20 Reading

September 13, 2024 8:2 WSPC S1793-5245 242-1JB 2450079

International Journal of Biomathematics \\’e World Scientific
(2024) 2450079 mpages) i www.worldscientific.com

© World Scientific Publishing Company
DOI: 10.1142/51793524524500797

Dynamic analysis of HCV infection and drug resistance
using an age-structured multiscale model

Xia Wang/®*, Qing Gel®¥, Jie Lil0*, Hongyan Zhao/®* and Libin Rongl®f#

*College of Mathematics and Statistics
Xinyang Normal University, Xinyang 464000, P. R. China

tDepartment of Mathematics, University of Florida
Gainesville, FL 32611, USA
Hibinrong@ufl. edu

Received 3 March 2024
Revised 20 May 2024
Accepted 28 June 2024
Published

Direct-acting antiviral agents (DAAs) are known to interfere with various intracellu-
lar stages of the hepatitis C virus (HCV) life cycle and have demonstrated efficacy in
treating HCV infection. However, DAA monotherapy can lead to drug resistance due
to mutations. This paper explores the impact of DAA therapy on HCV dynamics using
a multiscale age-structured partial differential equation (PDE) model that incorporates
intracellular viral RNA replication within infected cells and two strains of viruses rep-
resenting a drug-sensitive strain and a drug-resistant mutant variant, respectively. We
derived an equivalent ordinary differential equation (ODE) model from the PDE model
to simplify mathematical analysis and numerical simulations. We studied the dynamics
of the two virus strains before treatment and investigated the impact of mutations on the
evolution kinetics of drug-sensitive and drug-resistant viruses, as well as the competition
between the two strains during treatment. We also explored the role of DA As in blocking
HCV RNA replication and releasing new virus particles from cells. During treatment,
mutations do not significantly influence the dynamics of various virus strains; however,
they can generate low-level HCV that may be completely inhibited due to their poor
fitness. The fitness of the mutant strain compared to the drug-sensitive strain determines
which strain dominates the virus population. We also investigated the prevalence and
drug resistance evolution of HCV variants during DAA treatment.

Keywords: Hepatitis C virus; multiscale model; drug-resistance; drug-sensitive; RNA.
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1. Introduction

Despite significant advances in medical treatment and prevention, many people
worldwide still suffer from infectious diseases. Direct-acting antiviral agents (DA As)
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that have been developed to treat hepatitis C virus (HCV) infection target the dif-
ferent stages of the viral lifecycle and have significantly increased the sustained viro-
logical response (SVR) rate in infected individuals [15]. The multi-drug therapies
have greatly improved the clinical outcomes of HCV, and accurate quantification
with mathematical models can further optimize their antiviral effects. Ordinary
differential equations (ODEs) were often used to establish mathematical models for
quantitative data analysis of antiviral activity [26]. To more accurately describe
and quantify the different antiviral effects of antiviral drugs, some researchers have
proposed multiscale age-structured models with the age of cell infection, which have
been used to study the in-host dynamics of a few viral infections |4, [5, [14], particu-
larly for analyzing HCV clinical datasets under the treatment with DAAs [17, [23].

Multiscale models can describe the kinetics of intercellular and intracellular pro-
cesses, including intracellular viral replication, which may uncover the mechanisms
of action of antiviral drugs [19] 27]. These models can accurately quantify antiviral
effects from clinical datasets from patients under treatment [20]. For exam-
ple, Guedj et al. developed an age-structured multiscale HCV infection model that
accounts for intracellular HCV RNA replication and degradation [4]. The original
PDE model for multi-drug HCV treatment, with some mathematical and biolog-
ical assumptions, provides an approximate solution for clinical data fitting [24].
The age-structured model is typically expressed using partial differential equations
(PDEs), which makes it challenging to carry out mathematical and numerical anal-
ysis due to potential convergence issues in numerical simulations [4] 23] [24]. Using
the method of “model aggregation”, which has been well-established in theoretical
biology [1, [8, 9], mathematically identical ODEs can be derived from the original
PDE model [111 [12].

In this paper, we will develop a multiscale age-structured model encompassing
two virus strains and transform it into an equivalent ODE model without requiring
additional assumptions. We will analyze the resulting differential equation model
and show the local stability of all potential steady states. Furthermore, we will
investigate the competition between drug-sensitive and drug-resistant viruses dur-
ing treatment, as well as the impact of mutations on variant evolution. Compre-
hensive mathematical analysis of the multiscale model described by PDEs has been
challenging due to the mathematical complexity inherent in conducting stability
analyses of PDEs with two strains. By deriving an equivalent system from the PDE
model, we can expedite the mathematical analysis of the multiscale model through
the transformed ODE model and its modified version. These transformations cir-
cumvent tedious calculations and may prove valuable for data analysis purposes.

2. Models and Analysis

The basic viral dynamic model was enhanced by incorporating the dynamics of
HCV RNA replication in infected cells, resulting in the development of a novel
multiscale mathematical model with the age structure of infection. The new model
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provides a more accurate description of various antiviral effects throughout the
viral life cycle, with a few similar models previously proposed and studied for data
analysis as evidenced by previous works such as [5, 24]. We will extend this
multiscale model by including another strain of mutants to study the emergence of
drug resistance under the treatment of HCV with DAAs [4]. The multiscale model
is given by

dT(t)

a0 BV ()T(t) — dT'(t),
81’(@, t) 8i(a7 t) ;

o + 5 = —di(a,t),

i<0’ t) = ﬁV(t)T(t), i<a’ 0) = iO(a)»
OR(a,t) OR(a,t)

da + ot
R(0,t) =1, R(a,0)= Ro(a),
dv(t)

VO _ /OOO pR(a, t)i(a, t)da — ¢V (1),

(2.1)

=a— (u+p)R(at),

Here, a represents the age of infection, which is the time elapsed since the virus
enters the target cell. The state variables T'(t) and V (¢) represent the density of
target cells and free viral particles, respectively, at time ¢. i(a, t) denotes the density
distribution of infected cells with an infected age of a at time ¢. Similarly, R(a,t)
represents the distribution of intracellular viral RNA in an infected cell with the
age of infection a at time ¢.

It is assumed that target cells are produced at a rate of s, infected with the virus
at a rate of 0, and die naturally at a rate of d. Infected cells die at a rate of 4, and
viruses are cleared at a rate of c. The parameters a and p represent the production
and degradation rate of intracellular viral RNA, respectively. Furthermore, it is
assumed that viral RNA is assembled with viral proteins and secreted from infected
cells in the form of viral particles at the rate p.

2.1. A multiscale PDE model of HCV drug resistance

The low fidelity of the HCV RNA polymerase is responsible for the high mutation
rate of the HCV RNA genome, which is a significant factor in the development
and emergence of resistant viruses. This can lead to incomplete virus inhibition
and increase the risk of disease progression [2]. Inspired by this, we propose a new
multiscale age-structured model comprising two strains to investigate the prevalence
of HCV strains before treatment and the quasispecies dynamics during treatment.
The mechanism of DAAs indicates that the gene site encoding a nonstructural
protein in HCV RNA targeted by DAAs is the primary mutation site of drug-
resistant strains. Taking into account the error-prone nature of HCV polymerase, it
is assumed that hepatocytes infected with drug-sensitive viruses will produce both
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drug-sensitive and mutation variants of the virus (assuming that a single mutation
will lead to a certain level of resistance). This is described by the following equation:

O s ar ()~ V00T (0) — 8,007 (),

‘%SC,EZ’ 2 3is(§j’t) = —dis(a 1),

6irgz,t) . 6irgz,t) — bin(a),

aRsa(s,t) N BRB(:,t) = (1 —m)as — (u+ p)Rs(a,t),

8RB(;,15) N 8R§:,t> — mas — (1 + p)Ro(a, 1), >
Ofr(0t) | ORO) _ o (s ) Efa)

dVC;t(t) _ /0 " PR (a,t)is(a, H)da — Vi (t),

dvd;t(t) - /Ooo pR,(a,t)is(a,t)da + /OOO pRy(a,t)ir(a,t)da — cV;(t),

with the following initial conditions

T(O) =T, VS(O) = Vso, ‘/7“(0) = Vs, is(av O) =g (a)v iT(av 0) =lr, (a)v

Ry(a,0) = Ryy(a), R(a,0) = Ry,(a), R.(a,0) = Ryy(a),
and boundary conditions

Z.s(ovt) = ﬁs‘/s(t)T(t)v ir(ovt) = 5r‘/7"(t)T(t)v Rs(ovt) =1,

R.(0,t) =0, R.(0,¢)=1,

where T'(t), Vi(t), and V,.(t) represent the density of target cells, drug-sensitive and
drug-resistant virus at time ¢, respectively. These viruses invade the target cells T'(¢)
at rates B,V ()T (t) and 5,'V,.(t)T'(t) to produce infectious infected cells. The vari-
ables is(a,t) and i, (a,t) represent the age distribution of drug-sensitive and drug-
resistant infected cells at time ¢. Similarly, Rs(a,t) and I/%vr(a,t) represent the age
and time distribution of drug-sensitive and drug-resistant intracellular viral RNA.
In comparison, R,(a,t) is the age and temporal distribution of resistant viral RNA
produced by mutations from drug-sensitive infected cells. is, (a) and i,,(a) are the
initial distributions of drug-sensitive and drug-resistant infected cells, respectively.
Rs,(a), Ry (a), and R,,(a) represent the initial distributions of drug-sensitive and
drug-resistant intracellular viral RNA. With a single mutation, we assume that the
probability of drug-resistant viral RNA produced by replication errors in viral RNA
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in drug-sensitive infected hepatocytes is m. The probability of each nucleotide muta-
tion being replicated is approximately between 10~* and 10~°. The parameters o
and «, represent the production rates of drug-sensitive and drug-resistant intracel-
lular viral RNA, respectively. fooo pRs(a,t)is(a,t)da represents the production rate
of drug-sensitive virus, where drug-sensitive intracellular viral RNA is assembled
with viral proteins and secreted viral particles from drug-sensitive infected cells at
the rate p. Furthermore, it is assumed that drug-resistant produced by mutations
and drug-resistant intracellular viral RNA are assembled with viral proteins at rates
I5S pRr(a, t)is(a, t)da and [;° pR,(a,t)ir(a,t)da to secrete from drug-sensitive and
drug-resistant infected cells in the form of viral particles, respectively. Other param-
eters have the same biological meaning as in model (2.1]).

2.2. Transformation of the multiscale PDE to ODE model

The total number of drug-sensitive and drug-resistant infected cells is calculated
as I,(t) = [, is(a,t)da and I.(t) = [, ir(a,t)da, respectively, by integrating over
the cell infection age a. Similarly, the total amount of intracellular viral RNA accu-
mulated in both types of infected cells is given by

Py(t) = /O ” Ru(a, t)is(a, t)da,

P(t) = /O R, (a,t)is(a,t)da + /O mE(a,t)iT(a,t)da.

The initial values are calculated by the integrals as follows:

I,(0) = /OOO iso(a)da, I.(0)= /000 iro(a)da, Ps(0) = /000 Ryo(a)iso(a)da,

P.(0) = /000 Rro(a)iso(a)da + /000 R.o(a)iro(a)da.

Next, the partial derivative of I4(¢) and I,.(¢) is integrated over the age to obtain
the following differential equations:

dls(t) [ Ois(a,t) 7/00 Ois(a,t)
o /0 5 da = ; e dis(a,t) p da

= —[is(a, )] — 01,(t),

dI;LEt) /OOOW/OOO{W&T(CLJ)}M

= —[ir(a, )] — 61 (t).

Noting that lim, 0 is(a,t) = 0 and limg_,o ir(a,t) = 0, and from the boundary
conditions of system (2.2)), i.e. i5(0,t) = B:Vs(t)T(t) and i..(0,t) = B, V()T (t), we
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rewrite ([2.3]) and obtain

Wel) _ pvir(e) - o100,
dI.(t)
0 BT ()~ aL(0)

Similarly, Ps(t) is given by
PO _ [ A1),
0

dt ot
:/Om{%is(a,t)—l—]%s(a,t)W}da
— [ (-2 4 - mas - DRG0t

+ Rq(a,t) (% — 8ig(a, t)) } da

— /000 8(Rs(a,50)fs(a,t))da + (1 —m)as /O‘X’ is(a,t)da — (u+ p+0)

X / Rs(a,t)is(a,t)da
0
= —[Rs(a,t)is(a, Olg" + (1 = m)asLs(t) = (+ p + 6) s (D).
Recall that lim,_,o0 i5(a,t) = 0 and lim, .« Rs(a,t) = (1 — m)as/(u + p). We have

limg 00 Rs(a,t)is(a,t) =0 and R4(0,t)is(0,t) = BsVs(¢)T(t). Therefore, we have
the following ODE:

dP(t

# = BsVs(OT(t) + (1 = m)asIs(t) — (u+ p + 8) Ps(2).
From lim, o0 ir(a,t) = 0, lim, . Ry(a,t) = mas/(u+ p) and hl/naﬂoo E(a, t)
ar/(p + p), we have that lim,_.c Rr(a,t)is(a,t) =0, lim, oo Rr(a,t)ir(a,t) =
and R,(0,t)i,(0,t) = B, V,.(t)T(t). Finally, we see that

AP(t) _ [ OB (a,t)is(a,t) [ ORe(ain(a,t)
- /0 da + /0 d

0

dt ot ot

— /OOO {M%@is(a,t) + msgg’t) Rr(a,t)} da

- h {—aRgf’“ ir(a,t) + "’“gj’“ﬁr(a,w} da

= [P e ) )

Oa
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N (_W - (Sis(a,t)) Rr(a,t)} da

o {<_W+ar—m+mma,t>) ir(a,1)

o (2 00) ot f

_ /°° A(R,(a,t)is(a,t))
0 da

da + mas/ is(a,t)da — (u+p+9)
0

o0 , * I(R,(a,t)iy(a,t))
X/o Rr(a,t)zs(a,t)da—/o Da da

+ar/ ir(a,t)da — (,Lt+p+5)/ R.(a,t)ir(a,t)da
0 0

= *[Rr(a»t)%(avt)]go - [E(a,t)ir(a,t)]go + masls (t) =+ ar]r(t)
—(p+p+8)P(t)
=B Ve(O)T(t) + masIs(t) + apI.(t) — (u+ p + 0)P-(1).

According to the above derivation, the multiscale two-strain PDE system (2.2)
is transformed into the ODE system as follows:

Since our

dzc;—? =5 —dT(t) = BV ()T(t) = B, Ve ()T (1),
dI,(t)
- BsVs(t)T'(t) — 614(¢),
I (t)
7 BV ()T (t) — 61-(t),
dljzst(t) = BVA(O)T(8) + (1 = m)asIs(£) = (1 + p + 6) Py (b), (2.4)
dlzt(t) = BrVe()T () + masLs(t) + oL (t) = (u+ p+ 6) P (1),
VO o)~ evita),
d‘zt( b PP (t) — eV, (t).

formulation does not make additional assumptions, the original PDE

model and our transformed ODE model are mathematically equivalent.
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Next, we show that the solution of system (2.4) with the initial conditions is
non-negative and ultimately bounded.

Theorem 2.1. Let (T(t),Is(t), I.(t), Ps(t), P-(t), V5(¢t), V-(t)) be the solution of
system (24) with the initial conditions in RY. T(t), I,(t), I,(t), Ps(t), P-(t), Vs(t)
and V,.(t) are all positive and ultimately bounded for t > 0.

Proof. First, we consider that T'(¢t) > 0 for all ¢ > 0. Suppose that there exists a
t1 > 0 such that T'(t;) = 0 and T(t) > 0 for t € [0,%;). Thus, T(t;) < 0. It follows
from the first equation of system (2.4) that T(t;) = s > 0, which is a contradiction.
This proves the claim.

Second, according to the method of variation of constant, equations of system
[2.4) except the first are given

I5(t) = L,(0)e ™" + / t BsVs ()T (€)e 0= de,
0

13\4
—~
-
N~—
I

t
I.(0)e™% + / B V(6)T(&)e 09 qg,
0

P.(t) = Py(0)e~(ntrto)t 4 /t(ﬂsVs(ﬁ)T(f) + (1 = m)a I, (€))e HHrDE=8 ge.
0
Po(0) = P00t 1 [ (@ VOT(€) + mand,(©

+a, I, (6))67(#+p+5)(t*§)dg7

Vi) = Vi) + [ PO,
= Ve (0)e ©)

t
_ct+/ PPr
0

which implies that I;(¢) > 0, Pi(t) > 0,V;(t) > 0 (i = s,r) for a small t > 0 with
the initial values I5(0) = [~ iso(a)da > 0, I(0) = [~ iro(a)da > 0, Ps(0) =
15" Rso(a)iso(a)da > 0, Pr(0) = [° Ryo(a)iso(a)da + [;° Rro(a)ire(a)da > 0.
Next, we claim that I;(¢t) > 0, P;i(t) > 0, Vi(t) >0 (i = s, r) for all t > 0.
Assume that there exists a to > 0 such that min{/;(¢2), Ps(t2), Vs(t2)} = 0.

€_c(t_£)d€,

(i) If Is(t2) = 0, Is(t) > 0 for t € [0,t2) and Ps(t), Vs(t) > 0,t € [0, t2], then we have

to
A@ﬁzé@k”“+/ BVAOT(€)e =9 dg > 0,
0

2450079-8
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this is a contradiction. Then I;(¢) > 0, for all ¢ > 0.
(a) If Ps(t2) =0, Ps(t) > 0 for ¢ € [0,t2) and V;(¢) > 0,t € [0, £2], then we have

Py(t) = Py(0)e~(totoiz 4 / CBVAOTE)

+ (1 = m)a,L(€))e” rtrtdt==8ge > 0,

this is a contradiction. Then Ps(t) > 0, for all ¢ > 0, and
t
Va(t) = Vi (0)e™e +/ pP,()e =9 de > 0,t > 0.
0

Thus, we get Ps(t), Vs(t) > 0, for all ¢ > 0.
(b) If Vi(t2) = 0,Vs(t) > 0 for ¢t € [0,t2) and Ps(t) > 0,t € [0, t2], then we have

ta
Vi(ta) = Vi (0)e™“" +/ pPS(f)e_c(tz_g)df >0,
0

this is a contradiction. Then Vi (t) > 0, for all ¢ > 0, and

Py(t) = P,(0)e oot 4 /0 (BVAOT(E)

+ (1 = m)as I (€))e” Wtrtdt=8ge > 0. ¢ > 0.
Thus, we get Ps(t), Vs(t) > 0, for all ¢t > 0.
This proves that I4(¢), Ps(t), Vs(t) > 0 for all ¢ > 0.

) =

(ii) If Is(t2) = 0, Ps(ta
then we get

I(t), Ps(t) > 0 for ¢ € [0,t2) and Vi(t) > 0,¢ € [0, t2],

to
Ii(ta) = I,(0)e™%2 + [ B V()T (£)e =8 dg > 0,
0

and

Py(t) = Py(0)e~(toto)iz 4 / CBVAOTE)

+ (1 = m)a,Ly(€))e” rHertdt==8ge > 0,

this is a contradiction. Then Is(t) > 0, Ps(t) > 0, for all ¢ > 0, and
t

Vi(t) = Vi (0)e™° +/ pPy(£)e™*9de >0, t>0.
0

Therefore, I(t), Ps(t), Vs(t) > 0 for all ¢ > 0.

Similarly, we can prove that Is(t2) = 0,Vi(t2) = 0, Is(t) > 0,Vi(¢t) > 0 for
t € [0,t2), Ps(t) > 0, t € [0,t2] and Ps(t2) = 0,Vs(t2) = 0, Ps(t) > 0,Vs(t) > 0
for t € [0,t2), Is(t) > 0, t € [0,t2] are impossible using the same method. Thus,
Is(t), Ps(t), Vs(t) > 0 for all ¢ > 0.

2450079-9
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(111) If Is(tg) =0, Ps(tg) =0, V;(tg) =0, Is(t),Ps(t),V:g(t) >0 forte [O,tg), then

we obtain
) = 1O + [ AT e >0,
Ritn) = RO+ [ 0T
+ (1= m)a,L,(€))e HHeto =8 ge > 0,
and

to
Vilta) = Va(©)e 4 [ pPu()e e > 0
0

Therefore, I (t), Ps(t), Vs(t) > 0 for all ¢ > 0.

To sum up, we can prove that I;(¢), Ps(t), Vi (¢) > 0 for all ¢ > 0. Similarly, we
can prove that I.(t), P.(t), V;-(t) > 0 for all ¢ > 0. This completes the positivity of
the solution.

Next, we prove the boundedness of the solution of system (2.4]) with the initial
conditions. Denote

Hi(t) =T(t) + L (t) + I.(¢).

We get
T s~ ar(e) - 5,0 + L,(1)
<s—o1Hi(t),
where oy = min{d, §}. This implies that limsup, ., Hy(t) < =.
Let
Hy(t) =T(t) + Ps(t) + Pr(t) + Vs(t) + Vi (1)
We have
%Qt(t) = s+ ads(t) + oL (t) — dT(t) — (u+ 0)(Ps(t) + Pr(t)) — c(Vis(t) + Vi (1))

<s+M —UQHQ(t),
where oo = min{d,u + d,¢} and «ayls(t) + a.I.(t) < M. Therefore,

limsup,_, o Ha(t) < % In summary, the set
s

g1

Q= {(T(t),Is(t),lr(t),PS(t),Pr(t),VS(t),VT(t)) € Rl ST+ L)+ 1-(t) <

T(t) + Pu(t) + P () + Va(t) + Vi 1) <

3+M}

02

is a positive invariant of the system (2.4)). m|

2450079-10
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2.3. Basic reproduction numbers and steady states of transformed
ODEs

System (2.4]) with the initial conditions has a unique infection-free steady state
Py = (15,0,0,0,0,0,0), where Ty = s/d. Applying the general theory of the basic
reproduction number [7], we can obtain

Brsp Brspa
de(p+p+9)  ded(p+p+9)

R, = =R’ + R},

Bssp (1 —m)Bsspas

R:
T de(p+p+0)  des(u+p+0)

=R+ R..

Note that Ry and Rs are each composed of two renewal processes. RY (RY) rep-
resents the reproduction number of infected cells mediated by viral RNA carrying
drug-resistant (drug-sensitive) strains, which enter the host cell as virions. R} rep-
resents the replication of intracellular drug-resistant viral RNA, while R} represents
the replication of intracellular drug-sensitive viral RNA. Our ODE model explicitly
accounts for the life cycle of extracellular and intracellular viral RNA, with viral
production being driven by viral RNA.

As many ODE models have shown, the basic reproduction number can determine
the dynamics of mathematical models, particularly in relation to the existence and
stability of steady states. In this section, we study the existence of steady states in
the transformed ODEs.

Theorem 2.2. For the system (2.4]) with the initial conditions, we have the fol-
lowing existence results for the steady state.

(i) If Ry <1 and Ry < 1, then there is only the infection-free steady state Py.
(ii) If Ry > 1, then besides Py, there is also a unique boundary steady state Py =
(Tlaovl’rlaO?PTlaO?Vrl)a where Tl = dLRl’ Irl = %(1 - RLl)v P’rl — BdTCp(Rl - 1)
and Vi = $-(Ry —1).
(iii) If Ry > 1 and Re > Ry, then in addition to Py, there is also a unique coexis-
tence steady state Py = (T4, ﬁsv{*;;sz, BrVeaTe cVep cVio w2, Vo), where

S p 0 p
s dmRY(Ry — 1
15 TRy Vig = mS; 2~ 1) ,
2 (1—m)B, (7(1%;[35}@ + Ry — Rl)
v, = A=m@B =Ry, d(R = (R~ Ry)

1 m :
mRS ﬁs ((1_—75;[35 Ri + R2 - Rl)

2.4. Local stability analysis of transformed ODEs

In order to study the stability of the steady states, we linearize the system (2.4)
and obtain the following characteristic equation at an arbitrary steady state P =

2450079-11
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(Ta IS7IT7P87PT7 ‘[S?Vr‘)

A+d+ BsVs + Br Vi 0 0 0 0 BsT BT
—BsVs A+6 0 0 0 —BsT 0
—Br Vi 0 A+6 0 0 0 -BT
—BsVs —(1—-m)as 0 AX+p+p+d 0 BT 0 | =0,
—Br Vi —mas —a 0 Adtpu+p+d 0 —=5.T
0 0 0 —p 0 A+c 0
0 0 0 0 —p 0 Mtec

(2.5)

where A is the eigenvalue.
By studying the three steady-state characteristic equations (2.3 of Theorem[2.2]
we have the following stability results.

Theorem 2.3. The infection-free steady state Py of system (2.4) is locally asymp-
totically stable when Ry < 1 and Re < 1, and unstable when Ry > 1 or Ry > 1.

Proof. Taking the linearization of system (2.4) at the point P = Py, we obtain the
characteristic equation
A+ d)A+6)2N+p+p+ 02N +¢)2q1(N)g2(N) = 0.
Clearly, the stability of Py is determined by the following equation:
s it r T (7%
g\ =1 BrpTo BrpTo

Crutrto0td Br00+utprante o 9

or
BspTO BSPTO(l B m)as

g2(N) =1 A+p+p+0)A+e) A+)AN+p+p+8)(A+c) 0. (27)
Next, we will study the stability of the steady state by directly comparing the
modulus of the characteristic equation. Our first claim is that if the eigenvalue
A = x + iy is a solution of Egs. ([2.6) and (2.7)), then the real part x < 0 when
R; <1 and Ry < 1. Otherwise, assuming that x > 0, we have
‘ BrpTo BrpToc
A4+pu+p+d)A+e) A+)A+p+p+0)(A+0o)

BrpTo BrpToc,
“celpt+p+9)  de(p+p+9)
= Ry,

and

o ‘ ﬁspTO + BSPTO<1 - m)as

A+ ptp+A+e) A+ AN+p+p+d)(A+e)
ﬁspTO BSPTO<1 - m)as

~ce(p+p+0) de(p+p+96)

= R27
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which leads to a contradiction with Ry < 1 and Ry < 1. Therefore, all the charac-
teristic roots of Egs. (2.6) and (2.7) have negative real parts. This proves the claim
and hence P, is locally asymptotically stable when Ry < 1 and Ry < 1.

Second, we assume Ry > 1 or Ry > 1. According to the characteristic equations
2.6) and [2.7), it is clear that ¢1(0) = 1 — Ry < 0 and limy_—1oc g1(A) =1 > 0.
Similarly, we have g2(0) = 1 — Ry < 0 and limy— 1o g2(A) = 1 > 0 when Ry > 1.
Thus, there is at least one positive real root such that g1 (A) = 0 or g2(A) = 0, which
implies that the infection-free steady-state Fy is unstable when R; > 1 or Ry > 1.
This completes the proof. O

Theorem 2.4. The boundary steady state Py of system 2.4 exists if and only if
Ry > 1. It is locally asymptotically stable when Ry > 1 and Ry > Rs and unstable
when Ry < Rs.

Proof. We substitute the boundary steady state P; into the Jacobian matrix and
simplify it to the following equation:

BspTh
B Tp

A+ A+ p+p+06)A+0) {1

BspT1 (1 —m)as
- ()\+§)()\+u+p+§)()\+c)} A+ d+ B V) A+ (A + it p+0)

X (A+c) = A+ d)(A+0)B-pT1 — (A + d)B,pT1a] = 0.

The stability of P; is determined by the equation

1 ﬂspTl N 6spT1(17m)as o
e iy 5 Wi Bl 5 w1 ey T wrps S G

or

67’“/1”1 _ ﬁrpTl + 5TPT104r
A+d (/\+u+p+(5)(/\+c) (/\+5)(/\+M+P+§)()\+C)'

Next, we prove that all characteristic roots of Eq. (2.8) have negative real parts
when R; > Ry. Using the same method as in Theorem [2.3] we get

1+

(2.9)

1= ﬁspTl BSPT1<1 - m)as
Ot atp10)0 40 DTN+ utp+0)O+0)
BspT1 ﬁspTl(l - m)as
“ce(p+p+9) de(p+p+9)
R
= R

which is a contradiction with Ry > Ro. This proves the claim.

Suppose Ry < Ry. We have that g3(0) = 1—% < 0and limy— 400 g3(A) =1 > 0.
Therefore, there is at least one positive real root for g3(A\) = 0. This implies that
the boundary steady state P; is unstable when R; < Rs.
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Similarly, all the solutions of Eq. (2.9) have negative real parts whenever P;
exists, i.e. Ry > 1. Assuming that A has a non-negative real part, we obtain

1+ ﬁr‘/rl _ ’ ﬁrpTl 5rpT105r
A+d| | +ptpto)(Atc) A+0)A+pu+p+o)(A+c)
BrpTh BrpTio
T c(ptp+0)  de(p+p+9)
= 1. (2.10)

On the other hand, the modulus of the left-hand side of Eq. (2.9]) satisfies |1 +
%| =1+ %| > 1. This leads to a contradiction with (2.10)). Therefore,
all roots of the characteristic equation have negative real parts and the boundary
steady state P; is locally asymptotically stable when R; > 1 and R; > Rs. This

proves the claim. O

2.5. Global stability analysis of transformed ODFEs

In this section, we study the global stability of the transformed ODEs. Because
of the difficulty of constructing a Lyapunov function for the full model, we assume
that the mutation rate m is equal to zero to obtain the global stability of the system
presented in Eq. (2.4). We consider the function g(z) = = — 1 — In(z) for x > 0,
and observe that g(z) is greater than or equal to zero for all positive x, and g(z) is
equal to zero if and only if z is equal to one.

Theorem 2.5. The infection-free steady state Py of system (2.4)) is globally asymp-
totically stable when R1 <1 and Re < 1.

Theorem 2.6. The boundary steady state Py of system (2.4)) is globally asymptot-
ically stable when R1 > Rs.

Theorem 2.7. The coexistence steady state Pa of system (2.4) is globally asymp-
totically stable when Ro > 1 and Re > R;.

The proofs of these theorems are given in Appendices [AHC, respectively.

3. Effect of Drug Therapy on Viral Strain’s Competition

The multiple serine proteases of HCV play an important role in viral polypro-
teinization, and protease inhibitors (a class of DAAs) have been developed to block
this step in the viral life cycle [16]. They have been shown to significantly reduce
plasma viral load in infected individuals [18, [25]. The dynamics of intracellular
viral RNA are determined by RNA production and loss due to viral RNA degrada-
tion and assembly/secretion into plasma. DA As therapy inhibits intracellular viral
RNA production, blocks viral assembly/secretion into plasma, and promotes RNA
degradation.
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Fig. 1. Dynamics of the drug-sensitive and drug-resistant viruses when mutations produce low

levels of resistance during treatment. Both strains are suppressed and % =0.95a, = 38,e, =

0.99, 7, = 0.6. The other parameters are shown in Table [1}

It is assumed that ¢, and ¢, are drug efficacies that inhibit the production of
viral RNA by drug-sensitive and drug-resistant infected cells, respectively, where
0 < e5,6r < 1. ns and 7, are drug effectiveness blocking the assembly/secretion
of drug-sensitive and drug-resistant viral RNA in plasma in infected cells, respec-
tively, where 0 < 74,7, < 1. The parameter k measures the promotion of the
RNA degradation rate of the two strains and k& > 1. It is further assumed that the
drug-sensitive and drug-resistant viruses coexist in a stable state at the beginning
of treatment, and the multiscale model under treatment can be described by the
following system:

%Et) =5 —dT(t) = BVa(®)T(t) = B, V- ()T (1),
dI,(t)
ar BsVs(t)T(t) — 01s(t),
dL.(t)
o = BV ()T () = 3L,(t),
d]?;t(t = BVa(OT () + (1 — m)(1 — &) s I (¢)
— (kp+ (1= ns)p + 0) Py (t),
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dPC;t(t) = BV, (OT() + m(l — e)asIo(t) + (1 — ) I (t)
— (kp+ (1 —ne)p+ 0) P (1),
o) _ (1= no)oPult) - i),
dV;t(t) = (1 —n,)pP,(t) — eV, (1)

(3.1)

The basic reproduction numbers for the two strains during treatment are given

as follows:
R — (1 —n,)Brsp (1 —&.)(1 —n)Brspay
Pde(kp+ (L—ne)p+0) " ded(kp+ (1—n,)p+6)
o (1 —ns)Bssp (I —es)(I =) (1 — m)Bsspas
2 de(kp+ (1= ns)p +6) ded(kp + (1 —ns)p+0)

Before treatment, two virus strains coexisted and reached a stable steady state,
but the level of drug-resistant virus is very low (Re > 1). During DAAs therapy,
the drug-sensitive virus was effectively inhibited (R} = 0.54 < 1, Fig. [L(a)), and
if the mutation resulted in only low levels of resistance (¢, = 0.99,7n, = 0.6), the
resistant virus was also inhibited (R} = 0.18 < 1, Fig. [L(b)), leading to a decrease
in the total viral load (Fig.[D(c)). However, if the mutation resulted in a high level of
resistance (g, = 0.1,n, = 0.1), R} exceeded 1 and the drug-resistant virus initially
declined and then rebounded under DAAs treatment, eventually dominating the
viral population (Fig.[2(c)). The drug-sensitive virus was still effectively inhibited
in this scenario (Fig. 2(a)).

4. The Effect of Mutations on Strain’s Evolution During
Treatment

In this section, we introduce the backward mutation in model (B8.I)). Specifically,
we consider the scenario where drug-resistant infected cells can also mutate under
drug treatment to produce drug-sensitive viral RNA. We will investigate the effect
of these mutations on the kinetics of the two virus strains during treatment. We
make the simplifying assumption that the rate of backward mutation is equal to
the rate of forward mutation.

%(st) =5 —dT(t) = BVo()T(t) = B,V ()T (t),
dI,(t)
at Bs‘é(t)T(t) — 01, (t),
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Fig. 2. During treatment, when mutations produced a high level of resistance, there was a com-
petition between drug-sensitive and drug-resistant viruses. As a result, the drug-sensitive viruses
were inhibited, and the drug-resistant viruses appeared and eventually dominated the virus pop-
ulation. This led to an overall rebound in the virus level, which stabilized at a certain value. In
this simulation, we have % =0.63, ar = 25,&, = 0.1, = 0.1, with the other parameters shown

in Table[1.
dI.(t)
- BV (t)T(t) — 81,.(t),

dli;t(t) = B Va()T(t) + (1 — m)(1 — es)as Lo () +m(1 — e,)ar I (t)
— (kp+ (1 —ns)p + 6)Ps(t),

d]j}}(t) = B Vo(O)T () + m(1 — es)asIs(t) + (1 —m)(1 — e.)on I (1) (4.1)
— (kp+ (1 =nm)p+6)P(t),

d‘;st(t) = (1 =no)pPs(t) — cVi(t),

dIZt(t) = (1 —=nr)pPr(t) — cVi(t).

Before treatment, the model has an infection-free steady state E, =
(s/d,0,0,0,0,0,0) and a coexisting steady state E* = (T, I, I, P¥, P*, VX, V*).
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Table 1. Values of fixed parameters in numerical simulation.

Parameter Unit Values References
s cells mL~1day—! 7.5 x 102 [11])
d day~! 0.01 [11]
Bs mL day—virions~! 10—7 [23]
Br mL day~virions ! 10—8 [23]
5 day—1! 0.14 [23]
p day~1! 8.18 [23]
k 1 4.94 [23]
" day~* 1 23]
c day~?! 6.2 [11]
m per copied nucleotide 10~4 [22]
s 1 0.9997 [23]
Ns 1 0.56 [23]
as virions cell~'day ! 40 [23]

From I,, P, and Vj, we obtain
maypBVIT" = [(n+ p+6)cd — (6 + (1 —m)as) BT p]V, (4.2)

where T, V* and V" represent the steady state of uninfected target cells, drug-
resistant and drug-sensitive viruses, respectively. Similarly, from the I,., P. and V,
equations, we have

maspPsVIT = [(p+p+6)cd — (6 + (1 —m)a,) 3T p]V,F. (4.3)
Therefore, the two strains coexist if the following conditions are satisfied:

[0+ (1 —m)as|BsT™p
(w+p+0)cd

<1, (4.4)

and

[0+ (1 —m)a. |5, T"p <

TEFESE; 1. (4.5)

Based on (4.2) and (4.3]), we can find the equation for the steady state of uninfected
target cells:

{[6 4+ (1 = m)ay][6 + (1 — m)av] — m* a0, } BB p° T
- {[6 + (1 - m)as]ﬁs + [6 + (1 - m)ar]ﬁr}O‘ +p+ 6)66PT*
+(u+p+0)2c2s* =0.

Two solutions of the above equation can be obtained by using the quadratic
formula:

B+ /(B? - 44)

oA (u+p+0)cd, (4.6)

* _
I7, =
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where A = {[6+ (1 —m)as][6+ (1 —m)a,] —m2asa, } BsBr, B = {[6+(1—m)as]Bs +
[0 4+ (1 —m)a,]B,-}. Ignoring m, we get two approximate solutions

T* (w+p+0)co
! ﬁrﬂ(5 + ar) '

. _(p+p+d)cs
27 B0t ay)

when (4.6]) takes the positive sign,

when (4.6]) takes the negative sign.

We know that only T exists if the existing condition of coexistence is satisfied.
Therefore, according to model (4I) and T3, the coexistence steady state E* is
calculated as follows:

s — dTy — oI} (s = dT3) 8,10 + ) BupT5 — (1 + p+ 8)cd)]

R LIS : ,
4 652(N +p+ 5)(55 - ﬁT) + paﬁsﬂrTQ (as - ar)
P::C‘/S, P::CVT, s*: 515*7 r*: 5IT*'
p p BsT3 B T3

We compared the viral kinetics of model (A1) after drug administration with the
no-mutation (i.e. m = 0) model that ignores both forward and backward mutations,
assuming that both drug-sensitive and drug-resistant viruses were at baseline levels
before treatment. Figure[3 shows the viral kinetics of the drug-resistant virus when
the drug efficacy that inhibits RNA during treatment was large (e, = 0.999, 7, =
0.6). The blue and green solid lines in Figs. B(a) and B(b) almost overlap with the
red dashed lines, respectively, suggesting that the kinetic effects of the mutation
on drug-sensitive and drug-resistant strains are negligible. Even when the mutation
confers a high degree of resistance, the contribution of the mutation to the level of
drug-resistant virus variants remains small (Fig. Hl(b)). However, in this case, the
drug-sensitive virus can be maintained at a low level by backward mutation rather
than being completely suppressed (Fig.[d{(a)). These phenomena can be explained by
the on-treatment reproduction numbers 5 = 0.9997 and 1, = 0.56 because m(1 —
€s) is small under effective treatment for the drug-sensitive virus. Therefore, the
contribution of drug-sensitive infectious cell mutations to the generation of resistant
viral RNA is negligible. In summary, mutations play a minor role in the evolution
of drug resistance during treatment but they generate pre-existing mutants that
can be selected and grow under therapy.

5. Conclusion and Discussion

Mathematical modeling can significantly enhance our understanding of disease
transmission and the intricate biological phenomena involving numerous variables
and parameters across different time scales. Various mathematical models have been
employed to evaluate how key parameters can prevent and mitigate the spread of
epidemics [1}, [8-110]. Simplifying a detailed structured model into a more manage-
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Fig. 3. (Color online) During treatment, assuming that the mutation had low resistance (g—; =
0.75), we examined the effect of the mutations on the evolution of the two strains using the (4.1)
model with and without mutations (m = 10~* and m = 0, respectively). The blue and green
solid lines represent the trends of the drug-sensitive and drug-resistant viruses in the presence of
mutations, respectively, while the red dashed line represents the model without mutations. The
almost overlapping solid and dashed lines in (a) and (b) indicate that when the mutation produced
a low level of resistance, it had a negligible effect on the evolution of both strains. The parameters
used were a, = 30, & = 0.999, 7, = 0.6, and the other parameters are listed in Table [Li

Days

(b)

Fig. 4. (Color online) During treatment, assuming a high level of resistance of the mutant (% =

0.25), we studied the effect of mutations on the evolution of both strains: the blue and green
solid lines show the trend of susceptibility and resistance viruses, respectively, in the presence of
mutations in model (41) (m = 10~%), while the red dashed line represents the model with no
mutations in (41) (m = 0). In (a), it can be seen that drug-sensitive viruses are maintained at
low levels by mutations rather than being completely suppressed. In (b), it is indicated that the
evolution of drug-resistant viruses is not greatly facilitated, and the emergence and rebound of
drug-resistant viruses dominate the viral populations. Here we chose o, = 10,e, = 0.4, = 0.4
and other parameters were from Table [1|

able one, without losing essential information for data analysis, is a cornerstone of
theoretical biology known as “model aggregation”. The aggregate model introduced
here is simpler than the original model and more tractable both analytically and
numerically. Consequently, this model aggregation aids in analyzing model dynam-
ics and facilitates comparison with experimental data.
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In this paper, we developed a multiscale PDE model incorporating two strains
of HCV infection. By transforming the age-structured PDE model (2.2)) into an
ODE model ([2.4) without additional assumptions, we derived a mathematically
identical model that is more suitable for parameter estimation from clinical datasets.
This transformed ODE model (2.4) is advantageous for numerical calculations, as
numerical simulations of PDEs can have convergence issues and are computationally
intensive. It is also noted that our transformed ODE model ([2.4)) describes the total
number of intracellular drug-sensitive and drug-resistant viral RNAs (i.e. Ps(t)
and P,.(t) in model (2.4)), while the original PDE model describes the number of
intracellular drug-sensitive and drug-resistant viral RNAs within an infected cell
(i.e. Ry(t), Ro(t), and R,.(t) in 2.2)).

Starting with a model that includes two virus strains (drug-sensitive and drug-
resistant), we analyzed the coexistence of the two strains before treatment, not-
ing that resistant viruses comprised a minor fraction of the virus population. We
defined the basic reproduction numbers Ry and Ry for the ODE model, providing
a threshold for the system’s mathematical structure. Our analysis clarified the sta-
bility dynamics of the interaction between the two virus strains before treatment.
Additionally, we studied the impact of reverse or backward mutations on the evolu-
tion kinetics of drug-sensitive and drug-resistant viruses, as well as the competition
between the two strains during treatment.

Our findings indicate that the effect of backward mutations on mutation fre-
quency before treatment is negligible. Since DA As are highly effective against drug-
sensitive viruses, forward and backward mutations do not significantly influence the
evolution of resistant viruses. However, when drug-resistant viruses dominate the
viral population, backward mutations can sustain very low levels of drug-sensitive
viruses. Therefore, treatment-emergent mutations do not substantially affect the
kinetics of HCV variation. During treatment, drug-sensitive viruses are typically
inhibited by effective agents, while the inhibition of drug-resistant viruses depends
on the mutants’ relative fitness and drug efficacy.

While DAAs are currently effective in treating HCV infection, therapeutic
failure can occur in some patients with HCV harboring resistance-associated sub-
stitutions, especially in the Nonstructuralon protein 5A (NS5A) region of the HCV
genome [3]. Transformed ODE models are beneficial for accurately quantifying
antiviral effects from clinical datasets. Our method may be particularly useful
for studying cell culture experiments, where frequent samples of various kinetic
measurements are available in a simpler environment than in vivo infections. Our
mathematical model can be fully parameterized with in vitro data to quantify the
kinetics of viral infection.

In summary, the ODE model derived from the multiscale age-structured PDE
model simplifies data analysis without involving heavy computations. This approach
provides a practical tool for researchers and clinicians to better understand HCV
dynamics and the implications of drug resistance, ultimately aiding in the develop-
ment of more effective therapeutic strategies.
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Appendix A. Global Stability of the Infection-Free Steady State

We define the following Lyapunov function:

Lo(t)
P T pOls PO
L — — | + Is + I’I"
dpu+p+9) 0J <T0> S(p+p+0)(0+ o) Sp+p+06)(0+ o)
p p 1 1
+ P, + P+ Vs + V..
(w+p+06)(0+ as) (w+p+6)(0+ay) d+ as d+ a,

Taking the time derivative of Lo(T, I, I, Ps, P, Vs, V;.) along the solution of (2.4)

with m = 0, we obtain

dLo(t)
dt
_#QE)(sdTBVTﬁVT)Jr pes
S(p+p+9) T o o S(p+p+0)(6+ as)
pa,
Vel — 01) + VT — 61
x (8 ) §(u+p+§)(§+ar)(6 )
P
+ 5‘/5T+ SIS - + + 5 Ps
TG VT el = (4 p 4 0P
P 1
TVI'T TIT - (S P’r‘
i p )0 +an VT ek = (utpt OB+ 5
1
X (pPs — cVs) + m(ﬂpr —cVp).
Substituting s = dT into the above formula, we get
dLo(t)
dt

p T T P T0>
R 7O Y P U NS
SatpT9) °< T T> 5(u+p+5)< )"

p To Pl
- (1- = | VT VT — 01
5(u+p+5)< T)B +5(u+p+5)(5+as)(ﬁ )

pa, p
r‘/;T_élr SVST SIS
Yoo ran L s T GG

p
_(M+P+5)Ps)+ (M+p+5)(5+ar)(ﬁer+arlr_(M+p+§)PT)
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e B T g P )
P T T p
=— "  _any(—g(Z2)—g(=))+—L""BWT
S(p+p+9) °<g<T> g<To>) 5(u+p+5)ﬂ 0
P BV - ——V,— ——V,

Slu+p+6)" " S+as ° d+a,

s (0 (7) o(7)) e (B 1)

c BspTo(0 + o) )
Vi -1V
X +§+as(c§(u+p+§)
p To T c
=—F  an(—g(Z2)-g(= Ry — 1)V,
5(p+p+9) 0( g(T) g(To>)+5+ar< 1=
C
— 1)V,
(e = 1)V

Therefore, we show that deLt(t) < 0when R; < 1and Ry < 1. Assume that M is the
largest invariant set {(7T, I, I, Ps, P, Vi, Vi) |22} = 0. We further have 22 = 0 if
and only if T'=Ty,I, = 0,1, = 0,P;, = 0,P. = 0,V, =0, and V,, = 0. Obviously,
My = {Py}. Therefore, by applying LaSalle’s Invariance Principle (see Theorem
3.4.7] or [6]), Py is globally asymptotically stable if Ry < 1 and Ry < 1.

Appendix B. Global Stability of the Boundary Steady State

We define the following Lyapunov function:

o p r paLs
L) =55 5T (Tl) S )6 ran

pour v P
Lag | — Py
* Su+p+0)(0+ar) 19 (Im) * (u+p+06)(0+ as)
p P, 1 1 <w>
Pag | 5- Vs Vi .
Tr 00 tan lg(Prl)Ums a9\,

Taking the time derivative of Lq(t) along the solution of (2.4) with m = 0, we
obtain

L (1)
dt
__ (DN _ar— _ pas
EYEY) (1 T) (s = AT = BV = B VD) 4 S 56 + )
. I
X (ﬁs‘/sT_éls) + 5(u+p+5)(5+ar) (1 - f) (Br‘/rT_élr)
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1 Vo p Pﬂ)
1-— P, —cV, 1-—
ﬂsm( w)“’ ‘ ’+<u+p+5><5+ar>< P,

1
X(ﬁer+arIT*(N+p+5)Pr)+(;_i_as(pPSfCVS)
p
SVST sIs_ (;PS
(M+p+5)(5+as)(ﬁ +a (1+p+0)Ps)

Substituting s = d11 + 3, V,111 into the above first term, we get

14 T
5+ p+0) (1 - ?) (s —dT = B.V.T = ,V,T)

p

Ty
=——(1— =) (dT Ve, —dT — B, VT — 6.V, T
5(H+P+5)( T)( 1+ Bp Vi Ty B B )

14 T1 T T1>
=——<dN |2— = — = 1—-—=
5(u+p+5){ 1( T T1>+< T

X (B,Via Ty — B VAT — mwT)}

” o) e (-7 - g )
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p 1
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Using the steady state equations 61,1 = 3. Vi1 Th, (u+p+98)Pr1 = 8, Vi1 + a1
and pP,. = cV,1, the third, fourth and fifth items are rewritten as follows:

PO Iy
S(utp+0)0+ay) (1 - f) CAC

POy I I, )
= 1—-— VT — 01—
5(u+p+5)((5+ar) < I > <ﬂ 1IT1

POy I TV, Iy )
== r‘/r T 1—— - T
5+ p+0)(s +ar)6 e ( I, ) (Tlvﬂ I

T‘/T Ir IrlT‘/r 1>

Py
- r‘/r T
St p )G Ty (

Wi I LTV

- () () - (25
T S(urpro)0ran I\ ) TINLL) TN\ ) )
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1 rl
1_[ eV
5+ozr( VT)(pPT )

1 Vi1 P P p
=—|(1- O — +p+0 _
6+ar< V)(/H—p—i—éPﬂ(u p+OIE: Cptp+o

V.
X —(u+p+ 5)Pr1)
Vi1

p Va\ (P,
= r VT TI’I" 1-
Ty tvan e (1- ) (25 - 7%
14 Q- PT ‘/T erlpr
- VT + 2560,) (28 — 2= — 1
it p )0 +ay) VTt oln) (PH Voo ViPy

) ) P\ (Vi) (VaP
“geraarar 0 (7)o (5) o (7))
POy

P, Vi Vi1 P,
T‘Vr‘ T - -
+5(M+P+5)(5+ar)ﬁ ' 1[9 (Pm) g(Vm) g(wPH)]
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P Prl

= _6VT+ I~ (it p+ 6)Pry ="
(N+P+(5 )6+ ) | Qrly — (TP "B

- 1- -ﬁVT+ I — (BVaTi + anT) =
(,quer(S 5+05r _TT Qply rVrldll Ay dpq P,rl

v+ Cror, 2o

W+p+55+ar | 5 T

- (ﬁrVT1T1 + %6Ir1) ]]3?1]
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p V,T P, PV, T
= TVI‘ T - -
it rr 00Ty [9 (wm) g (Pﬂ) g (PrvﬂTl

POy Ir Pr Pr1[r>:|
+ r‘/r T - | - .
R RISk 11%(%) g<RJ g(ﬂhl

The above items are added and simplified to obtain

AL (t)
dt

1% T1 T & R2 )
=P _an(2-2 - )+ — 1)V,
S+ p+9) 1( T T1)+5+ozs (R1
e 1) ola) o ()]
TVI‘ T - T -
BT 11[9(T> g(ﬂwq AU
pa, TV, IrlTVT) (V)
TVI‘ T - -
TS Fp+ 3G Fan VT [9 (mm) g(ITTlvﬂ I\
‘/1”1P7“ P’I"II’I" 14
- - + Vil T
g(wm) g(PrIﬂ)] u+p+5)(5+ PV
% T‘/r B PrlTV ‘/rlpr
N1, ) \Pnv, AN
p ™ T c
S — O N - =2 1)V,
o(p+p+9) 1( T) (5+a5< Ry >

. mﬁﬂ@lﬂ [9( ) (Vr;iﬂ

POy 11TV, ) (Pr1[r>}
- Vil T +
5(u+p+5)(5+ar)ﬁ e [9 (mwﬂ I\P.1
PTlT‘/’I‘
P11V

p
R Py vy s LG R (

In view of 2 — T — Tll < 0, we have delt(t) < 0 when Ry > Rs. Moreover, if

delt(t) = 0, then T' = Th, I, = I;1, P, = Py, and V;. = V,1, which implies that

M, is the largest invariant set {(T, I, I, Ps, P, V5, V)| dLl(t)} = 0. It is clear that
M, = {P,}. Therefore, by applying Lyapunov—LaSalle’s Invariance Principle, P, is
globally asymptotically stable if Ry > Rs.

Appendix C. Global Stability of the Coexistence Steady State

Similar to Theorem [2.6] we define a Lyapunov function

La(t) := Lo1(t) + La2(t) + Las(t) + Laa(?),
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PO I PO I,
L t) = Is I’I" N B
=) = S o0 Fay) 29([2>+§(u+p+6)(6+ar) 29(.@)

p PLC/(PS)+ p Pw(ﬂ)
(b+p+0)(6+as) " \Pa) (nt+p+0)(0+a) "7\ Pa)

1 Vs 1 Vi
Loy(t) = msz (Vsz) + mvﬂg (‘/1”2).

We calculate the time derivative of Ls(t) along the solutions of (2.4) with m = 0.
Combined with s = dT5 + BsVsaTs + 5,-Vy2T5 and the above construction method,
we obtain the following reduction:

Las(t) =

Ll _ PR (1 %) (s — dT — BV,T — 3.V, T)
“wra (7 )
+5(u+pp+5 Vot { (ﬁ) - <T2V:2) "o (“//:2)}
5(u+pp+5 o S2T2[ g<?2> - (T2V:2) +g<“//:2>}

Note that

0o = BiVioTa, pPio = cVig, (u+p+0)Pi2 = BiVidTo + ailin, i =s,7.

We have
dLas(t)
dt
- pas (1—13—2>(6VT—6I)
S O(utp )0+ ) I, ) ’
POy IT2
1— 22 ) (8, V,T 61,
+5(u+p+5)(5+ar)< u)w )

“srrsarar e o () o () - (75w
T (A p+0)0+ay) P ToVso I\ I I\ TV
paL, TV, I, ) ( 12TV, ﬂ
+ ’I"‘/’I" T: s | T ) .
6(u+p+5)((5+ar)ﬂ a2 {g (Tzvrz) g(Ir2 g L5V,
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Similarly,
dLo3(t)
dt
- p (1 - P”) (B VoT + o dy — (4 p+ 6)Pr)
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P P82
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and

dLoy(t)
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PO P Vs Vszpsﬂ
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We sum and rearrange the above expressions to get

dLs(t)

dt

7dL21(t) dLoo(t)  dLos(t)  dLaoa(t)
o dt + dt + dt + dt

P T2 T T2
=P  an(2-2-—_)-—L  _pgv.nlg(2
3(p+p+0) 2( T Tz) 5(u+p+5>6 " 2[ (T)
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VYT2PT POy IT2TVI‘
_ Vo T Ire” 'r
+g<vrPr2)] it ot 06 T an) [9<L«Tzvm)
PTQIT 14 P’I"QT‘/T
+ - Vi T —
g(PrIﬂ)] (u+p+§)(§+ar)ﬂ 2529 (PTTQVﬂ)

p P ‘/52P5>:|
- BT g (2] +
St o) “MT) g<vsPsz

POg IsQT‘/s ) <PSQIS):|
— Vo T +
ST p 4 ) T a2t [g (ISTzvsz I\P.I.
PyoTV,
Py )’

P
ey Ve

Therefore, we have %t(t) < 0. Moreover, %t(t) = 0 holds if and only if T' = T5,

Is = 1s2, Ir = 4r2, Ps = 1752y Pr = Lr2, Vs = ‘/;23 and ‘/r = ‘/r2- The 1arg€St

invariant subset of %t(t) = 0is {P}. Thus, %t(t) = 0 only if the solution is in

Q). By LaSalle’s Invariance Principle, the coexistence steady state P» is the global
asymptotic stability in 2 whenever it exists.
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