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AbstractÐThe integration of drone technology and Artificial
Intelligence (AI) has opened up new possibilities for wildlife
conservation and habitat monitoring. In this paper, we present
a new system for efficiently and accurately analyzing waterfowl
populations and classifying their habitats over large natural areas
using drone imagery and deep learning (DL). Given a sequence
of drone images captured by a drone along a flight path, the
system utilizes customized deep learning models for waterfowl
detection and counting, Meta’s SAM for image segmentation and
customized deep learning models for segment classification, and
ChatGPT to generate text-based survey reports. Several image
overlap detection methods were developed and compared with.
Our experimental results show accurate waterfowl and habitat
detection results and improvement over previous work, providing
efficient and accurate data analysis for wildlife conservation
efforts.

I. INTRODUCTION

The increasing availability of new technology, especially

drones, has opened up new possibilities for aerial imaging and

analysis in various domains, including wildlife conservation

and habitat monitoring. In this work, we aim to leverage

drone imagery and AI techniques to efficiently and accurately

analyze waterfowl populations, classify their habitats, and

generate informative reports over large natural areas. We

develop an integrated system that utilizes various deep learning

models to accurately count waterfowl and recognize their

natural habitat seen on a drone flight, then finally generates a

text-based report summarizing the gathered data.

Traditionally, bird population surveys and habitat analysis

have relied on manual methods like field observation. These

are time-consuming, labor-intensive, and limited in spatial

coverage. By using drone imagery and AI techniques, we can

overcome these limitations and achieve much more efficient

data analysis while maintaining human-level accuracy. While

others have already leveraged new technology to try and tackle

this problem, the proposed system offers several advantages

over previous works. By automating bird detection and classi-

fication using deep learning, we can vastly improve the speed

in identifying waterfowl populations, especially with the large

area coverage provided by a sequence of drone images. We

also use image segmentation, classification, and text reports

to enable users to obtain a comprehensive visualization of the

study area. Finally, by detecting overlapping regions between

consecutive images across a drone flight, we are able to avoid

the issue of double-counting waterfowl in order to improve the

overall counting accuracy. The system architecture is shown

in Fig. 1.

The contributions of this paper are as follows:

• Develop and compare several new methods for detecting

and removing overlapping regions between consecutive

images captured by a drone along a flight path.

• Use Meta’s open-source Segment Anything Model

(SAM) [1] to identify and delineate distinct habitat re-

gions within the images.

• Use image classification to determine the class associated

with the generated masks from SAM.

• Integrate OpenAI’s ChatGPT to generate a text-based

report summarizing the AI-generated data, including bird

population statistics, habitat classifications, and any other

relevant data.

II. RELATED WORK

The proposed work has several distinct parts: the integra-

tion of bird detection in drone imagery, image segmentation,

habitat classification, image overlap detection, and report gen-

eration for environmental monitoring and analysis. In recent

years, there have been several studies on these topics and

other projects aiming to achieve similar goals regarding AI

in conservation. Here is an overview of the relevant literature

in each of these areas.

Of the existing wildlife detection programs using aerial

imagery collected by UAVs as of 2016, birds have been used

as subjects in 19 studies [2]. Waterfowls are the most popular

subject amongst the birds, with all but one study using them

as the subject. Before 2016, deep learning and ML were each

used for automatic bird detection only once.

With the advancements of technology since, there are now

numerous studies employing these methods, with one such

similar study being [3], who have developed a model that has

the ability to classify detected waterfowl in aerial images in

addition to detection. The deep learning model that was used

in our system was the general model created by [4], which

only does detection but is more suited to our needs as it was

trained on a large dataset similar to the one we use for this

research [5].

Regarding waterfowl habitat classification, [6] use a tradi-

tional CNN model to segment drone images of bog vegetation

in combination with a pixel-based Random Forest (RF) clas-

sifier to label their species. [7] classifies habitats on coastal
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Fig. 1: The system architecture of the proposed pipeline.

regions using a pixel-based Support Vector Machine (SVM)

classifier on drone images. Both these methods achieve a high

accuracy of 85-90%.

In our pipeline, we use SAM [1], which through its

revolutionary promptable segmentation can achieve better

performance. Even though SAM is not intended for aerial

images, the massive training dataset should allow the model

to generalize to drone images and still perform well. However,

SAM is not without pitfalls, as discussed by [8]. They found

that SAM performs especially poorly on images with low

contrast and when attempting to segment small regions. SAM’s

robustness was investigated in [9], where the model was fed

with different user prompts and varying datasets, finding that

SAM performs much worse on perturbed images compared

to raw images and also that good user prompts can cause

significant improvements in accuracy.

Regarding detecting the overlapping areas across consecu-

tive drone images, [10] was the only paper that we were able

to find related to this subject. In this paper, we propose several

methods and the best method achieved an overlap prediction

accuracy of roughly 0.85 on a test dataset of over 28,000 image

pairs.

There are few studies that look into the quality of Chat-

GPT’s data-to-text generation. [11] is one such study, where

GPT-3.5 and GPT-4 were both used to generate text reports

from radiology reports using a templated prompt. Radiol-

ogy reports contain data and images that have low reader-

interpretability, so GPT was employed to create more patient-

friendly reports. The results were then manually analyzed and

rated by experienced radiologists. This study found that both

GPT-3.5 and GPT-4 achieved high performance in converting

rawer data into easier to understand content, with the radiol-

ogists giving an average score of of 4.27 out of 5.

III. METHODS

In this section, we present our methods in details. We use a

dataset of real UAV images of waterfowl taken over the past

year from different parts of Missouri to develop and test our

methods [5]. Different landscapes are present in the images,

like ponds, farmland, forest, grassland, etc. Image sequences

were also taken at different times of day in various seasons of

the year, causing for there to be different natural light levels

and various landscape changes amongst the data. Each flight

sequence contains between 4-20 images, and the sequences are

sorted into four categories by altitude of flight relative to the

ground: 15m, 30m, 60m, and 90m. It is important to note that

consecutive images in 15m sequences don’t contain significant

overlap, while sequences from the other altitudes do. There

are also many images in the dataset that do not contain any

birds, and some sequences use decoy birds instead of real

ones. In this paper, we use 5 image sequences captured at 30

meter height and 5 sequenced captured at 60 meter height to

demonstrate our proposed methods and pipeline. Fig. 2 shows

the first three images from three 30-meter sequences.

A. Image Overlap Detection

In order to avoid double-counting birds in overlapping

regions between consecutive images we propose 3 methods

to estimate the areas of the images that overlap.

1) GPS Based Method: The first method we propose is a

geometric method that uses the GPS coordinates and other

information about the drone camera in order to estimate the

overlap. By extracting info from an image’s metadata, we

can obtain the GPS location of where each image was taken

and therefore compute the distance between the images in the

physical world. We can also use the metadata to calculate how

much real world area each image is covering.

From a drone image’s metadata, we obtain relevant informa-

tion such as the focal length, make, and model of the camera.

These are important for the Ground Sampling Distance (GSD)

formula, which gives us the real world area covered by an

aerial image. For example, if the GSD of an image is 5cm,

that indicates that each pixel represents a 5cm∗5cm = 25cm2

area in real life. Using GSD, we can compute the distance from

the center of the image where the camera is positioned to the

edge of the image. The GSD formula is

GSD =
S ·H
F · w (1)

where

• S is the camera’s sensor width;

• F is the camera’s focal length;

• H is the height of the camera from the ground;

• w is the width of the taken image in pixels.

An illustration of the variables affecting GSD is shown in Fig.

3.

With GPS coordinates and the GSD, we know the distance

between the centers of a pair of consecutive images and the

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 23,2024 at 04:52:19 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The first three images from 3 different 30-meter image sequences in our dataset.

Fig. 3: An illustration of the variables affecting Ground

Sampling Distance (GSD).

distances from the center of each image to its edge. To get the

real-world distance between two images from GPS coordinates

we use the following formula:

c = sin2 (
ϕ2 − ϕ1

2
) + cos (ϕ1) cos (ϕ2) sin

2 (
λ2 − λ1

2
) (2)

D = 2000R arcsin
√
c (3)

where

• D is the distance between the two images in meters;

• ϕ1 is the latitude in radians of the first image;

• ϕ2 is the latitude in radians of the second image;

• λ1 is the longitude in radians of the first image;

• λ2 is the longitude in radians of the second image;

• R is the radius of Earth in Km (6371).

Using this conversion formula, we are able to get the direct

distance between the two images, as well as the distances in

the latitude and longitude components. To get the distance

from the center of the image to one of its edges, we can do

Dx = GSD · w/200 (4)

Dy = GSD · h/200 (5)

where

• Dx is the distance from the center of an image to the left

or right edge;

• Dy is the distance from the center of an image to the top

or bottom edge;

• w is the width of the image in pixels;

• h is the height of the image in pixels;

• GSD is the Ground Sampling Distance.

Assuming that the drone stays at the same altitude through-

out the flight, Dx and Dy should remain constant for all

images within a sequence.

To get the overlapping area, we can simply subtract the

distance from the center of one image to the edge of the same

image from the distance from the center of one image to the

center of the other image. This can be represented by

x =
100(Dlo −Dx)

GSD
(6)

y =
100(Dla −Dy)

GSD
(7)

where
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• x is the offset of the overlap region in the horizontal axis

in pixels;

• y is the offset of the overlap region in the vertical axis

in pixels;

• Dlo is the distance between two images in the longitude

component;

• Dla is the distance between two images in the latitude

component;

• Dx, Dy , GSD are defined previously.

There are some limitations to this method. First, we need

to determine the direction the camera is facing during the

flight. Secondly, the formulas only give us the offsets of

overlapping regions, not where they actually are on the image.

We must know the direction of the drone flight relative to the

direction of the camera, and then we can draw the bounding

box on the image based on the obtained offsets that denotes

the overlapping area. The corner we start the offsets depends

on the direction of the flight. For example, if the direction of

the flight is ºrightupº and we had an x and y offsets of 300

and 500 respectively, we would draw a vertical line 300 pixels

to the right of the bottom left corner and horizontal line 500

pixels above the bottom left corner to form the bounding box.

Similarly, if the direction of the flight is ºleftupº, we would

start from the bottom right corner.

2) SIFT Based Method: The second method we propose

uses the well-known SIFT [12] algorithm to estimate the

overlap region. For a more detailed description on how SIFT

works, please refer to the referenced paper. In this method,

we first transform the images to grayscale and use SIFT to

detect features on the images. We then use KNN Feature

Matching to match features between the images to compute

the homography matrix from the matched points. We use the

homography matrix to transform the points on the second

image, and form a bounding box around the points using

the furthest points on the top, right, bottom, and left. This

bounding box is used to denote the overlapping area.

3) RANSAC Based Method: The final method we propose

is similar to the SIFT method but uses RANSAC [13]. In this

method RANSAC will randomly select points from anywhere

on the image and we allow the algorithm to have a high limit

of iterations. Once it reaches the limit, the best computed

homography matrix is used. We then use SIFT to detect

matching feature points like we did in the SIFT based method

and apply the transformation and create the bounding box.

B. Waterfowl Detection and Counting

We run our existing bird detection model, a deep learn-

ing model trained using a large number of drone images

on waterfowl [4], on each individual image in a sequence

to find waterfowl. The model achieves waterfowl detection

accuracy around 90% on drone images captured at 30 to 60

meter altitude. Once the overlap area between two consecutive

images is determined, any birds detected within the estimated

overlap regions are excluded to avoid double counting.

Fig. 4: An example of SAM segmentation result (bottom) on

a drone image (top).

C. Habitat Segmentation and Classification

In addition to bird counting, we also classify the habitats

within the image sequence and determine the distribution of

birds across different habitats. First, we use Meta’s latest

segmentation model SAM [1] to segment each aerial image.

SAM requires a prompt in the form of either points or

bounding boxes. In order to give SAM an unbiased prompt,

we place a grid of 64 evenly spaced points on an image as a

prompt. SAM then automatically outputs pixel-by-pixel masks

of what it recognizes as different regions of the image. Fig.

4 shows an example of SAM result.

Next, we trained machine learning models to classify the

masks that SAM generates into 7 habitat categories. We

modified the PyTorch’s pre-built image classification model

EfficientNet to perform classification on 224x224 pixel im-

ages from seven categories of natural region: open water,

herbaceous, shrub, cropland, harvested cropland, wooded, and

other. We retrained the model from the ImageNet pre-trained

weight using supervised learning on a small manually labeled

training set of around a thousand 224x224 pixel crops taken

from the dataset. On the test set, the model achieved over 99%

accuracy.

The segment masks generated by SAM can be of any shape

or size. We divided each image into 224x224 pixel crops and

classifying all of them, assigning each pixel a class label. To

determine the class of each SAM segment, we simply use the

majority class of the pixels in the segment.

D. ChatGPT Based Report Generation

The final stage of our new pipeline is to create an in-

formative and comprehensive report about the drone flight

result using ChatGPT. The report is based on the number of

birds, their locations in the images, the classes of the various

regions on images, which habitat each bird is in, the total area

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on December 23,2024 at 04:52:19 UTC from IEEE Xplore.  Restrictions apply. 



covered by the flight using GSD, the percentage of the total

area covered by each habitat class, and additional contextual

information. Besides waterfowl and habitat information, we

also extract data from the image metadata such as the date

and start time of the flight, the total flight duration, the start

and end GPS locations, and the flight altitude. Using the date,

time, and GPS location, we are also able to gather data about

the weather during the flight using OpenWeatherMap API.

Once we gather all these data, we use it to fill in a pre-built

text template that is used to prompt OpenAI’s GPT 3.5 Turbo

model in order to generate the report, limiting the response to

2048 tokens.

IV. EXPERIMENTAL RESULTS

In this section, we present some preliminary results. We

use 5 image sequences captured at 30 meter height and 5

sequenced captured at 60 meter height to demonstrate our

proposed methods and pipeline.

A. Overlap Detection

For evaluating our 3 proposed methods, we used Mean

Absolute Error (MAE) to measure the degree of difference

between Ground Truth (GT) and predicted overlapping area.

The formula of MAE calculation are

AEx =
|xpred − xgt|

W
(8)

AEy =
|ypred − ygt|

H
(9)

MAE =
AEx +AEy

2
(10)

where

• AEx and AEy are horizontal and vertical absolute error

between prediction and GT;

• W and H are width and height of the image in pixels;

• xpred and xgt are coordinate x of right-up vertices of

prediction and GT;

• ypred and ygt are coordinate y of right-up vertices of

prediction and GT.

Tables I and II show the MAEs of the three overlap detection

methods on each of the 5 image sequences captured at 30

meters and 60 meters, respectively. On the 30-meter test

sequences, the RANSAC based method performed the best

on average, being the best in 4 out of 5 cases. The GPS

based method performed the best on Sequence #3. Their

MAEs vary significantly across the 5 sequences. For example,

the RANSAC based method achieved 0.1% error on Seqence

#1, yet only 18.9% on Sequence #3. The performances of

the RANSAC based method and SIFE based method are

much better on 60-meter image sequences, achieving excellent

results, less than 1% error. This is probably due to more

overlaps between 60-meter images than 30-meter images. The

performance of the GPS based method on 60-meter image

sequences is slightly better, on average, than its performance

on 30-meter sequences.

The execution time of the GPS based method is very

fast, just a few milliseconds. The average execution times

of the SIFT based method for the 30-meter and 60-meter

sequences are 7.8 seconds and 19.1 seconds, respectively,

on a Dell desktop computer. The average execution times

of the RANSAC based method for 30-meter and 60-meter

sequences are 41.4 seconds and 239.4 seconds, respectively.

The RANSAC based method is much slower. It took longer for

these two methods to process 60-meter images than to process

30-meter images, likely because 60-meter images have more

content and are more complex.

Although the GPS based method outperforms the SIFT and

RANSAC based method in terms of running speed, it is worse

on prediction accuracy. The RANSAC based method has the

best accuracy, but takes much longer to execute. The SIFT

based method offers a good balance of accuracy and speed.

TABLE I: Performance comparison in terms of Mean Absolute

Error of three overlap detection methods on five test 30-meter

image sequences.

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

GPS-based method 7.1% 44.6% 10.4% 31.4% 3.4%

SIFT-based method 0.2% 88.0% 24.7% 20.6% 0.7%

RANSAC-based method 0.1% 3.4% 18.9% 15.2% 1.4%

TABLE II: Performance comparison in terms of Mean Ab-

solute Error of three overlap detection methods on five test

60-meter image sequences.

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

GPS-based method 5.6% 18.1% 12.0% 8.3% 22.4%

SIFT-based method 0.04% 0.06% 0.15% 0.06% 0.10%

RANSAC-based method 0.04% 0.08% 0.10% 0.06% 0.10%

B. Habitat Classification

Our ground truths for habitat classification is based on a

large number of test points on each image labelled with a

habitat class. To evaluate the performance of our new SAM-

based segmentation followed by image classification method,

we compare the predicted classes of the test points with their

labels and calculate prediction accuracy as the percentage of

test points correctly predicted. It turned out that our method

achieved almost perfect result on the test sequences, over 99%

accuracy.

C. Report Generation

After generating and gathering all the necessary data about

the flight path, waterfowl, and habitats, we use the data to

fill in the blanks in pre-built text templates which are then

used to prompt ChatGPT, i.e., GPT 3.5-Turbo. Fig. 5 show
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Fig. 5: Two examples of our ChatGPT promote templates

filled in with flight data.

examples of two different ChatGPT promote templates filled

in with flight data. We have a basic criteria for what a good

automatic report should accomplish:

• Present the data that was given in the prompt correctly;

• No content that is irrelevant to the report;

• Easy to understand, especially for conservationists;

• Reasonable length (1-2 pages);

From the experimental reports that have been generated, only

1 failed to meet this criteria, where the numbers regarding the

bird count per habitat and the total area coverage by a class of

habitat strangely got changed from the prompt to the report.

An interesting note is that the content of the reports stays

relatively consistent in different tries, while the structure of the

report varies depending on how you ask ChatGPT to write the

report. For example, asking ChatGPT to ªwrite a reportº gives

you a standard text with separate paragraphs while asking it

to ªwrite a scientific reporº causes ChatGPT to respond with

a report that includes an abstract and is divided into different

headed sections.

V. CONCLUSIONS

In this paper, we present a new pipeline to process a

sequence of drone images captured by a drone along a flight

path to detect and count birds and their distributions in various

habitats. We utilize customized deep learning models for

waterfowl detection, Meta’s SAM for image segmentation and

customized image classification models for segment classi-

fication, and ChatGPT to generate text-based flight reports.

Successful image overlap detection methods were developed

to reduce waterfowl double counting in consecutive images.

In this work, we have uncovered how double-counting is

a major problem in detecting objects in a sequence of aerial

images. We have proved that detecting the overlap region be-

tween images in sequences and avoiding doing object detection

in those regions is one viable solution to the double-counting

problem. Out of our 3 proposed methods, we have found that

our SIFT based method provides a good balance of accuracy

and speed. Several factors could affect the performance of

the overlap detection, such as having a lack of identifying

features, small overlapping regions, a significant change of

altitude during the flight, and other potential unidentified

factors. Poor overlap detection will greatly distort the accuracy

of the output. We have shown that a new, task-generalizing

model in SAM performs well even on aerial images that it

wasn’t designed for. One limitation is that SAM requires a

tremendous amount of GPU memory in order to run, especially

with high resolution images. Finally, we found that ChatGPT

performs well in automating the task of writing reports about

drone flights.
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