â11b̂201

â01(â10 + b̂01)
,

ĉ30 =
â10(â01b̂21 − â21b̂01)+ â01(â30b̂01 − â01b̂30)

â01(â10 + b̂01)
,
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ĉ21 =
−3â201b̂30 + â01b̂01(3â30 − b̂21)+ â21b̂201 + â10(2â01b̂21 − 2â21b̂01)

â01(â10 + b̂01)
,

ĉ12 =
−3â201b̂30 + â01b̂01(3â30 − 2b̂21)+ 2â21b̂201 + â10(â01b̂21 − â21b̂01)

â01(â10 + b̂01)
,

ĉ03 =
−â201b̂30 + â01b̂01(â30 − b̂21)+ â21b̂201

â01(â10 + b̂01)
;

d̂20 =
â201b̂20 + â10â01(â20 − b̂11) − â210â11

â01(â10 + b̂01)
,

d̂11 =
â10(â11b̂01 + â01(2â20 − b̂11))+ â01(2â01b̂20 + b̂01b̂11) − â210â11

â01(â10 + b̂01)
,

d̂02 =
â201b̂20 + â01(â10â20 + b̂01b̂11)+ â10â11b̂01

â01(â10 + b̂01)
,

d̂30 =
â201b̂30 + â10â01(â30 − b̂21) − â210â21

â01(â10 + b̂01)
,

d̂21 =
â10(â21b̂01 + â01(3â30 − 2b̂21))+ â01(3â01b̂30 + b̂01b̂21) − 2â21â210

â01(â10 + b̂01)
,

d̂12 =
â10(2â21b̂01 + â01(3â30 − b̂21))+ â01(3â01b̂30 + 2b̂01b̂21) − â210â21

â01(â10 + b̂01)
,

d̂03 =
â201b̂30 + â01(â10â30 + b̂01b̂21)+ â10â21b̂01

â01(â10 + b̂01)
.

a∗
10 = − δ(2x∗ − 1)

δ − 2x∗ + 1
, a∗

01 = − (δ − 1)δ + 2x∗(2x∗ − 1)
(δ − 2x∗ + 1)(δ + 4x∗ − 2)

,

a∗
20 =

δ(δ + 2x∗ − 1)(6x∗2 − (δ + 5)x∗ + 1)
x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)

,

a∗
11 =

2(x∗(6x∗ − δ − 5)+ 1)((δ − 1)δ + 2x∗(2x∗ − 1))
x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)2

,

a∗
30 = − (1 − 2x∗)2((δ − 1)δ + 2x∗(2x∗ − 1))2

x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)2
,

a∗
21 = −2(x∗(6x∗ − δ − 5)+ 1)((δ − 1)δ + 2x∗(2x∗ − 1))2

x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)3
,

a∗
40 =

(1 − 2x∗)2((δ − 1)δ + 2x∗(2x∗ − 1))3

x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)3
,

a∗
31 =

2(x∗(6x∗ − δ − 5)+ 1)((δ − 1)δ + 2x∗(2x∗ − 1))3

x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)4
;

b∗
10 =

(δ + 4x∗ − 2)(δ − 2δx∗)2

(δ − 2x∗ + 1)((δ − 1)δ + 2x∗(2x∗ − 1))
, b∗

01 =
δ(2x∗ − 1)
δ − 2x∗ + 1

,
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b∗
20 = − (δ − 2δx∗)2

x∗(δ − 2x∗ + 1)2
, b∗

11 =
2δ2(x∗(δ − 6x∗ + 5) − 1)

x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)
,

b∗
30 =

(δ − 2δx∗)2((δ − 1)δ + 2x∗(2x∗ − 1))
x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)

,

b21 = −2δ2((δ − 1)δ + 2x∗(2x∗ − 1))(x∗(δ − 6x∗ + 5) − 1)
x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)2

,

b∗
40 = −δ2(1 − 2x∗)2((δ − 1)δ + 2x∗(2x∗ − 1))2

x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)2
,

b∗
31 =

2δ2((δ − 1)δ + 2x∗(2x∗ − 1))2(x∗(δ − 6x∗ + 5) − 1)
x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)3

;

c∗
20 = −a∗

20b
∗
01 + a∗

11b
∗
10 − a∗

10b
∗
11 + a∗

01b
∗
20, c

∗
02 =

a∗
11

a∗
01
,

c∗
30 = −a∗

30b
∗
01 + a∗

21b
∗
10 − a∗

20b
∗
11 + a∗

11b
∗
20 − a∗

10b
∗
21 + a∗

01b
∗
30,

c∗
21 =

a∗
10(a

∗2
11 − 2a∗

01a
∗
21) − a∗

01a
∗
11a

∗
20

a∗2
01

+ 3a∗
30 + b∗

21, c
∗
12 =

2a∗
01a

∗
21 − a∗2

11

a∗2
01

,

c∗
40 = −a∗

40b
∗
01 + a∗

31b
∗
10 − a∗

30b
∗
11 + a∗

21b
∗
20 − a∗

20b
∗
21 + a∗

11b
∗
30 − a∗

10b
∗
31 + a∗

01b
∗
40,

c∗
31 =

1

a∗3
01
{a∗

01(a
∗
01(a

∗
01(4a

∗
40 + b∗

31) − 2a∗
20a

∗
21)+ a∗

20a
∗2
11 − a∗

01a
∗
30a

∗
11)

−a∗
10(a

∗3
11 − 3a∗

01a
∗
21a

∗
11

+3a∗2
01a

∗
31)},

c∗
22 =

a∗3
11 − 3a∗

01a
∗
21a

∗
11 + 3a∗2

01a
∗
31

a∗3
01

.

Appendix B Coefficients in the Proof of Theorem 2 and Theorem 3

ā00 = −λ1, ā10 =
δ(1 − 2x∗)
δ − 2x∗ + 1

, ā01 = − x∗

α + x∗ , ā20 =
(1 − 2x∗)2

(α + x∗)(δ − 2x∗ + 1)
− 1,

ā11 = − α

(α + x∗)2
; b̄00 = −λ2, b̄10 =

(α + x∗)(δ − 2δx∗)2

x∗(δ − 2x∗ + 1)2
, b̄01 =

δ(2x∗ − 1)
δ − 2x∗ + 1

,

b̄20 = − (δ − 2δx∗)2

x∗(δ − 2x∗ + 1)2
, b̄11 =

αδ2

x∗(α + x∗)(δ − 2x∗ + 1)
;

c̄00 = ā01b̄00 − ā00b̄01, c̄10 = ā11b̄00 − ā10b̄01 + ā01b̄10 − ā00b̄11,

c̄01 = ā10 − ā00ā11
ā01

+ b̄01, c̄20 = −ā20b̄01 + ā11b̄10 − ā10b̄11 + ā01b̄20,

c̄11 =
ā11(ā00ā11 − ā01ā10)

ā201
+ 2ā20 + b̄11, c̄02 =

ā11
ā01

; d̄00 = c̄00, d̄10 = c̄10 − 2c̄00c̄02,

d̄01 = c̄01, d̄20 = c̄00c̄202 − 2c̄10c̄02 + c̄20,

d̄11 = c̄11 − c̄01c̄02; ē00 = d̄00 − d̄210
4d̄20

, ē01 = d̄01 − d̄10d̄11
2d̄20

, ē20 = d̄20, ē11 = d̄11.
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ā∗
00 = −ε1, ā∗

10 =
δ(1 − 2x∗)
δ − 2x∗ + 1

, ā∗
01 = − (δ − 1)δ + 2x∗(2x∗ − 1)

(δ − 2x∗ + 1)(δ + 4x∗ − 2)
,

ā∗
20 =

δ(δ + 2x∗ − 1)(6x∗2 − (δ + 5)x∗ + 1)
x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)

,

ā∗
11 =

2(x∗(6x∗ − δ − 5)+ 1)((δ − 1)δ + 2x∗(2x∗ − 1))
x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)2

,

ā∗
30 = − (1 − 2x∗)2((δ − 1)δ + 2x∗(2x∗ − 1))2

x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)2
,

ā∗
21 = −2(x∗(6x∗ − δ − 5)+ 1)((δ − 1)δ + 2x∗(2x∗ − 1))2

x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)3
,

ā∗
40 =

(1 − 2x∗)2((δ − 1)δ + 2x∗(2x∗ − 1))3

x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)3
,

ā∗
31 =

2(x∗(6x∗ − δ − 5)+ 1)((δ − 1)δ + 2x∗(2x∗ − 1))3

x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)4
;

b̄∗
00 = − x∗(1 − 2x∗)2(δ + 4x∗ − 2)

12x∗2 − 2(δ + 5)x∗ + 2
ε2 − ε3,

b̄∗
10 = − (1 − 2x∗)2(ε2((δ − 1)δ + 4x∗2 − 2x∗)+ δ2(δ + 4x∗ − 2))

(−δ + 2x∗ − 1)((δ − 1)δ + 4x∗2 − 2x∗)
,

b̄∗
01 =

ε2((δ − 1)δ + 2x∗(2x∗ − 1))+ δ(2x∗ − 1)(δ + 4x∗ − 2)
(δ − 2x∗ + 1)(δ + 4x∗ − 2)

,

b̄∗
20 = − (1 − 2x∗)2(ε2((δ − 1)δ + (2x∗ − 1)2x∗)+ δ2(δ + 4x∗ − 2))

x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)
,

b̄∗
11 = −2(x∗(6x∗ − δ − 5)+ 1)(δ2(δ + 4x∗ − 2)+ ε2((δ − 1)δ + 2x∗(2x∗ − 1)))

x∗(δ − 2x∗ + 1)2(δ + 4x∗ − 2)2
,

b̄∗
30 =

(1−2x∗)2((δ−1)δ + 2x∗(2x∗−1))(δ2(δ + 4x∗−2)+ε2((δ−1)δ+2x∗(2x∗−1)))
x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)2

,

b̄∗
21 =

1
x∗2(δ − 2x∗ + 1)3(δ + 4x∗ − 2)3

(2(x∗(6x∗ − δ − 5)+ 1))((δ − 1)δ

+2x∗(2x∗ − 1))(δ2(δ + 4x∗ − 2)+ ε2((δ − 1)δ + 2x∗(2x∗ − 1))),

b̄∗
40 =

(1−2x∗)2((δ−1)δ+2x∗(2x∗ − 1))2(ε2((δ−1)δ+2x∗(2x∗−1))+δ2(δ+4x∗−2))
x∗3(δ − 2x∗ + 1)4(2 − δ − 4x∗)3

,

b̄∗
31 = − 1

x∗3(δ − 2x∗ + 1)4(δ + 4x∗ − 2)4
2((δ − 1)δ + 2x∗(2x∗ − 1))2

(6x∗2 − (δ + 5)x∗ + 1)(ε2((δ − 1)δ + 2x∗(2x∗ − 1))+ δ2(δ + 4x∗ − 2));
c̄∗
00 = ā∗

01b̄
∗
00 − ā∗

00b̄
∗
01, c̄

∗
10 = ā∗

11b̄
∗
00 − ā∗

10b̄
∗
01 + ā∗

01b̄
∗
10 − ā∗

00b̄
∗
11,

c̄∗
01 =

ā∗
01(ā

∗
10 + b̄∗

01) − ā∗
00ā

∗
11

ā∗
01

,

c̄∗
20 = ā∗

21b̄
∗
00 − ā∗

20b̄
∗
01 + ā∗

11b̄
∗
10 − ā∗

10b̄
∗
11 + ā∗

01b̄
∗
20 − ā∗

00b̄
∗
21,

c̄∗
11 = 2ā∗

20 +
ā∗
00ā

∗2
11 − ā∗

01(ā
∗
10ā

∗
11 + 2ā∗

00ā
∗
21)

ā∗2
01

+ b̄∗
11, c̄

∗
02 =

ā∗
11

ā∗
01
,

c̄∗
30 = ā∗

31b̄
∗
00 − ā∗

30b̄
∗
01 + ā∗

21b̄
∗
10 − ā∗

20b̄
∗
11 + ā∗

11b̄
∗
20 − ā∗

10b̄
∗
21 + ā∗

01b̄
∗
30 − ā∗

00b̄
∗
31,
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c̄∗
21 = 3ā∗

30 +
−ā∗

00ā
∗3
11 + ā∗

01(ā
∗
10ā

∗
11 + 3ā∗

00ā
∗
21)ā

∗
11 − ā∗2

01 (ā
∗
11ā

∗
20 + 2ā∗

10ā
∗
21 + 3ā∗

00ā
∗
31)

ā∗3
01

+b̄∗
21,

c̄∗
12 =

2ā∗
01ā

∗
21 − ā∗2

11

ā∗2
01

,

c̄∗
40 = −ā∗

40b̄
∗
01 + ā∗

31b̄
∗
10 − ā∗

30b̄
∗
11 + ā∗

21b̄
∗
20 − ā∗

20b̄
∗
21 + ā∗

11b̄
∗
30 − ā∗

10b̄
∗
31 + ā∗

01b̄
∗
40,

c̄∗
31 =

1

ā∗4
01

(ā∗
00ā

∗4
11 − ā∗

01ā
∗2
11 (ā

∗
10ā

∗
11 + 4ā∗

00ā
∗
21) − ā∗3

01 (2ā
∗
20ā

∗
21 + ā∗

11ā
∗
30 + 3ā∗

10ā
∗
31)

+ā∗2
01 (ā

∗
20ā

∗2
11 + (3ā∗

10ā
∗
21 + 4ā∗

00ā
∗
31)ā

∗
11 + 2ā∗

00ā
∗2
21 ))+ 4ā∗

40 + b̄∗
31,

c̄∗
22 =

ā∗3
11 − 3ā∗

01ā
∗
21ā

∗
11 + 3ā∗2

01 ā
∗
31

ā∗3
01

; d̄∗
10 = c̄∗

10 − c̄∗
00c̄

∗
02, d̄

∗
01 = c̄∗

01,

d̄∗
20 = c̄∗

20 + c̄∗
00c̄

∗2
02 − c̄∗

10c̄
∗
02

2
, d̄∗

11 = c̄∗
11, d̄

∗
30 = c̄∗

30 +
1
2
(c̄∗

10 − 2c̄∗
00c̄

∗
02)c̄

∗2
02,

d̄∗
21 = c̄∗

21 +
c̄∗
02c̄

∗
11

2
, d̄∗

12 = c̄∗
12 + 2c̄∗2

02, d̄
∗
40 = c̄∗

40 + c̄∗
00c̄

∗4
02 +

1
4
(c̄∗

02(c̄
∗
20

−2c̄∗
02c̄

∗
10)+ 2c̄∗

30)c̄
∗
02,

d̄∗
31 = c̄∗

31 + c̄∗
02c̄

∗
21, d̄

∗
22 = c̄∗

22 − c̄∗3
02 +

3c̄∗
12c̄

∗
02

2
; ē∗

00 = d̄∗
00, ē

∗
10 = d̄∗

10, ē
∗
01 = d̄∗

01,

ē∗
20 = d̄∗

20 − d̄∗
00d̄

∗
12

2
, ē∗

11 = d̄∗
11, ē

∗
30 = d̄∗

30 − d̄∗
10d̄

∗
12

3
, ē∗

21 = d̄∗
21,

ē∗
40 = d̄∗

40 +
d̄∗
00d̄

∗2
12

4
− d̄∗

12d̄
∗
20

6
, ē∗

31 = d̄∗
31 +

d̄∗
11d̄

∗
12

6
, ē∗

22 = d̄∗
22; f̄ ∗

00 = ē∗
00, f̄ ∗

10 = ē∗
10,

f̄ ∗
01 = ē∗

01, f̄ ∗
20 = ē∗

20, f̄ ∗
11 = ē∗

11, f̄ ∗
30 = ē∗

30 − ē∗
00ē

∗
22

3
, f̄ ∗

21 = ē∗
21, f̄ ∗

40 = ē∗
40 − ē∗

10ē
∗
22

4
,

f̄ ∗
31 = ē∗

31; ḡ∗
00 = f̄ ∗

00, ḡ∗
10 = f̄ ∗

10 − f̄ ∗
00 f̄

∗
30

2 f̄ ∗
20

, ḡ∗
01 = f̄ ∗

01,

ḡ∗
20 = f̄ ∗

20 +
9 f̄ ∗

00 f̄
∗2
30

16 f̄ ∗2
20

− 3(5 f̄ ∗
10 f̄

∗
30 + 4 f̄ ∗

00 f̄
∗
40)

20 f̄ ∗
20

, ḡ∗
11 = f̄ ∗

11 − f̄ ∗
01 f̄

∗
30

2 f̄ ∗
20

,

ḡ∗
30 =

f̄ ∗
10(35 f̄

∗2
30 − 32 f̄ ∗

20 f̄
∗
40)

40 f̄ ∗2
20

, ḡ∗
21 = f̄ ∗

21 − 3(20 f̄ ∗
11 f̄

∗
20 f̄

∗
30 + f̄ ∗

01(16 f̄
∗
20 f̄

∗
40 − 15 f̄ ∗2

30 ))

80 f̄ ∗2
20

,

ḡ∗
40 =

f̄ ∗
10 f̄

∗
30(16 f̄

∗
20 f̄

∗
40 − 15 f̄ ∗2

30 )

64 f̄ ∗3
20

, ḡ∗
31 = f̄ ∗

31 +
7 f̄ ∗

11 f̄
∗2
30

8 f̄ ∗2
20

− 5 f̄ ∗
21 f̄

∗
30 + 4 f̄ ∗

11 f̄
∗
40

5 f̄ ∗
20

;

h̄∗
00 = ḡ∗

00, h̄∗
10 = ḡ∗

10, h̄∗
01 = ḡ∗

01 − ḡ∗
00 ḡ

∗
21

ḡ∗
20

, h̄∗
20 = ḡ∗

20, h̄∗
11 = ḡ∗

11 − ḡ∗
10 ḡ

∗
21

ḡ∗
20

,

h̄∗
31 = ḡ∗

31 − ḡ∗
21 ḡ

∗
30

ḡ∗
20

; j̄∗00 = h̄∗
00h̄

∗ 4
5

31 h̄
∗− 7

5
20 , j̄∗10 = h̄∗

10h̄
∗ 2
5

31 h̄
∗− 6

5
20 , j̄∗01 = h̄∗

01h̄
∗ 1
5

31 h̄
∗− 3

5
20 ,

j̄∗11 = h̄∗
11h̄

∗− 1
5

31 h̄
∗− 2

5
20 .
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Appendix C Coefficients in the Proof of Theorem 5

σ22 = 20(α + x̃)4(αh − x̃2(α + 2x̃ − 1))7 − 20x̃(α + x̃)3(αh − x̃2(α + 2x̃ − 1))6

×(2αh − 19x̃3 + (7 − 22α)x̃2 + α x̃(−5α − 2β + 5))

+(α + x̃)4(−5αh − 2x̃3)(αβ x̃2(h + (x̃ − 1)x̃)+ (αh − x̃2(α + 2x̃ − 1))2)3

−180x̃3(α + x̃)3(α + 3x̃ − 1)(−αh + 2x̃3 + (α − 1)x̃2)5

×(−αh + 5x̃3 + (5α − 2)x̃2 + α x̃(α + β − 1))

+20x̃3(α + x̃)
(
−αh + 2x̃3 + (α − 1)x̃2

)4
(2αh + 17x̃3 + (26α − 5)x̃2

+α x̃(7α − 2β − 7))(−αh + 5x̃3 + (5α − 2)x̃2 + α x̃(α + β − 1))2

−20x̃4(−αh + 2x̃3 + (α − 1)x̃2)3(αh + 4x̃3 + (7α − 1)x̃2

+α x̃(2α − β − 2))(−αh + 5x̃3 + (5α − 2)x̃2 + α x̃(α + β − 1))3

+(α + x̃)2(αβ x̃2(h + (x̃ − 1)x̃)+ (αh − x̃2(α + 2x̃ − 1))2)2

×(30(α + x̃)2(αh − x̃2(α + 2x̃ − 1))3 + 10x̃(α + x̃)

×(−αh + 2x̃3 + (α − 1)x̃2)2(−αh + 23x̃3 + (30α − 9)x̃2

+α x̃(8α + β − 8))+ x̃3(α + x̃)(αh − x̃2(α + 2x̃ − 1))(−10(α − 1)αh

+2α x̃(5(α − 1)(7α + β − 7) − 24h)+ 510x̃4 + (821α − 407)x̃3

+x̃2(419α2 + α(48β − 499)+ 80))+ (1 − α)x̃4

×(αh + 13x̃3 + (19α − 4)x̃2 + α x̃(5α − β − 5))

×(αh − 14x̃3 + (5 − 17α)x̃2 − α x̃(4α + β − 4)))

−(αh − x̃2(α + 2x̃ − 1))(α2h + 3x̃4 + (2α − 1)x̃3

+αβ x̃2)(αβ x̃2(h + (x̃ − 1)x̃)+ (αh − x̃2(α + 2x̃ − 1))2)(x̃2(α + x̃)

×(αh − x̃2(α + 2x̃ − 1))(3x̃2(α + x̃)(7αh − 7x̃(αβ + x̃(α + 2x̃ − 1))

−46x̃(α + x̃)(α + 3x̃ − 1))+ 19x̃(−α − 3x̃ + 1)(α + x̃)

×(αh − x̃(αβ + x̃(α + 2x̃ − 1))) − 5(αh − x̃(αβ + x̃(α + 2x̃ − 1)))2

+120x̃2(α + x̃)2(α + 3x̃ − 1)2)+ 45(α + x̃)3(αh − x̃2(α + 2x̃ − 1))3

+x̃3(αh + 4x̃3 + (7α − 1)x̃2 + α x̃(2α − β − 2))

×(5(αh − x̃(αβ + x̃(α + 2x̃ − 1)))2 + 19x̃(−α − 3x̃ + 1)

×(α + x̃)(αh − x̃(αβ + x̃(α + 2x̃ − 1)))+ 20x̃2(α + x̃)2(α + 3x̃ − 1)2)

−x̃(α + x̃)2(αh − x̃2(α + 2x̃ − 1))2(5αh − 301x̃3 + (135 − 426α)x̃2

−5α x̃(26α + β − 26))).
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