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Abstract. HIV infection remains a significant global public health concern.
Although current antiretroviral therapies and broadly neutralizing antibodies
(bNAbs) can decrease plasma viral load, they are unable to completely eradi-
cate the virus. Alongside these treatments, the cytotoxic T lymphocyte (CTL)
immune response also contributes to viral control. However, the impact of an-
tiretroviral drugs and bNAb therapies on HIV dynamics in the presence of CTL
immune responses remains uncertain. In this paper, we develop and analyze a
mathematical model that incorporates CTL immune response, bNAb, and drug
therapies. We demonstrate that the basic reproduction number R0 and the
CTL immune response reproduction number Rc determine the existence and
stability of the equilibria. Numerical investigation reveals that both antiretro-
viral drugs and bNAb therapies can reduce the viral load to below the detection
limit. However, bNAb therapy can delay the time to viral rebound compared
with antiretroviral therapy alone. Furthermore, bNAbs have a more significant
impact on viral reduction than the CTL immune response. The CTL immune
response increases the number of uninfected cells and reduces the number of
infected cells and viral load. Analysis of the relative contributions shows that
bNAb therapy can enhance the CTL immune response, similar to the direct
stimulation of antigens. These findings suggest that bNAb therapy, combined
with CTL immune response, plays a critical role in HIV control and has im-
portant implications for understanding HIV pathogenesis and developing more
e↵ective treatment strategies to manage or even eliminate the disease.

1. Introduction. The human immunodeficiency virus (HIV) is the causative agent
of acquired immunodeficiency syndrome (AIDS) and primarily targets the body’s
immune system, specifically CD4+ T cells. The infection of these cells increases
individuals’ vulnerability to opportunistic infections, cancers, and even death [26].
According to the World Health Organization (WHO), an estimated 39.0 million
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[33.1–45.7 million] people were living with HIV at the end of 2022 [47], underscoring
the ongoing global public health challenge posed by HIV infection.

Shortly after primary infection, HIV establishes a pool of infected cells contain-
ing replication-competent provirus, known as the latent reservoir. These cells can
persist for an extended period and produce infectious virus particles upon activa-
tion by various stimuli [42]. Latently infected cells are considered a major obstacle
to achieving HIV remission due to their insensitivity to drugs and the host immune
response [21].

Current combination antiretroviral therapy (cART), which comprises a range of
inhibitors targeting viral enzymes (reverse transcriptase, integrase, and protease,
etc), has dramatically reduced the morbidity and mortality of HIV-infected in-
dividuals [20]. cART can suppress viral replication below the detection limit of
standard clinical assays but fails to cure HIV infection because the virus rebounds
when cART is discontinued [1, 26]. Consequently, individuals living with HIV re-
quire lifelong drug administration. This may lead to drug resistance, inflammation,
and other non-AIDS-associated comorbidities [8]. Therefore, alternative strategies
in HIV therapy that avoid drug resistance, achieve durable viral suppression, and
reduce the viral reservoir are highly desirable.

The bNAb therapy o↵er a novel intervention for controlling HIV. They can neu-
tralize the majority of circulating viral strains and block the infection of target cells
by targeting the HIV envelope spike [7, 40, 41]. Furthermore, experiments indicate
that bNAbs also increase infected cell death and accelerate the clearance of free
virions [19,24,25]. Nishimura et al. [34] found that early bNAb therapy alone may
induce sustained viral remission in simian-human immunodeficiency virus (SHIV)-
infected rhesus macaques, eliminating the need for lifelong cART. Studies in animal
and human models have demonstrated that bNAbs can decrease the level of cell-
associated viral DNA, reflecting a reduction in the viral reservoir [6, 14, 15]. In
addition to the aforementioned functions, bNAbs promote e↵ector stimulation by
enhancing antigen presentation, akin to the “vaccinal e↵ect” observed in tumors [13].
Indeed, enhanced CTL activity has been observed in non-human primates and HIV-
infected patients treated with combined bNAbs (3BNC117 and 10-1074) [32, 33].
In a clinical study [38], researchers found that individuals receiving the antibody
3BNC117 at the onset of ART initiation maintained a robust CTL immune response
for up to one year.

Numerous mathematical models have been employed to enhance our understand-
ing of HIV infection under bNAb therapy [11,12,48]. In their study [12], Desikan et
al. fitted a mathematical model to viral load data from macaques [34] and demon-
strated that short-term bNAb therapy reduces viremia and limits immune exhaus-
tion. Yan and Wang [48] proposed a mathematical model to simulate the “shock-
kill” strategy, incorporating bNAbs and HIV latency activators. They described
the e↵ect of bNAbs by modifying the infection rate of viruses and the death rates
of productively infected cells and viruses. Building on the vectored immunopro-
phylaxis (VIP) experiment, which can elicit bNAbs [5], recent modeling approaches
have shown that the “shock and kill” strategy with VIP can e↵ectively control HIV
infection [11]. However, most models neglect the direct e↵ects of the CTL immune
response in bNAb therapy. In this study, we extend the mathematical model pro-
posed by Deng et al. [11] to include the CTL immune response. We investigate
how bNAbs and ART a↵ect the dynamics of HIV infection under the CTL immune
response, elucidate the mechanisms of viral reduction, and evaluate the relative
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contributions to the CTL immune response from other antigens and the activation
of bNAbs.

2. Model formulation.

2.1. Model. We develop a model of viral dynamics that includes the CTL immune
response, bNAbs, and antiretroviral drug therapies. The model is described by the
following system and the schematic diagram is shown in Fig. 1.

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

dH(t)

dt
= �� d1H � �(1� ")HV,

dL(t)

dt
= f(1� ")�HV + bL� aL� d2L,

dI(t)

dt
= (1� f)(1� ")�HV + aL� d3I � pZI,

dV (t)

dt
= Nd3I � d4V �mAV,

dA(t)

dt
= r + qAV � d5A,

dZ(t)

dt
= (c0 +

c1A

c2 +A
)ZI � d6Z,

(1)

where the state variables H,L, I, V,A, Z represent the concentrations of uninfected
CD4+ T cells, latently infected CD4+ T cells, productively infected CD4+ T cells,
free virions, bNAbs, and CTLs at time t, respectively. Uninfected CD4+ T cells
are produced at a rate of �, undergo natural death at a per capita rate of d1, and
become infected by virions at a rate of �. A fraction f of infections of uninfected
CD4+ T cells results in latently infected cells, while the remainder (1 � f) leads
to productively infected cells. Latently infected CD4+ T cells proliferate, become
activated, and die at rates of b, a, and d2, respectively. Infected CD4+ T cells die
at a rate of d3 due to viral cytopathicity and are killed by CTL immune response
at a rate of p. The constant N denotes the total number of virions produced by
one productively infected CD4+ T cell over its lifespan. Free virions are cleared
at a rate of d4 and are neutralized by bNAbs with a second-order rate constant of
m. The constant " represents the overall e↵ectiveness of antiretroviral therapy in
blocking cell-free virus infection of CD4+ T cells [36].

Balazs et al. [5] employed a specialized adeno-associated virus vector approach
known as VIP. This method induces lifelong expression of human antibodies at
super-prophylactic levels from a single intramuscular injection. Their study demon-
strated that bNAbs expressed by VIP can e↵ectively protect animals from HIV in-
fection, even when challenged by intravenous injection with replication-competent
virus at very high doses. Thus, we assume that bNAbs have a constant production
rate r. Additionally, free virions stimulate the proliferation of bNAbs. Therefore,
we let bNAbs proliferate at a rate of q, while d5 represents the natural clearance
rate of bNAbs.

Activation of CTLs can be facilitated not only by infected cells but also by
bNAbs [13, 32, 33]. Therefore, we assume that the natural proliferation rate of
CTLs is c0. Similar to the “vaccinal e↵ect” observed in tumors [13], bNAbs (A)
trigger the proliferation of CTLs (Z). To prevent CTLs from expanding at an
unrealistic growth rate when bNAbs are at relatively higher concentrations, we use
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the Michaelis-Menten function c1A
c2+AZI to depict the impact of bNAbs in triggering

the proliferation of CTLs. This function has been widely used for this purpose in
previous modeling studies [12, 50]. Here, c1 and c2 represent the maximum rate
of CTL proliferation and their half-maximum saturation parameter, respectively.
Finally, CTLs decay at a rate of d6. All the parameters are positive constants,
and we assume that a + d2 > b, which is needed for the existence of the infected
equilibrium.

Figure 1. Schematic of the mathematical model of HIV dynamics
with bNAbs and CTL immune response.

We will start with a simplified model by neglecting the term qAV in model (1),
which represents the production of bNAbs stimulated by free virions. This omission
is justified by the following considerations. First, according to the description in
[5], the antibodies produced by the VIP experiment are very strong, making it
reasonable to assume that bNAbs induced by VIP are much more potent than
those induced by viruses. Second, neglecting the term qAV does not a↵ect the
main findings, as demonstrated by the numerical comparisons in Figs. 4 and 5.
Lastly, including the virion stimulation of bNAbs complicates the mathematical
analysis of the full model. Therefore, to simplify the mathematical analysis, we
have omitted the term qAV in model (1). The simplified model is as follows:

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

dH(t)

dt
= �� d1H � �(1� ")HV,

dL(t)

dt
= f(1� ")�HV + bL� aL� d2L,

dI(t)

dt
= (1� f)(1� ")�HV + aL� d3I � pZI,

dV (t)

dt
= Nd3I � d4V �mAV,

dA(t)

dt
= r � d5A,

dZ(t)

dt
= (c0 +

c1A

c2 +A
)ZI � d6Z.

(2)
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2.2. Basic reproduction number and steady states. The equilibrium of (2)
satisfies 8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

�� d1H � �(1� ")HV = 0,

f(1� ")�HV + bL� aL� d2L = 0,

(1� f)(1� ")�HV + aL� d3I � pZI = 0,

Nd3I � d4V �mAV = 0,

r � d5A = 0,

(c0 +
c1A

c2 +A
)ZI � d6Z = 0.

(3)

Obviously, there always exists an infection-free equilibrium E0 = (H0, 0, 0, 0, A0, 0)
= ( �

d1
, 0, 0, 0, r

d5
, 0).

Using the next-generation method, the matrices for the new infection term F and
the remaining transfer term V are given by:

F =

0

@
0 0 f(1� ")� �

d1

0 0 (1� f)(1� ")� �
d1

0 0 0

1

A , V =

0

@
a+ d2 � b 0 0

�a d3 0
0 �Nd3 d4 +m

r
d5

1

A .

Thus, the basic reproduction number under treatment, R0, is computed to be:

R0 = ⇢(F · V�1)

=
�(1� ")�Nd5[a+ (1� f)(d2 � b)]

d1(a+ d2 � b)(d4d5 +mr)
. (4)

When R0 > 1, in addition to the equilibrium E0, system (2) has an infected
equilibrium without CTL immune response E1 = (H1, L1, I1, V1, A0, 0), where

H1 =
�

d1R0
,

L1 =
�f

a+ d2 � b
(1� 1

R0
),

I1 =
d1(d4d5 +mr)

d3d5N�(1� ")
(R0 � 1),

V1 =
d1

�(1� ")
(R0 � 1).

Define the CTL immune response reproduction number as

Rc =
�(1�")�Nd5[a+(1�f)(d2�b)][c0c2d5+r(c0+c1)]

(a+d2�b)[d1(d4d5+mr)(c0c2d5+c0r+c1r)+�(1�")Nd3d5d6(d5c2+r)] .

If Rc > 1, there exists an infected equilibrium with CTL immune response E2 =
(H2, L2, I2, V2, A0, Z2), where

H2 =
�(d4d5 +mr)[c0c2d5 + r(c0 + c1)]

d1(d4d5 +mr)[c0c2d5 + r(c0 + c1)] + �(1� ")Nd3d5d6(d5c2 + r)
,

L2 = 1
a+d2�b ·

f�(1�")�Nd3d5d6(d5c2+r)
d1(d4d5+mr)[c0c2d5+r(c0+c1)]+�(1�")Nd3d5d6(d5c2+r) ,

I2 =
d6(r + c2d5)

c0c2d5 + r(c0 + c1)
,
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V2 =
Nd3d5d6(c2d5 + r)

(d4d5 +mr)[c0c2d5 + r(c0 + c1)]
,

Z2 =
d3

p
(Rc � 1).

3. Stability analysis.

3.1. Local stability of E0, E1 and E2. To study the local stability of model (2)
at Ẽ = (H̃, L̃, Ĩ, Ṽ , Ã, Z̃), where Ẽ represents any of the equilibria E0, E1 and E2,
we linearize (2) and obtain the following Jacobian matrix

J(Ẽ) =

0

BBBBBBB@

�d1 � �(1� ")Ṽ 0 0 ��(1� ")H̃ 0 0
f(1� ")�Ṽ b� a� d2 0 f(1� ")�H̃ 0 0

(1� f)(1� ")�Ṽ a �d3 � pZ̃ (1� f)(1� ")�H̃ 0 �pĨ

0 0 Nd3 �d4 �mÃ �mṼ 0
0 0 0 0 �d5 0
0 0 cZ̃ 0 c1c2

(c2+Ã)2
Z̃Ĩ cĨ � d6

1

CCCCCCCA

,

(5)
where

c = c0 +
c1A0

c2 +A0
.

Theorem 3.1. The infection-free equilibrium E0 of the system is locally asymptot-
ically stable when R0 < 1.

Proof. Accroding to (5), the characteristic equation for E0 can be written as

(⇠ + d5)(⇠ + d6)(⇠
3 + ↵1⇠

2 + ↵2⇠ + ↵3) = 0 (6)

in which

↵1 = a+ d2 � b+ d3 + d4 +mA0,

↵2 = d3(a+ d2 � b) + (d4 +mA0)(a+ d2 � b+ d3)�Nd3(1� f)�
�

d1
,

↵3 = (d4 +mA0)d3(a+ d2 � b)(1�R0).

Clearly, (6) has two negative eigenvalues ⇠1 = �d5 and ⇠2 = �d6. The remaining
eigenvalues are determined by

⇠
3 + ↵1⇠

2 + ↵2⇠ + ↵3 = 0.

Since a+ d2 > b and R0 < 1, it is easy to verify that ↵1 > 0, ↵3 > 0 and

↵1↵2 � ↵3 > (a+ d2 � b)((d4 +mA0)d3 �Nd3(1� f)�
�

d1
)

� (d4 +mA0)d3(a+ d2 � b)(1�R0)

= af�
�

d1
Nd3

> 0.

Using the Routh-Hurwitz criterion, we conclude that all roots of (6) have negative
real parts. Therefore, the infection-free equilibrium E0 is locally asymptotically
stable when R0 < 1.
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Similar to the proof of equilibrium E0, by using the Routh-Hurwitz criterion,
we have the following theorems on the local stability of the infected equilibrium
without CTL immune response E1 and the infected equilibrium with CTL immune
response E2. The proofs of theorems are based on algebraic calculations, which are
given in “Appendices A and B”.

Theorem 3.2. If Rc < 1 < R0, then the infected equilibrium without CTL immune
response E1 is locally asymptotically stable.

Theorem 3.3. If Rc > 1, then the infected equilibrium with CTL immune response
E2 is locally asymptotically stable.

3.2. Global stability of E0, E1 and E2. In this section, we will examine the
global stability of the equilibria of the model (2), which can be decoupled into

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

dH(t)

dt
= �� d1H � �(1� ")HV,

dL(t)

dt
= f(1� ")�HV + bL� aL� d2L,

dI(t)

dt
= (1� f)(1� ")�HV + aL� d3I � pZI,

dV (t)

dt
= Nd3I � d4V �mAV,

dZ(t)

dt
= (c0 +

c1A

c2 +A
)ZI � d6Z,

(7)

and

dA(t)

dt
= r � d5A. (8)

It follows from (8) that

lim
t!1

A(t) =
r

d5
= A0. (9)

Substituting it into model (7) gives us the limiting system,
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

dH(t)

dt
= �� d1H � �(1� ")HV,

dL(t)

dt
= f(1� ")�HV + bL� aL� d2L,

dI(t)

dt
= (1� f)(1� ")�HV + aL� d3I � pZI,

dV (t)

dt
= Nd3I � d4V �mA0V,

dZ(t)

dt
= (c0 +

c1A0

c2 +A0
)ZI � d6Z.

(10)

Theorem 3.4. If R0 < 1, then the infected-free equilibrium E0 is globally asymp-
totically stable.

Proof. If R0 < 1, by Theorem 3.1, it follows that E0 is locally asymptotically stable.
Next, we only need to prove that E0 is a global attractor of the system (2). Firstly,
we prove that if R0 < 1, then the infected-free equilibrium E

@
0 = ( �

d1
, 0, 0, 0, 0)
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of the limiting system (10) is globally asymptotically stable. Define the following
Lyapunov function

T1(t) =[af + (1� f)(a+ d2 � b)](H �H0 �H0 ln
H

H0
) + aL+ (a+ d2 � b)I

+
[a+ (1� f)(d2 � b)]�(1� ")H0

d4 +mA0
V +

p(a+ d2 � b)

c
Z

where c = c0+
c1A0
c2+A0

. Then the time derivative of T1(t) along the solution of system
(10) is

dT1(t)

dt
=[af + (1� f)(a+ d2 � b)](1� H0

H
)[�� d1H � �(1� ")HV ]

+ a[f(1� ")�HV + bL� aL� d2L]

+ (a+ d2 � b)[(1� f)(1� ")�HV + aL� d3I � pZI]

+
[a+ (1� f)(d2 � b)]�(1� ")H0

d4 +mA0
(Nd3I � d4V �mA0V )

+
p(a+ d2 � b)

c
(cZI � d6Z)

=� [af + (1� f)(a+ d2 � b)]
d1(H �H0)2

H
+ d3(a+ d2 � b)I(R0 � 1)

� p(a+ d2 � b)d6
c

Z,

where the equality � = d1H0 has been used. Thus, dT1(t)
dt  0 as R0 < 1. Further,

if dT1(t)
dt = 0, we have I = Z = 0 and H = H0, which indicates L = V = 0. Thus,

the largest compact invariant set in {(H,L, I, V, Z) : dT1(t)
dt = 0} is the singleton set

{E@
0 }. By LaSalle’s Invariance Principle, we know that the infection-free equilibrium

E
@
0 of (10) is globally asymptotically stable when R0 < 1. Thus we get

lim
t!1

H(t) =
�

d1
, lim

t!1
L(t) = lim

t!1
I(t) = lim

t!1
V (t) = lim

t!1
Z(t) = 0.

Since the system (10) is the limiting system of (2), from the Corollary 4.3 in [44],
we further obtain that the infection-free equilibrium E0 is the global attractor of
the system (2). This completes the proof of the Theorem 3.4.

Theorem 3.5. If Rc < 1 < R0, then the infected equilibrium without CTL immune
response E1 is globally asymptotically stable.

Proof. Using similar arguments as those in the proof of Theorem 3.4, it su�ces
to show that the E

@
1 = (H1, L1, I1, V1, Z1) of the limiting system (10) is globally

asymptotically stable.
Define

T2(t) =[af + (1� f)(a+ d2 � b)](H �H1 �H1 ln
H

H1
)

+ a(L� L1 � ln
L

L1
) + (a+ d2 � b)(I � I1 � I1 ln

I

I1
)

+
[af + (1� f)(a+ d2 � b)]�(1� ")H1V1

Nd3I1
(V � V1 � ln

V

V1
)

+
p(a+ d2 � b)

c
Z.
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Calculating the time derivative of T2 along the solutions of system (10) and using
the steady state equalities � = d1H1+�(1�")H1V1, (a+d2�b)L1 = f(1�")�H1V1,
d3I1 = (1� f)(1� ")�H1V1 + aL1 and Nd3I1 = d4V1 +mA0V1, we can obtain

dT2

dt
=[af + (1� f)(a+ d2 � b)]

⇥
✓
�d1(H �H1)2

H
+ (1� ")�H1V1(1�

H1

H
� HV

H1V1
+

V

V1
)

◆

+ af(1� ")�H1V1

✓
HV

H1V1
� L

L1
� HV L1

H1V1L
+ 1

◆

+ (a+ d2 � b)

✓
(1� f)(1� ")�H1V1(

HV

H1V1
� I

I1
� HV I1

H1V1I
+ 1)

+ aL1(
L

L1
� I

I1
� LI1

L1I
+ 1) + pI1Z � PIZ

◆

+ [af + (1� f)(a+ d2 � b)]�(1� ")H1V1(
I

I1
� V

V1
� IV1

I1V
+ 1)

+
p(a+ d2 � b)

c
(cZI � d6Z)

=� [af + (1� f)(a+ d2 � b)]
d1(H �H1)2

H

+ [af + (1� f)(a+ d2 � b)](1� ")�H1V1(1�
H1

H
)

+ af(1� ")�H1V1(�
HV L1

H1V1L
+ 1)

+ (a+ d2 � b)(1� f)(1� ")�H1V1(�
I

I1
� HV I1

H1V1I
+ 1)

+ (a+ d2 � b)aL1(�
I

I1
� LI1

L1I
+ 1) + (a+ d2 � b)pI1Z

+ [af + (1� f)(a+ d2 � b)]�(1� ")H1V1(
I

I1
� IV1

I1V
+ 1)

� p(a+ d2 � b)

c
d6Z

=� [af + (1� f)(a+ d2 � b)]
d1(H �H1)2

H

+ af(1� ")�H1V1(4�
H1

H
� HV L1

H1V1L
� IV1

I1V
� LI1

L1I
)

+ (1� f)(1� ")�H1V1(3�
H1

H
� HV I1

H1V1I
� IV1

I1V
)

+
d6(a+ d2 � b)p

c
(Rc � 1)Z.

When Rc < 1 < R0, the inequality dT2(t)
dt  0 holds and dT2(t)

dt = 0 if and only if
H = H1, L = L1, I = I1, V = V1 and Z = 0. Thus, the largest compact invariant set
in {(H,L, I, V, Z) : dT2(t)

dt = 0} is the singleton set {E@
1 }. By LaSalle’s Invariance

Principle, we know that the infected equilibrium without equilibrium E
@
1 of (10) is

globally asymptotically stable when Rc < 1 < R0, which completes the proof of
the Theorem 3.5.
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Theorem 3.6. If Rc > 1, then the infected equilibrium with CTL immune response
E2 is globally asymptotically stable.

Proof. Similarly to Theorems 3.4 and 3.5, we only need to show that the E
@
2 =

(H2, L2, I2, V2, Z2) of the limiting system (10) is globally asymptotically stable.
Let

T3(t) =[af + (1� f)(a+ d2 � b)](H �H2 �H2 ln
H

H2
) + a(L� L2 � ln

L

L2
)

+ (a+ d2 � b)(I � I2 � I2 ln
I

I2
)

+
[af + (1� f)(a+ d2 � b)]�(1� ")H2V2

Nd3I2
(V � V2 � ln

V

V2
)

+
p(a+ d2 � b)

c
(Z � Z2 � Z2 ln

Z

Z2
).

The time derivative of T3(t) along the solution of model (10) is given by

dT3(t)

dt
=[af + (1� f)(a+ d2 � b)](1� H2

H
)(�� d1H � �(1� ")HV )

+ a(1� L2

L
)[f(1� ")�HV + bL� aL� d2L]

+ (a+ d2 � b)(1� I2

I
)[(1� f)(1� ")�HV + aL� d3I � pZI]

+
[af + (1� f)(a+ d2 � b)]�(1� ")H2V2

Nd3I2
(1� V2

V
)

⇥ (Nd3I � d4V �mA0V ) +
p(a+ d2 � b)

c
(1� Z2

Z
)(cIZ � d6Z)

=� [af + (1� f)(a+ d2 � b)]
d1(H �H2)2

H

+ [af + (1� f)(a+ d2 � b)](1� ")�H2V2

� [af + (1� f)(a+ d2 � b)](1� ")�H2V2
H2

H

+ [af + (1� f)(a+ d2 � b)](1� ")�H2V

� af(1� ")�
HV L2

L
+ af(1� ")�H2V2 + af(1� ")�

H2V2L

L2

� (a+ d2 � b)d3I � (a+ d2 � b)(1� f)(1� ")�
HV I2

I

� af(1� ")�H2V2
LI2

L2I
+ (a+ d2 � b)d3I2

+ [af + (1� f)(a+ d2 � b)](1� ")�H2V2
I

I2

� [af + (1� f)(a+ d2 � b)](1� ")�H2V

� [af + (1� f)(a+ d2 � b)](1� ")�H2V2
IV2

V I2

+ [af + (1� f)(a+ d2 � b)](1� ")�H2V2

� p(a+ d2 � b)IZ2 + p(a+ d2 � b)Z2I2

=� [af + (1� f)(a+ d2 � b)]
d1(H �H2)2

H
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+ af(1� ")�H2V2(4�
H2

H
� HV L2

H2V2L
� LI2

L2I
� IV2

I2V
)

+ (a+ d2 � b)(1� f)(1� ")�H2V2(3�
H2

H
� HV I2

H2V2I
� IV2

I2V
),

where the equalities

� = d1H2 + �(1� ")H2V2, Nd3 = (d4 +mA0)V2,

d3I2 + pI2Z2 = (1� f)(1� ")�H2V2, (a+ d2 � b)L2 = f(1� ")�H2V2

are used. Then the inequality dT3(t)
dt  0 holds and dT3(t)

dt = 0 if and only if
H = H2, L = L2, I = I2, V = V2 and Z = Z2. Thus, the largest compact invariant
set in {(H,L, I, V, Z) : dT3(t)

dt = 0} is the singleton set {E@
2 }. By LaSalle’s Invariance

Principle, we know that the infected equilibrium with CTL immune response E
@
2

of (10) is globally asymptotically stable when Rc > 1. This completes the proof of
Theorem 3.6.

4. Numerical simulations.

4.1. Parameters. To analyze the e↵ect of bNAbs on viral dynamics, we fixed most
of the parameter values of the model (2) based on experimental data and modeling
literature [5,10,11,17,36,37,46,49]. For instance, the production rate of uninfected
CD4+ T cells is � = 104 ml

�1
day

�1 [36]. The death rates of target cells, latently
and productively infected CD4+ T cells are 0.01 day

�1, 0.001 day
�1, and 1 day

�1,
respectively [10,17]. Following Wang et al. [46], we fix the fraction of infection that
leads to latency as f = 0.001. The viral infection rate of CD4+ T cells, denoted as �,
is assumed to be 10�8 ⇠ 10�5

ml day
�1 [11,37]. The clearance rate of productively

infected cells by CTLs is p = 0.05ml day
�1 [49]. The production rate r of bNAbs by

VIP is 100 µg ml
�1

day
�1 based on experimental data [5]. The basal proliferation

rate of CTLs is fixed at 0.01 day
�1 [16]. The maximum proliferation rate of e↵ector

cells induced by bNAbs and their half-maximum saturation parameter are c1 = 0.01
day

�1 and c2 = 3⇥ 10�5
ml

�1 [12], respectively. The parameters in model (1) and
their values are summarized in Table 1. We first perform simulations of the model
(2) in the absence of drug and bNAb therapies and obtain the infected equilibrium
with CTL immune response (H,L, I, V, Z) = (9.58⇥105, 415.7, 10, 8.7⇥102, 820.8).
These values are used as the initial states for simulating the model under drug
therapy or bNAbs.

4.2. E↵ects of drug and bNAb therapies. In this subsection, we identify the
influences of drug and bNAb therapies on the dynamics of model (2), respectively.
Let � = 8 ⇥ 10�7 and take the other parameters from Table 1 with ✏ = 0.99. It
can be observed from Fig. 2(a) that the number of uninfected CD4+ T cells is
high, indicating the e↵ectiveness of all three treatments. Specifically, the number
of uninfected CD4+ T cells is highest under combined drug and bNAb therapies,
followed by drug therapy alone, with the lowest number observed under bNAb
therapy alone. The opposite phenomenon can be observed in the dynamics of
latently and productively infected CD4+ T cells (Figs. 2(b)(c)). It should be
noted that to achieve a viral load below the detection limit at 3000 days, we assume
a drug e�cacy of 99%. However, if the drug e�cacy decreases to 98%, the number
of healthy cells treated with bNAb alone will exceed those treated with drug alone.

It can be seen from Fig. 2(d) that all three cases can rapidly reduce the virus.
At day 3000, the viral loads for combination therapy, drug therapy, and bNAb
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Table 1. Parameters and values used in model (1)

Parameter Definition Value and Unit Sources

� Generation rate of uninfected CD4+ T cells 104 ml
�1

day
�1 [36]

d1 Death rate of uninfected CD4+ T cells 0.01 day
�1 [10, 17]

� Infection rate of CD4+ T cells 10�8 ⇠ 10�5
ml day

�1 [11, 37]
f Fraction of infection that leads to latency 0.001 [46]
b Latent cell proliferation rate 0.01 day

�1 [12]
a Activation rate of latently infected cells 0.01 day

�1 [11]
d2 Death rate of latently infected cells 0.001 day

�1 [10, 17]
d3 Death rate of productively infected cells 1 day

�1 [10, 17]
p Clearance rate of productively infected cells by CTLs 0.05 ml day

�1 [49]
N Viral burst size 2000 virus cell

�1 [11, 37]
d4 Viral clearance rate 23 day

�1 [17]
m Neutralization rate of free viruses by bNAbs 0.28 day

�1 [11]
r Production rate of bNAbs by VIP 100 µg ml

�1
day

�1 [5]
q Proliferation rate of bNAbs by viral stimulation 0.001 day

�1 [18]
d5 Death rate of bNAbs 0.02 day

�1 [11]
c0 Basal proliferation rate of CTLs 0.01 day

�1 [16]
c1 Max proliferation rate of CTLs induced by bNAbs 0.01 day

�1 [12]
c2 Half-maximum saturation parameter 3⇥ 10�5

ml
�1 [12]

d6 Death rate of CTLs 1 day
�1 [12, 16]

✏ Overall drug e�cacy of blocking virus infection [0, 1] See text

therapy are 0.3 RNA copies/ml, 63.35 RNA copies/ml, and 70.25 RNA copies/ml,
respectively. Although Balazs et al. [5] found that VIP induces lifelong expression
of bNAbs in humanized mice, it is more reasonable to assume that bNAbs may
disappear over time. Therefore, in the simulation, we stop the bNAb therapy at
day 3000 to model the disappearance of bNAbs within the host and simultaneously
discontinue the drug therapy. Unfortunately, the viral load rebounds to levels above
the detection limit after bNAb or drug therapy is terminated. Following [12], we set
the detection limit of viral load as 100 RNA copies/ml. To further understand the
viral rebound, we consider the 5 days before the end of treatment to 35 days after
treatment, i.e., days 2995 � 3035, shown in Fig. 2(f). For drug therapy alone, the
rebound time is less than one day. When only bNAb therapy is administered, the
rebound time is 4 days. This indicates that bNAb therapy delays the viral rebound
time. The rebound time extends to 35 days when the joint therapy of both bNAb
and drug is adopted. This result is inevitable because combination therapy drives
the viral load to a lower level. This finding confirms the potential role of bNAbs in
controlling virus production.

We observe in Fig. 2(c) that the productively infected CD4+ T cells ultimately
decrease to zero under combination therapy and drug therapy alone. This indicates
that the CTL immune response cannot be e↵ectively activated in these two scenar-
ios, as depicted in Fig. 2(e). However, bNAb therapy alone can successfully trigger
the CTL immune response, aligning with findings in [13, 32, 33, 38]. In summary,
bNAb therapy can increase the population of uninfected CD4+ T cells, decrease the
number of infected cells, activate the CTL immune response, and delay the viral
rebound time, thus emerging as a promising treatment option.

4.3. The influence on viral reduction. In addition to drug treatment, bNAbs
and the CTL immune response can also contribute to reducing the viral load. From
Fig. 2(d), we observe that the viral load is suppressed below the detection limit
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Figure 2. The dynamics of uninfected cells (a), infected cells
(b,c), viral load (d,f), and CTLs (e) under di↵erent treatment mea-
sures. Black dashed lines in (d) and (f) indicate the viral load
detection limit (100 RNA copies/mL). In (d) and (f), the shaded
yellow box shows the time periods of stopping drug and bNAb ther-
apies. Parameter values used are in Table 1 with � = 8⇥10�7 and
✏ = 0.99. Under combined drug and bNAb therapies, the basic
reproduction number is R0 = 0.01, and the CTL immune response
reproduction number is Rc = 0.01. For bNAb therapy alone, R0

and Rc are 1.135 and 1.128, respectively.
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Figure 3. Comparison of the dynamics predicted by model (2),
model (2) without �pZI, and model (2) without �mAV . (a)-
(e) The inclusion of the clearance of productively infected cells
by CTLs (�pZI) does not alter the dynamics of uninfected cells,
infected cells, viral load, and bNAbs. However, neglecting the neu-
tralization of free viruses (�mAV ) results in fewer uninfected cells,
higher levels of latently infected cells, and virus. This indicates
that bNAb therapy has a greater impact on viral control than the
CTL immune response. (f) The dynamics of CTLs under di↵erent
scenarios. For model (2), model (2) without the term �pZI, and
model (2) without the term �mAV , the basic reproduction num-
bers are 1.135, 1.135, and 70.2, respectively. The corresponding
CTL immune response reproduction numbers are 1.128, 1.128, and
52.08, respectively.
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and persists at a low level for an extended period through bNAb therapy alone,
obviating the need for lifelong drug therapy. This outcome aligns well with in vivo
experimental results [6,14,15,34]. Thus, to isolate the e↵ects of bNAbs and the CTL
immune response on HIV infection and eliminate the influence of drug therapy, we
set the overall drug e�cacy in inhibiting virus infection, ✏, to 0. In our model, free
viruses are neutralized by bNAbs, and productively infected cells are cleared by the
CTL immune response, represented as �mAV and �pZI, respectively. We now
investigate how these factors a↵ect the dynamics of the virus and cells.

Figure 3 shows the changes in uninfected cells, latent reservoir, productively
infected cells, viral load, bNAbs, and CTLs. In Fig. 3(a)-(e), the curves of model
(2) with and without �pZI overlap. This indicates that removing the clearance
term of CTLs on productively infected cells does not visibly a↵ect the dynamics
of uninfected cells, infected cells, viral load, and bNAbs. Compared to model (2),
the model without �mAV exhibits fewer uninfected cells, higher levels of latently
infected cells, and virus. These results suggest that bNAbs have a more significant
impact on viral control than the CTL immune response.

From Fig. 3(f), we observe that model (2) without �pZI exhibits the highest
abundance of CTLs, followed by the model (2) without �mAV , and finally, the
model (2). This is reasonable because, according to model (2), the loss of CTLs
occurs through two pathways: one is basal death d6Z, and the other is killing in-
fected cells �pZI. Excluding the clearance of productively infected cells by CTLs
can result in a reduction in CTL losses, leading to maximum CTL levels. How-
ever, when both �pZI and �mAV are included, the neutralization of free viruses
consumes bNAbs, decreasing the production of the CTL immune response. This,
coupled with the loss of CTLs by killing infected cells, results in lower CTL levels
compared to model (2) without �mAV . Based on these findings, we speculate that
the enhanced antigenicity by bNAbs could be a significant source of CTLs. This
will be validated in the following section.

4.4. The generation of CTL immune response. There are two pathways con-
tributing to the CTL immune response: one is through the activation of other
antigens, and the other is through bNAbs. For comparison, we plot model (2) with-
out CTL immune response in Fig. 4. We find that model (2) without CTLs has the
lowest steady-state uninfected CD4+ T cells compared to model (2) with CTLs, i.e.,
model (2) and model (2) without bNAb activation (see Fig. 4(a)). In Figs. 4(b)-
(d), when considering bNAb activation in the CTL immune response (i.e., model
(2)), the levels of infected cells (latently and productively infected cells) and viruses
are the lowest. If model (2) does not include bNAb activation or CTLs, the levels
of infected cells and viruses increase. Moreover, model (2) without CTL immune
response has a higher viral load and infected cells compared to model (2) with CTL
immune response. These results demonstrate that the inclusion of CTL immune
response can generate a higher level of uninfected CD4+ T cells and significantly
reduce infected cells and viral load.

From Fig. 4(e), it can be observed that the CTL immune response initially
decreases and then stabilizes in both cases to lyse infected cells. If there is enhanced
antigenicity by bNAbs in the model, the level of CTLs is higher, indicating that
bNAbs can increase the CTL immune response, consistent with the results in Fig.
3(f). To provide further information on the CTL immune response, we evaluate
the relative contributions from other antigens and bNAbs, which are given by the
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Figure 4. The e↵ects of CTL immune response and bNAb acti-
vation, i.e., c1A

c2+AZI, on the dynamics of model (2). (a)-(d) CTL
immune response increases the level of uninfected CD4+ T cells
and significantly reduces infected cells (both latently and produc-
tively infected) and viral load. (e) The e↵ect of enhanced anti-
genicity by bNAbs on the CTL immune response. In this case, the
CTL immune response is enhanced due to bNAbs. (f) The relative
contributions to the CTL immune response from other antigens
and bNAbs. Under CTL without bNAb activation, the basic re-
production number is R0 = 1.135 and the CTL immune response
reproduction number is Rc = 1.122. In the case of CTL with
bNAb activation, the reproduction numbers are the same as those
in model (2).
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Figure 5. E↵ect of including the proliferation of bNAbs by viral
stimulation on dynamics. We choose � = 8 ⇥ 10�6 and the other
parameters are the same as those in Fig. 4.

following two ratios:

c0

c0 +
c1A
c2+A

and
c1A
c2+A

c0 +
c1A
c2+A

.
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As described in Fig. 4(f), during the first 20 days of infection, the relative contribu-
tion from other antigens decreases, whereas the contribution from bNAbs increases.
As the infection progresses, model (2) eventually converges to the infected equi-
librium with CTL immune response. Thus, two curves representing the relative
contributions to CTL immune response also converge to constant values. Interest-
ingly, the relative contributions of the two sources for CTLs are the same. This
result suggests that the activation of bNAb plays a critical role in the establishment
of CTL immune response.

In the previous sections, we numerically studied the dynamics of model (2), which
omitted the term qAV from model (1), i.e., the proliferation of bNAbs by viral
stimulation. In the following, we incorporate qAV into model (2). It’s worth noting
that the inclusion of the term qAV increases the bNAbs, resulting in a reduction of
viral load, which consequently decreases infected CD4+ T cells. This, coupled with
the observations in Fig. 4(e), suggests that the CTL immune response may not be
successfully activated. To address this, we increase the infection rate of the virus
from 8 ⇥ 10�7 to 8 ⇥ 10�6 to elevate the viral load. The other parameters remain
unchanged as in Fig. 4. From Fig. 5, we observe that although the quantities
of cells and viruses di↵er from those in Fig. 4, the conclusion remains consistent,
indicating that the proliferation of bNAbs by viral stimulation, qAV , does not alter
our findings.

5. Discussion. In the early 1990s, first-generation bNAbs were isolated, including
2F5, 2G12, Z13, and 4E10. They are deemed safe and have demonstrated the ability
to reduce viral load in HIV-infected individuals [2, 43]. The development of single-
cell antibody cloning techniques [45] and viral neutralization assays [31] led to the
isolation of second-generation bNAbs with improved potency and neutralization
breadth [23]. However, rapid viral resistance and escape are often observed in
bNAb monotherapy [3]. Similar to the development of antiretroviral medications,
a combination of multiple bNAbs significantly reduces the likelihood of HIV escape
and resistance [14, 23], thereby minimizing the risk of immunotherapeutic failure.
Recently, bNAbs have been shown to provide high protection against HIV/SHIV
infection by inducing persistent immunity in the host [32–34]. cART has been
widely used in the treatment and prevention of HIV-infected patients. To date,
treatment with bNAbs has not been directly compared to cART to assess their
relative e�cacy, nor have investigations been conducted into the potential e�cacy
of combined bNAbs and cART.

In this study, we employ mathematical modeling to examine the e↵ects of bNAb
therapy and cART on viral dynamics. In the model, bNAbs are assumed to con-
trol HIV infection by neutralizing viruses and activating CTL immune responses
through enhanced antigen presentation. Therefore, we also explore the mechanisms
underlying viral control by bNAbs as well as the CTL immune response. The dy-
namics of the model have been thoroughly analyzed by demonstrating the global
stability of all possible equilibria. Our numerical analyses suggest that treatment
with bNAbs alone or in combination with antiretroviral drugs can significantly re-
duce viral load and delay viral rebound when treatment is discontinued (see Figs.
2(d)(f)). In Fig. 3, we compare the dynamics predicted by model (2), model (2)
without �mAV (i.e., the neutralization of viruses by bNAbs), and model (2) with-
out �pZI (i.e., the clearance of productively infected cells by CTLs). We find that
bNAbs have a larger impact on viral control than the CTL immune response. When
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CTL immune responses are taken into consideration, the population of uninfected
cells increases, accompanied by a decline in the levels of infected cells and viruses
(Figs. 3(a-d)). This result underscores the importance of the CTL immune re-
sponse, which should not be overlooked in studying HIV infection dynamics. When
bNAb activation (i.e., c1A

c2+AZI) exists, the level of CTLs is high (see Figs. 2(e),
3(f), and 4(e)). Further analysis of the relative contributions to the CTL immune
response shows that activation of bNAbs accounts for half of the CTLs (Fig. 4(f)).

For the case of q 6= 0 (i.e., model (1)), a rigorous theoretical analysis is chal-
lenging, including deriving explicit expressions for all equilibria and their stability.
We speculate that the existence of equilibria depends on conditions beyond the
reproduction numbers. The influence of the neglected term qAV in the simplified
model has been evaluated using numerical simulations (Fig. 5). From Fig. 5, it
can be seen that under the current parameters, the solutions of the full model (1)
(i.e., CTL with bNAb activation) converge to the infected equilibrium with CTL
immune response. For the cases where �pZI and �mAV are removed, these are
equivalent to the cases of p = 0 and m = 0 in model (2), respectively. Thus, the
theoretical analysis presented in this article is fully applicable to these two special
cases.

It is worth mentioning that when bNAb therapy is administered, viral load be-
comes undetectable, but viremia will resurge if bNAbs are absent (Fig. 2(d)). In
other words, viremia would rebound when the level of administered bNAbs in cir-
culation diminishes. Thus, the half-life of an antibody is crucial for determining
the therapeutic outcome and e�cacy of bNAbs. Increasing antibody half-life may
enhance the killing of latently infected cells and prolong e↵ective viral suppres-
sion. Several strategies have been adopted to further extend the antibody’s half-life
without impairing its functionality in vivo. One feasible method is to modify the
Fc domain to have a higher a�nity for the neonatal Fc receptor [27, 39]. For
nanobodies and scFvs that do not have an Fc domain, the addition of polyethy-
lene glycol or albumin has been explored to extend the expression of bNAbs for a
longer period [22,30]. Other half-life extension methods, such as recombinant adeno-
associated virus vectors and gene transfer technologies, have significantly extended
the lifetime of bNAbs [4, 5].

In addition to cell-free infection, direct cell-to-cell transmission is another mech-
anism by which HIV infects target cells. Cell-to-cell transmission is primarily me-
diated through virological synapses, which allow multiple infections of target cells
without exposure to an external environment [17]. This leads to rapid and e�cient
virus spread [9,17]. The e�cacy of bNAbs in inhibiting cell-to-cell transmission has
been assessed, but the conclusions vary and can even be conflicting, depending on
virus strains, assay systems, and the mode of action [28, 29, 35]. Thus, it would be
of great interest to study the capacities of bNAbs against cell-free virus infection
and cell-to-cell transmission through mathematical modeling in future studies.

Acknowledgments. T. Guo is supported by the Changzhou Scientific and Tech-
nological Program grant (CJ20220134), the fourth series of leading projects to in-
troduce and cultivate innovative talents in Changzhou (CQ20230111), the Natural
Science Foundation of Jiangsu Higher Education (22KJB110007), and the National
Natural Science Foundation of China (12201077). S. Gao is supported by the Na-
tional Natural Science Foundation of China (12301629), and the overseas talents
urgently needed in Jiangxi Province (20232BCJ25045). Z. Qiu is supported by the



20 TING GUO, QI DENG, SHASHA GAO, ZHIPENG QIU AND LIBIN RONG

National Natural Science Foundation of China (12071217). L. Rong is supported
by the NSF grants DMS-1950254 and DMS-2324692.

Appendix A - Proof of Theorem 3.2. From (5), the Jacobian matrix of model
(2) at E1 is

J(E1) =

✓
J11 J12

0 J22

◆
, (11)

where

J11 =

0

BB@

�d1 � �(1� ")V1 0 0 ��(1� ")H1

f(1� ")�V1 b� a� d2 0 f(1� ")�H1

(1� f)(1� ")�V1 a �d3 (1� f)(1� ")�H1

0 0 Nd3 �d4 �mA0

1

CCA ,

and

J12 =

0

BB@

0 0
0 0
0 �pI1

�mV1 0

1

CCA , J22 =

✓
�d5 0
0 cI1 � d6

◆
.

Define ⌥(J) as the set of eigenvalues generated by matrix J . We have ⌥(J) =
⌥(J11) [⌥(J22).

The characteristic equation associated with J22 at E1 is given by

(⇠ + d5)(⇠ � cI1 + d6) = 0, (12)

where ⇠ is the eigenvalue. It is easy to see that (12) has a negative eigenvalue

⇠1 = �d5. Substituting the equalities c = c0+
c1A0
c2+A0

, I1 = d1(d4d5+mr)
d3d5N�(1�") (R0�1) and

R0 = �(1�")�Nd5[a+(1�f)(d2�b)]
d1(a+d2�b)(d4d5+mr) into (12), we have

⇠2 =
d1(d4d5 +mr)(c0c2d5 + c0r + c1r) + �(1� ")Nd3d5d6(d5c2 + r)

d3d5N�(1� ")(c2d5 + r)
(Rc � 1).

Because Rc < 1, the inequality ⇠2 < 0 holds. Thus, the roots of (12) are all
negative. The local stability of the equilibrium E1 is determined by the eigenvalues
of the matrix J11. The characteristic equation of J11 is

(⇠ � b+ a+ d2)(⇠ + d3)(⇠ + d4 +mA0)[⇠ + d1 + �(1� ")V1]

�(⇠ + d1)(⇠ � b+ a+ d2)(1� f)(1� ")Nd3�H1

+[⇠ + d1 + �(1� ")V1]f(1� ")aNd3�H1 + aNd3f�
2(1� ")2H1V1

=0.

(13)

Using the equalities (1�f)(1�")�H1V1+aL1 = d3I1 and Nd3I1 = d4V1+mA0V1,
Eq. (13) can be written as

⇠
4 + a1⇠

3 + a2⇠
2 + a3⇠ + a4 = 0,

where

a1 = d1 + �(1� ")V1 + a+ d2 � b+ d3 + d4 +mA0,

a2 = (a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b) + (d4 +mA0)[d1 + �(1� ")V1]

+ d3[d1 + �(1� ")V1] + (a+ d2 � b)[d1 + �(1� ")V1] +
a(d4 +mA0)L1

I1
,

a3 = d3(d4 +mA0)�(1� ")V1 + (a+ d2 � b)(d4 +mA0)[d1 + �(1� ")V1]
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+ d3(a+ d2 � b)[d1 + �(1� ")V1] + aNd3f(1� ")�H1

+
a(a+ d2 � b)(d4 +mA0)L1

I1
+

ad1(d4 +mA0)L1

I1
,

a4 = d3(d4 +mA0)(a+ d2 � b)�(1� ")V1 + aNd3f(1� ")�H1[d1 + �(1� ")V1]

+ aNd3f(1� ")2�2
H1V1 +

ad1(a+ d2 � b)(d4 +mA0)L1

I1
.

Since R0 > 1, we obtain that L1, I1, V1 > 0. Thus, a1, a2, a3, a4 > 0. Moreover, we
have

42 = a1a2 � a3

= d1

 
(a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V1]

+ d3[d1 + �(1� ")V1] + (a+ d2 � b)[d1 + �(1� ")V1]

!

+ �(1� ")V1

 
(a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V1]

+ d3[d1 + �(1� ")V1] + (a+ d2 � b)[d1 + �(1� ")V1] +
a(d4 +mA0)L1

I1

!

+ (a+ d2 � b)

 
(a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b)

+ (d4 +mA0)[d1 + �(1� ")V1] + d3[d1 + �(1� ")V1]

+ (a+ d2 � b)[d1 + �(1� ")V1]

!

+ d3

 
(a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b)

+ (d4 +mA0)[d1 + �(1� ")V1] + d3[d1 + �(1� ")V1] + (a+ d2 � b)

⇥ [d1 + �(1� ")V1] +
a(d4 +mA0)L1

I1

!

+ (d4 +mA0)

 
(a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b)

+ (d4 +mA0)[d1 + �(1� ")V1] + d1d3 +
a(d4 +mA0)L1

I1

!

� aNd3f(1� ")�H1.

Using the equalities f(1 � ")�H1V1 + bL1 = aL1 + d2L1, Nd3I1 = d4V1 +mA0V1,

L1 = �f
a+d2�b (1�

1
R0

), I1 = d1(d4d5+mr)
d3d5N�(1�") (R0�1) and R0 = �(1�")�Nd5[a+(1�f)(d2�b)]

d1(a+d2�b)(d4d5+mr) ,
we derive

�aNd3f(1� ")�H1 = � af

a+ (1� f)(d2 � b)
d3(a+ d2 � b)(d4 +mA0).
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Since (1 � f)(a + d2 � b) > 0, we have af
a+(1�f)(d2�b) < 1, which implies that

d3(a + d2 � b)(d4 + mA0) � af
a+(1�f)(d2�b)d3(a + d2 � b)(d4 + mA0) > 0. Thus,

42 > 0.
From this, we get

43 =a342 � a
2
1a4

=

(
d3(d4 +mA0)�(1� ")V1 + (a+ d2 � b)(d4 +mA0)[d1 + �(1� ")V1]

+ d3(a+ d2 � b)[d1 + �(1� ")V1] + aNd3f(1� ")�H1

+
a(a+ d2 � b)(d4 +mA0)L1

I1
+

ad1(d4 +mA0)L1

I1

)

⇥
(
d1

✓
(a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V1]

+ d3[d1 + �(1� ")V1] + (a+ d2 � b)[d1 + �(1� ")V1]

◆

+ �(1� ")V1

✓
(a+ d2 � b)(d4 +mA0) + (d4 +mA0)

⇥ [d1 + �(1� ")V1] + d3[d1 + �(1� ")V1]

+ (a+ d2 � b)[d1 + �(1� ")V1] +
a(d4 +mA0)L1

I1

◆

+ (a+ d2 � b)

✓
(a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b)

+ (d4 +mA0)[d1 + �(1� ")V1]

+ d3[d1 + �(1� ")V1] + (a+ d2 � b)[d1 + �(1� ")V1]

◆

+ d3

✓
(a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b)

+ (d4 +mA0)[d1 + �(1� ")V1] + d3[d1 + �(1� ")V1] + (a+ d2 � b)

⇥ [d1 + �(1� ")V1] +
a(d4 +mA0)L1

I1

◆

+ (d4 +mA0)

✓
(a+ d2 � b)(d4 +mA0) + d3(a+ d2 � b)

+ (d4 +mA0)[d1 + �(1� ")V1] + d1d3 +
a(d4 +mA0)L1

I1

◆

� aNd3f(1� ")�H1

)
�
✓
d1 + �(1� ")V1 + a+ d2 � b+ d3 + d4 +mA0

◆

⇥
✓
d1 + �(1� ")V1 + a+ d2 � b+ d3 + d4 +mA0

◆(
d3(d4 +mA0)
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⇥ (a+ d2 � b)�(1� ")V1 + aNd3f(1� ")�H1[d1 + �(1� ")V1]

+ aNd3f(1� ")2�2
H1V1 +

ad1(a+ d2 � b)(d4 +mA0)L1

I1

)
.

Through lengthy algebraic calculations, all the negative terms on the right-hand
side of the above equation can be eliminated, thus the inequality 43 > 0 holds.
This, together with the inequality a4 > 0, implies that 44 = a443 > 0. Therefore,
it follows from the Routh-Hurwitz criterion that all roots of (13) have negative real
parts. Thus, the equilibrium E1 is locally asymptotically stable when Rc < 1 < R0.

Appendix B - Proof of Theorem 3.3. Calculating the Jacobian matrix of (2)
at E2, we have

J(E2) =

0

BBBBBB@

�d1 � �(1� ")V2 0 0 ��(1� ")H2 0 0
f(1� ")�V2 b� a� d2 0 f(1� ")�H2 0 0

(1� f)(1� ")�V2 a �d3 � pZ2 (1� f)(1� ")�H2 0 �pI2

0 0 Nd3 �d4 �mA0 �mV2 0
0 0 0 0 �d5 0
0 0 cZ2 0 c1c2

(c2+A0)2
Z2I2 0

1

CCCCCCA
.

(14)
From this, the characteristic equation is given by

(⇠ + d5)

(
⇠(⇠ + d4 +mA0)[⇠ + d1 + �(1� ")V2](⇠ � b+ a+ d2)(⇠ + d3 + pZ2)

�Nd3⇠[⇠ + d1 + �(1� ")V2][(⇠ � b+ a+ d2)(1� f)(1� ")�H2 + af(1� ")�H2]

+Nd3⇠(1� ")�H2[af(1� ")�V2 + (⇠ � b+ a+ d2)(1� f)(1� ")�V2]

+(⇠ + d4 +mA0)[⇠ + d1 + �(1� ")V2](⇠ � b+ a+ d2)pcZ2I2

)

=0.
(15)

It is clear that Eq. (15) has eigenvalue ⇠1 = �d5. The remaining eigenvalues are
determined by the following equation

⇠(⇠ + d4 +mA0)[⇠ + d1 + �(1� ")V2](⇠ � b+ a+ d2)(⇠ + d3 + pZ2)

�Nd3⇠[⇠ + d1 + �(1� ")V2][(⇠ � b+ a+ d2)(1� f)(1� ")�H2 + af(1� ")�H2]

+Nd3⇠(1� ")�H2[af(1� ")�V2 + (⇠ � b+ a+ d2)(1� f)(1� ")�V2]

+(⇠ + d4 +mA0)[⇠ + d1 + �(1� ")V2](⇠ � b+ a+ d2)pcZ2I2

=0.

Using the steady state equalities f(1 � ")�H2V2 + bL2 = aL2 + d2L2, (1 � f)(1 �
")�H2V2 + aL2 = d3I2 + pZ2I2 and Nd3I2 = d4V2 + mA0V2, the above equation
can be rewritten as

⇠
5 + b1⇠

4 + b2⇠
3 + b3⇠

2 + b4⇠ + b5 = 0,

where

b1 = d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2,

b2 = (d3 + pZ2)(a+ d2 � b) + (d3 + pZ2)[d1 + �(1� ")V2]

+ (a+ d2 � b)[d1 + �(1� ")V2]
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+ (a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V2]

+ pcZ2I2 +
a(d4 +mA0)L2

I2
,

b3 = [d1 + �(1� ")V2](a+ d2 � b)(d3 + pZ2)

+ (d4 +mA0)[d1 + �(1� ")V2](a+ d2 � b)

+Nd3�
2(1� f)(1� ")2H2V2 + (a+ d2 � b)pcZ2I2

+ [d1 + �(1� ")V2]pcZ2I2

+ (d4 +mA0)pcZ2I2 +
a(d4 +mA0)[d1 + �(1� ")V2]L2

I2
,

b4 = Nd3a�
2
f(1� ")2H2V2 + (a+ d2 � b)Nd3�

2(1� f)(1� ")2H2V2

+ [d1 + �(1� ")V2](a+ d2 � b)pcZ2I2 + (d4 +mA0)(a+ d2 � b)pcZ2I2

+ (d4 +mA0)[d1 + �(1� ")V2]pcZ2I2,

b5 = (d4 +mA0)[d1 + �(1� ")V2](a+ d2 � b)pcZ2I2.

(16)

Since Rc > 1, we have b1, b2, b3, b4, b5 > 0. From the first three equations in (16),
it follows that

4́2 =b1b2 � b3

=[d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2]

⇥
(
(d3 + pZ2)(a+ d2 � b) + (d3 + pZ2)[d1 + �(1� ")V2]

+ (a+ d2 � b)[d1 + �(1� ")V2] + (a+ d2 � b)(d4 +mA0)

+ (d4 +mA0)[d1 + �(1� ")V2] + pcZ2I2 +
a(d4 +mA0)L2

I2

)

�
(
[d1 + �(1� ")V2](a+ d2 � b)(d3 + pZ2)

+ (d4 +mA0)[d1 + �(1� ")V2](a+ d2 � b) +Nd3�
2(1� f)(1� ")2H2V2

+ (a+ d2 � b)pcZ2I2 + [d1 + �(1� ")V2]pcZ2I2 + (d4 +mA0)pcZ2I2

+
a(d4 +mA0)[d1 + �(1� ")V2]L2

I2

)

=(d4 +mA0)

(
(d3 + pZ2)(a+ d2 � b) + d1(d3 + pZ2)

+ (a+ d2 � b)(d4 +mA0) + (d4 +mA0)

⇥ [d1 + �(1� ")V2] +
a(d4 +mA0)L2

I2

)

+ [d1 + �(1� ")V2]

(
(d3 + pZ2)[d1 + �(1� ")V2]

+ (a+ d2 � b)[d1 + �(1� ")V2] + (a+ d2 � b)(d4 +mA0)
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+ (d4 +mA0)[d1 + �(1� ")V2]

)

+ (a+ d2 � b)

(
(d3 + pZ2)(a+ d2 � b) + (d3 + pZ2)[d1 + �(1� ")V2]

+ (a+ d2 � b)[d1 + �(1� ")V2] + (a+ d2 � b)(d4 +mA0)

+ (d4 +mA0)[d1 + �(1� ")V2] +
a(d4 +mA0)L2

I2

)

+ (d3 + pZ2)

(
(d3 + pZ2)(a+ d2 � b) + (d3 + pZ2)[d1 + �(1� ")V2]

+ (a+ d2 � b)[d1 + �(1� ")V2] + (a+ d2 � b)(d4 +mA0)

+ (d4 +mA0)[d1 + �(1� ")V2] + pcZ2I2

+
a(d4 +mA0)L2

I2

)
+

a(d4 +mA0)L2

I2
�(1� ")V2

>0,

(17)

where (1� f)(1� ")�H2V2 + aL2 = d3I2 + pZ2I2 and Nd3I2 = d4V2 +mA0V2 have
been used. Define

4́3 =

������

b1 1 0
b3 b2 b1

b5 b4 b3

������
= b34́2 + b1b5 � b

2
1b4.

From (16) and (17), we can obtain

b34́2 =

(
[d1 + �(1� ")V2](a+ d2 � b)(d3 + pZ2)

+ (d4 +mA0)[d1 + �(1� ")V2](a+ d2 � b)

+Nd3�
2(1� f)(1� ")2H2V2 + (a+ d2 � b)pcZ2I2

+ [d1 + �(1� ")V2]pcZ2I2 + (d4 +mA0)pcZ2I2

+
a(d4 +mA0)[d1 + �(1� ")V2]L2

I2

)(
(d4 +mA0)


(d3 + pZ2)(a+ d2 � b)

+ d1(d3 + pZ2) + (a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V2]

+
a(d4 +mA0)L2

I2

�
+ [d1 + �(1� ")V2]


(d3 + pZ2)[d1 + �(1� ")V2]

+ (a+ d2 � b)[d1 + �(1� ")V2] + (a+ d2 � b)(d4 +mA0)

+ (d4 +mA0)[d1 + �(1� ")V2]

�
+ (a+ d2 � b)


(d3 + pZ2)(a+ d2 � b)

+ (d3 + pZ2)[d1 + �(1� ")V2] + (a+ d2 � b)[d1 + �(1� ")V2]

+ (a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V2]

+
a(d4 +mA0)L2

I2

�
+ (d3 + pZ2)


(d3 + pZ2)(a+ d2 � b)
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+ (d3 + pZ2)[d1 + �(1� ")V2] + (a+ d2 � b)[d1 + �(1� ")V2]

+ (a+ d2 � b)(d4 +mA0) + (d4 +mA0)[d1 + �(1� ")V2] + pcZ2I2

+
a(d4 +mA0)L2

I2

�
+

a(d4 +mA0)L2

I2
�(1� ")V2

)
,

b1b5 =


d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2

�

⇥ (d4 +mA0)[d1 + �(1� ")V2](a+ d2 � b)pcZ2I2,

and

b
2
1b4 =

(
(d4 +mA0)[d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2]

+ [d1 + �(1� ")V2][d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2]

+ (a+ d2 � b)[d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2]

+ (d3 + pZ2)[d4 +mA0 + d1 + �(1� ")V2 + a+ d2 � b+ d3 + pZ2]

)

⇥
(
Nd3a�

2
f(1� ")2H2V2 + (a+ d2 � b)Nd3�

2(1� f)(1� ")2H2V2 + [d1

+ �(1� ")V2](a+ d2 � b)pcZ2I2 + (d4 +mA0)(a+ d2 � b)pcZ2I2

+ (d4 +mA0)[d1 + �(1� ")V2]pcZ2I2

)
.

After using the equalities f(1�")�H2V2+bL2 = aL2+d2L2, (1�f)(1�")�H2V2+
aL2 = d3I2 + pZ2I2 and Nd3I2 = d4V2 +mA0V2, and rearranging terms, we derive

4́3 =d1(a+ d2 � b)(d3 + pZ2)

(
4́2 �

a(d4 +mA0)L2

I2
�(1� ")V2

)

+ �(1� ")V2(a+ d2 � b)(d3 + pZ2)

(
4́2 � (d4 +mA0)


(d3 + pZ2)

⇥ (a+ d2 � b) + (a+ d2 � b)(d4 +mA0) +
a(d4 +mA0)L2

I2

�

� [d1 + �(1� ")V2](a+ d2 � b)(d4 +mA0)� (a+ d2 � b)2(d4 +mA0)

� (d3 + pZ2)
a(d4 +mA0)L2

I2
� a(a+ d2 � b)(d4 +mA0)L2

I2

)

+ d1(d4 +mA0)(a+ d2 � b)

(
4́2 � (d3 + pZ2)pcZ2I2

� a(d4 +mA0)L2

I2
�(1� ")V2

)

+ �(1� ")V2(a+ d2 � b)(d4 +mA0)

(
4́2 �

a(d4 +mA0)2L2

I2
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� a(a+ d2 � b)(d4 +mA0)L2

I2
� a(d3 + pZ2)(d4 +mA0)L2

I2

)

+
a(d4 +mA0)[d1 + �(1� ")V2]L2

I2

(
4́2 � [d1 + �(1� ")V2](a+ d2 � b)

⇥ �(1� ")V2 � (a+ d2 � b)2�(1� ")V2 � (a+ d2 � b)

⇥ (d4 +mA0)�(1� ")V2 � (d3 + pZ2)(a+ d2 � b)�(1� ")V2

)

+Nd3�
2(1� f)(1� ")2H2V2

(
(d4 +mA0)


d1(d3 + pZ2)

+ (d4 +mA0)[d1 + �(1� ")V2] +
a(d4 +mA0)L2

I2

�
+ [d1 + �(1� ")V2]

⇥

(d3 + pZ2)[d1 + �(1� ")V2] + (d4 +mA0)[d1 + �(1� ")V2]

�

+ (a+ d2 � b)
a(d4 +mA0)L2

I2
+ (d3 + pZ2)


(d3 + pZ2)[d1 + �(1� ")V2]

+ (d4 +mA0)[d1 + �(1� ")V2] + pcZ2I2 +
a(d4 +mA0)L2

I2

�

+
a(d4 +mA0)L2

I2
�(1� ")V2

)

+ (a+ d2 � b)pcZ2I2

(
(d4 +mA0)


d1(d3 + pZ2) +

a(d4 +mA0)L2

I2

�

+ (a+ d2 � b)


(d3 + pZ2)(a+ d2 � b) + (d3 + pZ2)[d1 + �(1� ")V2]

+
a(d4 +mA0)L2

I2

�

+ (d3 + pZ2)


(d3 + pZ2)(a+ d2 � b) + (a+ d2 � b)(d4 +mA0)

+ pcZ2I2 +
a(d4 +mA0)L2

I2

�
+

a(d4 +mA0)L2

I2
�(1� ")V2

)

+ [d1 + �(1� ")V2]pcZ2I2

(
(d4 +mA0)


d1(d3 + pZ2) +

a(d4 +mA0)L2

I2

�

+ [d1 + �(1� ")V2]
2(d3 + pZ2) + (a+ d2 � b)


(d3 + pZ2)[d1 + �(1� ")V2]

+
a(d4 +mA0)L2

I2

�
+ (d3 + pZ2)


(d3 + pZ2)(a+ d2 � b)

+ (d3 + pZ2)[d1 + �(1� ")V2] + pcZ2I2 +
a(d4 +mA0)L2

I2

�
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+
a(d4 +mA0)L2

I2
�(1� ")V2

)
+ (d4 +mA0)pcZ2I2

(
(d4 +mA0)

⇥

d1(d3 + pZ2) +

a(d4 +mA0)L2

I2

�

+ (a+ d2 � b)


(d4 +mA0)[d1 + �(1� ")V2] +

a(d4 +mA0)L2

I2

�

+ (d3 + pZ2)


pcZ2I2 +

a(d4 +mA0)L2

I2

�
+

a(d4 +mA0)L2

I2
�(1� ")V2

)
.

In the above equation, we subtract some terms from 4́2 to simplify the form.
However, it follows from (17) that these terms are all positive. This means that
4́3 > 0. Moreover,

4́4 =

��������

b1 1 0 0
b3 b2 b1 1
b5 b4 b3 b2

0 0 b5 b4

��������
= b44́3 � b2b54́2 + b1b4b5 � b

2
5,

By applying a similar approach, we can show that 4́4 > 0. From this, we obtain
4́5 = b54́4 > 0. By the Routh-Hurwitz criterion, we show that all roots of (15) have
negative real parts. Hence, the infected equilibrium with CTL immune response E2

is locally asymptotically stable when Rc > 1.
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