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Abstract—The exponential increase in data has significantly
burdened data centers with heightened operational demands
and challenges in managing, storing, and processing information.
Computational Storage Drives (CSDs) mitigate these issues by ac-
celerating processes, reducing energy consumption, and liberating
CPU resources for other data center tasks. In light of the notable
increase in harnessing the pattern recognition capabilities of
Machine Learning (ML) for a variety of data center applications
coupled with the aforementioned advantages of leveraging CSDs
in data center environments, we build upon the state-of-the-
art in CSD development via proposing a unique method for
offloading ML inference to CSDs, such as Samsung’s SmartSSD.
Using various parallelization and optimization techniques, we
demonstrate that the proposed CSD-based ML inference method
surpasses the inference speed of a high-performance GPU by
344.6 x. We further showcase the ability of the presented ap-
proach to promptly detect ransomware with high accuracy,
precision, recall, and F1 scores, enabling effective and timely
mitigation directly within the CSD. Indeed, this ML inference
strategy offers the potential to enhance an assortment of other
data center tasks.

Index Terms—ransomware detection, deep learning classifica-
tion, long short-term memory, computational storage, near-data
processing, SmartSSD

I. INTRODUCTION

In the evolving landscape of data center technologies, we
are witnessing a pivotal shift from cloud-based to localized
solutions, driven by increasing demands for data privacy, secu-
rity, and immediate data processing. Localizing data handling
not only enhances privacy and security by retaining sensitive
information closer to its origin, thereby mitigating breach risks
associated with centralized cloud storage, but also significantly
reduces latency critical for real-time processing applications
that depend on swift decision-making. This approach alleviates
bandwidth limitations and connectivity issues by minimizing
the distance data travels, thereby pre-empting the bottlenecks
of transmitting data to distant cloud facilities. The rise of CSDs
and Smart Network Interface Cards (SmartNICs) exemplifies
this transition, marking a broader trend that has expanded
from accelerating network-centric tasks such as load balancing
[1] and security [2-4] to offloading such acceleration to
CSDs and SmartNICs within data centers. This strategic move
streamlines data throughput and enhances network manage-
ment directly at the host level, facilitating a more seamless and
powerful infrastructure capable of sophisticated, multi-faceted
processing tasks that bolster the entire data center ecosystem.

ML algorithms have also been shown to benefit from the
shift towards localized computing in data centers, particularly
when offloading ML data preprocessing tasks to CSDs [5—
7]. Data movement and I/O cost incurred are known to be
substantial bottlenecks for ML applications, and CSDs can
mitigate this issue by moving the data processing tasks near
the storage itself. CSD-based processing tasks also profit from
increased parallelization and an ability to bypass the CPU
entirely, which allows for additional acceleration over tradi-
tional software rooted in the CPU. In addition, the lower-power
processing capability of CSDs, compared to high-performance
CPUs and GPUs, also decreases energy consumption under
heavy workloads. As a result, CSDs not only have the capacity
to reduce operational costs such as hardware procurement
and cooling but also potentially extend the lifespan of more
expensive components.

In light of the advantages that ML algorithms stand to gain
from CSDs, we propose a unique method for offloading the
entirety of a classifier to a CSD. In turn, data centers can
execute the classifier continuously in the background for time-
sensitive applications without exhausting the CPU or con-
suming inordinate amounts of energy. We also utilized novel
parallelization techniques to overcome the parallel processing
constraints of CPUs and the data movement bottlenecks of
GPUs. Moreover, we employed a number of optimization
strategies to further accelerate the inference time of the CSD-
based model.

To verify the efficacy of the proposed approach, we per-
formed a thorough evaluation in the Vitis Software Plat-
form Development Environment [8] demonstrating that the
approach not only realizes additional reductions in inference
time from the aforementioned optimization strategies but that
the resultant inference time is orders of magnitude faster than
that of a high-performance CPU and GPU. As a use case
to substantiate the utilization of the proposed approach in
practice, we also showcase its capacity to promptly detect a
preeminent threat prevalent in today’s cyber attack landscape,
namely, ransomware. To this end, a variety of prominent
ransomware samples were aggregated and executed in a sand-
box environment in order to extract associated Application
Programming Interface (API) calls. The CSD-based classifier
was then trained on these API calls in order to classify API
call sequences associated with ransomware on the system
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housing the CSD. The classification results gave an accuracy,
precision, recall, and F1 score of 0.9833, 0.9789, 0.9890,
and 0.9840, respectively. This use case is intuitive, as the
proposed approach resides next to the data that it is protecting
and therefore can offer real-time mitigation upon detecting
the presence of ransomware. We postulate that the proposed
approach’s appreciable results with ransomware detection can
be extended to a variety of other time-sensitive data center
applications.

In summary, we highlight the following core contributions
of this work:

o Presenting a unique classification methodology entirely
within CSDs to enable real-time inference for data center
applications. The methodology leverages a sequential
classifier capable of handling long-term decencies over
time and thereby can generalize to any number of data
center tasks.

Implementing several enhancements to improve resource
efficiency, parallel processing capabilities, and the speed
of inference. Such enhancements were developed and
tested using the Vitis Software Platform Development En-
vironment. Evaluation results reveal that our CSD-centric
inference method significantly outperforms a NVIDIA
A100 GPU, achieving a speed increase of 344.6x.
Showecasing the proposed approach’s capability of detect-
ing ransomware via evaluating it against a plethora of
prominent ransomware samples. The evaluation demon-
strates that the approach can identify ransomware with
high accuracy, precision, recall, and F1 scores, thereby
demonstrating its reliability in combating ransomware in
practice.

II. CSD PRIMER

CSDs mark a significant evolution in data processing
technologies by incorporating processing capabilities directly
within the storage units, thereby situating computation proxi-
mal to the data source. A prominent example of this technol-
ogy is Samsung’s SmartSSD, which integrates conventional
SSD components such as the SSD controller and NAND array
with advanced elements including a Field Programmable Gate
Array (FPGA) accelerator, FPGA DRAM, and a PCle switch.
This configuration is illustrated in Fig. 1, which highlights
the architecture of the SmartSSD. The device pairs a 4 TB
PM1733 SSD with a Xilinx KU15P Kintex UltraScale FPGA
via a PCle Gen3 x4 bus, optimizing the interaction between
the host, storage, and processing elements.

The architecture of the SmartSSD, as portrayed in Fig.
1, enables the CPU to dispatch standard SSD read/write
commands along with specialized FPGA computation and
FPGA DRAM read/write requests. Additionally, a pivotal
feature of the SmartSSD is its support for peer-to-peer (P2P)
communication via the FPGA DRAM and the onboard PCle
switch, which facilitates direct data exchanges between its
NVMe SSD and FPGA components. This capability drastically
reduces PCle traffic and CPU overhead, thereby lowering
latency and enhancing overall system efficiency.
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Moreover, the SmartSSD is accompanied by a compre-
hensive development toolkit that includes a runtime library,
an Application Programming Interface (API), a compiler,
and necessary drivers for FPGA programming. This suite of
tools enables developers to easily implement FPGA-based
designs, further augmenting the computational potential of the
SmartSSD. By offering these advanced features, the SmartSSD
represents a scalable solution that overcomes traditional con-
straints related to space, power, and cost, allowing for the
installation of multiple devices within a single node and
significantly advancing near-storage computation capabilities.

The proposed ML classification model is fully integrated
within the FPGA, allowing it to process input data directly
from the SSD without necessitating CPU involvement. This
arrangement optimally utilizes the unique capabilities of the
SmartSSD, freeing the CPU to address other critical tasks
within the data center, thereby streamlining operations and en-
hancing the overall performance and efficiency of the system.

III. PROPOSED APPROACH

In this section, we detail the DL model architecture har-
nessed by the proposed approach, and how it was optimized for
deployment on the FPGAs within CSDs, such as Samsung’s
SmartSSD.

A. CSD-Based DL

Model selection. An LSTM model, a variant of Recurrent
Neural Networks (RNNs) renowned for their capacity to
capture long-term dependencies, is optimally suited for de-
ployment on the FPGA within a CSD for tasks involving
sequence prediction. In contrast to non-sequential models (i.e.,
those that do not process data in a time-dependent sequence)
might only analyze static snapshots of data, LSTMs excel in
handling time-series data, embodying long-term dependencies
and temporal dynamics. Consequently, LSTMs are more adept
at understanding patterns over time in order to provide more
accurate predictions and insights for dynamic data center
environments. To this extent, the proposed approach herein
utilizes an LSTM model.

This selection is also grounded in the LSTM’s robust track
record across a spectrum of deep learning applications and
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its intrinsic compatibility with the reconfigurable architecture
of FPGAs, which excel in managing both sequential and
parallel processing demands efficiently. Unlike GPUs, which
are predominantly oriented towards parallel processing tasks
and may struggle with the sequential processing requirements
of LSTMs, FPGAs provide a versatile platform that excels in
handling the complex computational patterns of LSTMs by
effectively balancing their sequential and parallel processing
needs. This efficiency is further enhanced by the LSTM’s
architectural design, which employs a fixed set of cell param-
eters across all timesteps. This consistency allows for repeated
use of the same computational logic, minimizing resource
allocation on the FPGA and enabling more efficient data
processing. Such a design aligns well with FPGAs, as they
can be programmed to specifically optimize these recurrent
operations, thereby significantly improving the model’s exe-
cution efficiency and reducing the time complexity inherent
in sequential tasks.

LSTM inner workings. An LSTM functions by processing
data in a sequence and updating its state vector at each
timestep, which encapsulates the historical information of all
prior inputs. This aim is achieved through a sophisticated
system of gates: the input gate i;, forget gate f;, and output
gate o;. Such gates are mathematically expressed as follows:

iy = o(Wilhi—1, 2] + b;),
ft= U(Wf[htfla xt] + bf)7
= o(Wohi—1, @] + bo),

Ot

o~

with o denoting the sigmoid function, W the weight matrices,
b the bias terms, h,_; the previous hidden state, and =z
the current input. An LSTM also includes a process for cell
modulation, represented as C| = tanh(Wer[hi—1, 2¢] + b ),
which generates a vector of new candidate values. These
values are modulated by ¢; and then combined with the old cell
state C;_1 (modulated by f;) to update the cell state. The cell
state updates as C; = f;xCt — 141, xC}) in order to regulate
the memory of the network by deciding which information to
discard and which to retain. After the cell state is updated,
the hidden state for the current timestep h; is obtained by
applying o; via the equation h; = o * tanh(C}). This hidden
state h, is then passed to the next timestep and ultimately used
for predictions. This gated control of information flow also
allows LSTMs to bridge long time intervals by mitigating the
vanishing gradient problem inherent in traditional RNNs.

Porting the model to hardware. The LSTM model that will
be deployed on the FPGA is first trained offline. It consumes
a CSV dataset consisting n + 1 columns and N rows for se-
quences of n items plus a label and /N samples, respectively. In
general, it is also ideal to incorporate an embedding generation
step for each item in a given sequence before passing it to
the LSTM. Such embeddings enable the model to understand
complex relationships and patterns within the data by rep-
resenting it in a more informative, lower-dimensional space
[9]. Once the embeddings and LSTM have been trained until
convergence, the associated weights and biases are extracted
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Fig. 2. Kernel implementation strategy for LSTM inference on CSDs.

and written to a text file. For example, TensorFlow allows
one to extract parameters via the get_weights () function,
which returns three Numpy arrays consisting of the weights W/
for x¢, the W for h;_1, and the related b terms, respectively.
For additional insight, we kindly refer interested readers to a
notebook where we have implemented this procedure [10].

Lastly, the host program that is responsible for general
control flow, initiating data transfers, and managing the inter-
action with the FPGA ingests this text file amid initializing
the FPGA. That being said, the structure of the proposed
FPGA-based LSTM implementation described in subsequent
subsections is constructed in such a manner that it remains
fixed regardless of changes in the number of parameters or
embeddings trained in the offline model and the length of
the sequences that the offline model consumes. Consequently,
the FPGA-based model is compiled once and can be updated
at the operator’s discretion. For instance, in the event that
the proposed approach is leveraged for prompt ransomware
detection and mitigation, it is advisable to update the FPGA-
based model with a version that has been retrained on new
ransomware strains once they are uncovered in Cyber Threat
Intelligence (CTI) feeds.

B. Kernel implementations

In an FPGA, kernels are specialized blocks of code designed
to operate on a stream of inputs to produce outputs. These
kernels aim to accelerate computational tasks by efficiently
executing multiple operations in parallel, which can substan-
tially reduce the time required to process large volumes of
data. This approach contrasts with traditional CPUs that, based
on the classic Von Neumann architecture, typically execute
instructions one after another in a sequential manner, often
limiting their speed in data-intensive tasks.

To this end, we segregate the previously discussed LSTM
inner workings into five well-defined kernels. These kernels
and there overall role within the forward pass of the LSTM are
portrayed in Fig. 2. The first kernel, kernel_preprocess,
consumes a fully-formed data sequence (i.e., a sequence that
has reached a pre-established number of items). For each
item in the sequence, kernel_preprocess preprocesses
the item by generating its corresponding embedding based off
the weights from the offline training procedure. To achieve
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this aim, kernel_preprocess is initialized with a 1-
dimensional buffer consisting of the flattened embedding vec-
tor consisting of parameters p € RM*C where M is the
magnitude of the set of all items in the N sequences and O is
the embedding size. The embedding for the current item being
processed in the given sequence by kernel preprocess
is obtained by taking the dot product of the one-hot vector of
the item and the M x O matrix.

The next kernel is kernel_gates, which is tasked with
generating the input gate i, forget gate f;, and output gate o;.
kernel_gates takes the embeddings (i.e., x; in the LSTM
equations) generated by kernel preprocess as input
along with the previous iteration’s h;—; (i.e., the LSTM’s out-
put for the previous item in the sequence). kernel_gates
also receives the weights for both the embeddings and h;_.
Lastly, kernel_gates applies the sigmoid activation func-
tion to the result of the dot product and sum calculation.

The last kernel is kernel_hidden_state. As observed
in the LSTM inner workings subsection, h; is dependent
upon C}, and therefore kernel_hidden_state is used
to generate both. Moreover, taking this approach allows us
to maintain C; entirely within kernel_hidden_state,
in contrast to contending with the additional overhead as-
sociated with passing C; to another kernel. Ultimately,
kernel_hidden_state receives the inputs of i;, fi, o,
and C/, and outputs h,. Additionally, this kernel also receives
the weights and bias for a fully connected layer in order to map
h: to a classification once all items in the sequence have been
processed. kernel_hidden_state maintains a static
counter in order to determine when the entirety of the sequence
has been processed.

C. Farallelization

Note that the aforementioned kernel implementation was
devised to support a balance between parallelization while
reducing pressure on AXI Master interfaces used for high-
performance, memory-mapped communications between the
kernels and the FPGA’s memory resources. These resources
are not embedded within the FPGA fabric itself but are instead
part of the global memory resources available to the FPGA.
This often includes DDR SDRAM but can also refer to other
types of accessible memory, depending on the architecture of
the FPGA and its surrounding system. The proposed approach
utilizes a conservative two DDR banks of global memory.
For comparison, some Alveo cards (e.g., the u200 and u250)
support four banks.

As shown in Fig. 2, our kernel implementation enforces
parallelization between four kernel_gates Compute Units
(CUs). To ensure that these four CUs truly run in paral-
lel, kernel_preprocess creates four copies of the em-
bedding of the given item in the sequence (i.e., x;), and
kernel_hidden_state performs the same copy operation
with h;_1 such that each CU has its own copies. Note that
streaming can be easily ported to the kernel implementation
for additional acceleration if the FPGA supports it. The High-
Level Synthesis (HLS) pragma #pragma HLS DATAFLOW
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was also employed in kernel_gates to promote added par-
allelization between independent operations within the CUs.
Lastly, while an item in the the sequence is being processed by
the kernel_gates CUs and kernel_hidden_state,
kernel_preprocess preemptively processes the next item
in the sequence to generate its embeddings in parallel so the
embeddings can be consumed by the kernel_gates CUs
when available.

D. Optimizations

Activation functions. As previously noted, LSTMs leverage
sigmoid and tanh activations. While the sigmoid activation can
be implemented with relative ease, the tanh function defined as
follows, possesses complexities that can be taxing on FPGAs:

eT — e T

To mitigate this issue, we replace all tanh functions with
softsign activations, as subsequently defined:

B x

~abs(z) +1°

This is a sufficient replacement for the tanh function in LSTMs
due to its similar S-shaped curve and asymptotic behavior,
which offers a smooth and continuous gradient flow in order
to mitigate vanishing gradient problems. Simultaneously, it
provides computational efficiency by avoiding the exp() op-
eration, thereby making it a practical choice for maintaining
performance with lower computational costs.

Initiation Interval. The Initiation Interval (II) quantifies the
number of clock cycles required between consecutive initia-
tions of operations in a pipelined architecture. Consequently,
it determines the throughput of the pipeline by specifying
the minimum temporal separation at which the pipeline can
accept new inputs or begin a new iteration of a loop. For
instance, an II of 1 implies maximal pipeline utilization, where
a new operation or loop iteration commences in every clock
cycle, thereby achieving the highest possible data processing
rate. Ultimately, II depends on various factors including the
nature of the loop operations, data dependencies, and available
hardware resources. As such, a sound technique to minimizing
II is to employ #pragma HLS PIPELINE II=1 prior the
execution of loops in order to prompt the compiler to place
added emphasis on II minimization. Additionally, we unroll
loops to a degree via #pragma HLS UNROLL to help reduce
II, as it can increase parallelism and reduce both data depen-
dencies and loop overhead. In a similar vein, we also partition
kernel buffers using #pragma HLS ARRAY PARTITION
complete to promote the processing of indexed buffer items
in parallel in order to further aid in II reduction.
Fixed-point arithmetic. Fixed-point arithmetic scales
floating-point numbers by a factor, converting them to
integers to perform operations more efficiently than floating-
point calculations. This approach is advantageous for FPGA
Digital Signal Processing (DSP) slices optimized for tasks like
multiplication, accumulation, and filtering, crucial for deep
learning inference involving extensive matrix multiplications.

tanh(z) =

softsign(x)
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Efficient DSP utilization also reduces FPGA Look-Up Table
(LUT) consumption.

Since the vast majority of the floating points numbers used
in the proposed approach are small numbers, we employ
a scaling factor of 109, which places more emphasis on
maintaining the mantissa of the floating point representation.
We multiply the floating-point values of weights, biases, and
embeddings by this factor before the host initialization shown
in Fig. 2, converting them to integers while preserving signifi-
cant digits. To minimize errors from finite precision, we round
the results to closely match the original numbers. Moreover,
after each multiplication, the product scales by 10'2, which
requires a correction by dividing by the scaling factor squared
(10'?) to maintain accurate final values with minimal errors
for subsequent arithmetic operations in the FPGA.

IV. EVALUATION

In this section, we conduct a comprehensive evaluation of
our proposed methodology to assess both its efficiency and
effectiveness. Specifically, we measure the execution times of
our approach and compare them with that of high-performance
CPUs and GPUs. Moreover, we illustrate the proficiency of
our method in performing accurate CSD-based ransomware
detection.

Testing environment. Our FPGA experiments were carried
out using the Vitis Software Platform Development Environ-
ment [8], which enables complete FPGA hardware emulation
and provides dependable performance metrics. These experi-
ments were performed on a server running Ubuntu 20.04.6,
equipped with an Intel Xeon Silver 4114 processor and 32
GB of RAM. All necessary code for the host and kernels
was developed in C++ and made use of Xilinx Runtime
(XRT) and HLS, respectively. We selected the Alveo u200
[11] as our primary experimental platform, which is part of
the UltraScale family and similar to the SmartSSD’s Kintex
KUISP. Compilation of the host application was executed
using g++, the standard GNU C compiler, while v++ was
utilized to compile the kernel objects into .xo files and to link
these objects with the target platform when generating the
FPGA binary (i.e., the .xclbin file). The experimental setup
involved an LSTM model with an embedding dimension of 8,
a hidden layer size of 32, and bias terms, which collectively
accounted for 7,472 parameters (2,224 for the embeddings and
5,248 for the LSTM). The concluding fully-connected layer
incorporated 32 weights and one bias term.

Execution time. We begin this evaluation by taking the
execution time of the LSTM’s forward pass for an individ-
ual item in a sequence using the Vitis Software Platform
Development Environment’s hardware emulation mode. Such
mode is designed to provide an accurate estimate of how long
the FPGA would take to execute the given program in real
hardware. The execution times are given for a vanilla FPGA-
based LSTM that leverages the parallel kernels and no other
optimizations, and then incrementally adding the optimizations
of II minimization and fixed-point arithmetic to better observe
the acceleration enhancements realized by each.
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Fig. 3. FPGA-based LSTM inference time reductions realized through

optimizations. The Vanilla implementation consists only of the kernel par-
allelization detailed in Subsection III-C. Subsequently, the Initiation Interval
(II) optimizations are added to the Vanilla approach. Lastly, the mean is
taken when utilizing fixed-point arithmetic and II (shown on the Ileft).
Incrementally integrating optimizations in this manner allows for visualizing
both the reduction in inference time that each optimization offered and the
final minimized inference time via all optimizations (i.e., the Fixed-point
measurements).

The results are portrayed in Fig. 3 in microseconds. As can
be observed, II minimization reduced the execution time of
kernel_hidden_state by a relatively wide margin, and
the leveraging of fixed-point arithmetic dramatically decreased
the execution time of kernel_gates. Notably, the execu-
tion time of kernel_preprocess remained fairly fixed.
Ultimately, with both optimizations, the total execution time of
approximately 7.153 ps was decreased to roughly 2.15133 us
per forward pass of the FPGA-based LSTM. In addition, recall
that the four CUs of the kernel_gates run in parallel, so
the execution time of the gate operations is equivalent to the
maximum execution time of each of the four CUs, which is
given in Fig. 3.

Ransomware detection use case. To showcase the capability
of the proposed approach to be harnessed in practice, we apply
it to among the most concerning cybersecurity threats today,
namely, ransomware. The advantages of pairing a ransomware
defense mechanism with the storage itself are clear, as such
a defense would allow near-instantaneous mitigation. Further,
such a ransomware defense could be seamlessly paired with
existing network-based detection mechanisms [12, 13]. To
this extent, we feed API call sequences into the proposed
FPGA-based LSTM, as API call sequences have proven to
be a reliable method for identifying compromises. In order
to derive an appreciable API call dataset comprising ran-
somware infections, we aggregated a number of prominent
ransomware samples and utilized Cuckoo Sandbox [14] to
generate associated API call sequences on Windows systems.
We also collected an assortment of benign API call sequences
to incorporate into the dataset as well. The dataset consisted
of 29K sequences, of which 46% resulted from ransomware.

Authorized licensed use limited to: Louisiana State University. Downloaded on December 23,2024 at 03:43:53 UTC from IEEE Xplore. Restrictions apply.



Accuracy

—— Train
— Test

0 1000 2000 3000

Epoch

4000 5000

Fig. 4. Convergence of the LSTM training on ransomware API call sequences.

We make this dataset publicly available to promote future
ransomware defenses and research [10]. Additional details
pertaining to the dataset aggregation are covered in Appendix
A. We then trained an LSTM model comprising a total of
7,472 parameters until convergence, as shown in Fig. 4. As can
be observed, the model reached its peak detection accuracy
of the testing dataset of 0.9833 at around 4K epochs. At
this juncture, the model also gave a precision, recall, and
F1 score of 0.9789, 0.9890, and 0.9840, respectively. Indeed,
these results demonstrate that the proposed LSTM model
can effectively pinpoint ransomware infections, and therefore
could immediately thwart any subsequent encryption by the
malware for extortion purposes.

GPU/CPU comparison. As a final experiment, we performed
a comparison of the execution time of the LSTM’s forward
pass for an individual item in the sequence between an Intel
Xeon CPU with 13 GB of RAM, an NVIDIA A100 GPU with
40 GB of video RAM, and the optimized proposed FPGA-
based approach. The results are given in microseconds (us)
and shown in Table I, along with the corresponding 95%
Confidence Interval (CI). Note that the CI for the proposed
CSD-based FPGA inference strategy is listed as N/A since
the measurement was taken via the Vitis Software Platform
Development Environment’s hardware emulation mode. As

[ [ Execution time | 95% CI |
FPGA 2.15133 pus N/A
CPU 991.57750 ps 217.46576 ps - 1765.68923 s
GPU 741.35336 pus 394.45317 ps - 1088.25355 ps

TABLE 1
TRADITIONAL DL HARDWARE COMPARISON

can be expected, the GPU outperformed the CPU. However,
the proposed approach surpassed the GPU by 344.6x. Thus,
not only is the proposed CSD-based inference approach more
power-efficient than high-peformance CPUs and GPUs, but it
also has edge over such hardware in terms of speed.

V. RELATED WORK

CSDs, which have proven to offer minimal power consump-
tion in comparison to CPUs and GPUs, have also shown to
offer appreciable acceleration for a variety of tasks including
but not limited to hardware-based virtualization [15], en-
cryption [16], database operations [17-22], big data analytics
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[23, 24], and several others [25]. In light of these advances,
recent research endeavors have began leveraging CSDs for ML
purposes. Largely, these approaches utilize the near-storage
processing capabilities of CSDs to perform various data pre-
processing procedures applicable to ML, such as tackling
heavy data movement workloads [26], the management of
graph-structure data [27, 28], data preprocessing to minimize
related overhead associated with deep learning model training
[5-7], and selecting important subsets of large datasets directly
at the storage level [6].

Following the lead of the aforementioned noteworthy en-
deavors, efforts have been made to begin offloading ML in-
ference tasks to CSDs. For instance, Tavakoli, Beygi, and Yao
[29] integrated a dimensionality-reduced, k-Nearest Neighbors
(kNN) classifier into a CSD. Further, An, Aliaj, and Jun [30]
utilized a CSD to accelerate some convolution operations to
facilitate Convolutional Neural Network (CNN) inference. It
is our aim to extend these noble endeavors via offloading
the entirety of the inference procedure of a sequential deep
learning model to a CSD, demonstrating that CSDs have the
capacity to not only assist such models but can also perform
inference in an near-standalone manner comparable with CPUs
and GPUs.

VI. LIMITATIONS AND FUTURE DIRECTIONS

Despite the acceleration that accompanies offloading appli-
cations to FPGAs, along with the reduction of both energy
usage and CPU overhead, the primary limitations in doing so
are the domain-specific knowledge that it takes to program
these devices and their resource constraints. While this work
aims to facilitate addressing the former, future efforts explor-
ing additional innovations for efficiently integrating classifiers
into CSD-based FPGAs would be an interesting direction.
Additionally, while the proposed approach was optimized
using fixed-point arithmetic, mixed precision procedures are
commonly utilized in deep learning models to enhance com-
putational speed and efficiency by performing operations in
lower precision where high precision is not necessary, and in
higher precision where greater accuracy is required. As such,
exploring mixed precision alternatives on CSDs would be a
notable endeavor.

VII. CONCLUSION

In conclusion, this work introduces a novel approach for
leveraging CSDs within data centers to offload deep learning
classification, specifically LSTM models. This approach not
only inherently reduces power consumption but we demon-
strate that it dramatically reduces latency of high-performance
CPUs and even GPUs, thereby addressing the dual challenges
of operational efficiency and security in the face of escalating
data center demands and sophisticated cybersecurity threats.
Indeed, the showcased efficacy of our CSD-based classifi-
cation technique in handling real-time ransomware detection
underscores its potential to transform data center operations,
paving the way for more resilient, efficient, and secure digital
infrastructures.
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APPENDIX

Table II highlights the prominent ransomware samples that
were aggregated to derive the dataset of ransomware API

call

sequences used in the proposed approach’s ransomware

detection use case. In total, ten families were collected encom-
passing 78 variants. In order to ensure a plethora of varying
malicious API call sequences, ransomware families that also
exhibit self-propagation behaviors were incorporated into the
dataset. Moreover, all aggregated variants encrypt files (as
opposed to strictly locking behavior, which has largely become
obsolete) and their network traffic.
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Family | Instances [ Encryption [ Self-propagation |

Ryuk 5 variants v v
Lockbit 6 variants v v
Teslacrypt 10 variants v X
Virlock 11 variants v X
Cryptowall 8 variants v x
Cerber 9 variants v X
Wannacry 7 variants v v
Locky 6 variants v X
Chimera 9 variants v X
BadRabbit 5 variants v v
TABLE 1T

RANSOMWARE DATASET OVERVIEW.

Each of the variants were then executed in a Cuckoo
sandbox environment [14] using Windows 10 and 11 to extract
all API calls that were made, in the order in which they would
be observed on a system housing a CSD equipped with the
proposed approach. An API call sequence for each variant of
length 100 was taken, beginning with the first API call made to
promote early detection. In order to facilitate generalizability
to varying orders of malicious API calls, we also employed
a sliding window of length 100 to extract sub-sequences at
different stages in each variant’s execution. As given by the
appreciable ransomware detection accuracy achieved by the
proposed approach, this sliding window procedure indeed did
not hinder the model’s performance (i.e., which could occur
when such malicious sub-sequences are indistinguishable from
those of benign nature), and therefore can only enhance its
capacity for generalizing to malicious API call sequences not
observed during training. Ultimately, 13,340 ransomware API
call sequences of length 100 are encompassed in the dataset.

Lastly, an assortment of benign API call sequences were
also extracted from Windows 10 and 11 environments. The
benign API call sequences were derived from both manual
interaction with such environments and via executing popular
applications within them. Popular applications were selected
from Top Ten lists on The Portable Freeware Collection [31]
from years 2018 through 2021, as well as from the website’s
Popular Titles. In total, 30 popular applications were collected
and executed. The aforementioned technique based on a slid-
ing window of length 100 was subsequently utilized to extract
benign API call sub-sequences from the popular applications
and manual interaction, resulting in 15,660 sequences. The
final benign and ransomware API call sequences were then
merged and shuffled for binary classification tasks. The final
dataset is publicly available [10].
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