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Shot noise and universal Fano factor as a characterization of strongly correlated metals
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Shot noise measures out-of-equilibrium current fluctuations and is a powerful tool to probe the nature of
current-carrying excitations in quantum systems. Recent shot-noise measurements in the heavy-fermion strange
metal YbRh2Si2 exhibit a strong suppression of the Fano factor (F )—the ratio of the current noise to the average
current in the dc limit. This system is representative of metals in which electron correlations are extremely
strong. Here we carry out the first theoretical study on the shot noise of diffusive metals in the regime of strong
correlations. A Boltzmann-Langevin equation formulation is constructed in a quasiparticle description in the
presence of strong correlations. We find that F = √

3/4 in such a correlation regime. Thus, we establish the
aforementioned Fano factor as universal to Fermi liquids, and we show that the Fano factor suppression observed
in experiments on YbRh2Si2 necessitates a loss of the quasiparticles. Our work opens the door to systematic
theoretical studies of shot noise as a means of characterizing strongly correlated metallic phases and materials.

DOI: 10.1103/PhysRevResearch.6.L042045

Introduction. It is standard to describe metallic systems
with electron correlations in terms of quasiparticles. These are
elementary excitations that carry the quantum numbers of a
bare electron, including charge e. In strange metals near quan-
tum criticality [1,2], however, the current carriers are expected
to lose [3,4] a well-defined quasiparticle interpretation and
hence the notion of a discrete charge. This issue is especially
pronounced in quantum critical heavy-fermion metals [2,5–
7], for which a beyond-Landau description involving Kondo
destruction [8–10] has received considerable experimental
support [11–16].

How to directly prove that quasiparticles are lost in cor-
related metals is largely an open question. One established
means of such a characterization is in terms of the ratio of
the thermal and electrical conductivities (κ and σ , respec-
tively). The quasiparticle description requires that the Lorenz
number, L ≡ κ/Tσ , obeys theWiedemann-Franz law [17,18].
Given that charge-neutral excitations such as phonons also
contribute to the thermal current, alternative means of char-
acterizing the absence of quasiparticles are much called for.
Here we address this issue in terms of shot noise [19]—the
out-of-equilibrium fluctuations of the electrical current.

When electron correlations are strong, the shot noise of
diffusive metals has not been theoretically considered. Here
we show that, with a suitable requirement on a hieararchy
of length scales, the shot-noise Fano factor (F ), defined as
the ratio of average current fluctuations in the static limit to
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the average current, has a universal value F = √
3/4 in Fermi

liquids in the presence of Landau parameters and quasiparticle
weight reduction. By extension, the quasiparticle description
fails for strongly correlated metals when their Fano factor
disobeys F = √

3/4.
Shot noise has proven invaluable in understanding several

correlated electronic systems and materials, such as quan-
tum Hall liquids, superconductors, and quantum dots, and
has offered a window into the nature of elementary charge
carriers in their respective ground states [20]. For example,
measurement of the shot-noise Fano factor has been pivotal
in uncovering the 1

3 charge fractionalization in the Laugh-
lin state [21,22] and charge 2e Cooper pairs in (fluctuating)
superconductors [23,24]. Furthermore, the Fano factor has
been widely used to isolate dominant scattering mechanisms
in mesoscopic systems. Typically, in a diffusive Fermi gas,
F = 1

3 when scattering is dominated by impurities [25,26].
In a similar Fermi-gas-based approach, when the inelastic
electron-electron scattering rate is included and higher than
the elastic scattering rate, but in the absence of significant
electron-phonon scattering, F was shown to equal

√
3
4 [27,28].

Recently, shot-noise measurements in mesoscopic wires
of the heavy fermion compound YbRh2Si2 showed a large
suppression of the Fano factor well below that of a Fermi-
gas-based diffusive metal [29]. This was found to occur at
low enough temperatures (<10 K) where equilibration of
electrons via a bosonic bath such as phonons is minimal and
cannot account for the reduced shot-noise signal. Since the
only other source of inelastic scattering is strong electron
interactions, a natural question arises: can strong correlation
effects in a Fermi liquid (FL) account for the observed shot-
noise suppression or is it a signature of strange metallicity
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near the quantum critical point? This issue is particularly
important, given that, even for the FL state of heavy-fermion
metals, the effect of interactions is pronounced and can induce
orders-of-magnitude renormalization of both the quasiparticle
weight and effective interactions.

Here we report on the first theoretical study about the shot
noise of strongly correlated diffusive metals. We show that,
in the presence of strong correlations, the Fano factor of a
diffusive FL F is equal to

√
3
4 . In particular, it is indepen-

dent of quasiparticle weight or Landau FL parameters. This
includes, for example, the case when the quasiparticle residue
zk approaches an infinitesimally small (but nonzero) value or
when the Landau parameters are as large as in the heavy-
fermion metals (typically about ∼103). Since the existence
of quasiparticles is central to the robustness of the Fano fac-
tor prediction, the experimentally observed suppression [29]
strongly indicates a loss of quasiparticles.

To this end, we derive the Boltzmann-Langevin transport
equation for a diffusive metal in a regime suitable for ad-
dressing strong correlations. This allows us to analyze the
role of strong interactions on the Fano factor. First, we notice
that charge conservation constrains the Boltzmann equation to
be independent of the quasiparticle weight. This holds even
in the presence of anisotropic effects when zk is strongly
momentum dependent. As a consequence, the current noise,
the average current, and the Fano factor determined from the
Boltzmann-Langevin equation are independent of zk. Second,
we calculate the shot noise and demonstrate that the shot noise
and the average current get renormalized identically by the
Landau parameters. As a result, the Fano factor remains robust
to the introduction of arbitrarily strong interactions within FL
theory. Also inherent in this cancellation is our observation
that the conductances entering both the shot noise and the
average current are equal and determined by the same quasi-
particle lifetime; i.e., there is a symmetry of the scattering rate
between single and multiparticle operators. This symmetry
exists because in FLs the interactions are instantaneous (no
frequency dependence) and the electron scattering processes
are Poissonian, i.e., independent of one another. In the re-
mainder of the Letter, we construct the Boltzmann-Langevin
equation in the strongly correlated regime of a FL. We closely
follow the diagrammatic analysis of Betbeder-Matibet and
Nozieres [30]. In particular, we analyze the role of interactions
via coupling through the scalar and vector potentials. We
then calculate the Fano factor through the shot noise and the
average current, and we discuss its relevance to experiments
in YbRh2Si2 before presenting our conclusions.

Boltzmann-Langevin equation for interacting Fermi liq-
uids. Interacting electrons in the presence of randomly
distributed impurities are governed by the Hamiltonian
H = H0 + HI + Himp. Here H0 = ∑

k,σ εkc
†
kσ ckσ and HI =

1
2

∑
k,k′,q
σσ ′

V (q)c†k+qσ c
†
k′−qσ ′ck′σ ′ckσ describe the noninteract-

ing electron dispersion and the Coulomb interaction, re-
spectively. In addition, Himp = ∑

i,k,q,σ U (q)e−iq·Ri c†k+qσ ckσ

marks electron scattering from dilute impurities. The bare
electron operator is denoted by ckσ , with k and σ representing
momentum and spin. The Coulomb and impurity matrix ele-
ments are denoted by V (q) and U (q), respectively. Next we
consider an external field with Fourier components λ(k) that

(a) (b)

FIG. 1. (a) Plot of the spectral function A(ω,k) with k located at
the Fermi momentum kF. The area of the peak is determined by zk.
(b) A representation of the irreducible vertex contributing to the total
vertex in the Bethe-Salpeter equation in Fig. 2(b).

couples to the interacting electrons, which contributes

H ′(q0, ω0) =
∑
k,σ

λσ (k)c
†
k+q0/2σ

ck−q0/2σ e
−iω0t + H.c. (1)

to the total Hamiltonian, where (ω0,q0) ≡ q0 is the energy
and momentum transfer between the electrons and the exter-
nal field.

To see how the external field modifies the local elec-
tronic density to linear order, we write a semiclassical
total density as nσ (k, r, t ) = n0σ (k) + δnσ (k,q0)e

i(q0·r−ω0t ) +
H.c. Here k ≡ (k,�) is the average momentum and energy
of the incoming particles. We have further defined varia-
tion of the density as the expectation value δnσ (k, q0) =
〈ψ (q0)|α†

k− 1
2 q0σ

αk+ 1
2 q0σ

|ψ (q0)〉, where αkσ is the quasipar-

ticle operator, and |ψ (q0)〉 = |ψ0〉 + |δψ (q0)〉 is the ground
state |ψ0〉 corrected by |δψ〉 due to the external field. The
density response δnσ (k, q0) = 1

2π i

∫
d�χσ (k, q0) can be eval-

uated using the diagram in Fig. 2(a), and it is given by

χσ (k, q0) = z−1
k 
σ (k, q0)G(k

−)G(k+). (2)

Here zk is the quasiparticle residue and is obtained by con-
verting the quasiparticle operators in terms of the physical
electron operators.G(k±) ∝ zk are the interacting propagators

= +

(a)

+=

(b)

FIG. 2. Diagrammatic representations of the key processes con-
tributing to the Boltzman equation. (a) Density response. The dashed
(solid) arrow indicates the sum over the internal frequency (fre-
quency, momenta, and spin). The smaller/red (larger/cyan) solid
disk represents the external field λ that elicits the density response
(total four-fermion vertex, �). (b) The Bethe-Salpeter equation for �

in terms of the irreducible vertex.
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for the shifted wave vector and energies k± ≡ (k ± 1
2q0,� ±

1
2ω). Scatterings among electrons renormalize λσ [red disk in
Fig. 2(a)] to 
σ , which is given by


σ (k, q0) = λσ (k)

+
∑
k′σ ′�′

λσ ′ (k′)�σ,σ ′ (k, k′, q0)G(k−)G(k+),

(3)

where �σ,σ ′ is the fully dressed four-fermion vertex. In or-
der to include renormalizations from both electron-electron
and electron-impurity scatterings, we utilize the Bethe-
Salpeter equation [see Fig. 2(b)] to obtain �σ,σ ′ (k, k′, q0) =
�̂σ,σ ′ (k, k′, q0) + ��σ,σ ′ (k, k′, q0), where

��σ,σ ′ (k, k′, q0) =
∑
k′′σ ′′
�′′

�̂σ,σ ′′ (k, k′′, q0)

× G(k′′−)G(k′′+)�σ ′′,σ ′ (k′′, k′, q0) (4)

and �̂σ,σ ′ (k, k′, q0) (Fig. 1) is the sum of all irreducible vertex
diagrams including Coulomb and impurity scatterings.

Eliminating the vertex part 
σ (k, q0) [Eq. (3)] between
the density response [Fig. 2(a)] and the Bethe-Salpeter
equation [Fig. 2(b)] in favor of the irreducible vertex
�̂σ,σ ′ (k, k′, q0), we obtain the Boltzmann transport equa-
tion for the quasiparticles,

dnp(x, t )/dt + I (np) = 0, (5)

with d/dt = ∂t + ẋ · ∂x ṗ · ∂p, where ẋ = ∂εp/∂ p = v, ṗ =
−∂εp/∂x = eE − ∑

p′ fp,p′∂xδnp′ , and

εp(x) = ε0p − eE · x +
∑
p′

fp,p′δnp′ (6)

denotes the total quasiparticle energy. ε0p corresponds to the
noninteracting fermion energy at global equilibrium. v de-
notes the quasiparticle velocity, and E refers to the static
electric field acting on the quasiparticles. I (np) = Iim + Iee
consists of electron-impurity and electron-electron collision
integrals. Note that the vertex parts can be solved exactly in
the static long-wavelength limit of q0, ω0 → 0 with constant
|q0|/ω0 [30]. Since the Ward identities constrain 
k ∝ z−1

k , it
is clear from the expression of χσ (k,�,q0, ω0) that the den-
sity response, and as a consequence the Boltzmann equation,
is independent of the quasiparticle residue.

While the Boltzmann transport equation is useful to cal-
culate the nonequilibrium average electronic properties such
as the electrical current, it is insufficient to describe their
fluctuations. To do this, we introduce a Langevin source
term δJext to the Boltzmann equation [31], which allows the
room for quasiparticle fluctuations np → np + δnflp to give the
Boltzmann-Langevin equation for a strongly correlated Fermi
liquid,

(∂t + v · ∂x + eE · ∂p)δn
fl
p(x, t ) + δI = −eδE · v∂εpnp

+ ∂np
∂εp

v ·
∑
p′

fp,p′∂xδn
fl
p′ + δJext (p, x, t ), (7)

where δE is the field fluctuation induced by quasiparti-
cle fluctuations and is determined self-consistently through

the Maxwell equation [26] ∇ · δE = 4πδρfl, where δρfl =
e
∑

p δnflp is the charge fluctuation. δI represents the change of
collision integral due to fluctuating quasiparticle distribution
δnflp.

We note that the Landau parameters appear explicitly in
Eqs. (5)–(7) through the kinetic terms and the renormaliza-
tions to the quasiparticle energy (εp). Additionally, Eqs. (5)
and (7) implicitly depend on the Landau parameters through
the collision integrals (I), quasiparticle fluctuations (δnflp), and
field fluctuations (δE ). Here, δE is sensitive to the Landau pa-
rameters because it is generated by quasiparticle fluctuations
δnflp that depend on the interactions among the quasiparticles.

The fluctuations have zero mean value but have finite cor-
relations. δJext denotes the extraneous flux of particles in p
state and equals

δJext (p, x, t ) =
∑
p′

δJ (p′p, x, t ) − δJ (pp′, x, t ). (8)

It is the difference between flux from all p′ states to the p
state and flux from the p state to all p′ states. We assume
that the different fluxes are correlated when and only when
the initial and final states are identical, thereby following a
Poisson distribution of the form

〈δJ (p1p′
1, x1, t1)δJ (p2p

′
2, x2, t2)〉

= LAδp1,p2δp′
1,p

′
2
δ(x1 − x2)δ(t1 − t2)J (p1p

′
1, x1, t1), (9)

where J (p1p′
1, x1, t1) is the mean flux of particles. L and A are

the length and the cross section of the system. The presence
of the Dirac δ functions in space-time reflects the fact that the
duration and the spatial extent of collisions is much smaller
than the electron-electron scattering lifetime and the scatter-
ing length respectively. We use Eq. (7) to calculate the shot
noise.

Steady state. Consider a diffusive correlated metallic wire
with length L and cross section A (L 
 √

A). We model the
correlated metallic wire as a strongly interacting diffusive
Fermi liquid with an applied voltage. An applied voltage
drives the metal into a nonequilibrium steady state. The static
electric potential energy eφ(x) = −eE · x serves as an s-wave
perturbation to the quasiparticle distribution at every position
along the system. The kinetics for the nonequilibrium system
could be described by the Boltzmann transport equation (5)
for the quasiparticles. The two ends of the wire stay in their
own equilibrium: np(±L/2, t ) = f (ε ± eV/2,Tbath = 0),
which serve as the boundary conditions to the Boltzmann
equation, where f is the Fermi-Dirac distribution function.

In the steady state, ∂np/∂t = 0. In order to solve Eq. (5),
we expand the Boltzmann equation in terms of δn̄(x, p) =
np(x) − n0(x, ε) in the regime where EF 
 1/τim 
 1/τee 

D/L2. The first inequality corresponds to the condition for
dilute impurities, and the following inequalities denote the
strong correlation regime. The distribution n0(x, ε) stands for
local equilibrium distribution and ε refers to the true quasi-
particle energy defined in Eq. (6). δn̄(x, p) corresponds to the
departure from local equilibrium. This should be contrasted
with the quasiparticle excitation δnp(x) = np(x) − n0(ε0p) in
Eq. (6), where n0(ε0p) refers to the noninteracting fermion
distribution at global equilibrium without any position depen-
dence. The two quantities are connected by δn̄(x, p) = δnp −
∂n0
∂ε

∑
p′ fp,p′δnp′ (x). Only the local equilibrium distribution
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n0(x, ε) as a function of real quasiparticle energy ε could
make the collision integral I = Iim + Iee vanish, and only
δn̄(x, p), rather than δnp(x), determines the current [30,32].

When quasiparticle scattering is strong such that the
electron-electron scattering length is small compared with the
system size, lee � L, it drives the quasiparticles into local
equilibrium, with a general position-dependent Fermi-Dirac
form n0(ε, x) = f [ε,T (x)] such that I (n0) = 0. Same as the
equation in a Fermi gas [27,28], the explicit solution to the
Boltzmann equation has the form

T (x) =
√
3

2π
eV

√
1 −

(
2x

L

)2

, (10)

with V = EL. The details of the derivation are shown in the
Supplemental Material (SM) [33]. The local equilibrium dis-
tribution function n0 = f [ε,T (x)] is plotted at zero and finite
environment temperature in Fig. S1 in the SM [33].

Shot noise. To calculate the shot noise, we model the mean
particle flux as J (p′p, x, t ) = W (p′p)np′ (x, t )[1 − np(x, t )],
where W (pp′) is the scattering rate, and in the isotropic
case W (pp′) = δ(εp − εp′ )/(LANFτim ). The extraneous flux
of quasiparticles could be connected with the quasiparticle
fluctuation and thereby connects with the current fluctuation
through the Boltzmann-Langevin equation (7). We leave the
details of the derivations to the SM [33] and list the final
results of the current noise,

S = 2
∫ ∞

−∞
dt〈δI (t )δI (0)〉 =

√
3

2
GeV, (11)

where T (x) is the local temperature in Eq. (10). G =
e2DNFA/L = ne2τimA/(m∗L) represents the conductance of
the FL.

We find that under electron correlation, the Landau param-
eters only renormalize the conductance. Therefore, the Fano
factor F = S/2eI is still

√
3/4 compared with the Fermi gas

results in the hot electron regime, regardless of the interaction
strength. This is despite the Landau parameter showing up
in the quasiparticle energy, the distribution function, and its
associated quasiparticle fluctuations [cf. Eqs. (5)–(7)], which
is analogous to the robustness of the Wiedemann-Franz law
against interactions in a Fermi liquid [18].

Discussion. Several remarks are in order. First, in our cal-
culations, we assume that the corrections to the quasiparticle
density and energies are linear in the external perturbation
(linear response). The role of nonlinearities in the response
and the Fano factor dependence of the interaction parameters
will be captured by higher-order terms. Second, our calcula-
tions also assume intermediate mesoscopic length scales in
accordance with experimental values. If the wire is too long,
electron-phonon scattering must be considered, which acts to
suppress the shot noise and the Fano factor. If the length of
the wire is much smaller than the electron-electron scattering
length Lee, inelastic scattering does not contribute to the shot
noise, and the Fano factor is automatically independent of
the interaction strength and Landau parameters. Third, when
retardation effects become important, as for example in the
limit of lower electron densities, the Poissonian nature of the
interaction fails. In this case, one must revisit the issue of the
Fano factor dependence on the interaction parameters. In ex-

periments on YbRh2Si2, the mesoscopic wire is quasi-three-
dimensional where the FL theory continues to hold. However,
when the transverse dimensions of the wire are sufficiently re-
duced, the FL theory eventually gives way to Luttinger liquid
physics. In this case, the Fano factor generally depends on the
dimensionless Luttinger liquid parameters since the shot noise
responds to an effective charge ge, with g being the interaction
parameter [19,34]. Finally, a large mean free path compared to
the Fermi wavelength (kFl ∼ 1000; see the SM [33]) indicates
that disorder-related corrections are negligible.

In Table I of the SM [33], we have contrasted our
work on the shot noise of correlated metals with earlier
works [26–28,35] on simple metals. The contrast emphasizes
that the combination of factors considered here identifies
the shot-noise Fano factor as a universal ratio, akin to the
Wiedemann-Franz law for Fermi liquids, especially in the
strong-correlation regime.

To conclude, we have shown that the Fano factor of
a strongly correlated Fermi liquid, defined by the ratio of
its average current fluctuations to its average current, has
a universal value of F =

√
3
4 . More specifically, our results

demonstrate that the Poissonian nature of the instantaneous
Coulomb interaction and the charge conservation dictate a
Fano factor that is independent of either the Landau param-
eters or (however small) the quasiparticle residue. This has
important consequences for recent shot-noise experiments in
the heavy-fermion material YbRh2Si2 where a strong suppres-
sion of the Fano factor was observed even when the effect
of electron-phonon coupling is negligible [29]. The existence
of a quasiparticle interpretation is a sufficient requirement for
our analysis to hold. Thus, any suppression of the Fano factor
below the universal ratio F =

√
3
4 strongly suggests the loss

of quasiparticles. In addition, our theory sets the stage to ex-
amine shot noise in other many-body systems, such as where
electrons are coupled to collective bosons as has recently been
considered [36–38] or at the type of beyond-Landau (Kondo
destruction) quantum criticality that has been developed for
the heavy fermion strange metals like YbRh2Si2 [3,8–10].
More generally, our work points to the shot-noise Fano factor
as a powerful characterization of strongly correlated metallic
phases and materials.

Acknowledgments. This work was supported primarily by
the National Science Foundation under Grant No. DMR-
2220603 (Y.W., S.S.), by the Air Force Office of Scientific
Research under Grant No. FA9550-21-1-0356 (C.S.), and
by the Robert A. Welch Foundation under Grant No. C-
1411 and the Vannevar Bush Faculty Fellowship ONR-VB
N00014-23-1-2870 (Q.S.). C.S. acknowledges support from
Iowa State University and Ames National Laboratory start
up funds. L.C. and D.N. acknowledge support by the U.S.
Department of Energy, Basic Energy Sciences, under Award
No. DE-FG02-06ER46337. S.P. acknowledges funding from
the Austrian Science Fund (Projects No. SFB F 86 “Q-
M&S”, No. 10.55776/COE1 “quantA”, No. I5868 “FOR 5249
QUAST”), the European Research Council (ERC Advanced
Grant 101055088 “CorMeTop”), and the Air Force Office
of Scientific Research (Grant No. FA8655-24-1-7018 “Cor-
TopS”). Q.S. acknowledges the hospitality of the Aspen
Center for Physics, which is supported by NSF Grant No.
PHY-2210452.

L042045-4



SHOT NOISE AND UNIVERSAL FANO FACTOR AS A … PHYSICAL REVIEW RESEARCH 6, L042045 (2024)

[1] B. Keimer and J. E. Moore, The physics of quantum materials,
Nat. Phys. 13, 1045 (2017).

[2] S. Paschen and Q. Si, Quantum phases driven by strong corre-
lations, Nat. Rev. Phys. 3, 9 (2021).

[3] H. Hu, L. Chen, and Q. Si, Quantum critical metals and loss of
quasiparticles, arXiv:2210.14183 [Nat. Phys. (to be published)].

[4] P. W. Phillips, N. E. Hussey, and P. Abbamonte, Stranger than
metals, Science 377, eabh4273 (2022).

[5] S. Kirchner, S. Paschen, Q. Chen, S. Wirth, D. Feng, J. D.
Thompson, and Q. Si, Colloquium: Heavy-electron quantum
criticality and single-particle spectroscopy, Rev. Mod. Phys. 92,
011002 (2020).

[6] P. Coleman and A. J. Schofield, Quantum criticality, Nature
(London) 433, 226 (2005).

[7] G. R. Stewart, Non-Fermi-liquid behavior in d- and f -electron
metals, Rev. Mod. Phys. 73, 797 (2001).

[8] Q. Si, S. Rabello, K. Ingersent, and J. Smith, Locally critical
quantum phase transitions in strongly correlated metals, Nature
(London) 413, 804 (2001).

[9] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, How do
Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13,
R723 (2001).

[10] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-
Fermi liquids near heavy-fermion critical points, Phys. Rev. B
69, 035111 (2004).

[11] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli,
C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evo-
lution across a heavy-fermion quantum critical point, Nature
(London) 432, 881 (2004).

[12] S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel,
F. Steglich, S. Paschen, S. Kirchner, and Q. Si, Fermi-surface
collapse and dynamical scaling near a quantum-critical point,
Proc. Natl. Acad. Sci. USA 107, 14547 (2010).

[13] H. Shishido, R. Settai, H. Harima, and Y. Ōnuki, A drastic
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