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Abstract—The integration of drone technology and Artificial
Intelligence (AI) has opened up new possibilities for wildlife
conservation and habitat monitoring. In this paper, we present
a new system for efficiently and accurately analyzing waterfowl
populations and classifying their habitats over large natural areas
using drone imagery and deep learning (DL). Given a sequence
of drone images captured by a drone along a flight path, the
system utilizes customized deep learning models for waterfowl
detection and counting, Meta’s SAM for image segmentation and
customized deep learning models for segment classification, and
ChatGPT to generate text-based survey reports. Several image
overlap detection methods were developed and compared with.
Our experimental results show accurate waterfowl and habitat
detection results and improvement over previous work, providing
efficient and accurate data analysis for wildlife conservation
efforts.

I. INTRODUCTION

The increasing availability of new technology, especially
drones, has opened up new possibilities for aerial imaging and
analysis in various domains, including wildlife conservation
and habitat monitoring. In this work, we aim to leverage
drone imagery and Al techniques to efficiently and accurately
analyze waterfowl populations, classify their habitats, and
generate informative reports over large natural areas. We
develop an integrated system that utilizes various deep learning
models to accurately count waterfowl and recognize their
natural habitat seen on a drone flight, then finally generates a
text-based report summarizing the gathered data.

Traditionally, bird population surveys and habitat analysis
have relied on manual methods like field observation. These
are time-consuming, labor-intensive, and limited in spatial
coverage. By using drone imagery and Al techniques, we can
overcome these limitations and achieve much more efficient
data analysis while maintaining human-level accuracy. While
others have already leveraged new technology to try and tackle
this problem, the proposed system offers several advantages
over previous works. By automating bird detection and classi-
fication using deep learning, we can vastly improve the speed
in identifying waterfowl populations, especially with the large
area coverage provided by a sequence of drone images. We
also use image segmentation, classification, and text reports
to enable users to obtain a comprehensive visualization of the
study area. Finally, by detecting overlapping regions between
consecutive images across a drone flight, we are able to avoid
the issue of double-counting waterfowl in order to improve the
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overall counting accuracy. The system architecture is shown
in Fig. 1.

The contributions of this paper are as follows:

o Develop and compare several new methods for detecting
and removing overlapping regions between consecutive
images captured by a drone along a flight path.

e Use Meta’s open-source Segment Anything Model
(SAM) [1] to identify and delineate distinct habitat re-
gions within the images.

« Use image classification to determine the class associated
with the generated masks from SAM.

o Integrate OpenAl’s ChatGPT to generate a text-based
report summarizing the Al-generated data, including bird
population statistics, habitat classifications, and any other
relevant data.

II. RELATED WORK

The proposed work has several distinct parts: the integra-
tion of bird detection in drone imagery, image segmentation,
habitat classification, image overlap detection, and report gen-
eration for environmental monitoring and analysis. In recent
years, there have been several studies on these topics and
other projects aiming to achieve similar goals regarding Al
in conservation. Here is an overview of the relevant literature
in each of these areas.

Of the existing wildlife detection programs using aerial
imagery collected by UAVs as of 2016, birds have been used
as subjects in 19 studies [2]. Waterfowls are the most popular
subject amongst the birds, with all but one study using them
as the subject. Before 2016, deep learning and ML were each
used for automatic bird detection only once.

With the advancements of technology since, there are now
numerous studies employing these methods, with one such
similar study being [3], who have developed a model that has
the ability to classify detected waterfowl in aerial images in
addition to detection. The deep learning model that was used
in our system was the general model created by [4], which
only does detection but is more suited to our needs as it was
trained on a large dataset similar to the one we use for this
research [5].

Regarding waterfow] habitat classification, [6] use a tradi-
tional CNN model to segment drone images of bog vegetation
in combination with a pixel-based Random Forest (RF) clas-
sifier to label their species. [7] classifies habitats on coastal
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Fig. 1: The system architecture of the proposed pipeline.

regions using a pixel-based Support Vector Machine (SVM)
classifier on drone images. Both these methods achieve a high
accuracy of 85-90%.

In our pipeline, we use SAM [1], which through its
revolutionary promptable segmentation can achieve better
performance. Even though SAM is not intended for aerial
images, the massive training dataset should allow the model
to generalize to drone images and still perform well. However,
SAM is not without pitfalls, as discussed by [8]. They found
that SAM performs especially poorly on images with low
contrast and when attempting to segment small regions. SAM’s
robustness was investigated in [9], where the model was fed
with different user prompts and varying datasets, finding that
SAM performs much worse on perturbed images compared
to raw images and also that good user prompts can cause
significant improvements in accuracy.

Regarding detecting the overlapping areas across consecu-
tive drone images, [10] was the only paper that we were able
to find related to this subject. In this paper, we propose several
methods and the best method achieved an overlap prediction
accuracy of roughly 0.85 on a test dataset of over 28,000 image
pairs.

There are few studies that look into the quality of Chat-
GPT’s data-to-text generation. [11] is one such study, where
GPT-3.5 and GPT-4 were both used to generate text reports
from radiology reports using a templated prompt. Radiol-
ogy reports contain data and images that have low reader-
interpretability, so GPT was employed to create more patient-
friendly reports. The results were then manually analyzed and
rated by experienced radiologists. This study found that both
GPT-3.5 and GPT-4 achieved high performance in converting
rawer data into easier to understand content, with the radiol-
ogists giving an average score of of 4.27 out of 5.

III. METHODS

In this section, we present our methods in details. We use a
dataset of real UAV images of waterfowl taken over the past
year from different parts of Missouri to develop and test our
methods [5]. Different landscapes are present in the images,
like ponds, farmland, forest, grassland, etc. Image sequences
were also taken at different times of day in various seasons of
the year, causing for there to be different natural light levels
and various landscape changes amongst the data. Each flight
sequence contains between 4-20 images, and the sequences are

sorted into four categories by altitude of flight relative to the
ground: 15m, 30m, 60m, and 90m. It is important to note that
consecutive images in 15m sequences don’t contain significant
overlap, while sequences from the other altitudes do. There
are also many images in the dataset that do not contain any
birds, and some sequences use decoy birds instead of real
ones. In this paper, we use 5 image sequences captured at 30
meter height and 5 sequenced captured at 60 meter height to
demonstrate our proposed methods and pipeline. Fig. 2 shows
the first three images from three 30-meter sequences.

A. Image Overlap Detection

In order to avoid double-counting birds in overlapping
regions between consecutive images we propose 3 methods
to estimate the areas of the images that overlap.

1) GPS Based Method: The first method we propose is a
geometric method that uses the GPS coordinates and other
information about the drone camera in order to estimate the
overlap. By extracting info from an image’s metadata, we
can obtain the GPS location of where each image was taken
and therefore compute the distance between the images in the
physical world. We can also use the metadata to calculate how
much real world area each image is covering.

From a drone image’s metadata, we obtain relevant informa-
tion such as the focal length, make, and model of the camera.
These are important for the Ground Sampling Distance (GSD)
formula, which gives us the real world area covered by an
aerial image. For example, if the GSD of an image is 5cm,
that indicates that each pixel represents a 5cm *5em = 25cm?
area in real life. Using GSD, we can compute the distance from
the center of the image where the camera is positioned to the
edge of the image. The GSD formula is

S-H
GSD = o (1)
where

e S is the camera’s sensor width;

o F is the camera’s focal length;

e H is the height of the camera from the ground;

o w is the width of the taken image in pixels.
An illustration of the variables affecting GSD is shown in Fig.
3.

With GPS coordinates and the GSD, we know the distance
between the centers of a pair of consecutive images and the
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Fig. 2: The first three images from 3 different 30-meter image sequences in our dataset.
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Fig. 3: An illustration of the variables affecting Ground
Sampling Distance (GSD).

distances from the center of each image to its edge. To get the
real-world distance between two images from GPS coordinates
we use the following formula:

2 — @1
2

A2 — A1
2
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) + cos (¢1) cos (¢o) sin® ( ) @

¢ = sin? (

where

o D is the distance between the two images in meters;
e ¢ is the latitude in radians of the first image;

e ¢ is the latitude in radians of the second image;

e A; is the longitude in radians of the first image;

e Ao is the longitude in radians of the second image;

e R is the radius of Earth in Km (6371).

Using this conversion formula, we are able to get the direct
distance between the two images, as well as the distances in
the latitude and longitude components. To get the distance
from the center of the image to one of its edges, we can do

D, = GSD - w/200 (4)
D, = GSD - h/200 ()

where

e D, is the distance from the center of an image to the left
or right edge;

e D, is the distance from the center of an image to the top
or bottom edge;

o w is the width of the image in pixels;

o h is the height of the image in pixels;

e GSD is the Ground Sampling Distance.

Assuming that the drone stays at the same altitude through-
out the flight, D, and D, should remain constant for all
images within a sequence.

To get the overlapping area, we can simply subtract the
distance from the center of one image to the edge of the same
image from the distance from the center of one image to the
center of the other image. This can be represented by

1Oo(l)lo - Dz)
rT= "

GSD ©)
_100(Dy, — Dy)
Y=""3asD )

where
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o z is the offset of the overlap region in the horizontal axis
in pixels;

o y is the offset of the overlap region in the vertical axis
in pixels;

e Dy, is the distance between two images in the longitude
component;

e Dy, is the distance between two images in the latitude
component;

e D, Dy, GSD are defined previously.

There are some limitations to this method. First, we need
to determine the direction the camera is facing during the
flight. Secondly, the formulas only give us the offsets of
overlapping regions, not where they actually are on the image.
We must know the direction of the drone flight relative to the
direction of the camera, and then we can draw the bounding
box on the image based on the obtained offsets that denotes
the overlapping area. The corner we start the offsets depends
on the direction of the flight. For example, if the direction of
the flight is “rightup” and we had an x and y offsets of 300
and 500 respectively, we would draw a vertical line 300 pixels
to the right of the bottom left corner and horizontal line 500
pixels above the bottom left corner to form the bounding box.
Similarly, if the direction of the flight is "leftup”, we would
start from the bottom right corner.

2) SIFT Based Method: The second method we propose
uses the well-known SIFT [12] algorithm to estimate the
overlap region. For a more detailed description on how SIFT
works, please refer to the referenced paper. In this method,
we first transform the images to grayscale and use SIFT to
detect features on the images. We then use KNN Feature
Matching to match features between the images to compute
the homography matrix from the matched points. We use the
homography matrix to transform the points on the second
image, and form a bounding box around the points using
the furthest points on the top, right, bottom, and left. This
bounding box is used to denote the overlapping area.

3) RANSAC Based Method: The final method we propose
is similar to the SIFT method but uses RANSAC [13]. In this
method RANSAC will randomly select points from anywhere
on the image and we allow the algorithm to have a high limit
of iterations. Once it reaches the limit, the best computed
homography matrix is used. We then use SIFT to detect
matching feature points like we did in the SIFT based method
and apply the transformation and create the bounding box.

B. Waterfowl Detection and Counting

We run our existing bird detection model, a deep learn-
ing model trained using a large number of drone images
on waterfowl [4], on each individual image in a sequence
to find waterfowl. The model achieves waterfowl detection
accuracy around 90% on drone images captured at 30 to 60
meter altitude. Once the overlap area between two consecutive
images is determined, any birds detected within the estimated
overlap regions are excluded to avoid double counting.

Fig. 4: An example of SAM segmentation result (bottom) on
a drone image (top).

C. Habitat Segmentation and Classification

In addition to bird counting, we also classify the habitats
within the image sequence and determine the distribution of
birds across different habitats. First, we use Meta’s latest
segmentation model SAM [1] to segment each aerial image.
SAM requires a prompt in the form of either points or
bounding boxes. In order to give SAM an unbiased prompt,
we place a grid of 64 evenly spaced points on an image as a
prompt. SAM then automatically outputs pixel-by-pixel masks
of what it recognizes as different regions of the image. Fig.
4 shows an example of SAM result.

Next, we trained machine learning models to classify the
masks that SAM generates into 7 habitat categories. We
modified the PyTorch’s pre-built image classification model
EfficientNet to perform classification on 224x224 pixel im-
ages from seven categories of natural region: open water,
herbaceous, shrub, cropland, harvested cropland, wooded, and
other. We retrained the model from the ImageNet pre-trained
weight using supervised learning on a small manually labeled
training set of around a thousand 224x224 pixel crops taken
from the dataset. On the test set, the model achieved over 99%
accuracy.

The segment masks generated by SAM can be of any shape
or size. We divided each image into 224x224 pixel crops and
classifying all of them, assigning each pixel a class label. To
determine the class of each SAM segment, we simply use the
majority class of the pixels in the segment.

D. ChatGPT Based Report Generation

The final stage of our new pipeline is to create an in-
formative and comprehensive report about the drone flight
result using ChatGPT. The report is based on the number of
birds, their locations in the images, the classes of the various
regions on images, which habitat each bird is in, the total area
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covered by the flight using GSD, the percentage of the total
area covered by each habitat class, and additional contextual
information. Besides waterfowl and habitat information, we
also extract data from the image metadata such as the date
and start time of the flight, the total flight duration, the start
and end GPS locations, and the flight altitude. Using the date,
time, and GPS location, we are also able to gather data about
the weather during the flight using OpenWeatherMap API.

Once we gather all these data, we use it to fill in a pre-built
text template that is used to prompt OpenAI’s GPT 3.5 Turbo
model in order to generate the report, limiting the response to
2048 tokens.

IV. EXPERIMENTAL RESULTS

In this section, we present some preliminary results. We
use 5 image sequences captured at 30 meter height and 5
sequenced captured at 60 meter height to demonstrate our
proposed methods and pipeline.

A. Overlap Detection

For evaluating our 3 proposed methods, we used Mean
Absolute Error (MAE) to measure the degree of difference
between Ground Truth (GT) and predicted overlapping area.
The formula of MAE calculation are

AE, = 7””“%/_ Tt ®)
AEy _ |y;m’ed];]7 ygt| 9)
MAE — w (10)

where

o AE, and AFE, are horizontal and vertical absolute error

between prediction and GT;

e« W and H are width and height of the image in pixels;

e Tpreq and xy; are coordinate x of right-up vertices of

prediction and GT;

e Yprea and yg are coordinate y of right-up vertices of

prediction and GT.

Tables I and II show the MAEs of the three overlap detection
methods on each of the 5 image sequences captured at 30
meters and 60 meters, respectively. On the 30-meter test
sequences, the RANSAC based method performed the best
on average, being the best in 4 out of 5 cases. The GPS
based method performed the best on Sequence #3. Their
MAEs vary significantly across the 5 sequences. For example,
the RANSAC based method achieved 0.1% error on Seqence
#1, yet only 18.9% on Sequence #3. The performances of
the RANSAC based method and SIFE based method are
much better on 60-meter image sequences, achieving excellent
results, less than 1% error. This is probably due to more
overlaps between 60-meter images than 30-meter images. The
performance of the GPS based method on 60-meter image
sequences is slightly better, on average, than its performance
on 30-meter sequences.

The execution time of the GPS based method is very
fast, just a few milliseconds. The average execution times
of the SIFT based method for the 30-meter and 60-meter
sequences are 7.8 seconds and 19.1 seconds, respectively,
on a Dell desktop computer. The average execution times
of the RANSAC based method for 30-meter and 60-meter
sequences are 41.4 seconds and 239.4 seconds, respectively.
The RANSAC based method is much slower. It took longer for
these two methods to process 60-meter images than to process
30-meter images, likely because 60-meter images have more
content and are more complex.

Although the GPS based method outperforms the SIFT and
RANSAC based method in terms of running speed, it is worse
on prediction accuracy. The RANSAC based method has the
best accuracy, but takes much longer to execute. The SIFT
based method offers a good balance of accuracy and speed.

TABLE I: Performance comparison in terms of Mean Absolute
Error of three overlap detection methods on five test 30-meter
image sequences.

Seq. 1 | Seq.2 | Seq. 3 | Seq. 4 | Seq. 5

GPS-based method 7.1% | 44.6% | 104% | 31.4% | 3.4%
SIFT-based method 02% | 88.0% | 24.7% | 20.6% | 0.7%
RANSAC-based method || 0.1% 34% | 189% | 152% | 1.4%

TABLE II: Performance comparison in terms of Mean Ab-
solute Error of three overlap detection methods on five test
60-meter image sequences.

Seq. 1 | Seq. 2 | Seq. 3 | Seq. 4 | Seq. 5

GPS-based method 56% | 18.1% | 12.0% | 8.3% | 22.4%
SIFT-based method 0.04% | 0.06% | 0.15% | 0.06% | 0.10%
RANSAC-based method || 0.04% | 0.08% | 0.10% | 0.06% | 0.10%

B. Habitat Classification

Our ground truths for habitat classification is based on a
large number of test points on each image labelled with a
habitat class. To evaluate the performance of our new SAM-
based segmentation followed by image classification method,
we compare the predicted classes of the test points with their
labels and calculate prediction accuracy as the percentage of
test points correctly predicted. It turned out that our method
achieved almost perfect result on the test sequences, over 99%
accuracy.

C. Report Generation

After generating and gathering all the necessary data about
the flight path, waterfowl, and habitats, we use the data to
fill in the blanks in pre-built text templates which are then
used to prompt ChatGPT, i.e., GPT 3.5-Turbo. Fig. 5 show
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rewriie the following report verbosely as a scientist, add any exdra information about the location
on the date you can find: Date: 19/12/2020 Temperatures were 22.73 degrees C. Precipitation
was 22 mm. Humidity was 48%. Wind speed was 2.77 m/s. Weather description; light rain This
flight's tally of 254 ducks. This feght covers a total area of 3285.10 sq. m. Out of this area, 55%
open water, 203 cropland, 0% woody, 15% grassland, 5% road, 5% other, The ducks are
distributed over the different habitats as follows; 80% on open water, 15% on croptand, 0% on
woody, 0% on road, 5% on other, The flight was captured with a DJI Mawic Pro 2 drone
equipped with a Hassetblad camera. It staried at 39.7057333, -93.2798509, ended at
39705147, -93.2799786 for a faght destance of 66.10m at an altude of 29.7m.

rewrite the following repon verbosely as a scientist, add any extra information about the location
on the date you can find: data: date; 19/12/2020 start_time = 05:10:22 end_time = 05:10:34
start_gps = 39,7057333, -93.2798509 end_gps = 39.705147, -93.2799786 distance = 66.10 m
altitude = 29.7 area = 3285.10 sq m water = .55 cropland = .20 woody = .00 grassland = 0.15
road = 0.05 ather = 0.05 birds = 254 birds_on_water = .80 birds_on_cropland = .20
birds_on_woody = .00 birds_on_grassland = .15 birds_on_road = .00 birds_on_other = .05
weather: temperature = 22.73 C wind_speed = 2.77 m/s humidity = 48% description = “light
rain®

I

Fig. 5: Two examples of our ChatGPT promote templates

filled in with flight data.

examples of two different ChatGPT promote templates filled
in with flight data. We have a basic criteria for what a good
automatic report should accomplish:

o Present the data that was given in the prompt correctly;
« No content that is irrelevant to the report;

o Easy to understand, especially for conservationists;

« Reasonable length (1-2 pages);

From the experimental reports that have been generated, only
1 failed to meet this criteria, where the numbers regarding the
bird count per habitat and the total area coverage by a class of
habitat strangely got changed from the prompt to the report.
An interesting note is that the content of the reports stays
relatively consistent in different tries, while the structure of the
report varies depending on how you ask ChatGPT to write the
report. For example, asking ChatGPT to “write a report” gives
you a standard text with separate paragraphs while asking it
to “write a scientific repor” causes ChatGPT to respond with
a report that includes an abstract and is divided into different
headed sections.

V. CONCLUSIONS

In this paper, we present a new pipeline to process a
sequence of drone images captured by a drone along a flight
path to detect and count birds and their distributions in various
habitats. We utilize customized deep learning models for
waterfowl detection, Meta’s SAM for image segmentation and
customized image classification models for segment classi-
fication, and ChatGPT to generate text-based flight reports.
Successful image overlap detection methods were developed
to reduce waterfowl double counting in consecutive images.

In this work, we have uncovered how double-counting is
a major problem in detecting objects in a sequence of aerial
images. We have proved that detecting the overlap region be-
tween images in sequences and avoiding doing object detection
in those regions is one viable solution to the double-counting
problem. Out of our 3 proposed methods, we have found that
our SIFT based method provides a good balance of accuracy

and speed. Several factors could affect the performance of
the overlap detection, such as having a lack of identifying
features, small overlapping regions, a significant change of
altitude during the flight, and other potential unidentified
factors. Poor overlap detection will greatly distort the accuracy
of the output. We have shown that a new, task-generalizing
model in SAM performs well even on aerial images that it
wasn’t designed for. One limitation is that SAM requires a
tremendous amount of GPU memory in order to run, especially
with high resolution images. Finally, we found that ChatGPT
performs well in automating the task of writing reports about
drone flights.
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