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ABSTRACT

The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful
as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with
a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper,
we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We
extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1
and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days
post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual
murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor
recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for
personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters
for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the
virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen.
Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and
after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC

death rate emerges as a long-term predictor of either disease-free survival or death.

1. Introduction

Approximately 350,000 people are newly diagnosed with brain
tumors across the globe each year, with about 250,000 deaths world-
wide (Ilic and Ilic (2023)[Fig. 1]). Of these brain tumors, glioblas-
toma (GBM) is the most aggressive and most common type—comprising
49% of all primary brain malignancies (Schaff and Mellinghoff, 2023).
People diagnosed with GBM start to experience symptoms such as
worsening headaches, seizures, memory loss or confusion, and un-
steadiness (Grant, 2004; Gilard et al., 2021). The current standard of
care is surgical resection followed by radiotherapy and chemother-
apy with temozolomide (TMZ), which has a median survival of 14.6
months (Stupp et al., 2005).

Preclinical studies and clinical trials are testing new therapies for
GBM with the aim to increase this survival time. One such therapy
is a combination of two immunotherapies: the immune checkpoint
inhibitor, anti-PD-1, and a CC-chemokine receptor-2 (CCR2) antagonist
that prevents the tumor-induced recruitment of immunosuppressive
myeloid-derived suppressor cells (MDSCs). These treatments have been
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tested as monotherapies and combination therapies in other cancers,
such as renal cell carcinoma and pancreatic ductal adenocarcinoma,
and hold promise for GBM (Orth et al., 2019; Choueiri et al., 2022;
Flores-Toro et al., 2020).

Anti-PD-1 is a monoclonal antibody designed to inhibit the PD-1
receptor of T cells in order to elicit an immune response to cancer.
PD-1 inhibitors, such as nivolumab and pembrolizumab, are currently
approved for the treatment of melanoma, non-small cell lung can-
cer (NSCLC), renal cell carcinoma, squamous cell carcinoma of the
head and neck, metastatic colorectal cancer, as well as urothelial,
esophageal, and gastric cancers, among others (Lee et al., 2022).

Anti-PD-1 causes fewer adverse events than many other immune
checkpoint inhibitors (Tanaka and Okamura, 2013); however, it is
not without its safety concerns. Common side effects include fatigue,
rash, nausea, weakness, shortness of breath, constipation, vomiting,
headache, and fever (Martins et al., 2019). About 10% of patients
treated with anti-PD-1 experience grade 3 or higher immune-related
adverse events (irAEs) (Martins et al., 2019), where irAEs are graded

E-mail addresses: hannahanderson@ufl.edu (H.G. Anderson), gtakacs@ufl.edu (G.P. Takacs), jharriso@ufl.edu (J.K. Harrison), libinrong@ufl.edu (L. Rong),

tstepien@ufl.edu (T.L. Stepien).

https://doi.org/10.1016/.jtbi.2024.111951

Received 25 April 2024; Received in revised form 7 August 2024; Accepted 16 September 2024

Available online 20 September 2024

0022-5193/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/yjtbi
https://www.elsevier.com/locate/yjtbi
mailto:hannahanderson@ufl.edu
mailto:gtakacs@ufl.edu
mailto:jharriso@ufl.edu
mailto:libinrong@ufl.edu
mailto:tstepien@ufl.edu
https://doi.org/10.1016/j.jtbi.2024.111951
https://doi.org/10.1016/j.jtbi.2024.111951
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2024.111951&domain=pdf
http://creativecommons.org/licenses/by/4.0/

H.G. Anderson et al.

on a scale of 1 to 5 (1 being mild, and 5 fatal) (Kumar et al., 2017;
Abdel-Wahab et al., 2017). Anti-PD-1 is often used concurrently with
another treatment, so given its toxicity profile, it is shrewd to combine
it with a therapeutic exhibiting fewer irAEs, such as a CCR2 antagonist.

A CCR2 antagonist is a small molecule which targets the CCL2/
CCR2 signaling pathway to prevent the recruitment of CCR2-expressing
monocytes and macrophages to the tumor site (Fei et al., 2021). CCR2-
expressing cells like myeloid-derived suppressor cells (MDSCs) aid in
immune suppression at the tumor site (Takacs et al., 2021). CCR2
antagonists (such as BMS-813160, PF-04136309, and CCX872) are
in clinical trials for pancreatic ductal adenocarcinoma (ClinicalTri-
als.gov [Internet]. Sidney Kimmel Comprehensive Cancer Center at
Johns Hopkins, 2019) and advanced renal cell carcinoma (ClinicalTri-
als.gov [Internet]. Bristol-Myers Squibb, 2017-2021), where both trials
use anti-PD-1 concurrently. CCR2+ MDSCs are found within the tumor
microenvironment of glioblastomas (Takacs et al., 2021), making CCR2
inhibition a desirable therapeutic mechanism for exploration.

CCR2 antagonists are relatively safe, so this immunotherapy is a
suitable option to combine with anti-PD-1. In a clinical trial for pan-
creatic ductal adenocarcinoma, combination treatment with the CCR2
antagonist BMS-813160 and anti-PD-1 was determined to be safe with
only one grade 3 or higher adverse event in a single patient (Christen-
son et al., 2023).

While both CCR2 inhibition and anti-PD-1 have failed as monother-
apies for glioblastoma, preclinical murine models have shown that a
CCR2 antagonist improves the efficacy of anti-PD-1 in cancers such
as glioblastoma, bladder, and breast cancer (Flores-Toro et al., 2020;
Tu et al., 2020). Since the combination therapy is efficacious in pre-
clinical models and tolerable in early phase clinical trials, we focus on
optimizing this treatment regimen using optimal control theory.

The goal of optimal control is to find the “controls” for a dynamical
system which allow us to reach a desired outcome by minimizing (or
maximizing) an objective functional. Optimal control theory has been
used to optimize policies and practices for a wide variety of industries
including economics (Sheng et al., 2014; Wu et al., 2015; Li et al.,
2019; Kaszkurewicz and Bhaya, 2022), aerospace technologies (Benson,
2005; Longuski et al., 2014; Villegas Diaz et al., 2019; Garcia-Heras
et al.,, 2019; Sun et al.,, 2019; Zhao et al., 2019), and the medical
field (Martin and Teo, 1994; Jung et al., 2002; Ledzewicz et al., 2013;
Wang and Schittler, 2016; Ledzewicz and Moore, 2017; Ratajczyk
et al., 2018; Moore et al., 2018; Fernandez and Pola, 2019; Ledzewicz
et al., 2019; Gutiérrez-Diez and Russo, 2020; Jarrett et al., 2020; Sharp
et al., 2020; Rautela et al., 2023; Luo et al., 2023; Valega-Mackenzie
et al.,, 2024). Control theory was even used in the development of
the “artificial pancreas,” which became FDA approved in 2016 for
patients with type 1 diabetes (FDA, 2016). This method has been used
to optimize oncology treatment (Luo et al., 2023), reduce the spread
of infectious diseases (Jung et al., 2002), and address chronic health
issues (Christodoulides et al., 2017). Within oncology, researchers have
used optimal control theory to improve the administration of various
therapies, such as chemotherapy (Martin and Teo, 1994), immunother-
apy (Ledzewicz et al., 2013), and radiation (Jarrett et al., 2020), and
have addressed different situations in oncology including drug resis-
tance (Rautela et al., 2023), tumor heterogeneity (Wang and Schéttler,
2016), combination therapy (Ratajczyk et al., 2018), and treatment
personalization (Gutiérrez-Diez and Russo, 2020). Optimal control the-
ory exhibits incredible potential to improve cancer therapeutics by
elucidating regimens which minimize both the tumor size and thera-
peutic dosages. These optimized regimens can decrease mortality rates
while improving patients’ quality of life through the minimization of
immune-related adverse events.

Many mathematical models of tumor-immune dynamics have been
developed (Sardar et al.,, 2024; Cherraf et al.,, 2023; Song et al.,
2021; Liu et al., 2021; Yin et al., 2019; Shariatpanahi et al., 2018;
Nikolopoulou et al., 2018; Lai and Friedman, 2017; Eladdadi et al.,
2014; de Pillis et al., 2005; de Pillis and Radunskaya, 2003), including
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Fig. 1. Tumor-immune interactions in glioblastoma when treated with anti-PD-1 and
a CCR2 antagonist. Flowchart created with BioRender.com.

a few that focus specifically on GBM (Anderson et al., 2023; Santurio
and Barros, 2022; Khajanchi, 2021; Storey et al., 2020). The basis of
our model stems from Lai and Friedman (2017), who developed a PDE
model of general tumor-immune dynamics incorporating the PD-L1-
PD-1 immune checkpoint and combination treatment with anti-PD-1
and a cancer vaccine. Nikolopoulou et al. (2018) then simplified it
into an ODE model of a general tumor and T cells with anti-PD-1
treatment. Shariatpanahi et al. (2018) also developed an ODE model
for the general tumor, but instead of incorporating the PD-L1-PD-1
immune checkpoint, they incorporated immune suppression via MDSCs
and implemented treatment with a chemotherapy. By drawing from
both Nikolopoulou et al. (2018) and Shariatpanahi et al. (2018), An-
derson et al. (2023) developed a treatment-free ODE model including
immune suppression via the PD-L1-PD-1 complex and MDSCs and made
it GBM-specific by estimating parameter distributions using data from
glioma-bearing mice. Here, we extend the ODE model of Anderson et al.
(2023), which incorporates tumor cells, T cells, and MDSCs, to include
treatment with anti-PD-1 and a CCR2 antagonist and subsequently
apply optimal control theory.

We optimize treatment for an average murine subject and then
consider characteristics of the resulting regimen. The greater aim,
however, is to scale this optimization to a virtual murine cohort of tens
of thousands of subjects to determine personalized treatment regimens.
During treatment, mice are categorized based on mortality or quality
of life concerns due to tumor burden or elevated drug toxicities. After
treatment, survival outcomes are determined by categorizing subjects
in terms of disease-free and/or progression-free survival, tumor re-
currence, and death. We obtain an estimate of the median survival
and determine a subpopulation of subjects best suited for concurrent
therapy with anti-PD-1 and a CCR2 antagonist.

The paper is organized as follows: in Section 2, we describe the
GBM-immune dynamics model with the inclusion of the two treat-
ments/controls (anti-PD-1 and the CCR2 antagonist), and then proceed
to describe the objective functional to be minimized using optimal
control theory in Section 3. In Section 4, we prepare for treatment
personalization by performing parameter identifiability analysis of the
treatment-free model. Treatment personalization results are presented
in Section 6 followed by a discussion of the results in Section 8.

2. Model

We adapt the GBM-specific tumor-immune dynamics model from
Anderson et al. (2023) to incorporate treatment with anti-PD-1 and
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Table 1
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Model parameters of the glioblastoma (GBM)-immune dynamics model (1) without treatment were determined using the approximate Bayesian computation (ABC) rejection method
in Anderson et al. (2023). The summary statistics of s,, were re-estimated here using the updated equation for MDSCs (1c).

Parameter Definition Units Best Fit Mean Median Mode SD
Glioma Cells (C)
Ac tumor cell growth rate day~! 0.431 0.272 0.250 0.174 0.114
Chax carrying capacity of tumor cells cell 3.04 x 10° 1.87 x 107 1.45 x 107 4.19 x 10° 1.48 x 107
n kill rate of tumor cells by T cells day! cell™! 2.57x 1078 1.84x 1077 1.27 x 1077 4.03x 1078 1.86 x 1077
T Cells (T)
ar T cell activation rate cell day! 3.26 x 10° 2.48 x 10° 2.45x 10° 1.98 x 10° 1.45 x 10°
sp rate of tumor cell-mediated day™! cell™? 8.56 % 10° 5.73x 10° 5.91x 10° 8.79 x 10° 2.63 % 10°
proliferation of T cells
P T cell inhibition rate by cell2 0.107 0.223 0.207 0.0768 0.142
formation of PD-L1-PD-1 complex
€c expression of PD-L1 in tumor - 16.2 37.5 31.1 7.00 29.3
cells vs. T cells
r T cell inhibition rate by MDSCs day! cell™! 6.92x 107° 2.85% 1073 1.83x 1073 3.60 x107° 2.76 x 1073
dy T cell death rate day™! 0.0221 0.402 0.415 0.656 0.213
Myeloid-Derived Suppressor Cells (M)
Spr MDSC recruitment rate by tumor day™! 0.0466 0.0476 0.0476 0.0392 0.0040
production of chemokines
dy MDSC death rate day! 0.251 0.258 0.263 0.419 0.143

a CCR2 antagonist. We consider the influence of these immunother-
apies on the number of tumor cells, C, activated T cells, T, and
myeloid-derived suppressor cells (MDSCs), M. Fig. 1 displays a visual
representation of the tumor-immune dynamics with treatment, and
Table 1 lists a description of each parameter along with its units and
summary statistics, and the resulting system of equations is

dc c
= = cl1-
ar = e ( C

) - nTC , (1a)
max N——
N— ———  illed by

logistic T cells
growth

T _( a + s,7C) ! - ITM - 4T,
dt —_—— —— 14+ p(T +e.C)(1 —u ()T ~ ——
activation  stimulation o by ,‘,r,‘y;u‘,::ncens death
DAL
(1b)
dM
o = mCU—w®)= dyM . (1o
—_— ——

stimulation by death
chemokines

Cancer growth is represented logistically, where A. is the tumor
growth rate, and C,,,, is the tumor carrying capacity. Upon interaction
with T cells, cancer cells are killed at a rate of 7.

T cell activation occurs at a rate of a;. The presence of a tumor
stimulates an immune response, thus resulting in an influx of T cells
to the tumor site at a rate of sp. Once at the tumor site, T cells
are inhibited by the formation of PD-L1-PD-1. We assume that the
interaction of PD-1 on T cells is proportional as p; T, and the interaction
of PD-L1 on T cells and tumor cells is proportional as p; (T + ¢-C),
where the level of tumor upregulation of PD-L1 is represented by the
parameter e.. Anti-PD-1 () binds to available PD-1 on T cells, thus
decreasing T cell inhibition by the PD-L1-PD-1 complex. Simplifying
due to parameter non-identifiability, total formation of the PD-L1-PD-1
complex is represented by

P +¢cC) pT (I—uy (1)) = p(T + €cC)(L = uy ()T @)
—_—— —— ——
PD-L1 PD-1 anti-PD-1

T cells are further inhibited by MDSCs at a rate of r, and they die
naturally at a rate of d;.

MDSC recruitment to the tumor site is in part a response to glioma
expression of chemokines CCL2 and CCL7, which are ligands of the
CCR2 receptor expressed by MDSCs (Takacs et al., 2022). A CCR2
antagonist (u,) decreases this recruitment by binding to the CCR2
receptor. Details of the derivation for the CCR2 antagonist term are
given in Appendix A. We assume that MDSCs die naturally at a rate of
dyy. For simplicity, although we included splenic expansion of MDSCs

in the model of Anderson et al. (2023), global sensitivity analysis using
the eFAST method showed that the model was insensitive to that term,
and thus, here in Eq. (1¢), we do not include it. Aside from the inclusion
of u(¢) and u,(¢) in (1), this deletion was our only modification to the
original (Anderson et al., 2023) model.

We define u,(r) to be the percent reduction of the PD-L1-PD-1
inhibition rate (p) by anti-PD-1 at time ¢ and u,(¢) to be the percent
reduction of the MDSC recruitment rate (s,,) by the CCR2 antagonist.
Both u,(r) and u,(¢) are considered to be Lebesgue integrable functions
for practical and numerical reasons, since this ensures that the per-
cent reduction is nonnegative and that the total cumulative percent
reduction is finite.

3. Formulation of treatment as an optimal control problem
We seek to minimize tumor burden, C, as well as toxicity of each

immunotherapy, u; and u,, to avoid immune-related adverse events
(irAEs). The optimal control problem can be stated as

Minimize J(u)= /0 ’f (C(t) + %u%(r) n %uﬁ(z)) d, (32)
subject to y = f(t,y,u) (1), (3b)
¥(0) = (Co, Tp, Mp),  y(t;) free, (3c)

and u() e, (3d)

where y = (C,T, M) and ¢, and ¢ ; are the initial and final treatment
time points, respectively. The space U is defined as

U = {(u,u) € Ll(to,tf) [ u(®) € [0,b,1x[0,b,] for all 1 € [#y, 1,1}, (4

where b, and b, are the maximum percentage that anti-PD-1, u;, and
the CCR2 antagonist, u,, can minimize PD-L1-PD-1 inhibition, p, and
MDSC recruitment, s,,, respectively, on the treatment interval [t,,7,].

In the objective functional (3a), the first term represents the cu-
mulative amount of tumor cells. Each immunotherapy is modeled
quadratically as convexity is mathematically advantageous for deter-
mining the minimum (Schittler and Ledzewicz, 2015). Weights w; and
w, are functions of the tumor carrying capacity, C,,,, to balance the
large tumor cell count with the considerably smaller dosage levels.
Unlike the fairly tolerable toxicity profile of CCR2 antagonists (Tu et al.,
2020), immune checkpoint inhibitors such as anti-PD-1 are often asso-
ciated with irAEs (Sandigursky and Mor, 2018). Therefore, we assume
that o, > w,. In Appendix B, we obtain the necessary conditions for op-
timality using Pontryagin’s minimum principle (Chiang (1999)[Ch. 71),
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which addresses the Hamiltonian, adjoint equations, and transversality
conditions to ensure there is a unique characterization of the optimal
pair, (uy,u,).

4. Parameter identifiability

In preparation for treatment personalization (Section 6), we perform
parameter identifiability analysis (IA) to determine suitable parameters
of interest (Guillaume et al., 2019; Miao et al., 2011). By determining
parameters which can be uniquely identified with data, this ensures
that markers found for treatment failure or success in Section 6 can
be used in practice. Errors in the model structure and the data are
both sources of parameter non-identifiability, and these errors result
in two categories of parameter identifiability: structural and practical.
Structural (or a priori) IA offers a best-case scenario approach where
the data set is assumed to be complete and noise-free and, thus, only
the structure of the model affects the unique structural identification
of parameters. Practical (or a posteriori) IA, on the other hand, offers a
real-world approach where errors in data collection such as data noise
and sparsity are taken into account.

We perform structural IA analytically using the differential algebra
approach developed by Audoly et al. (2001). An overview of the
method and its application to our model is stated in Appendix C. Results
show that the treatment-free model is globally structurally identifiable
with respect to tumor cell count data. This means that all parameters
can be uniquely identified given a completely thorough and accurate
data set on the tumor cell population. Thus, the model structure does
not need to be modified.

We numerically calculate practical IA in Appendix D using the
Fisher information matrix and profile likelihoods with murine data
from Anderson et al. (2023). Analysis of the Fisher information matrix
indicates that at most 5 parameters are practically identifiable, and
sensitivity analysis identified the 6 most sensitive parameters. Profile
likelihoods of the sensitive parameters showed that 5 are practically
identifiable: tumor growth rate (A¢), T cell kill rate (), inhibition rates
by PD-L1-PD-1 (p) and by MDSCs (r), and the MDSC death rate (d,,).
Since these can be identified using a sparse and noisy data set, we
conclude that these are suitable parameters to vary during treatment
personalization.

5. Experimental data

We briefly describe the experimental data sets used in our math-
ematical modeling study. Optimization of treatment regimens and
the occurrence of immune-related adverse events (irAEs) in simulated
treated mice (Section 6) utilized three sets of murine data where
anti-PD-1 and/or a CCR2 antagonist were administered.

In Tu et al. (2020), mice with implanted bladder or breast tumors
were treated with anti-PD-1 and a CCR2 antagonist. Tumor volumes
during treatment were measured for four treatment groups: no therapy,
anti-PD-1 monotherapy, CCR2 antagonist monotherapy, and combina-
tion therapy (Tu et al. (2020)[Figs. 2a and 4a]). Mice received 0.05 g of
anti-PD-1 on days 14, 18, and 21 for bladder tumors and days 10, 14,
and 17 for breast tumors post-implantation. Mice also received 2 mg/kg
of the CCR2 antagonist daily from day 14 to 30 for bladder tumors and
day 10 to 25 for breast tumors. This study used female C57BL/6J mice,
which were 9 weeks old or older at the start of treatment. We assume
that these mice weigh an average of 24 g (Gargiulo et al., 2014). Thus,
each dose amounts to roughly 0.05 mg of the CCR2 antagonist.

Flores-Toro et al. (2020) administered anti-PD-1 and a CCR2 antago-
nist to glioma-bearing mice and evaluated therapeutic efficacy. Starting
on day 7 after glioma implantation, the CCR2 antagonist was adminis-
tered twice daily for 21 days at a dose of 90 mg/kg. Anti-PD-1 admin-
istration also started on day 7 with a loading dose of 500 pg/100 pL,
followed by 4 doses of 200 pg/100 pL every three days. Approximately
60% of mice implanted with KR158 glioma cells survived to 100 days
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post-implantation (Flores-Toro et al. (2020)[Fig. 4B]). In mice, irAEs
are determined by the presence of immune infiltrates in organs outside
the tumor (Ferreira et al., 2021; Adam et al., 2021). Analysis of the
blood and lymph nodes showed no change in immune infiltrates when
mice were treated with or without the combination immunotherapy
(Flores-Toro et al. (2020)[Fig. S6]1). Therefore, we conclude that there
were no irAEs reported due to the regimen itself.

Adam et al. (2021) evaluated the occurrence of irAEs in mice due
to anti-PD-1 treatment in combination with CFA boosters or anti-CTLA-
4. In this experiment, mice were treated with anti-PD-1 twice a week
for a maximum of 6 weeks, which is more than the regimen in Flores-
Toro et al. (2020). irAEs occurred most frequently in the liver and lung
tissue. These events could be related to anti-PD-1, anti-CTLA-4, and/or
the CFA boosters.

6. Treatment personalization

In this section, we personalize treatment regimens for virtual mice
and then predict treatment outcomes. First, in Section 6.1, we estimate
the rate at which anti-PD-1 and the CCR2 antagonist reduce inhibition
by PD-L1-PD-1 and recruitment of MDSCs, respectively, using data
from Tu et al. (2020), and use this to determine bounds 5, and b, in
(4) for treatment. Then, in Section 6.2, we demonstrate an optimized
treatment regimen for an average mouse according to the optimal
control problem stated in Section 3. Lastly, in Sections 7.1-7.3, we
obtain two sets of 10,000 virtual mice by randomly sampling the 5
practically identifiable parameters determined in Section 4. The first
cohort represents subjects with a general tumor, and it is used to
determine general markers for mortality and quality of life concerns
during treatment and survival outcomes post-treatment in Sections 7.1
and 7.2, respectively. The second cohort represents subjects with GBM,
and in Section 7.3, the median survival of the GBM cohort is evaluated
and outcomes are compared between the two cohorts.

6.1. Therapeutic bounds for anti-PD-1 and CCR2 antagonist

We converted the tumor volumes reported in Tu et al. (2020) to cell
counts by assuming that density of epithelial tumors is approximately
108 cell/cm? (Del Monte, 2009). Using the average tumor size at each
time point, we re-estimated the five practically identifiable parameters
(Ac»> n, p, r, and d,,) for the treatment-free groups and set all other
parameters to the “Best Fit” values listed in Table 1. Given that the
tumor sizes were an order of magnitude larger than the glioma data
in Anderson et al. (2023), we also re-estimated the carrying capacity,
Chax- In each of the eight scenarios (2 without treatment, 6 with
treatment), we obtained parameter distributions E by accepting 20,000
parameter sets of lowest error from a set of 100,000 samples using the
approximate Bayesian computation (ABC) rejection method (Sunnaker
et al., 2013; Liepe et al., 2014; Anderson et al., 2023).

To quantify the efficacy of the doses reported in Tu et al. (2020) (see
Section 5), we replace the inhibition/recruitment percent reductions u;
and u, in model (1) with y,i;, where y; (grams™1) is the efficacy of
a therapeutic dose, #; (grams), for i = 1,2. Using the treatment-free
parameters of best fit in Table E.3, we obtained estimates of y,, d,, y,,
and d, for model (1) and additional equations

di; .
T=u1—dlu1, (53)
dii, ~
= =h- dyiiy, (5b)

where d, and d, (day~') are the rates of decay of anti-PD-1, ii;, and the
CCR2 antagonist, i,, respectively. For the groups receiving treatment,
parameter summary statistics are listed in Table E.4.

The “Best Fit” values in Table E.4 align with the mode of their
respective distributions, each of which had distinctive peaks, resulting
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from the ABC rejection method. The only exception is y, for anti-
PD-1 monotherapy in bladder cancer, which displayed a much higher
mode of 1.80 x 10* compared to the best fit of 6.21 x10°. However,
this higher mode corresponds to all other y; values for best fit, mean,
median, and mode listed in Table E.4.

To calculate estimates of the maximum percent reduction of the
PD-L1-PD-1 inhibition rate by anti-PD-1, b,, and the maximum percent
reduction of the MDSC recruitment rate by the CCR2 antagonist, b,, as
in (4) where u;(r) = y,ii;(t) < b;, we observe that the biological mecha-
nisms of anti-PD-1 and the CCR2 antagonist ensure that 1—y,i;(¢) should
be bounded below by 0 and above by 1. The largest bounds possible
given the combination treatment group values for y; and y, (Table E.4)
and doses from Tu et al. (2020) indicate that 5, = 0.8 and b, = 0.9.

6.2. Optimized treatment regimen

We demonstrate an optimized treatment regimen for a single vir-
tual mouse and compare it to previous experimental regimens de-
scribed in Section 5. The optimal control problem (3) is solved using
GPOPS-II (Patterson and Rao, 2014).

6.2.1. Explicit problem statement

On day 0, the virtual mouse is implanted with 35,000 glioma cells
Appendix D. At that time, we assume that there is a small T cell
population and no MDSCs at the tumor site, which corresponds to data
in Anderson et al. (2023)[Fig. 3], giving the initial conditions C(0) =
35,000, 7(0) = 100, and M (0) = 0. Treatment starts at #, = 7 days after
implantation and continues at most until 1, = 50 days. The treatment
start time corresponds to the regimen in Flores-Toro et al. (2020),
and the maximum treatment duration was chosen in accordance with
the (Adam et al., 2021) anti-PD-1 toxicity study, which treated mice
for a maximum of 6 weeks.

Thus, the optimal control problem (3) becomes

50
Minimize J(u;,u,) = / <C2 C) + 2u3(t) + u§(z)> dt, (62)
7 max
subject to y = f(t, y,u) (1), (6b)
¥(0) = (35000, 100,0), ¥(50) free, (6¢)

u;(t) €[0,0.8] and u,(r) € [0,0.9] for all ¢ € [7,50], (6d)

where C,,, is the tumor carrying capacity. Weights for the tumor bur-
den (C) and anti-PD-1 (u,) were twice as much as the CCR2 antagonist
(u,), since the lower toxicity profile of the CCR2 antagonist indicates
that it is more essential to minimize the tumor and anti-PD-1. Different
integer combinations from 1 to 10 were tested for the three weights,
and weight combinations where the tumor burden and anti-PD-1 were
weighted greater than the CCR2 antagonist yield similar results.

We assume that the cumulative percent reduction by anti-PD-1 and
the CCR2 antagonist satisfy

50 50
/ u(t) dt <15, / uy(t) dt < 30, @)
7 7

as this roughly aligns with the maximum number of treatment days in
the experimental regimens described in Section 5. Lastly, to ensure the
treatment terminates if it cannot decrease the tumor size, we assume
that the final tumor state is bounded above by the tumor size at the
start of treatment, C(7). Implementing these conditions, we solve the
problem (6) with GPOPS-II optimization software (Patterson and Rao,
2014). GPOPS-II utilizes Gaussian quadrature collocation methods to
approximate the continuous optimal control problem as a sparse non-
linear programming (NLP) problem. This NLP problem is then solved to
determine the optimal treatment regimen (u, (), u,()) to minimize the
objective functional (6a).
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6.2.2. Optimized regimen for an average mouse

Fig. 2 displays the optimized treatment regimen for the simulated
mouse associated with the “Best Fit” parameter set from Table 1. The
optimized treatment results in a substantial decrease in tumor burden
(C) where the final tumor size at the end of treatment is 1.9% of
the initial tumor size on day 7. Anti-PD-1 (u;) is administered over
four intervals, each of which are at the maximum allowable percent
reduction. The first two anti-PD-1 doses are at days 12 and 14, and then
anti-PD-1 is maintained at a constant level from day 26 to 44, where
it is then released quickly and then given one last dose. Comparably,
the CCR2 antagonist (u,) is administered at its maximum allowable
percent reduction from day 10 to 42 and then discontinued. Achieving
the maximum allowable percent reduction directly correlates with con-
centrating the therapy at the glioma site when treated at its maximum
effective dose, which is defined as the dose “beyond which additional
benefit would be unlikely to occur” (Guideline, 1999). Therefore, Fig. 2
showcases treatment with anti-PD-1 and the CCR2 antagonist at their
respective maximum effective dose.

Depending on the decay rates of anti-PD-1 and the CCR2 antag-
onist, maintaining these drugs at a constant percent reduction does
not necessarily mean constant administration. Flores-Toro et al. (2020)
administered anti-PD-1 every 3 days and the CCR2 antagonist twice
daily, which was very similar to the regimen in Tu et al. (2020).
Assuming that this treatment frequency produces a roughly constant
concentration of each drug at the glioma site, Fig. 2 suggests that an
optimal treatment for glioma-bearing mice is anti-PD-1 administration
on day 12 and then every three days starting on day 26 for six addi-
tional doses and CCR2 antagonist administration twice daily from day
10 to day 42. Both therapies are to be administered at their maximum
effective doses for each administration.

6.2.3. Comparison to experimental treatment regimens

Compared to the experimental regimens with combination im-
munotherapy in Flores-Toro et al. (2020) and Tu et al. (2020), the
computed optimal treatment regimen starts later after tumor implanta-
tion but lasts longer. In Flores-Toro et al. (2020), treatment started on
day 7 after glioma implantation for both therapies, while our optimized
regimen suggests initiation of the CCR2 antagonist on day 10 and anti-
PD-1 on day 12. These start times are more similar to the regimen for
breast tumors in Tu et al. (2020), which started the CCR2 antagonist
on day 10 and anti-PD-1 on day 17.

Further, Flores-Toro et al. (2020) had 5 doses of anti-PD-1 and 21
days of CCR2 antagonist treatment compared to our increased 7 doses
of anti-PD-1 and 32 days of the CCR2 antagonist. While this is more
anti-PD-1 doses than either Flores-Toro et al. (2020) or Tu et al. (2020),
it is less than the maximum 12 anti-PD-1 doses for mice tested in Adam
et al. (2021). We also see an increase in the number of CCR2 antagonist
treatment days compared to Tu et al. (2020), which treated tumors with
a CCR2 antagonist for a maximum of 26 days.

The most notable difference between our computed optimized reg-
imen and the experimental regiment in Flores-Toro et al. (2020) was
the initial dose of anti-PD-1. While Flores-Toro et al. (2020) had a
higher loading dose with lower subsequent maintenance doses, our
regimen suggests that anti-PD-1 should be administered at the same
dose. Further, our regimen suggests the first dose is two weeks before
subsequent anti-PD-1 doses, which is different from the constant dose
frequency of every 3 days in Flores-Toro et al. (2020).

7. Mortality and morbidity analysis in a virtual cohort

We predict the occurrence of mortality and impacted quality of life
(QoL) during the treatment interval in a virtual murine cohort. We
set a variety of thresholds to categorize the cohort and consider dose
escalation for more aggressive tumors (Section 7.1). Then, we evaluate
the long-term outcomes of mice in response to therapy (Section 7.2) and
repeat the mortality and morbidity analyses with a GBM-specific virtual
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Fig. 2. Example of optimized treatment for the best fitting parameter set from Table 1 according to the constraints stated in (6). Tumor was implanted on day 0. Treatment lasted
from day 7 to day 50. Virtual subject surpassed tumor mortality threshold and thus died on day 111.

murine cohort (Section 7.3). We assume that therapeutic efficacy is
determined by tumor reduction and QoL. Since impacted QoL can range
from mild to severe, more emphasis is placed on the role of tumor
reduction for treatment efficacy.

7.1. During treatment: Mortality and quality of life (QoL) concerns

Factors that affect mortality include the tumor size in relation to
its carrying capacity (C,,,,), and factors affecting QoL include tumor
burden and adverse events due to drug toxicities.

We set QoL thresholds for anti-PD-1 and the CCR2 antagonist based
on the regimens of Adam et al. (2021) and Flores-Toro et al. (2020)
as described in Section 5. We assume that QoL is not impacted unless
anti-PD-1 or the CCR2 antagonist is administered for a large number of
days at approximately their maximum percent reduction. Additionally,
since toxicity could be related to the cumulative dose instead of the
number of doses, we bound the cumulative percent reduction of the
two drugs.

Letting C be the number of tumor cells at any time from day O to
50, we therefore define the following mortality and QoL thresholds:

» Mortality:
C >09C,,,

QoL impacted by the tumor:

C > 05C,,,
or C > C(0) = 35,000 for more than half the treatment period

QoL impacted by anti-PD-1:
u; > by —0.05=0.75 for 12 days

50
or/ u () dt > 12b, = 9.6
7

QoL impacted by CCR2 antagonist:
u, > b, —0.05 = 0.85 for 25 days

50
or / uy(t) dt > 25by) =22.5
7

If a subject does not surpass any of the mortality or QoL thresholds,
we assume that there are no concerns during the treatment period.

7.1.1. Categorization of virtual cohort

10,000 virtual subjects were generated by approximate uniform
sampling of the five practically identifiable parameters (Section 4)
using Latin hypercube sampling within the parameter ranges from An-
derson et al. (2023). All other parameters were fixed to their “Best Fit”
values in Table 1. The optimized treatment regimen is determined for
each virtual mouse as described in Section 6.2. In Fig. 3, we plot 2D
projections of the 10,000 virtual subjects according to their mortality
and QoL concerns during the treatment period. Along the diagonal,
there are 1D projected histograms of the mortality and QoL concerns
according to each parameter. A pie chart divides the cohort into three
separate categories: mortality, impacted QoL, and no concerns.

Of the 10,000 virtual subjects, 73% experience an impacted QoL,
largely due to anti-PD-1 (99.6% of subjects with concerns). The CCR2
antagonist is less likely than anti-PD-1 to impact QoL, as 59.3% of the
concerns are related to this therapeutic. This suggests that most subjects
experience some level of side effects due to treatment administration.
Since more subjects experience side effects due to anti-PD-1, this is
likely due to the lower QoL threshold and the anti-tumor benefit
of exceeding this threshold. Approximately 4% of the 10,000 mice
experience mortality (1%) or an impacted QoL due to the tumor size
(3%), which shows that optimized regimens can control the tumor well
during treatment.

Fig. 3 indicates that subjects who die during treatment have a high
tumor growth rate (), low T cell kill rate (), and a high MDSC death
rate (d,,). In these cases, the mouse’s tumor is too aggressive and they
are too immunocompromised to respond to therapy. Although a high
MDSC death rate (d,,) is associated with death, it is also associated
with having neither mortality nor QoL concerns. Therefore, it is a
poor biomarker for outcomes during the treatment period. On the
other hand, a low MDSC death rate indicates that the subject may
experience QoL issues due to the CCR2 antagonist. For these mice,
their MDSC population is living longer, requiring an increase in CCR2
antagonist administration to control the MDSC-induced immune sup-
pression. Lastly, subjects presenting no mortality or QoL concerns had
low inhibition rates by PD-L1-PD-1 (p) and by MDSCs (r). These mice
experience less immune suppression from these inhibition mechanisms,
and thus needed less of either immunotherapy.

Fig. 4 illustrates the cumulative percent reduction of anti-PD-1
versus the CCR2 antagonist, which correlates with the cumulative dose
(Section 6.1). As tumor aggression increases, anti-PD-1 and the CCR2
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MDSC death rate (d),) was also a predictor of mortality during treatment, while a low MDSC death rate was associated with QoL concerns due to the CCR2 antagonist. The best
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Fig. 4. Scatter plot of the cumulative percent reduction of anti-PD-1 versus the CCR2
antagonist for each personalized treatment regimen from the virtual murine cohort.
Subjects are categorized with respect to mortality and quality of life (QoL) thresholds
from Section 7.1. For more aggressive tumors, the cumulative percent reductions of anti-
PD-1 and the CCR2 antagonist increase linearly as needed until reaching the specified
bound for anti-PD-1. Then, the CCR2 antagonist is increased until reaching its bound.

antagonist are increased linearly until reaching the upper bound for
the cumulative percent reduction of anti-PD-1 specified in Section 6.2.
Then, the CCR2 antagonist is increased until reaching its specified
upper bound. In general, virtual subjects who died were given the
highest allowed levels of both drugs, but this was unable to control their
aggressive tumor growth. A handful of mice who died were treated at
lower levels; this is likely due to even higher levels of tumor aggression,
as increased tumor growth caused the treatment to terminate early.

7.2. After treatment: Disease and progression-free survival, recurrence, and
failure

Since it is often standard to evaluate 2-year and 5-year survival
outcomes for human patients, we do the same but in terms of the
mouse lifespan. The average lifespan of mice is 836 days (Kunstyr and

Leuenberger, 1975). This value is based on data from C57BL/6 mice,
which is the breed used in Flores-Toro et al. (2020) and Tu et al. (2020).
Currently, in the US, the average lifespan is 76.1 years (Arias et al.,
2022), so we take a mouse “year” to be 11 days. Therefore, we evaluate
survival outcomes after 22 and 55 days.

Similar to Section 7.1, we assume that a virtual subject dies if their
tumor nears its carrying capacity (C,,,,) post-treatment. Assuming a
tumor is smaller than the mortality threshold (i.e., the subject is alive),
a subject is categorized as progression-free if their tumor is decreasing
after treatment or if there is little variation in the tumor sizes on the
last 10 days of the survival time period. Subjects with less than 1 tumor
cell remaining are considered disease-free.

Let C,, be the tumor cell count on the final day of treatment, and
let C, be the number of tumor cells » days after treatment. We define
the following thresholds, evaluated at n = 22, 55:

* Death:
C, >09C,,

ax
* Progression-free survival:

C,2C,

n
or | —% Y ¢;| <100 fori=n=-9,...n

j=n—-9
* Disease-free survival:
c, <1

We assume that all subjects not in these three categories experience
tumor recurrence.

7.2.1. Survival analysis

Fig. 5 illustrates the results for 2-year and 5-year survival analysis.
High tumor growth rate (A.), low T cell kill rate (), and high inhibition
rates by PD-L1-PD-1 (p) and by MDSCs (r) are all indicators of death
by both year 2 and year 5. Mice with these tumors are immune-
compromised with more aggressive tumors. A low MDSC death rate
(dy) is a marker for tumor recurrence by year 2 and death by year 5,
while a high d,, is a marker of disease-free survival by year 5. Subjects
with a high d,, have a mechanism by which to internally control
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Fig. 5. Survival analysis post-treatment where (A) and (B) represent 22 days (i.e., 2 mouse “years") and 55 days (i.e., 5 mouse “years"), respectively, after treatment termination.
The pie chart divides 10,000 subjects into the 4 survival categories. The diagonal displays a histogram for each category according to each practically identifiable parameter from
Section 4. The scatter plots beneath the diagonal show 2D projections of parameters and predicted disease-free survival, progression-free survival, tumor recurrence, and death.
A high tumor growth rate (4.), low T cell kill rate (), high inhibition rates by PD-L1-PD-1 (p) and by MDSCs (), and a low MDSC death rate (d,,) are markers of treatment

failure over time.

MDSC-induced immune suppression, while subjects with a low d,, are
gradually overcome by this form of immune suppression, leading to
tumor recurrence and death. A low A is also a marker of disease-free
survival by year 5, as the immune response of these subjects can more
easily control the slower tumor growth.

7.3. Glioblastoma (GBM)-specific virtual murine cohort

The general tumor virtual murine cohort studied in Sections 7.1-7.2
was sampled approximately uniformly from the identifiable parameter
space in order to clearly identify qualitative trends. However, to obtain
more realistic quantitative predictions, we generate a GBM virtual
murine cohort with parameter values sampled according to GBM-
specific probability distributions in Anderson et al. (2023)[Table 2]. In
particular, each practically identifiable parameter (4, #, p, r, and d,;)
is randomly sampled according to its probability distribution obtained

from GBM murine data, while the remaining parameters are set to the
“Best Fit” value from Table 1.

Fig. 6(a) categorizes the virtual GBM cohort according to quality of
life (QoL) and survival outcomes during and after treatment. Compared
to pie charts in Figs. 3 and 5, the GBM cohort is more likely to receive a
more aggressive personalized treatment regimen, as seen by an increase
in QoL concerns (73% compared to 82%). Further, virtual GBM subjects
are more likely to experience death or tumor recurrence after treatment
conclusion. For instance, 55 day survival outcomes show that mortality
increases from 6% to 15% and tumor recurrence increases from 19%
to 34%.

Fig. 6(b) shows the Kaplan-Meier survival curve for the virtual GBM
cohort and the percent of subjects that are disease-free at any time.
We assume that tumor implantation on day 0 occurs at least several
weeks after birth, so the remaining mouse lifespan is represented in the
figure. By day 300, the Kaplan-Meier survival curve starts to plateau
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Fig. 6. Survival analysis for the cohort of 10,000 virtual GBM mice after receiving a personalized optimal treatment regimen with anti-PD-1 and the CCR2 antagonist. The virtual
cohort was sampled using the GBM-specific distributions of the 5 practically identifiable parameters from Anderson et al. (2023)[Table 2]. (A) Pie charts represent the categorization
of the virtual GBM cohort during and after treatment. (Upper) During treatment, mice either die, experience an impacted quality of life (QoL) whether due to drug toxicities or
tumor size, or have no concerns. (Lower) After treatment, subjects are analyzed according to their 22 and 55 day survival outcomes (2 and 5 mouse “years", respectively). Subjects
are categorized by mortality, tumor recurrence, progression-free survival (PFS), or disease-free survival (DFS). (B) Tumors were implanted on day 0 and the treatment period lasted
from day 7 to 50. (Left) The Kaplan-Meier survival curve shows that 67.8% of mice survived to their full lifespan. (Right) Disease-free survival peaks on day 56 with 42.5% of
the cohort is categorized as disease-free. About 0.5% of the entire cohort remains disease-free until day 800.

until 67.8% of subjects remain at day 800. The percent of disease-free
subjects reaches 42.1% at the end of the treatment period (day 50) and
then peaks six days later at 42.5%. This continues to decline until day
800 when 0.5% of the cohort remains disease-free.

8. Discussion

Glioblastoma (GBM) is a highly aggressive primary brain tumor in
need of improved treatment strategies. A combination immunotherapy
regimen with anti-PD-1 and a CCR2 antagonist showed efficacy in
preclinical murine models (Flores-Toro et al.,, 2020). In this paper,
we extend the GBM-immune dynamics model from Anderson et al.
(2023) to include treatment with the combination immunotherapy
and formulate a treatment optimization problem in terms of optimal

control theory. The aim of this study was to obtain optimized, person-
alized treatment regimens for virtual subjects and predict markers of
treatment success and failure.

Before optimization, parameter identifiability analysis (Section 4)
was conducted with the treatment-free model to determine parame-
ters to highlight during personalization. The model was found to be
structurally identifiable with respect to tumor cell count data, meaning
that given enough noise-free tumor data, all model parameters can
theoretically be identified. Practical identifiability analysis was then
performed, and results show that murine data on tumor, T cells, and
MDSCs over the course of six time points was able to identify five
parameters, namely the tumor growth rate (1.), the T cell kill rate (r),
the inhibition rates by PD-L1-PD-1 (p) and by MDSCs (r), and the MDSC
death rate (d,,). Thus, since these parameters can be identified despite
sparse and noisy data, treatment personalization results regarding these
5 parameters can be used in practice.
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Within the subspace of the five practically identifiable parameters,
we sampled 10,000 virtual murine subjects and then optimized the
combination immunotherapy for each subject. Mice were then catego-
rized according to their predicted survival, mortality, and quality of
life outcomes (Sections 7.1 and 7.2), which led to identifying markers
for treatment failure and success. We specified thresholds to categorize
each subject, however, thresholds are more arbitrary than our work
demonstrates, so results are more suited to identify population trends
rather than concretely categorize an individual subject.

As can be expected, subjects with high tumor growth rates (4.)
and low T cell kill rates () were more likely to die during and after
treatment as seen in Figs. 3 and 5. For these mice, it is impossible
to amplify the immune response enough with the combination im-
munotherapy to overcome the aggressive tumor growth. Subjects with
higher inhibition rates by PD-L1-PD-1 (p) and by MDSCs (r) require
more aggressive treatment with anti-PD-1 and the CCR2 antagonist,
respectively, and are more likely to die after treatment due to the
increased immune suppression. Unexpectedly, the MDSC death rate
(dys) was a better predictor for a more aggressive treatment with the
CCR2 antagonist than r. Further, d,, was also a better indicator of long-
term survival than either of the immune suppression parameters p or r.
A low d,, predicts tumor recurrence by “year” 2 (day 22 post-treatment
in mice) and death by “year” 5 (day 55). The 5-year survival for GBM
has remained largely unchanged despite improvements to the median
and short-term overall survival in recent years (Cantrell et al., 2019;
Siegel et al., 2023); therefore, obtaining d,, as a predictor of treatment
success and failure by year 5 is a useful step forward. Note that the
GBM-specific distributions of the 5 identifiable parameters in Anderson
et al. (2023) were all right-skewed except for the MDSC death rate,
which exhibited a normal distribution. Thus, for GBM specifically, this
decreases the importance of trends identified on the upper ranges for
the tumor growth rate, T cell kill rate, and the inhibition rates by PD-
L1-PD-1 and by MDSCs, and increases the importance of the MDSC
death rate as a marker of long-term treatment failure or success.

Given data limitations, we bounded the anti-PD-1 and CCR2 an-
tagonist treatments by an estimate of the maximum percent that they
reduce PD-L1-PD-1 inhibition and MDSC recruitment, respectively. This
maximum percent reduction corresponds to the drug concentration at
the tumor site when the drug is administered at its maximum effective
dose. As we used time course data from Tu et al. (2020), which studied
bladder and breast tumor response to combination immunotherapy, we
would be able to better predict the maximum percent reduction and
drug decay rates for our GBM-specific model with data from gliomas.
In the future, we seek to obtain this data, re-estimate the efficacy and
decay of anti-PD-1 (y,, d,) and CCR2 antagonist (y,, d,) in glioblastoma,
and predict accurate doses and frequencies.

With these constraints in mind, we optimized treatment for a virtual
GBM murine subject represented by the parameter set of “Best Fit” from
Table 1 in Section 6.2. This parameter set was obtained in Anderson
et al. (2023) using average data from 17 glioma-bearing mice across
six time points. Therefore, although the regimen in Fig. 2 is optimized
for a specific mouse, it represents a suitable regimen for the average
mouse with GBM.

Fig. 2 suggests that the optimal treatment for glioma-bearing mice
is an increased tumor site concentration of anti-PD-1 on days 12, 14,
and 26 to 44, and the CCR2 antagonist from days 10 to 42, where both
drugs are administered at a dose and frequency that allows them to
obtain their maximum percent reductions during these periods. Com-
pared to the murine regimen for GBM in Flores-Toro et al. (2020), the
computed optimized treatment starts later after tumor implantation but
lasts longer. Both regimens had a single prolonged period of treatment
with the CCR2 antagonist. Unlike the computed optimized regimen,
the doses of anti-PD-1 were evenly spaced in Flores-Toro et al. (2020).
Further, Flores-Toro et al. (2020) had a higher loading dose compared
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to subsequent maintenance doses, but the optimized regimen suggests
anti-PD-1 be treated at a constant level.

Fig. 2 also shows the system dynamics of the virtual GBM mouse
post-treatment. According to the survival thresholds in Section 7.2,
we have tumor recurrence by “year” 2 post-treatment (day 72). By
“year” 5 (day 105), the subject is nearing death and by day 111, the
mortality threshold is exceeded and the subject dies. Although death
still occurred, the survival time of this virtual subject increased by
79 days, since the mortality threshold is exceeded by day 32 without
treatment. Our predicted survival time for the average non-treated
mouse is supported by the experimental median survival of 28 days for
non-treated glioma bearing mice in Flores-Toro et al. (2020)[Fig. 4B].
Further, although Flores-Toro et al. (2020) only evaluated survival
until 100 days post-implantation, the percent survival at day 100
is approximately 60%, thus corresponding to the 111 day predicted
survival of the average mouse post-implantation and treatment with
the combination immunotherapy. Additionally, the Kaplan-Meier sur-
vival curve for the virtual GBM cohort in Fig. 6(b) illustrates an 84%
survival on day 100, showing that the personalized optimal regimens
can improve outcomes in GBM compared to the current experimental
regimen.

While this work was specifically applied to GBM, similar parameter
ranges in Figs. 3 and 5 could be used for other cancers. Therefore, the
conclusions regarding markers for survival, mortality, and quality of
life apply to all cancers being treated with anti-PD-1 in combination
with a CCR2 antagonist. Results from our GBM subject in Section 6.2
and GBM-specific cohort in Section 7.3, however, do not apply to
other cancers. In order to replicate these findings for other cancers, it
would be necessary to re-estimate practically identifiable parameters
and their probability distributions to represent a particular tumor type
and then optimize therapy. This further exploration could be useful
for cancers like pancreatic, bladder, and breast cancer, which have all
been treated concurrently with anti-PD-1 and a CCR2 antagonist (Orth
et al., 2019; Tu et al., 2020). Since tumor size can vary significantly
depending on location, it will be necessary to also re-estimate the
tumor carrying capacity (C,,,) for different cancers. However, C,,,, is
practically unidentifiable, so the assumption will need to be made that
a fairly realistic prediction of this parameter is able to be obtained.
Further, since our objective functional uses C,,, as a weight to balance
minimizing the tumor burden and drug toxicities, one should consider
fixing the C,,, estimate for an entire tumor type to maintain consis-
tency in treatment predictions for a cohort. Although it was necessary
to use this practically unidentifiable parameter to weight the objective
functional, this aspect of our approach partially limits personalization
of the optimal control method.

Data limitations make it difficult to contain all the complexities
of GBM within any single model. Our model, as well as the founda-
tional (Anderson et al., 2023) model, differ from previous mathematical
representations of GBM by including myeloid-derived suppressor cells
(MDSCs). However, GBM exhibits a particularly complex immune en-
vironment with other immune cells, molecules, and checkpoints (Duer-
inck et al., 2023). Like our GBM-immune model, Storey et al. (2020) in-
cluded the PD-L1-PD-1 immune checkpoint while also modeling innate
and adaptive immunity. In the GBM-immune model by Khajanchi and
Nieto (2021), they included macrophages and two cytokines, namely
TGF-p and IFN-y. Santurio and Barros (2022) addressed CAR-T cells as
well as the wider brain microenvironment by introducing neurons and
glial cells. In the future, layering in additional layers of the immune and
brain microenvironment as well as barriers to treatment, such as GBM’s
highly heterogeneous nature and the blood-brain barrier (Cruz et al.,
2022), would enable the determination of more accurate responses to
treatment.

In conclusion, our work extends the original GBM-immune dy-
namics model by Anderson et al. (2023) to include combination im-
munotherapy with anti-PD-1 and a CCR2 antagonist. The methods
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used in this paper can easily be implemented to improve therapeutics
for other cancers. Optimized treatment regimens show an increase in
survival compared to experimental regimens, and results also identify
the MDSC death rate as a useful predictor of long-term survival for
GBM patients. While our predicted regimens are specifically for mice,
this work gives a basis for predicted treatment efficacy in humans. In
the future, more work would need to be done to test the optimized
regimens in mice and extend results to the human condition.
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Appendix A. CCR2 antagonist derivation

Myeloid-derived suppressor cells (MDSCs) are recruited to a tumor
site chemokinetically via the CCL2-CCR2 and CCL7-CCR2 axes (Takacs
et al.,, 2022). Treatment with a CCR2 antagonist, #,(7), prevents this
recruitment through blocking the CCR2 receptors of MDSCs. We model

the net change of CCR2 receptors outside of the brain to be
PRB = (1), (A1)

where py is the CCR2 expression of a single MDSC and g is the MDSC
growth rate.
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The rate of change of chemokines is expressed as

(py +p7)C, (A.2)

where p, and p; represent CCL2 and CCL7 expression, respectively, of
tumor cells.

For simplicity, we assume that CCL2 and CCL7 exhibit the same rate
of association, a, and dissociation, d, to the CCR2 receptor. Therefore,
the chemical reaction can be viewed as

(chemokines) + (available CCR2) % 0, (A.3)

where Q represents the chemokine-CCR2 complex. Assuming that this

reaction is in a quasi-steady state,
dQ = a(chemokines)(available CCR2). (A.4)

We conclude that the recruitment rate of MDSCs to the tumor site is

202+ ))CoRP ~ (1), (A5)
Due to parameter non-identifiability, we simplify this to
sy C(1L —uy (1)), (A.6)
where
a i (1)
sy = =(py + p7)pRP. uy(t) = . (A7)
M =2t p; PR 2 P

Appendix B. Necessary conditions for optimality

The optimal control problem (3) can be reduced to minimizing the
corresponding Hamiltonian with respect to u; and u,,

dT M

_ @1 o, D29 dc d
H(u],u2)—c+7“1-{-71424-}»]?‘}-/12?+/137, (B.1)
where 4;, i = 1,2,3, represents the adjoint function for the ith variable.

The Hamiltonian is constructed to satisfy the first of several conditions
for Pontryagin’s minimum principle (Chiang (1999)[Ch. 7]), namely
y; = 0H /04;, where y; is the ith state variable.

Pontryagin’s principle also imposes two conditions on the adjoint
functions,

: o0H

i=-2=,
' 9y
Ai(ty) =0,

(adjoint equation) (B.2a)

(transversality condition) (B.2b)

for i = 1,2,3, and where ¢ 7 is the final time point. Rewriting these
conditions by substituting the Hamiltonian (B.1) and the system of
model Egs. (1), we obtain

di oH 2C
— == =14 |4 -1 T
] G R
(s 4+ pT(1 —u))(syT — apec))T
_/12[ r TR | sy (- uy),
(14 p(T + ec)(1 —u))T)
(B.3a)
di, oH (p(1 = u))arQ2T + €cC) + s7T>C) — 57,C
— =——=4nC+ i ,
dt oT (14 p(T + ec)(1 —up)T)?
(B.3b)
di 9
d_f =y = AT+ Jady, (B.3¢c)
Aty =0, i=1,23. (B.3d)

Now, we seek to characterize the optimal treatment regimen,
(uy,uy).

Theorem 1. There exists a unique optimal pair, (u’lk ), u; (1)), that minimizes
the Hamiltonian (B.1), characterized by

, A
wi(1+ p(T + ecC)(1 —uDT)? = —w—z(aT + 5;TCO)PT(T + €.C)),
1


https://github.com/stepien-lab/%20glioma-Tcell-MDSC-treatment
https://github.com/stepien-lab/%20glioma-Tcell-MDSC-treatment
https://github.com/stepien-lab/%20glioma-Tcell-MDSC-treatment

H.G. Anderson et al.

. A
“; =min{max{0, —SsMC}, bz}A
)

L w s . _1 1

Further, the characterization of uj is unique unless u; = T (—ﬂ Trecor T 1),
where k =1 or k = 3.
Proof. Using the conditions of Corollary 4.1 in Fleming and Rishel
(2012), we prove that there exists an optimal pair minimizing J(u;,u,)
(3a) on U (4).

U is closed and convex, and the integrand of the objective func-
tional (3a),
(2} 2
o+ A2y 222

2 2

is convex with respect to u; and u,. Further, 4, % + /12% + /13% is
continuous on a compact set since the state equations are continuous
and bounded by Anderson et al. (2023). Lastly, Corollary 4.1 (Fleming
and Rishel, 2012) requires that

L(t,y,u) = u) 24 (B.4)

Lt,y,u) > ¢y ulf = ¢, (B.5)

where ¢, > 0 and § > 1. Since C > 0 (Anderson et al., 2023), this
lower bound for L(z, y,u) is trivially fulfilled by w,u?/2 + w,u? /2. Thus,
an optimal pair, (u;,u,), exists that minimizes the Hamiltonian (B.1).

When we minimize the Hamiltonian (B.1) with respect to u;, we
obtain an implicit characterization for u,,

+'12 dt '13 dt ]
(ar + spTCY(PT(T + €-C))
I+ p(T +e.0)(1 - ul)T)z]
This characterization is unique under certain conditions. To exhibit
this, we first rearrange (B.6) as

oH
0=a—ul—wlul+ [A]

=wu + 1, (B.6)

F(C,T,M,uy) = auy(1+p(T +ecO)(1 —u)T)’

+ A(ag + spTO(PT(T + €cC)), (B.7)
and differentiate with respect to u,
oF _ ) (14 p(T +€cC)Y1 —u)T) (14 p(T + ecC)(1 = 3u)T).  (B.8)

ou,y

By the implicit function theorem, if 0F/du; # 0 when evaluated at
(C,T,M,a,), then for the curve around (C,T, M,a,), we can write
= f(C,T, M), where f is a real function.
If T = 0, then 0F/ou; = w; > 0. Assuming T is nonzero, then
0F /ou; = 0 only when

1 1
=—|—=—==+1), here k=1 k=3, B.9
uy X (p(T+€CC)T > where or (B.9)
giving a condition for the uniqueness of the characterization of u,.
Minimizing the Hamiltonian (B.1) with respect to u,,
0= 2 iy 2 [ 4 1, L ]
Tou,  TH dr " %dar T
= wyuy + 23 [=sp C] . (B.10)
which implies that u, is uniquely characterized by
A
uy = = [sMC] . (B.11)
@3

Therefore, the optimal pair (uT,u’;) exists, and further, it is unique
under (B.9). O

Appendix C. Structural identifiability

Structural identifiability analysis investigates the ability to deter-
mine model parameters based on the structure of the model, without
regard for the available data set (Guillaume et al., 2019). If a model
is structurally non-identifiable, this suggests that the model structure
should be altered to be more suited for the available data, or the data
type should be reconsidered to be more applicable to the model.
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C.1. Overview of the differential algebra approach

Using concepts from differential algebra (Dummit and Foote, 2004),
Audoly et al. (2001) developed a method to identify the global struc-
tural identifiability of nonlinear models. This method generates input-
output equation(s), which can be used to uniquely estimate parameters,
and has been used to study the identifiability of several biological
models (Eisenberg and Jain, 2017; Eisenberg et al., 2013; Saccomani,
2010; Remien et al., 2021).

Definition 1. A parameter p; is globally (or uniquely) structurally iden-
tifiable if only a single value for p; results in the observed output; in
other words, the model output is injective almost everywhere with
respect to p;. In the weaker case, a parameter p; is locally (or non-
uniquely) structurally identifiable when a finite number of values for p;
generate the observed output. If a parameter is neither globally nor
locally structurally identifiable, then it is structurally non-identifiable.

Definition 2. A model is structurally non-identifiable if it has at least one
non-identifiable parameter, locally structurally identifiable if all parame-
ters are at least locally identifiable, and globally structurally identifiable
if all parameters are globally identifiable.

The differential algebra approach proceeds as follows. Consider the
system

(C.1a)
(C.1b)

x(p, 1) = f[x(p, 1), u(®), pl,
y(p, 1) = glx(p, 1), u(@), pl,

x(ty) = Xo,

where x, u, y, and p are vectors of states, inputs, outputs, and param-
eters, respectively, and f and g are vectors of polynomial or rational
functions in p and time ¢. Both the inputs, u, and outputs, y, come from
experimental data. The input, u, represents experimental changes to the
system (if any), while the output, y, is a measured variable, such as cell
population counts.

As in Ollivier (1990), the differential ring is R(p)[x,y,u], where
the variables are the states, input, and outputs, and where R(p) is
the ring generated by the parameters. The set of differential polyno-
mials, x(p,7) —f[x(p,),u(®),p] and y(p,?) — g[x(p, 1), u(r),p], generate a
differential ideal within R(p)[x,y,u].

Next, the variables are ranked to reduce computational complexity.
This is, in a sense, an ordering of the variables and their derivatives
within the differential ideal, just as one alphabetizes words depending
on the order of the alphabet. Using this ranking, differential polynomi-
als in the ideal can be strictly ordered to form chains, where any chain
of lowest rank is called a characteristic set. For this method, it has been
shown that the characteristic set is unique (Audoly et al., 2001; Ljung
and Glad, 1994). The ranking of variables results in the characteristic
set to be in triangular form. For example, if we determine that the
ranking of variables is u < y < x, the characteristic set is

fiwy)=0, fr(uy)=0, .., f,(ay =0, (C.2a)
g1y, x))=0, gy, x;,x)=0, ..., g,my,x},xp,...,x,)=0
(C.2b)

The input-output equation(s) are the polynomial(s) from the charac-
teristic set which only contain the input and output variables, i.e., the
polynomials f;. These polynomials can yield important information
regarding structural identifiability because they only use variables u
and y, which are explicitly known from the data.

Assuming that the variables of the input—output equation(s) do not
vanish, the coefficients of f; form a system of nonlinear equations
expressed as multivariable polynomials with respect to the parameters,
p- This set of coefficients is referred to as the exhaustive summary of the
model. Parameters can be uniquely determined using these coefficients,
as it is assumed that the exhaustive summary contains all structurally
identifiable combinations for the model.
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C.2. Structural identifiability of the treatment-free model

Using the differential algebra approach, we investigate the struc-
tural identifiability of the model (1) without treatment.

Theorem 2 (Structural Identifiability). The treatment-free model (1), with
u; =0 and u, = 0, is globally structurally identifiable from data quantifying

the total number of cancer cells.

Proof. The treatment-free model (1), with u; =0 and u, =0, is

dc C

— =icC(1- -4TC, C.3
dt ¢ < Cmax) r] ( a)
dT ar + sy TC

—=—L_1 — _ _TM-4;T, C.3b
dr T+ pT +ecOT T (€.3D)

Z—Af =5y C—dyM. (C.30)

The ranking C < M < T is given to the variables to ensure that the
input-output equation would consist of only one cell type, namely the
cancer cells, C. The characteristic set is f(C), g;(C, M), and g,(C, M, T),
and the input-output equation, f(C), contains information on model
identifiability.

To determine f(C), we first solve (C.3a) for T and input this into
(C.3b). Then, solving (C.3b) for M, we substitute this into (C.3c). This
produces an equation which is entirely in terms of the variable, C,
its derivatives, and the 11 positive and real parameters. We multiply
this by the lowest common denominator to obtain the input—output
equation, f(C), which contains 107 monomial terms.

Solving from the coefficients of the terms €8, CC7, C2C®, C2C7,
C2C3C, C3C3, Cc*C*C, C7¢, C7¢, €'9¢?, and C'5, we obtain unique
solutions for each of the 11 parameters. Thus, since all the individual
parameters are identifiable, the treatment-free model (C.3) is globally
structurally identifiable. []

If we were to consider structural identifiability from data quan-
tifying the total number of cells for all three cell types, the output
would be y = (C,T, M). Thus, the input-output equations would be
the entire characteristic set, which is obtained by rearranging sys-
tem (C.3) in polynomial form. The corresponding calculations with data
y = (C,T, M) are similar to those in proof of Theorem 2, and the model
is also globally structurally identifiable in this case.

Appendix D. Practical identifiability

Practical identifiability analysis determines the ability to uniquely
identify parameter values given a specific data set. Although a model
cannot be practically identifiable unless it is structurally identifiable,
structural identifiability does not imply practical identifiability (Guil-
laume et al., 2019), as structural identifiability assumes that the data
is noise-free and perfectly measured, which is unrealistic in practice.
Even if a model is globally structurally identifiable, it can be impossible
to accurately estimate parameters if the model is especially sensitive to
data sparsity or measurement errors, since these data issues can mask
principal features of the model dynamics (Eisenberg and Jain, 2017).

We use a sparse and noisy data set consisting of total cell counts
of cancer cells, T cells, and MDSCs in murine gliomas reported in An-
derson et al. (2023) to conduct practical identifiability analysis. Mice
were orthotopically implanted with 35,000 KR158 high-grade glioma
cells and then euthanized on days 7, 13, 20, 24, 27, and 34 following
glioma implantation. Fluorescent imaging and quantification produced
tumor, T cell, and MDSC cell count data for each tumor resection.

To fit the treatment-free model (C.3) to the experimental data set,
we use the gradient descent method and minimize the averaged least
squares error

n
_1 P 2 n
E_§<Z|C,~—C,-| +—

i=1

n—

2 n
Z|ﬁ—T,-|2+Z|M,._M,.|2), (D.1)

i=1 i=1
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Table D.2

Re-estimation of the six most sensitive parameter values of
the treatment-free model (C.3) using murine glioma data from
Anderson et al. (2023). The remaining model parameters were
fixed to the “Best Fit” values listed in Table 1, and then esti-
mation was performed by minimizing (D.1) using the gradient
descent method.

Parameter Value Units

e 0.483 day~!

Chax 1.17x 108 cell

n 1.62x 1077 day~! cell!
P 2.15 cell=2

r 1.29 x 1077 day~! cell!
dy 0.217 day~!

where the individual terms represent the least squares error with
respect to cancer cells, T cells, and MDSCs, respectively. 171\/, and W;
are the experimental and simulated data points, respectively, at the it
time point, for W = C,T, M. The experimental data points are taken to
be the averaged cell counts over multiple mice. The T cell error term is
weighted by n/(n — 2) because there are two fewer data points for the
T cells than the cancer cells and MDSCs.

D.1. Fisher information matrix

Defining the estimated parameters for one data set to be the set
(P}, spp s the next step is to calculate the Fisher information matrix
(FIM), which is used to numerically determine local identifiability. The
simplified FIM, F, is the Gramian of the sensitivity matrix, X, ie.,
dy

).,

F=XxTx,
op;

where Xy = (D.2)
for output y, time points ¢,,...,1,, and parameters p,, ..., p,.. For each
column i of X, we approximate the derivative of the output at each
data point with respect to parameter, p;, at the estimate, p;. The ranks
of the FIMs, F., Fr, and F);, calculated individually for each variable
(C, T, and M) were 4, 5, and 5, respectively, suggesting that at most

5 parameters can be identified with the cell population data.
D.2. Sensitivity analysis

Since there are 11 parameters in the treatment-free model (C.3)
but at most 5 appear to be practically identifiable, we additionally use
sensitivity analysis (SA), which evaluates the influence that shifting a
parameter value has on the model output, to narrow down the search
for identifiable parameters. This analysis has a forward approach, in
contrast to the backward approach of identifiability analysis, which
determines the effect that varying data has on parameter estimates.
Essentially, if a model is insensitive to a parameter, the parameter will
be non-identifiable (Guillaume et al., 2019).

In Anderson et al. (2023), sensitivity analysis of the treatment-free
model (C.3) indicated that the six most sensitive parameters are A,
Chax> > p» 1, and d,,. We fixed the remaining parameters to the “Best
Fit” values listed in Table 1, and then re-estimated the six sensitive
parameters by minimizing (D.1) using gradient descent. The estimated
parameter values are listed in Table D.2.

D.3. Profile likelihood

We generate profile likelihoods for the six parameters Ac, Cpu»
n, p, r, and d,, by first selecting one parameter, p;, and generating
20 uniformly distributed random samples of this parameter within the
neighborhood of its parameter estimate, p;. Then, using the gradient
descent method and minimizing (D.1), we fit the remaining parame-
ters to the data. Minimizing the least squares cost function (D.1) is
equivalent to maximizing the likelihood function (Renardy et al., 2022;
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Fig. D.7. Profile likelihoods for the tumor growth rate (4.), the tumor carrying capacity (C,

the tumor kill rate by T cells (r), the T cell inhibition rates by PD-L1-PD-1 (p)

max )’

and by MDSCs (r), and the MDSC death rate (d,,). Curves were determined by fixing parameter p; at points along the domain and then applying the gradient descent method with
murine data from Anderson et al. (2023) to find the minimal least squares error (D.1). The red point identifies the overall best fitting parameter set {Ac.,Cp 1. 0,7.dy } (given

in Table D.2), and the red dashed line indicates the 95% confidence interval. The lack of a relative minimum suggests that C,,

and d,, are practically identifiable.

ax is not practically identifiable, while A¢, #, p, r,
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Fig. D.8. Numerical simulations of tumor cells (C), T cells (T), and MDSCs (M) using the parameter estimates from Table D.2. Simulations are plotted alongside murine data

described in Anderson et al. (2023).

Eisenberg and Jain, 2017). The error (D.1) for each parameter p; is
plotted in Fig. D.7, and its estimated parameter value from Table D.2,
p;, is marked as a red point.

Similar to Raue et al. (2009) and Eisenberg and Jain (2017), we
calculate confidence intervals at a level of significance & = 0.05 for
each of the tested parameters p; by calculating the threshold

E() < EGD+ 3 7%@df), 0.3)

where y is the chi-squared distribution for df = 6 parameters. The
95% confidence intervals are indicated in Fig. D.7 with red dashed
lines. Narrower confidence intervals suggest higher confidence in the
parameter estimate, p;.

Profile likelihoods of identifiable parameters exhibit distinct local
minima, while structurally non-identifiable parameters have flat profile
likelihoods and practically non-identifiable parameters have shallow
minima. Thus, a profile likelihood which does not display a distinct
minimum suggests that the parameter is non-identifiable because many

14

values in the parameter domain generate a similar error. Fig. D.7
indicates that the cell population data can practically identify the
following parameters: the tumor growth rate (4.), the tumor kill rate by
T cells (n), the T cell inhibition rates by PD-L1-PD-1 (p) and by MDSCs
(r), and the MDSC death rate (d,,). This is consistent with the FIM
results D.1, which implied that there were five practically identifiable
parameters.

We conclude that A, n, p, r, and d,, are suitable targets for
treatment personalization, while the remaining parameters are prac-
tically non-identifiable. Numerical simulations using parameter esti-
mates from Table D.2 are plotted in Fig. D.8 alongside the experimental
data from Anderson et al. (2023).

Appendix E. Parameter summary statistics for Section 6.1

See Tables E.3 and E.4.



H.G. Anderson et al. Journal of Theoretical Biology 595 (2024) 111951

Table E.3

Parameter summary statistics for non-treated bladder and breast tumors in mice from Tu et al. (2020).
Parameters were obtained by accepting 20,000 parameter sets of the lowest error after testing 100,000 sets
using the ABC rejection method.

Parameter Bladder tumor Breast tumor
Best Fit 0.305 0.472
Mean 0.162 0.304
Ac Median 0.148 0.323
Mode 0.159 0.406
SD 0.104 0.129
Best Fit 6.36 x 107 5.81 x 107
Mean 2.43 x 108 2.44 x 108
[ Median 2.39 x 108 2.39 x 108
Mode 4.68 x 107 4.70 x 107
SD 1.45 x 10° 1.44 x 10°
Best Fit 5.46 x 1077 1.19 x 1078
Mean 3.81 x 1077 1.65 x 1077
n Median 3.29 x 1077 1.28 x 1077
Mode 9.67 x 1078 2.37 x 1078
SD 2.71 x 1077 1.39 x 1077
Best Fit 0.451 0.478
Mean 0.310 0.307
p Median 0.324 0.323
Mode 0.450 0.432
SD 0.124 0.129
Best Fit 2.58 x 1079 3.13 x 1079
Mean 5.90 x 107 573 x 107
r Median 6.18 x 107 6.01 x 107
Mode 8.94 x 1079 8.46 x 107
SD 2,63 x 1073 2.74 x 1073
Best Fit 0.332 0.336
Mean 0.227 0.226
dy Median 0.215 0.215
Mode 0.0664 0.0603
SD 0.145 0.144
Table E.4

Parameter summary statistics regarding treatment efficacy and decay. Parameters were obtained by accepting 20,000 parameter
sets of the lowest error after testing 100,000 sets using the ABC rejection method with bladder and breast tumor data from
Tu et al. (2020). The murine tumors were treated with either anti-PD-1 and/or a CCR2 antagonist.

Bladder tumor

Parameter Anti-PD-1 CCR2 antagonist Anti-PD-1 +
monotherapy monotherapy CCR2 antagonist
Best Fit 6.21 x 10° - 1.61 x 10*
Mean 1.42 x 10* - 1.16 x 10*
7 Median 1.52 x 10* - 1.26 x 10*
Mode 1.80 x 10* - 1.73 x 10*
SD 3.96 x 10° - 5.29 x 10°
Best Fit 1.01 - 1.69
Mean 2.94 - 4.17
d Median 2.58 - 3.29
Mode 1.69 - 1.73
SD 1.47 - 2.60
Best Fit - 2.00 x 10* 1.80 x 10*
Mean - 1.41 x 10* 1.31 x 10*
7 Median - 1.48 x 10* 1.40 x 10*
Mode - 1.84 x 10* 1.81 x 10*
SD - 4.07 x 10° 4.97 x 10°
Best Fit - 2.24 2.09
Mean - 2.05 3.78
d, Median - 2.90 2.90
Mode - 2.19 1.84
SD - 0.982 2.25

Breast tumor

Parameter Anti-PD-1 CCR2 antagonist Anti-PD-1 +
monotherapy monotherapy CCR2 antagonist

Best Fit 1.89 x 10* - 1.49 x 10*

Mean 1.43 x 10* - 1.20 x 10*

7 Median 1.53 x 10* - 1.30 x 10*

Mode 1.80 x 10* - 1.74 x 10*

SD 3.80 x 10° - 512 x 10°

(continued on next page)
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Table E.4 (continued).

Journal of Theoretical Biology 595 (2024) 111951

Best Fit 1.00 - 1.20
Mean 3.06 - 4.10
d, Median 2.69 - 3.26
Mode 1.80 - 1.76
SD 1.55 - 2.55
Best Fit - 1.99 x 10* 1.77 x 10*
Mean - 1.45 x 10* 1.31 x 10*
7 Median - 1.51 x 10* 1.41 x 10*
Mode - 1.85 x 10* 1.81 x 10*
SD - 3.83 x 10° 4.99 x 10°
Best Fit - 2.13 1.54
Mean - 3.14 3.88
d, Median - 2.98 2.97
Mode - 2.18 2.00
SD - 1.03 2.30
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