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Figure 1: AONeuS Experimental Results: Under the restricted baseline operating conditions commonly encountered in un-
derwater construction and navigation, camera-only reconstruction techniques (NeuS [Wang et al. 2021b]) and sonar-only
reconstruction techniques (NeuSIS [Qadri et al. 2023]) struggle to accurately recover 3D surface geometry. This is due to the
highly underdetermined nature of their respective measurement processes; cameras lack depth information, and imaging
sonars do not capture elevation information. We have developed a multimodal acoustic-optical neural surfaces reconstruction
framework (AONeuS) that effectively combines data from these complementary modalities.

ABSTRACT

Underwater perception and 3D surface reconstruction are chal-
lenging problems with broad applications in construction, security,
marine archaeology, and environmental monitoring. Treacherous
operating conditions, fragile surroundings, and limited navigation
control often dictate that submersibles restrict their range of mo-
tion and, thus, the baseline over which they can capture measure-
ments. In the context of 3D scene reconstruction, it is well-known
that smaller baselines make reconstruction more challenging. Our
work develops a physics-based multimodal acoustic-optical neu-
ral surface reconstruction framework (AONeuS) capable of effec-
tively integrating high-resolution RGB measurements with low-
resolution depth-resolved imaging sonar measurements. By fusing
these complementary modalities, our framework can reconstruct
accurate high-resolution 3D surfaces from measurements captured
over heavily-restricted baselines. Through extensive simulations
and in-lab experiments, we demonstrate that AONeuS dramatically
outperforms recent RGB-only and sonar-only inverse-differentiable-
rendering-based surface reconstruction methods.
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1 INTRODUCTION

The 3D reconstruction of underwater environments is an important
problem with applications in myriad fields, including underwater
construction, marine ecology, archaeology, mapping, inspection,
and surveillance [Albiez et al. 2015; Lin et al. 2023; Negahdaripour
2018; Wang et al. 2019b]. The underwater robots applied to this
task are typically equipped with both imaging sonars (i.e., acous-
tic cameras) and optical cameras [Lensgraf et al. 2021; Liu et al.
2023a]. These sensors capture complementary information about
their operating environments.

Forward-look imaging sonars consist of a uniform linear array
of transducers which, through beamforming, recover both range
and azimuth information (but not elevation). (3D imaging sonars



which record both azimuth and elevation also exist, but can be pro-
hibitively expensive.) Unlike light-based sensors, imaging sonars
are highly robust to scattering and low-light conditions. Unfortu-
nately, imaging sonars generally have poor spatial resolution; sonar
images of an object of interest often appear textureless and hard
to recognize; and imaging sonar measurements can suffer from
complex artifacts caused by multipath reflections and the variable
speed of sound passing through inhomogeneous water [Tinh and
Khanh 2021].

By contrast, optical cameras have high spatial resolution and
can resolve object appearance in great detail. However, in turbid
water light scattering and absorption can severely restrict the range
and contrast of optical cameras [Jaffe 2014]. Moreover, to recover
depth information passive optical sensors rely on large displace-
ments/baselines between measurements. In constrained operating
environments, such measurements are often inaccessible.

By leveraging the complementary strengths and weaknesses
of cameras and imaging sonars, acoustic-optical sensor fusion
promises to enable robust and high-resolution underwater per-
ception and scene reconstruction [Ferreira et al. 2016; Menna et al.
2018]. Existing contour matching based acoustic-optical reconstruc-
tion methods can already reconstruct accurate high-resolution 3D
surfaces [Babaee and Negahdaripour 2015]. Unfortunately, these
methods require a 360-degree view of the scene and are inapplicable
in the small-baseline operating conditions prevalent in real-world
unmanned underwater vehicle operation. Alternatively, one can
reconstruct the scene from optical and acoustic measurements in-
dependently and then fuse the result [Kim et al. 2019]. However,
this simple approach provides limited benefits over camera-only
surface reconstruction.

In this paper, we develop an inverse-differentiable-rendering-
based approach to acoustic-optical sensor fusion that can form
dense 3D surface reconstructions from camera and sonar measure-
ments captured across a small baseline. Our work consists of four
key contributions.

e We develop a physics-based multimodal acoustic-optical neu-
ral surface framework which simultaneously integrates RGB
and imaging sonar measurements. Our approach extends
the neural surfaces 3D reconstruction framework [Wang
et al. 2021b] by combining a unified representation of the
scene geometry with modality-specific (acoustic and optical)
representations of appearance.

o We conduct experiments on both synthetic and experimentally-
captured datasets and demonstrate our method can effec-
tively reconstruct high-fidelity surface geometry from noisy
measurements captured over limited baselines.

o We theoretically support our strong empirical performance
by analyzing the conditioning of the acoustic-optical forward
model. We show that the forward process associated with
triangulating a point in 3D from acoustic-optical measure-
ments is better conditioned and easier to invert the unimodal
forward models.

o We release a public dataset and open-source implementation
of our method.

Qadri et al.

2 RELATED WORK

Camera Imaging. Myriad works have investigated the use of
(optical) cameras for underwater 3D imaging. Johnson-Roberson
et al. [2010] proposed a feature-based stereo-optical SLAM system
for building 3D models. Iscar et al. [2017] presented a comprehen-
sive evaluation of different monocular and stereo software and
hardware systems targeting underwater imaging. However, these
techniques, which do not use sonar, have limited depth resolution
in small baseline scenarios. Roznere et al. [2023] proposed a multi-
view photometric stereo method for non-stationary underwater
robots 3D reconstruction that integrates ORB-SLAM [Mur-Artal
et al. 2015] with traditional photometric stereo. However, this tech-
nique requires active illumination and is sensitive to backscattering
in turbid waters.

Sonar Imaging. 3D reconstruction from sonar imagery is an im-
portant and widely studied problem. Over the last decade a variety
of 3D reconstruction methods have been proposed based on space
carving [Aykin and Negahdaripour 2015, 2016a], classical point-
cloud processing algorithms [Teixeira et al. 2016; Westman et al.
2020a], generative modeling [Aykin and Negahdaripour 2015, 2016b;
Negahdaripour et al. 2017; Westman and Kaess 2019], convex opti-
mization [Westman et al. 2020b], graph-based processing [Wang
et al. 2019a, 2018], and supervised machine learning [Arnold and
Wehbe 2022; DeBortoli et al. 2019; Wang et al. 2021a].

Last year, two research groups employed neural rendering to
enable breakthrough 3D sonar imaging performance. Qadri et al.
[2023] developed a Neural Implicit Surface Reconstruction Using
Imaging Sonar (NeuSIS) method which forms high-fidelity 3D sur-
face reconstructions from forward imaging sonar measurements
by combining neural surface representations with a novel acous-
tic differentiable volumetric renderer. Similarly, Reed et al. [2023]
employed neural rendering to recover 3D volumes from synthetic
aperture sonar measurements. The former method relies upon a
large number of sonar images captured over a large baseline while
the latter applies to synthetic aperture sonar, not forward imaging
sonar, and relies on access to raw time-based sonar measurements.
These methods represent the state-of-the-art in 3D surface recon-
struction with sonar.

To date, no method has effectively recovered a dense 3D scene
from 2D sonar images captured over a limited baseline. Without
additional constrains, e.g., optical measurements, or strong priors
the reconstruction problem is hopelessly underdetermined.

Neural Rendering. In their breakthrough neural radiance fields
(NeRF) paper, Mildenhall et al. [2020] combined neural signal rep-
resentations with differentiable volume rendering to perform novel
view synthesis. The underlying differentiable volume rendering
concept has since been extended to represent and recover scene
geometry. The Implicit Differentiable Renderer (IDR) approach, in-
troduced in [Yariv et al. 2020], represents geometry as the zero-level
set of a neural network and uses differentiable surface rendering to
fit the parameters of a neural network. IDR requires object masks
for supervision. Later methods, like Neural Surfaces (NeuS) [Wang
et al. 2021b], Unified Surfaces (UNISURF) [Oechsle et al. 2021], and
Volume Signed Distance Functions (VolSDF) [Yariv et al. 2021] com-
bine an implicit surface representation with differentiable volume
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rendering to recover 3D geometry from images without the need for
object masks. Recent work has sought to reduce the number of train-
ing images required [Long et al. 2022] and to accelerate rendering
to enable real-time applications [Yariv et al. 2023]. The inverse-
differentiable-rendering framework has also been extended to han-
dle measurements from a diverse range of sensors. Cross-spectral
radiance fields (X-NeRF) were proposed in [Poggi et al. 2022] to
model multispectral, infrared, and RGB images. Transient neural ra-
diance fields were proposed in [Malik et al. 2023] to model the mea-
surements from a single-photon lidar. Time-of-flight radiance fields
were proposed in [Attal et al. 2021] to model the measurements
from a continuous wave time-of-flight sensor. Polarization-aided
decomposition of radiance, or PANDORA, was proposed in [Dave
et al. 2022] to model polarimetric measurements of light. Radar
neural radiance fields (RaNeRF) were proposed in [Liu et al. 2023b]
to model inverse synthetic aperture radar measurements.

Recent research on neural fields has also addressed the small
baseline 3D reconstruction problem we tackle in our paper, but
leveraging natural small hand motions to improve depth recon-
struction instead of using multiple imaging modalities [Chugunov
et al. 2024, 2023, 2022].

Several recent works have modeled light scattering within the
neural rendering framework to improve reconstructions through
water [Levy et al. 2023; Sethuraman et al. 2023], haze [Chen et al.
2024], and fog [Ramazzina et al. 2023].

Multimodal Imaging. To overcome the disadvantages inherent
to using a single sensing modality, numerous multimodal sens-
ing algorithms have been developed [Bijelic et al. 2020; Kim et al.
2009; Lindell et al. 2018; Nishimura et al. 2020]. Most related to
our work, Babaee and Negahdaripour [2015] reconstruct 3D ob-
jects from RGB and sonar imagery by matching occluding contours
across RGB images and imaging sonar measurements, performing
stereo matching, and interpolating the curves in 3D space. Unfortu-
nately, this method is inapplicable to the small-baseline setting; it
fundamentally requires 360-degree views of the scene. Cardaillac
and Ludvigsen [2023] similarly use a camera and an imaging sonar
for 3D reconstruction by matching features between the acoustic
and optical measurements. However, this matching can be frail
and prone to errors. Kim et al. [2019] reconstructs a scene from
optical and acoustic measurements independently using classical
methods like COLMAP [Schonberger and Frahm 2016] and then
fuses the result. As we demonstrate in section 6.3, this approach
provides limited benefits over a purely optical approach and is not
competitive with state-of-the-art neural rendering based methods.

Outside of sonar, several neural-rendering based approaches to
sensor fusion have recently been developed. In Multimodal Neural
Radiance Field, Zhu et al. [2023] use neural rendering to combine
RGB, thermal, and point cloud data. Similarly, [Kim et al. 2023]
use neural rendering to combine multispectral measurements of
different polarizations and Carlson et al. [2023] fuse sparse lidar
and RGB measurements to build 3D occupancy grid of unbounded
scenes.

To our knowledge, ours is the first work to perform acoustic-
optical sensor fusion with neural rendering.

(d) Sample camera image

(c) Sample sonar image

Figure 2: Acoustic-Optical Measurement Processes. (a) RGB
measurement process and example measurement. Pixels
along a common ray passing through the camera center
map to the same image pixel on the image plane. (b) Sonar
measurement process and example measurement. In a sonar
image, the azimuth 6 and range r of the imaged object are
resolved. However, the elevation information ¢ is lost; all
objects located along the elevation arc (in blue) map to the
same pixel.

3 BACKGROUND

3.1 Imaging Sonars

Imaging sonars are active sensors that emit acoustic pulses and
measure the intensity of the reflected wave. They produce a 2D
acoustic image in which the range and azimuth of the imaged object
are resolved. However, the object’s elevation remains ambiguous.
Le., the reflecting object can be located anywhere on the elevation
arc (fig. 2) and the intensity of a pixel in a sonar image is propor-
tional to the cumulative reflected acoustic energy from all reflecting
points along the elevation arc.

3.2 Image Formation Model of an Imaging
Sonar

Similar to [Qadri et al. 2023], we use the following sonar image
formation model:
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where @min, Pmax are the minimum and maximum elevation angles,

E, is the acoustic energy emitted by the sonar. T = e~ ot Gugodr’

is the transmittance term, and o is the particle density. (See [Qadri

et al. 2023] for more details.)

3.3 Image Formation Model of an Optical
Camera

We adopt the optical camera image formation model proposed by
[Wang et al. 2021b] where a pixel intensity at (x, y) is approximated



by:
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where the integral is over the ray starting at the camera center and
passing through pixel (x,y). T, o are the transmittance and density
values at point p(t), and c¢(p(t),v) is the color of a point viewed
from direction v.

4 PROBLEM STATEMENT
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Figure 3: Acoustic-Optical Measurement Ambiguities. (a) Two
RGB measurements captured over a limited baseline strug-
gle to localize a point along the depth-axis. (b) Two sonar
measurements captured over a limited baseline struggle to
localize a point along the x-axis. Because they have orthog-
onal ambiguities, RGB and sonar measurements are highly
complementary.

Our goal in this work is to reconstruct the 3D surface of an un-
derwater object using a small collection of RGB and sonar measure-
ments captured over a limited baseline. Specifically, we assume ac-
cess to two datasets, D™ = {IF4M, PFON} and DN = {IF°7, P{o"},
consisting of RGB/sonar images and their respective poses.

Given a large dataset captured over a sufficiently diverse range of
poses (e.g., thousands of images captured from 360-degrees [Qadri
et al. 2023]), existing unimodal (camera-only/sonar-only) surface
reconstruction methods are already effective [Qadri et al. 2023;
Wang et al. 2021b]. In this work, we focus on the small baseline
operating conditions—pervasive in underwater robotics—where
optical cameras record insufficient information to recover depth
information (see fig. 3(a)) and imaging sonars record insufficient
information to recover elevation information (see fig. 3(b)).

Specifically, we introduce a physics-based multimodal inverse-
differentiable-rendering framework that integrates information
from both acoustic and optical sensors to generate accurate 3D
reconstructions. Our approach automatically exploits the comple-
mentary information (elevation/range) provided by each sensor.

Because our shared pool-based testing facility does not allow
us to introduce turbidity, in this work we focus on the clear-water
setting. Modeling the effects of light scattering in our forward
model [Chen et al. 2024; Levy et al. 2023; Ramazzina et al. 2023;
Sethuraman et al. 2023] would likely improve our system’s in-the-
wild performance.

Qadri et al.

5 METHOD
5.1 Acoustic-Optical NeuS

Our AONeusS reconstruction framework is illustrated in fig. 4. Fol-
lowing Qadri et al. [2023]; Wang et al. [2021b], we represent the ob-
ject’s surface using a Signed Distance Function (SDF), N(x), which
outputs the distance of each 3D point x = (X,Y, Z) to the nearest
surface. Distinct from these works, we use two separate rendering
neural networks (M®™ and M*°") that approximate the optical
and acoustic outgoing radiance at each spatial coordinate x. This
choice is motivated by the fact that different materials have differ-
ent acoustic and optical reflectance properties. For example, glass is
invisible to optical cameras but visible to imaging sonar, and PVC
is invisible to imaging sonar but visible to optical cameras.

In this work, we sample and sum points along acoustic and
optical rays to approximate the rendering integrals defined by eq. (1)
and eq. (2). Our rendering functions can be expressed as

porre) = > %T[X]“[X]Ms"“(x), and  (3)
Xeﬂpson

ey = ) TixlalxIM®™(x), &

bS] Rpcam

where Apson is the set of sampled points along the acoustic arc
at pixel p*°" and Rpeam is the set of sampled points along optical
ray passing through pixel p@™. MS°" and M®®™ are the predicted
radiances at x.

The computation of the discrete transmittance and opacity terms
in eq. (3) and eq. (4) requires sampling along both acoustic and op-
tical rays. For any such spatial sample xg, (i.e., any point along an
acoustic or optical ray), the discrete opacity at x; can be approxi-
mated as

q)q(N(Xs)) - q’q(N(XsH))
<I)q(N(Xs)) )

where ®g(x) = (1+ e~9%)~1 is the Sigmoid function and q is a
trainable parameter. The discrete transmittance is modeled as

Txl= [] (-alx). (©)

Xy | r<s

alxs] = max ( (5)

5.1.1 Loss Function. Our loss function comprises the sonar and
camera intensity losses:

1 N
L= om0 e = 1)l and 7)
PEPSOH
1 A
L= om0 ) - 10, ®)
pepcam

where P™ and P! is the set of sampled pixels in the camera
and sonar images respectively. We additionally use the eikonal loss
as an implicit regularization to encourage smooth reconstructions:

D UIVN)l2 - 1), ©)

xeX

1
Leik = =
X
where X is the set of all sampled points.

We also utilize an #; loss term as an additional prior term which
biases the network towards reconstructions that minimize the total
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Figure 4: AONeuS Reconstruction Framework. A shared sur-
face geometry SDF network N is used in combination with
rendering specific neural rendering modules. For each sam-
pled point x along an acoustic or optical ray, N outputs its
signed distance, its gradient as well as 2 features vectors F*°"
and F®®™ all serving as input to their respective rendering
networks. D*°™ and D™ are respectively the directions of
the acoustic and optical rays.

opacity of the scene (for example in cases where the object is on
the seafloor and only specific sides can be imaged):

1
Lieg = 757 2 Nlelxlll. (10)

xeX
Hence, our total loss is

L=a®) L+ (1 —a) LI + AeikLeik + Areg Lreg-  (11)

int int

The network is trained with the ADAM optimizer.

5.1.2  Weight Scheduling. The weights assigned to the sonar and
camera intensity losses (respectively a(t) and 1 — a(t) in eq. 11)
impact the reconstruction quality as they determine which mea-
surements the network should emphasize throughout training. We
adopt a simple two-step weighting scheme:

1if t < Ey,
t) = 12
a(t) {)LifEt<t<Ee. (12)

In the early iterations, t < E;, the sonar measurements are used
exclusively and serve to "mask” the object; i.e., update the weights of
the SDF network N to bias it towards reconstructions in which the
geometry of the object are better constrained in the depth direction.
This process establishes an initialization for the later iterations.

In later iterations, t > E;, more emphasis is placed on the camera
measurements. These measurements constrain the x and y direc-
tions and help resolve the elevation ambiguity inherent in sonar
data. In this phase, sonar measurements receive less weight and

World
Coordinates—

Camera image
plane

Sonar imagé
. ‘plang/

Figure 5: Simulation setup. We visualize the orientations of
the camera and the sonar relative to the scene, here a turtle,
in our simulation. The optical axis of the camera, the z axis of
its own local coordinate frame, is aligned with the Z axis of
the world coordinate frame. The elevation axis of the sonar,
the z axis of its own local coordinate frame, is aligned with
the —X axis of the world coordinate frame. Additionally, we
visualize the image planes of the camera and sonar, the 2D
planes onto which they project the 3D scene points.

act as a depth regularizer. See section A.3 of the appendix for a
comparison of our mixing procedure against different weighting
schemes.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the AONeuS on both synthetic and ex-
perimentally captured data. Hyperparameters for our experiments
can be found in section A.3 of the appendix material.

6.1 Notation

We use uppercase X)Y,Z to refer to the world coordinate system
and lowercase x,y,z to refer to sensor-specific coordinate systems.
See fig. 5.

6.2 Results on Synthetic Data

To generate synthetic measurements, we used a a custom-made
sonar simulator as well as Blender [Community 2022] for RGB
measurements to collect simulated sonar-camera datasets for var-
ious objects. The objects are assumed to be acoustically diffuse.
We investigate the impact specular reflections have on the perfor-
mance of our method in section A.1 of the appendix, which also lists
the values of the simulation parameters we used. The sonar and
camera are approximately collocated, and are translated linearly
over a short baseline along the X axis of the world frame for a
distance of 1.2 m with the sonar’s azimuthal plane parallel the YZ
plane in the world frame. The sonar’s azimuthal plane is oriented
orthogonal to the direction of motion to ensure the trajectory was
non-degenerate; multiple measurements captured from positions
within the azimuthal plane of the sonar would be highly redundant
and uninformative [Negahdaripour 2018].

For each object, the trajectory is sub-sampled into smaller base-
lines: 0.96 m, 0.72 m, 0.48 m, and 0.24 m for analysis. We scaled the
meshes so that the objects are approximately ~ 1m in size and
the sensors are placed about 1.5 m-2 m away from the object. The



elevation aperture of the sonar is 12°. We benchmark our method
against two methods: NeuS [Wang et al. 2021b] and NeuSIS [Qadri
et al. 2023], executing all methods 9 times with randomly initial-
ized seeds. To ensure we had reasonable camera-only results, we
provided NeuS with masks of the object. This information is not
required by nor provided to NeuSIS and AONeusS.

In fig. 8(a), we compare the reconstruction performance of all
three techniques for a total of five scenes. We could observe that
AONeus consistently reconstructs the scene geometry better than
NeuS and NeuSIS. Further, we can also observe that NeuS (camera-
only) incorrectly reconstructs the depth axis (Z-axis) whereas Neu-
SIS (sonar-only) can reconstruct only the depth-axis accurately. The
proposed AONeus was able to recover underlying scene geometry
along all the axes.

In fig. 8(b), we show the results for the turtle mesh for various
baselines. To visualize the ambiguities associated with camera and
sonar modalities and the benefit of the fusion algorithm, we ren-
dered the reconstructed meshes with a virtual camera pointing in
Y-axis. Hence, the rendered images are projections of the recon-
structed mesh on ZX-plane. As we decrease the baseline (top to
bottom), for NeuS, we observe an increasing loss of features along
depth direction: the back legs of the turtle are progressively lost
and depth-reconstruction worsens with decreasing baselines. For
sonar-only methods, significant ambiguities along the elevation
axis can be seen across all baselines: due to the limited transla-
tion of the sonar, the collected measurements are not enough to
constrain and resolve the turtle shell adequately. Our framework
AONeusS integrates orthogonal information from both imaging
modalities to yield reconstructions of higher quality across all base-
lines: all features of the turtle including its shell and its back legs
are clearly discernible. These observations are further supported by
the quantitative analysis in table 1 where we report the mean and
standard deviation of the Chamfer L; distance, precision, and recall
of the reconstructions over nine trials. The results demonstrate
that AONeusS outperforms the existing methods, particularly with
reduced baselines. Note that recall of NeuSIS appears to be slightly
better than AONeuS but that is only because the NeuSIS generates
a large blob that covers most part of the object. The per-baseline

Table 1: Metrics for synthetic turtle data. Best metrics are
bolded.

NeuS NeuSIS AONeuS
Chamfer ¥ | 0.123 +0.028 | 0.130 £ 0.013 | 0.075 = 0.006
1.2m PrecisionT | 0.653 +0.095 | 0.566 + 0.043 | 0.862 = 0.042
Recall T 0.526 £ 0.134 | 0.836 £ 0.022 | 0.825 + 0.056
Chamfer ¥ | 0.139 +0.024 | 0.134 £ 0.011 | 0.079 = 0.005
0.96m | Precision T | 0.602 +0.076 | 0.531 +0.031 | 0.840 +0.017
Recall T 0.470 £ 0.132 | 0.816 +£0.031 | 0.807 £ 0.017
Chamfer ¥ | 0.205 +0.027 | 0.135 £ 0.011 | 0.081 = 0.005
0.72m | Precision T | 0.423 +0.051 | 0.537 +0.062 | 0.810 % 0.032
Recall T 0.279 £ 0.071 | 0.768 + 0.029 | 0.792 £ 0.022
Chamfer ¥ | 0.249 +0.045 | 0.139 £ 0.012 | 0.088 = 0.006
0.48m | Precision T | 0.337 +0.062 | 0.470 +0.028 | 0.791 + 0.023
Recall T 0.189 + 0.074 | 0.706 + 0.028 | 0.770 £+ 0.023
Chamfer ¥ | 0.406 + 0.087 | 0.146 + 0.009 | 0.111 = 0.017
0.24m | Precision T | 0.223 +0.060 | 0.450 + 0.028 | 0.690 = 0.045
Recall T 0.107 £ 0.049 | 0.587 +0.042 | 0.679 + 0.042

Qadri et al.

(a) Dimensions of th:a test water tank

DIDSON Imaging Sonar  DVL
(c) Bluefin HAUV

o ‘,JnJ/ S

(b) Test Object

(d) FLIR Camera and watertight
enclosure

Figure 6: Experimental hardware setup. (a) Test water tank
used to conduct the experiments and its dimensions. (b) Test
object. (c) Bluefin Hovering Autonomous Underwater Vehicle
(HAUV) and its mounted hardware (Didson imaging sonar
and Doppler Velocity Log (DVL). (d) FLIR Blackfly S GigE
camera used for image capture and its watertight enclosure.

quantitative results for the remaining four meshes can be found in
section A.5 of the appendix.

6.3 Results on Experimentally-Captured Data

We also perform real-world experiments on an object (fig. 6b) sub-
merged in a water tank (fig. 6a). Please check the supplementary
video for more visualizations of the setup. The object is made of
standard wooden plywood of ~ 0.013m thickness and has an acous-
tic impedence of 2.5 x 10° kg/m?s. Our object is also covered in
a thin layer of insulating foam which increases its surface rough-
ness and makes it more diffuse. We used a SoundMetrics DIDSON
imaging sonar mounted on a Bluefin Hovering Autonomous Un-
derwater Vehicle (HAUV) (fig. 6¢) to capture two sonar datasets of
the test object with two different elevation apertures 14° and 28°.
The sonar operates at a frequency of 1.8MHz corresponding to a
wavelength of 0.833mm.! The vehicle uses an IMU and a Doppler
Velocity Log (DVL) to measure sonar pose information. We asyn-
chronously capture optical images of the same object using a FLIR

lassuming the speed of sound in water to equal ~ 1500m/s
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Blackfly S GigE 5MP camera (fig. 6d) with camera pose informa-
tion computed with COLMAP. To reduce the water-glass-air effect
inside the camera, we used a checkerboard, underwater, to mea-
sure our camera’s underwater intrinsic parameters. The sonar and
camera trajectories were aligned post-capture. Similar to the sim-
ulation setup, both camera and sonar followed an approximately
1.2m non-degenerate linear trajectory (~ 120 total sonar and RGB
measurements) , which we later sub-sampled into the same 5 base-
lines. Because any additional measurements captured along that
trajectory are highly redundant, adding additional measurements
(without added viewpoint diversity) has a limited effect on recon-
struction accuracy. We benchmarked our method against three
algorithms: The COLMAP based sensor fusion method introduced
in [Kim et al. 2019], NeuS [Wang et al. 2021b], and NeuSIS [Qadri
et al. 2023]. For each dataset and sensor baseline, we executed
each method six times with randomly initialized seeds except that
of [Kim et al. 2019], which is deterministic.

Qualitatively, we observe in fig. 9 that AONeuS outputs a more
complete shape across baselines compared to sonar-only (NeuSIS)
and camera-only (NeuS) only methods: the hole, two legs, and cross-
bar are clearly discernible. Conversely, when using only sonar, parts
of the object are not well reconstructed as we can observe, for ex-
ample, with the long leg with NeuSIS at 14°. Similarly, camera-only
methods result in the loss of features such as the hole accompanied
with significant introduced depth errors. We quantify the results in
table 10 of the appendix, in section A.5, where we report the mean
and standard deviation of the Chamfer L distance, precision, and
recall against the ground truth mesh computed over six trials with
different random seeds for training. We observe that the fusion
of the acoustic and optical signals generates higher quality recon-
struction, even with very short baselines measuring only 24 cm,
as indicated by the mean value of each metric. When comparing
AONeus with sonar-only methods (NeuSIS), we note that, despite
the increased elevation ambiguity introduced by the 28° elevation
aperture, our technique is able to leverage camera information
and its constraints in the x and y axes to resolve spatial locations
that are otherwise under-constrained when solely relying on sonar.
Techniques that rely on a camera only (NeuS) exhibit a decrease
in performance as the sensor baseline is reduced. Complement-
ing camera with sonar information introduces constraints in the
depth direction easing the resolution of depth which is known to
be difficult to resolve with limited camera motion. We additionally
emphasize the standard deviation of the Chamfer distance over the
random seeds: the fusion of both modalities result in outputs that
are more robust to the randomness of the algorithm (i.e. network
initialization, point samples, etc.).

7 DISCUSSION AND ANALYSIS

7.1 Distribution of per-Axis Errors

In fig. 10, we visualize the per-axis deviations from the ground
truth for the synthetic turtle scene at 0.24 m baseline. We compute
per-axis deviations by first determining the closest vertex in the
dense ground truth mesh and taking absolute differences in x, y,
and z coordinates. We histogram these deviations along all three

2COLMAP outputs a sparse pointcloud. Hence, a mesh was computed using the ball
pivoting algorithm [Bernardini et al. 1999].

axes and show them along rows in the fig. 10. We have repeated this
procedure for NeuS, NeuSIS, and AONeuS and show them along
the columns.

From the data, we can observe (1) NeuS has large deviations
along Z axes, (2) NeuSIS has large deviations along X axes. These
results are consistent with the ambiguities associated with their
respective measurement processes. AONeuS has low spread on
all axes as it captures the best of both camera (NeuS) and sonar
(NeuSIS) imaging modalities. Further analysis of the reconstruction
error can be found in section A.4 of the appendix.

7.2 Multimodal Sensing is Better Conditioned

The strong empirical performance of our multimodal reconstruc-
tions can be explained in terms of system conditioning. Given point
correspondences between measurements, it is far easier to triangu-
late a point using multimodal acoustic-optical measurements than
camera-only or sonar-only measurements.

Previous works have analyzed the conditioning of an imaging
system consisting of an acoustic-optical stereo pair [Negahdaripour
et al. 2009], e.g., a sonar (only) on the left and a camera (only) on
the right. In this work, we follow a similar analysis to characterize
a multimodal stereo pair, e.g., one co-located sonar and camera pair
on the left and another co-located sonar and camera pair on the
right. Our results follow closely from Negahdaripour’s analysis of a
stereo pair of 2D imaging sonars Negahdaripour [2018]; our stereo
camera measurements introduce four additional linear constraints
to the system’s forward model.

Consider a point P = [X, Y, Z]T that is observed by an acoustic-
optical sensor from two positions. The sonar’s azimuthal plane is
the yz plane, in its own coordinate system. The camera’s image
plane is the z = f plane, in its own coordinate system. Without loss
of generality, assume the sensor’s coordinate system at its initial
location is the world coordinate system and its coordinate system at
its second position is described by a rotation R and translation t =
[tx, ty, tz]. That is, the coordinate of point P in the new coordinate
system is P’ = RP +t.

Under this model, the acoustic-optical sensor records 8 measure-
ments:

f[l,0,0]P f[o, 1,0]P

X, = _—, = —_—,

“ 77 10,0,1]P Ye=1700,11P
0,1,0]P

R=IPI|, o=tan! (122010
[0,0,1]P

o= r€P+tx y,: r§P+ty

¢ P+t ¢ P+t
rlP+1¢

R =[R2+ [[t|Z + 2t'RP, @ =tan™' (2—2), (13)
t
r3P+tZ

where rj denotes the ith row of R.
Following Negahdaripour [2018]; Negahdaripour et al. [2009], we
can turn each of these measurements into seven linear constraints
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Figure 7: System Conditioning. Histograms of the condi-
tion numbers of the camera-only (top), sonar-only (middle),
and multimodal (bottom) forward models. Median condition
numbers are highlighted in red. The acoustic-optical mul-
timodal forward model is generally better conditioned and
easier to invert (triangulation).

and one non-linear constraint on P.

ApuiriP = b and ||P||2 = R? with

[ (_f, 0, xc) ] [ 0
(0,—f,yc) 0
(0,-1,tan(0)) 0
Apuiri = | xb—frt | andb=| ftx=xitz |, (14)
yéfé —fré fty —yetz
tan(9’)r§ - ré ty — tan(6')t,
t'‘R (R')Z—IZQZ—HtH2

One can similarly form camera-only, Ac,m, and sonar-only, Aoy,
forward models by considering only rows 1, 2, 4, and 5 and rows 3,
6, and 7, respectively, of A,,,,,;;;. By inverting these systems, one
can triangulate P in space. Here we perform Monte Carlo sampling
to compare the conditioning of Acam, Ason, and A,,,1;;- We sample
P uniformly in a 1 m> cube centered at (0, 0, 1.5) with edges parallel
to the x, y, and z axis; we assume f = 100 mm; we sample ty, ty,
and t; uniformly in the range 0 cm to 10 cm; and we sample the
yaw, pitch, and roll between measurements uniformly in the range
—5%to5°.

For each realization of these parameters, we compute the condi-
tion number, k, of Acam, Ason, and A,,,,,1;;. We repeat this process
50, 000 times to form histograms, illustrated in fig. 7. The condition
number of the multimodal system is generally much lower and the
system is thus easier to invert; multimodal triangulation is easier
as each sensor does indeed contribute complementary constraints .

8 LIMITATIONS

Currently, our approach is limited to clear-water settings and does
not accurately model effects such as optical scattering and water

Qadri et al.

absorption. Hence, using more sophisticated optical physical models
will be important when moving towards open-sea experiments.

Similar to other differentiable rendering methods, our approach is
too slow for online reconstruction (currently ~ 30 min) per scene
on an Nvidia 3090 GPU. Enabling real-time reconstruction is an
important direction for future work. Finally, we assume that our
robot’s trajectory is nearly orthogonal to the sonar’s azimuthal
plane: When the trajectory is within this plane additional sonar
measurements provide little information.

9 CONCLUSION

We have introduced and validated a multimodal inverse-differentiable-
rendering framework for reconstructing 3D surface information
from camera and sonar measurements. Our framework combines
camera and sonar information using a unified surface representa-
tion module and separate modality-specific appearance modules
and rendering functions. By extracting information from these com-
plementary modalities, our framework is able to offer breakthrough
underwater sensing capabilities for restricted baseline imaging sce-
narios. We have demonstrated that AONeuS can accurately recon-
struct the geometry of complex 3D objects from synthetic as well as
noisy, real-world measurements captured over severely restricted
baselines.

While we demonstrate the first neural fusion of camera and
sonar measurements, there are many interesting directions to ex-
plore this amalgamation. In section 5.1.2, we introduced a heuristic
for weighing camera and sonar measurements. A structured way
of combining the camera and sonar data, which is aware of the un-
certainties [Goli et al. 2023; Jiang et al. 2023] in the complementary
imaging systems could result in faster convergence rates and better
reconstructions.

The sonar we have used in our implementations are forward-
looking sonars. Fusion algorithms for side-scan sonars, synthetic-
aperture sonars, sonars of different ranges and wavelengths, could
be an interesting forward direction. Similarly, extending the tech-
nique for various geometries and materials including multi-object
scenes, dynamic scenes, cluttered scenes and scattering media
(murky water) would make AONeuS more practical. Finally, on-the-
fly reconstructions could allow one to select the best next under-
water view to improve reconstruction accuracy and further reduce
the required baseline and acquisition time.
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Figure 8: Simulated Small-Baseline Results. In (a), we visualize the reconstructions in simulation for all objects at 0.4x baseline,
or 0.48 meters. In (b), we visualize the reconstructions in simulation for the turtle across all baseline settings.
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Figure 9: Experimental Results with “h” Object. As the baseline diminishes, NeuS$ exhibits increasing amount of distortion
along the depth direction as can seen at the intersection of the short piling and crossbar at the 0.72m and 0.96m baselines.
NeusSIS similarly generates reconstructions with significant errors (for example, the long piling is poorly reconstructed with
the 14° elevation). Conversely, AONeuS consistently produces faithful reconstructions across a range of baselines.
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Figure 10: Per-axis error distributions. At 0.2x baseline for the turtle example, we plot the distributions of deviations from the
ground truth mesh along all three axes for NeuS, NeuSIS, and AONeuS$ reconstructions. The NeuS reconstruction has larger Z
errors, noticeable from the long tail, where as NeuSIS reconstruction has larger X errors. AONeuS$ has tighter distributions
along all three axes compared to NeuS or NeuSIS showing that the proposed technique takes the best of both of the imaging
modalities.
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A SUPPLEMENT

A.1 Effect of Acoustic Specularity on the
Reconstruction Accuracy

We investigate the reconstruction accuracy of AONeuS when imag-

ing acoustically-specular objects. Consider the following sonar

measurement formation model [Langer and Hebert 1991] that has

a diffuse and specular component,

1 a?
Ir = Cgjcosa+CqGla) ——exp |[—— |, (15)
cosa 202
diffuse
specular

where I, is the intensity of the reflection, « is the angle of incidence,
Cy4; and Cy; represent how strong the diffuse and specular compo-
nents are, relatively, o, is the standard deviation of slope of the
microfacet distribution which models the surface roughness, and
G(a) is a geometric attenuation factor [Nayar et al. 1991] which
represents how the microfacets might occlude each other. For sonar,

G(a) = min(1, 2 cos?(a)). (16)

We note that this is a modification of the extension of the Torrance-
Sparrow reflection model [Torrance and Sparrow 1967] developed
in [Nayar et al. 1991] that excludes the direct specular spike com-
ponent of the reflection and retains only the diffuse and specular
lobe components of the reflection. The rationale is that for a sonar,
the wave source and receiver are at the same position, so the sen-

sor receives only reflected in a direction towards it. Therefore, the
receiver will only receive the specular spike if the surface is close

to perfectly normal to the sensor, which rarely happens in practice.
The reflection geometry is described in more detail in fig. 11. For
the experiments in section 6.2, we set Cy; = 1 and Cg; = 0.

Diffuse Lobe

Diffuse Lobe

Specular Spike

Specular Spike

Sensor+Source

Specular Lobe Specular Lobe

Sensor+Source

(a) (b)

Figure 11: Comparing the received intensity for different
incidence angles. In (a), the sensor receives all components of
the reflection: the diffuse lobe, specular lobe, and the specular
spike. In (b), the sensor only receives the specular lobe and
the diffuse lobes, because those reflection components have
portions which are reflected under the normal to the surface,
where the sensor is, whereas the specular spike is completely
reflected above the normal of the surface, away from the
sensor.

In the following experiments, we focus on the specular compo-
nent of eq.15 (i.e. set Cg; = 0, C5; = 1) and investigate the effect of

varying the parameter o, (which models the width of the specular
lobe for purely acoustic specular reflections) on the reconstruction
quality of AONeuS. All experiments were ran on the 0.24 m baseline.
We visualize the qualitative results of the experiments in fig. 12,
which show that AONeuS can generate accurate reconstructions
even from specular imaging sonar data. Of note is that as the width
of the specular lobe decreases and becomes more narrow, the qual-
ity of the reconstruction decreases, implying that performing 3D
reconstruction becomes more difficult. The qualitative trends are
also validated by the quantitative results in table 2 to table 4. Here,
we note that for all three meshes we consider, AONeuS performs
best when o, = 1, or when the specular lobe is the widest, and for
certain geometries, like the turtle, the reconstruction performance
degrades at o, = 0.1.
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Figure 12: Reconstructions by AONeuS$ from RGB images and
specular imaging sonar measurements. As the width of the
specular lobe decreases, i.e. as o, decreases, we observe that
the performance of AONeuS decreases.

Table 2: Quantitative metrics, airplane mesh, specular data.

‘ Chamfer L1 | ‘ Precision T ‘ Recall T

0 =1.0 | 0.141 £0.026 | 0.558 £0.059 | 0.667 + 0.058
0 = 0.5 | 0.150 £0.020 | 0.503 £0.064 | 0.649 + 0.039
0q =0.1 | 0.149 £ 0.027 | 0.445 £ 0.079 | 0.629 + 0.054

Table 3: Quantitative metrics, lobster mesh, specular data.

‘ Chamfer L1 | ‘ Precision T ‘ Recall T
oq =1.0 | 0.186 £0.053 | 0.440 +£0.142 | 0.439 +0.174
0 =0.5 ] 0.183+0.035 | 0.468 £0.113 | 0.441 +0.120
0q =0.1 | 0.206 +0.040 | 0.329 +0.077 | 0.473 £0.142




Table 4: Quantitative metrics, turtle mesh, specular data.

‘ Chamfer L1 | ‘ Precision T ‘ Recall T
oq=1.0 | 0.116 £0.018 | 0.686 £ 0.045 | 0.691 + 0.045
0 =0.5 | 0.104£0.009 | 0.717 £0.048 | 0.720 + 0.045
oq = 0.1 | 0.191£0.027 | 0.533 £0.079 | 0.615 + 0.061

A.2 Hyperparameters

Table 5: List of hyperparameters.

Sonar dataset 1 Sonar dataset 2 . .
Parameter ° . ° . Simulation
14° elevation angle | 28° elevation angle

E; 4000 4000 2000

E. 8000 8000 5000
A 0.3 0.3 0.3
Aeik 0.01 0.1 0.1
Areg 0.1 1 0

A.3 Ablation Study (Weighting Schemes)

Table 6: Various weighting scheme. Experimenting on the
real object with 0.24m baseline. Values are averaged over 6
trials. Constant: fixed weights. Linear: Weights change lin-
early from initial to end values. Step: Weights are switched
from start to end value at iteration E;.

Camera + sonar at 14° elevation

Mode a(t) start | a(t) end || Chamfer L1{ | Precision T Recall T
Constant 0.5 0.5 0.120 £ 0.026 | 0.586 +£0.055 | 0.624 + 0.124
Constant 0.7 0.7 0.141 £ 0.046 | 0.582 +0.078 | 0.524 +0.133
Constant 0.3 0.3 0.093 £ 0.009 | 0.626 +0.049 | 0.741 £ 0.035

Linear 1 0 0.181 £0.036 | 0.513 +£0.040 | 0.388 + 0.088

Linear 0 1 0.108 £ 0.019 | 0.597 £0.056 | 0.670 + 0.092

Step 0 0.7 0.113 £0.010 | 0.542 +£0.042 | 0.695 +0.014
Step (Ours) 1 0.3 0.085 + 0.009 | 0.706 + 0.063 | 0.758 + 0.041
Camera + sonar at 28° elevation

Mode a(t) start | a(t) end || Chamfer L1{ | Precision T Recall T
Constant 0.5 0.5 0.131 £0.014 | 0.437 +£0.048 | 0.604 + 0.061
Constant 0.7 0.7 0.121 £0.008 | 0.513 +£0.038 | 0.585 + 0.036
Constant 0.3 0.3 0.141 £ 0.010 | 0.380 +0.042 | 0.595 + 0.046

Linear 1 0 0.140 £ 0.027 | 0.498 £0.076 | 0.590 + 0.101

Linear 0 1 0.144 £ 0.015 | 0.388 +£0.068 | 0.594 + 0.098

Step 0 0.7 0.139 £ 0.015 | 0.454 £0.068 | 0.572 + 0.086
Step (Ours) 1 0.3 0.108 £ 0.005 | 0.538 +0.022 | 0.695 + 0.036
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A.4 Variance of the Density Field Over
Realizations of the Algorithm
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Figure 13: Distribution of Reconstructions of the Real Object.
Top: Different Reconstructions from different random seeds
for the 0.24m baseline with the sonar elevation at 14°. Bot-
tom: Histogram distribution of the standard deviation of the
density field vs. voxel count. Neus’s distribution is heavily
tailed while NeuSIS’s distribution exhibits a large mean and
variance. AONeuS$’s distribution is light-tailed with a small
mean and therefore it is better constrained.
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A.5 Additional tables

Tables 7 to 10 provide additional quantitative metrics for our syn-

thetic experiments.

Table 7: Quantitative metrics for the airplane mesh.

Table 9: Quantitative metrics for the seastar mesh.

NeuS NeuSIS ‘ AONeuS

Chamfer | | 0.108 £0.020 | 0.177 £ 0.010 | 0.088 + 0.022

1.2m Precision T | 0.585 + 0.070 | 0.335+0.021 | 0.714 + 0.106
Recall T 0.722 £ 0.061 | 0.894 + 0.031 | 0.886 + 0.026

Chamfer | | 0.122 +0.030 | 0.170 £ 0.014 | 0.089 + 0.016

0.96m | Precision T | 0.539 £ 0.117 | 0.352 = 0.032 | 0.720 + 0.063
Recall T 0.689 +£0.122 | 0.848 +£0.022 | 0.829 +0.033

Chamfer | | 0.159 £0.035 | 0.171 +0.010 | 0.126 + 0.035

0.72m | Precision T | 0.435 +0.089 | 0.352 +0.033 | 0.571 £ 0.118
Recall T 0.550 £0.127 | 0.791 £ 0.026 | 0.764 £+ 0.092

Chamfer | | 0.255+0.041 | 0.170 + 0.006 | 0.143 + 0.046

0.48m | Precision T | 0.175 + 0.059 | 0.372 +0.019 | 0.486 + 0.121
Recall T 0.201 £ 0.081 | 0.742 £ 0.039 | 0.657 £ 0.080

Chamfer | | 0.548 +0.144 | 0.191 £ 0.006 | 0.196 + 0.033

0.24m | Precision T | 0.067 +0.038 | 0.344 +0.023 | 0.377 + 0.088
Recall T 0.071 +£0.045 | 0.627 £ 0.069 | 0.516 +0.072

NeuS | NeuSIS | AONeuS

Chamfer | | 0.112 +0.018 | 0.197 £0.011 | 0.117 +0.014

1.2m | Precision T | 0.652 +0.058 | 0.295 +0.019 | 0.582 + 0.053
Recall T 0.650 + 0.044 | 0.643 +£0.025 | 0.741 + 0.028

Chamfer | | 0.144 +£0.021 | 0.200 +0.019 | 0.134 +0.016

0.96m | Precision T | 0.559 +0.045 | 0.291+0.014 | 0.575 +0.017
Recall T 0.579 £ 0.042 | 0.650 +£0.043 | 0.697 + 0.027

Chamfer | | 0.146 +0.021 | 0.200 +0.016 | 0.141 + 0.023

0.72m | Precision T | 0.554 +0.052 | 0.289 +0.029 | 0.558 + 0.035
Recall T | 0.599 +0.039 | 0.629 +0.067 | 0.689 % 0.048

Chamfer | | 0.174+0.016 | 0.199 +0.012 | 0.146 = 0.033

0.48m | Precision T | 0.468 +0.039 | 0.287 +0.047 | 0.533 + 0.087
Recall T 0.516 + 0.040 | 0.569 +0.076 | 0.668 + 0.044

Chamfer | | 0.223 +£0.046 | 0.182 +0.011 | 0.166 + 0.034

0.24m | Precision T | 0.341+0.090 | 0.358 % 0.042 | 0.451 +0.103
Recall T 0.413 £0.072 | 0.555 +£0.069 | 0.644 + 0.045

Table 10: Quantitative metrics for the shell mesh.

Table 8: Quantitative metrics for the lobster mesh.

Neus NeuSIS | AONeuS

Chamfer | | 0.063 =0.002 | 0.077 £0.010 | 0.066 % 0.006

12m | Precision T | 0.847 0.011 | 0.754 +0.066 | 0.858 + 0.024
Recall 1 | 0.941+0.018 | 0.814 +0.035 | 0.844 = 0.038

Chamfer | | 0.068 +0.005 | 0.078 +0.012 | 0.078 % 0.006

0.96m | Precision 1 | 0.833 =0.023 | 0.756 +0.072 | 0.816 % 0.022
Recall 1 | 0.929 +0.020 | 0.803 +0.043 | 0.794 + 0.031

Chamfer | | 0.078 £0.006 | 0.091 +0.016 | 0.090 % 0.006

0.72m | Precision T | 0.769 +0.035 | 0.747 +0.086 | 0.774 +0.029
Recall T | 0.876 +0.044 | 0.746 = 0.075 | 0.730 + 0.021

Chamfer | | 0.107 +0.014 | 0.107 0.017 | 0.098 +0.009

0.48m | Precision T | 0.620 +£0.064 | 0.791 + 0.077 | 0.714 + 0.031
Recall T | 0.690 +0.084 | 0.676 +0.078 | 0.691 +0.037

Chamfer | | 0.199 +0.029 | 0.168 +0.008 | 0.109 +0.010

0.24m | Precision T | 0.309 +0.028 | 0.832 % 0.041 | 0.667 % 0.048
Recall T | 0.302+0.029 | 0.465+0.032 | 0.640 +0.047

NeuS | NeuSIS | AONeuS

Chamfer | | 0.147 £0.017 | 0.187 £0.012 | 0.105 0.019

1.2m | Precision T | 0.448 +0.073 | 0.328 £0.020 | 0.592 % 0.110
Recall T | 0.454+0.100 | 0.460 +0.037 | 0.626  0.090

Chamfer | | 0.167 +0.027 | 0.203 +0.014 | 0.142 +0.074

0.96m | Precision T | 0.394+0.070 | 0.302 0.025 | 0.534 +0.230
Recall T | 0.398 +0.106 | 0.445 +0.033 | 0.533 + 0.228

Chamfer | | 0.191+0.019 | 0.225 +0.030 | 0.128 = 0.021

0.72m | Precision T | 0.357 % 0.053 | 0.275+0.040 | 0.533 +0.112
Recall T | 0.417 +0.077 | 0.390 +0.040 | 0.576 = 0.105
Chamfer | | 0.237 +0.039 | 0.243 £0.019 | 0.143 £ 0.015

0.48m | Precision T | 0.321%0.062 | 0.257 +0.012 | 0.523 £ 0.069
Recall T | 0.392+0.091 | 0.370 +0.017 | 0.577 +0.043

Chamfer | | 0.293 +0.044 | 0.272 +0.055 | 0.186 + 0.034

0.24m | Precision T | 0.251%0.049 | 0.225+0.039 | 0.440 £ 0.116
Recall T | 0.277 +0.103 | 0.290 £ 0.076 | 0.483 = 0.130
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Table 11: For the hardware reconstruction of "H" object, we report the mean and standard deviation of the Chamfer L1 distance,
precision, and recall (with a threshold of 0.05 m) compared to the ground truth (obtained from a laser scan of the real structure)
for various reconstruction techniques. We computed the standard deviation over 6 trials. For all methods, we compute the
metrics for the intermediate reconstructions throughout training and report the best results.

Sonar dataset 1 Sonar dataset 2
14° elevation angle 28° elevation angle
Baseline Metric NeusS Kim et al. NeuSIS AONeuS NeuSIS AONeuS

(2019) (14°) (14°) (28°) (28°)
1.2m Chamfer L1 i 0.092 + 0.015 0.177 0.159 £ 0.032 | 0.092 + 0.007 | 0.151 +£0.014 | 0.101 + 0.007
Precision T 0.693 + 0.066 0.336 0.553 £ 0.074 | 0.661 +0.040 | 0.513 £ 0.061 | 0.569 + 0.066
Recall T 0.679 + 0.098 0.387 0.417 £ 0.056 | 0.708 + 0.046 | 0.583 + 0.068 | 0.702 + 0.049
0.96m Chamfer L1 ! 0.107 £ 0.013 0.182 0.158 £ 0.023 | 0.088 +£0.007 | 0.154 +0.012 | 0.093 + 0.004
Precision T 0.661 + 0.048 0.318 0.560 = 0.068 | 0.687 +£0.019 | 0.500 = 0.026 | 0.602 + 0.045
Recall T 0.563 + 0.084 0.345 0.420 £ 0.058 | 0.722 +£0.039 | 0.562 +0.042 | 0.723 + 0.034
0.72m Chamfer L1 ! 0.127 £ 0.013 0.178 0.167 £ 0.029 | 0.095 +0.008 | 0.154 +0.013 | 0.088 + 0.003
Precision T 0.651 + 0.047 0.368 0.562 + 0.077 | 0.667 = 0.041 | 0.502 + 0.054 | 0.636 = 0.025
Recall T 0.500 + 0.062 0.396 0.402 £ 0.057 | 0.688 = 0.008 | 0.586 + 0.043 | 0.748 £+ 0.026
0.48m Chamfer L1 ! 0.150 + 0.022 0.179 0.170 £ 0.028 | 0.089 = 0.005 | 0.143 + 0.007 | 0.086 + 0.001
Precision T 0.626 = 0.055 0.324 0.543 + 0.045 | 0.668 £ 0.006 | 0.547 = 0.021 | 0.636 = 0.022
Recall T 0.415 + 0.022 0.218 0.395 £ 0.066 | 0.726 = 0.021 | 0.605 + 0.021 | 0.757 £ 0.019
0.24m Chamfer L1 ! 0.167 £ 0.012 0.198 0.163 £ 0.019 | 0.085 £ 0.009 | 0.148 +£0.017 | 0.108 + 0.005
Precision T 0.580 + 0.031 0.305 0.551 £ 0.058 | 0.706 + 0.063 | 0.481 = 0.056 | 0.538 = 0.022
Recall T 0.363 + 0.056 0.140 0.385 £ 0.039 | 0.758 £0.041 | 0.529 +0.047 | 0.695 + 0.036
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