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Abstract Stress—strain behavior of two different soil
specimens subjected to cyclic compressive loading
are studied herein, the goal being to present a sim-
ple dynamic uniaxial mem-modeling approach that
aids physical insight and enables system identifica-
tion. In this paper, “mem” stands for memory, i.e.,
hysteresis. Mem-models are hysteresis models trans-
ferred from electrical engineering using physical analo-
gies. Connected in series, a mem-dashpot and mem-
spring are employed to model inter-cycle strain ratch-
eting and intra-cycle gradual densification of the two
soil specimens. Measured time histories of stress and
strain are first decomposed so that the two modeling
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components, mem-dashpot and mem-spring, can be
identified separately. This paper focuses on the mem-
dashpot, a nonlinear generalization of a linear viscous
damper. A mem-spring model is also devised built on
an extended Masing model. Nonlinear dynamic simu-
lations (with inertia) employing the identified mem-
dashpot and mem-spring demonstrate how well the
identified mem-models reproduce the measured early-
time data (first 200 cycles of loading). Choices of state
variables inherited from bond graph theory, the root
of mem-models, are introduced, while MATLAB time
integrators (i.e., ode solvers) are used throughout this
study to explore a range of contrasting damper and
spring models. Stiff solver and the state event loca-
tion algorithm are employed to solve the equations
of motion involving piecewise-defined restoring forces
(when applicable). Computational details and results
are relegated to the appendices. This is the first study to
use single-degree-of-freedom (SDOF) system dynamic
simulations to explore the consistency of mem-models
identified from real-world data.

Keywords Soil dynamics - Compressive loading -
Strain ratcheting - Cyclic triaxial tests - Time-varying
system - Hysteresis - Mem-models - Generalized
momentum - Absement - Parametric plot - SDOF
dynamic simulation - Choice of state variables - State
event location algorithm - ode45 - odel5s - Stiff solver
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1 Introduction

Many problems facing geotechnical engineers require
understanding of, and the ability to model the dynamic
behavior of geomaterials. Examples include high-
way and railway substructures, and other dynamically
loaded foundation systems. It is important to quan-
tify material damage associated with repeated dynamic
loading to assess the useful life of these systems. This
is particularly important in light of the additional stres-
sors from climate change and increased frequency of
natural hazards. The finite element method (FEM) and
discrete element method (DEM) are two ways to sim-
ulate and predict potential damage by using assumed
boundary conditions, loading conditions and constitu-
tive relations, where measured data are utilized in an
indirect manner; this is called forward analysis. In con-
trast, inverse analysis operates directly on measured
data to construct a mathematical model that fits the
datain a process called system identification. The resul-
tant mathematical model, called the identified model,
can be further employed to interpret the existing dam-
age and predict future damage progression, a process
called damage prognosis. This is when single-degree-
of-freedom (SDOF) system dynamic simulations can
come into play.

In this paper, a simple dynamic uniaxial mem-
modeling approach is presented, that aids physical
insight and enables system identification. This study
begins with nonlinear system identification [22,31] and
continues with dynamic simulations using a series of
uniaxial models based on mem-modeling concepts and
techniques.

Mem-models are a family of emerging theoretical
hysteresis models, being studied by this team following
the lead of [12,14] in electrical engineering, and [19,
33]in mechanical engineering. Directly analyzing real-
world data to substantiate the theory to facilitate similar
real-world applications is what this study is about.

1.1 Background

Stress—strain datasets in this study come from an earlier
laboratory study [28] which was conducted to investi-
gate the behavior of a soft compacted clayey soil sub-
jected to cyclic loading, part of a comprehensive inves-
tigation of the Low Track Modulus (LTM) section of
the Facility for Accelerated Service Testing (FAST).
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Fig. 2 Time history for one period (7 = 1.25 seconds) of
applied stress as used in the laboratory cyclic triaxial testing
program of [28]

Asdescribed in [28], stress—strain data were acquired
from cylindrical soil specimens that were subjected to
repeated compressive loading. Figures 1 and 2 show
schematics of the test setup and the profile of the com-
pressive loading that was repeatedly applied at the top
of each specimen.

The results of twelve such cyclic triaxial tests are
summarized in Table 4 of [28]. The datasets are time
series of the form (¢;, 0y, ;) fori =1, ..., N where t; is
time and o;, &; denote uniaxial stress and uniaxial strain
(respectively) at time #; with uniaxial meaning both
quantities were measured along the cylindrical axis.

This paper presents a study of the first 200 cycles of
the data acquired from Test 2 and Test 3. To highlight
the richness and challenges of the selected datasets,
Table 1 summarizes certain details of these tests. Test
2 reached a maximum permanent strain of 1.6% after
about 15,000 cycles, which did not change much out
to 72,900 cycles. Sample 2 did not experience shear
failure. Test 3 resulted in rapid shear failure reach-
ing 15% axial strain in about 800 cycles, although
the loading was continued until 3250 cycles. Another
important difference was that Test 2 was conducted
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Table 1 Lines | to 7 summarize details of Tests 2 and 3, taken from [28]. Lines 8 to 13 summarize details of measured data, extracted

from the first 200 cycles as part of this study

Line Detail Test 2 Test 3
1. Maximum applied stress umax (kPa) in Fig. 2 55 55
2. Initial confining pressure (kPa) 14 14
3. Initial degree of saturation, S (%) 90.4 100
4. Drainage lines Open Closed
5. Confining fluid Air Water
6. Number of cycles 72,900 3,250
7. Failed? No Yes
8. Data sampling rate (Hz) ~25 ~30
9. Maximum strain &max (%) ~0.9 (see Fig. 20b) ~10 (see Fig. 3b)
10. Maximum strain rate &max (%/sec) ~3 (see Fig. 21) ~3 (see Fig. 10)
11. Linearly regressed Young’s modulus E(y (MPa) 11.5 (see Fig. 23e) 10.8 (see Fig. 13e)
12. Initial tangent modulus for virgin loading curve 15-35 (see Fig. 25) 20-50 (see Fig. 16)
in extended Masing model £ (MPa)
13. Yield strength of virgin loading curve 2545 (see Fig. 25) 25-35 (see Fig. 16)
in extended Masing model o, (kPa)
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Fig. 3 Measured a stress and b strain time histories for Test 3;
only the first 200 cycles are shown; the periodic loading rate is
0.8 Hz (approx)

with the drainage lines open (pseudo-drained condi-
tion) whereas Test 3 was conducted with the drainage
lines closed (undrained condition). For the latter, the
development of shear-induced excess pore water pres-
sure contributes to a rapid reduction in effective stress,
which accounts for the rapid shear failure. Due to the
difference in saturation and drainage conditions, the
accumulated axial strain after 200 cycles was less than
1 percent for Test 2 compared to 10 percent for Test 3,
as shown in Figure 5 of [28], even though both speci-
mens were subjected to the same repeated loading. As

zero/origin-crossing feature. This assembly appears in Models 1
to 4 in Table 2

Fig. 2 illustrates, the load applied at the top of the soil
specimen during each cycle was trapezoidal in shape,
increasing linearly for 0.1 s, staying constant at 55 kPa
for 0.4 s, decreasing linearly to zero for 0.1 s, and then
remaining at zero for 0.65 s. Hence the total period of
each load cycle was 1.25 s (i.e., 0.8 Hz).

Using Test 3 as an example, Fig. 3(a and b) show
the first 200 cycles of measured stress and strain ver-
sus time. A list of notation is given in Appendix A.
The relevant results of Test 3 are presented in the main
body of this paper while less copious Test 2 results
are provided in Appendix B. The number of cycles is
limited to 200, which is set for the purpose of pro-
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Fig. 5 Measured stress o and integrated generated momentum
p time histories for Test 3 in Panel (a) and (b), respectively

gressively developing and validating the proposed new
mem-modeling approach, before eventually applying
it to a greater number of load cycles.

Since only a single time series of uniaxial data are
available from each test, this study focuses on the uni-
axial mem-model assembly illustrated in Fig. 4, despite
the fact that non-uniaxial effects (e.g., Poisson effect,
shear stresses and strains) are important in cyclic triax-
ial tests. The purpose here is to identify the early-time
stress—strain behavior of the Test 2 and Test 3 spec-
imens not just in conventional terms, but also using
recently developed mem-modeling concepts and ter-
minology which are utilized in this work.

With constitutive modeling as our focus, we assume
that the axial strain of a specimen is the change of its
length divided by its original length (i.e., engineering
strain). Two different modeling levels are involved:
material level and system level. However geometric
nonlinearities are neglected in this study, so we have
simple conversions between the material and system
levels. Given the dimensions of the cylindrical soil
specimens in these tests with diameter D = 2.85 inch
(D = 17.24 cm) and length H = 5.21 inch (H = 13.2
cm):

)

=

X
e = T in the unit of % 2)

where o and ¢ stand for axial stress and axial strain,
respectively, while X is the displacement at the top
of the specimen where the load is applied in Fig. 1
and R stands for the specimen’s axial restoring force.
(Wherever necessary, conversion from US customary
to SI units — such as m, kPa, and % strain — are taken
care of throughout this study.)
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Fig. 6 a Measured strain ¢ time history for Test 3, and its two
decomposed components. b &4 for the mem-dashpot, and ¢ &g
for the mem-spring

1.2 Features of this study

We have two basic modeling elements in Fig. 4, damp-
ing and stiffness. As will be shown, the measured
stress—strain response of each soil specimen is clearly
nonlinear, which means it cannot be modeled by linear
dynamics, even within a single loading cycle. Although
the visual aspects of the measured stress—strain behav-
ior, such as a hysteresis loop within each loading cycle
and gradual compaction from cycle to cycle, are simple
conceptually, such details are not so easily quantified in
analysis nor so readily captured in programming. This
was the initial challenge from the datasets in this study.

Distinct features of this study, resulting from employ-
ing mem-modeling concepts, are introduced in this
subsection as a visual introduction to mem-models,
before introducing mathematical expressions in the
next subsection. These underlying mem-modeling con-
cepts directly address the initial challenge, and will ulti-
mately lead to efficient models for all simulations.

The first feature of this study is to incorporate the
time integral of measured stress, called “generalized
momentum’ and denoted as p, in our constitutive mod-
eling studies and as a new state variable in dynamic
simulations. The background knowledge of this, which
comes from bond graph theory and mem-models, will
be introduced in Sect. 1.4, see Fig. 5 for the stress o
and generalized momentum p for Test 3. There is a
one-to-one mapping between time ¢ and generalized
momentum p with p(¢) increasing monotonically as ¢
increases. Following the ideas in [36], we will use p as
an alternative means for time parameterization.

The second feature of this study is to decompose
(i.e., partition) the strain time history into two parts
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corresponding to the two components in the model
assembly as shown in Fig. 4 so that these two model-
ing components can be identified in a decoupled man-
ner. Strain decomposition is part of system identifica-
tion which, being an inverse mathematical problem,
means that non-uniqueness issues arise. Explanation
as to how the decomposition takes place will be pro-
vided under Sect. 2.1. Decomposed strain time histories
are presented in Figs. 6, and 20c and d for Tests 3 and
2, respectively. Appendix C offers further justifications
for the proposed signal decomposition.

Figure 6(b and c) show the decomposed strain time
histories for the mem-dashpot and mem-spring, indi-
cated by subscripts “d” and “s” and denoted by ¢, and
&5, respectively. Hence, the decomposed strain satisfies

e =¢g4+ & (3)

for every measured strain value, ¢;. As will be explained
in Sect.2.1, g4 is called the “ratcheting strain” in this
study. Note that — ideally — only compression is mean-
ingful for these tests; all measured and decomposed
stresses and strains in Fig. 6 should be nonnegative,
with positive meaning compression. However there are
in fact a few time instants when mem-spring strains are
slightly negative (i.e., tensile), which is due to small
numerical errors in the decomposition, or small errors
in the measured stresses and strains. Nonetheless the
results of the decomposition are presented herein to
reveal the usefulness of this mem-modeling approach
based on the generalized momentum p and the two
modeling components in Fig. 4.

The third feature of this study is to use a one-to-one
mapping between the mem-dashpot strain ¢4 and gener-
alized momentum p to define the mem-dashpot. This is
the signature of Dr. Leon Chua’s memristor, which will
be introduced in Sect. 1.4. There are one-to-one map-
pings for all other mem-models, as the study on mem-
models continues. See Figs. 7c and 23d for the two one-
to-one mappings for Tests 3 and 2, respectively. These
one-to-one mappings are nonlinear functions that are
easily fitted. The fitted functions will be used to repre-
sent the mem-dashpots for these two tests and used in
dynamic simulations. If the fitted functions were linear
(which they are not in these tests), the mem-dashpots
would simply be linear viscous dampers [37,40] which
is why mem-dashpots are considered generalized vis-
cous dampers.

The last feature of this study is to use a mem-spring
with “zero-crossing”, meaning when the mem-spring
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Fig. 7 a and b time histories for generalized momentum and
strain for Test 3, respectively, and ¢ their one-to-one mapping
(i.e., parametric plot of p(#;) versus &4(#;), time is the common
parameter)
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Fig.8 aand b time histories for stress and the mem-spring strain
&5 for Test 3, respectively, and ¢ their parametric plot (time is the
common parameter) to reveal zero-crossing

strain (with a subscript “s”) is zero, the corresponding
stress is (or ideally should be) zero. This is the signature
of Dr. Leon Chua’s memcapacitor, which will be intro-
duced in Sect. 1.4. There are zero-crossings for all other
mem-models, as the study on mem-models continues.
See Figs. 8c and 23c for the mem-spring for Tests 3
and 2, respectively. These loops are not functions. The
existence of these loops indicates that the underlying
behavior is inelastic; i.e., mem-springs are not elastic
springs.

Putting all these features together, it will be shown
that the mem-dashpot captures the ratcheting strain
(i.e., the accumulating strain) from cycle to cycle,
whereas the mem-spring captures energy dissipation
within each cycle once the ratcheting strain has been
accounted for. In short, the mem-dashpot and mem-
spring are devised to capture inter- and intra-cycle
energy dissipation, respectively. It should be noted that
in addition to the energy dissipation associated with
the measured stress—strain data at the material level,
the system-level model requires additional numerical
dissipation in order to accomplish satisfactory nonlin-
ear simulations. This is clarified in Appendix D.
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1.3 Brief review of hysteresis modeling

Hysteresis modeling of physical systems has a long
history, which dates back to the late ninteenth cen-
tury in the case of magnetic materials. For a recent
review of mechanical systems, see [55]; also see [30].
In [42], we examined whether mem-models could be
useful for hysteresis modeling from the perspective
of phenomenological modeling. In this paper, we will
show that although mem-models were proposed as rate-
dependent models, they can also be viewed as rate-
independent models in some applications. Not to be
exhaustive, rate-dependent hysteresis models include
hereditary integral, e.g., [24], K-BKZ model for Alan
Kaye, Barry Bernstein, Elliot Kearsley, and Louis
Zapas, e.g., [29], and generalized Duhem [53]. Rate-
independent hysteresis models include Preisach mod-
els [23,27,43], Prandtl — Ishlinskii model [6], Kras-
nosel’skii — Pokrovskii model [23], play (or backlash)
and relay (or stop) [53], bilinear hysteresis [9,10],
extended Masing [2,3,17,18,26], Ramberg-Osgood
model [20], distributed-element model [15,16], Bouc-
Wen and BWBN model [1,4,56], Duhem model [53],
Leuven Model [52], and nonlinear feedback model
[32,46].

1.4 Brief review of bond graph and mem-models

“Mem-models” refer to a special form of memory, i.e.,
hysteresis, with loading-rate dependency (which may
be removed through design, e.g., [36]). Mem-models
were introduced to engineering mechanics by Pei and
colleagues ([36-38,40—42,54]), following the lead of
[19,33]. Mem-models are based on a suite of new con-
cepts for the memristor, memcapacitor, and memin-
ductor developed for electrical engineering in [12,13];
revitalized since [51] and generalized in [14].

The following definitions are given at material
level. System-level definitions can be easily obtained
via Egs. (1) and (2). For example, stress generalized
momentum (“g-momentum” for shorthand notation) is
denoted by p and is defined as follows:

t
p(t) = / o (s)ds 4)

—00
At system level, we have generalized momentum
defined as follows:

t
P@t) = / R(s)ds (5)

—00
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where R stands for restoring force.
For the mem-dashpot at material level, we have:

ga = Fa(pa) (6)

where Eq. (6) is assumed to be a one-to-one mapping
as mentioned previously (e.g., Fig. 7c). Differentiating
Eqg. (6) on both sides and applying the chain rule leads
to:

éq = Wa(pa)oa (7

where W;(pg) e ‘JFJM. When o; = 0, we have

&4 = 0, which demonst{rates the zero-crossing feature
mentioned previously but for mem-dashpot.

Mem-models exploit mathematical parallelism, which
needs to be handled with care [37]. The counterpart of
Eq. (7) for a mem-spring is as follows:

&y = Ws(ps)os (8)

which once again exhibits the zero-crossing feature but
for a mem-spring (e.g., Fig. 8c). Integrating both sides
of Eq. (8) with time leads to:

as = Fs(py) 9

where Wi (ps £ d%’—lg’“). This demonstrates the one-

to-one mapping feature described previously but for
mem-spring (e.g., Fig. 13e).

Strain absement a(¢) is defined as the first time inte-
gral of strain:

1
a(t):f e(s)ds (10)

—00
Absement has not been often used in modeling [25].
Most recently, strain absement has been connected to
damage variable in continuum damage mechanics in
[42].
Strain absement at system level is defined as follows:

A(t) = ft X (s)ds (11)

—00
Bond graph theory [21,34,35,44], a multi-physics
theoretical framework, is where the mem-models orig-
inated. [39] studies the choices of state variables in
bond graph theory, which will benefit this study.

1.5 Intended contributions and structure of this paper

The family of mem-models is a theory where the gov-
erning functional forms are abstract and to be deter-
mined per application. Aiming for real-world applica-
tions of mem-models, analyzing real-world data using
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these models is a necessary path. On one hand, inher-
ent noise in real-world data measurements may cause
numerical challenges so that numerical details may
need to be devised to correctly and efficiently imple-
ment the theory computationally. On the other hand,
analyzing real-world data offers a powerful testament
and reveals new facets to the theory, literally/visually or
through computation. Even though the extent and com-
plexity will increase from analyzing simulated data,
analyzing real-world data using mem-models will be a
productive path.

This study expands on our preliminary prior work in
[40,54] with a significantly increased scope and depth
making a major leap in using real-world data to visual-
ize mem-model concepts for teaching, and attesting the
consistency of the identified mem-models using SDOF
dynamic simulations to make sure that identified mem-
models would perform reasonably in further damage
prognosis. The former intended contribution has been
described briefly in Sect. 1.2, while the latter intended
contribution is detailed as follows:

First, this study validates the idea from [40,42] to
design mem-models utilizing measured datasets. They
include using a mem-dashpot to capture strain ratch-
eting in cyclic triaxial test data, and using part of
an extended Masing model (minor loops only) as a
mem-spring model. There are two parameters used to
characterize the mem-dashpot model as in Eq. (16)
for time-varying ratcheting. While two parameters are
used in the adopted extended Masing model as in
Egs. (17) and (18), we will introduce six parameters
as in Egs. (19) and (20) to make the extended Masing
model time-varying. Parameters for the mem-models
in Fig. 4 are identified using measured data. The key
signature of the mem-models is in their use of the time
integral of stress and the time integral of strain.

The mem-models are then incorporated into the
equation of motion and the dynamic uniaxial response
of the test specimen (including inertia) is calculated for
multiple cycles. This is the first time for a mem-model
that has been identified using real-world datasets to then
be used in dynamic simulation and validated using the
same data. A series of models will be included for per-
formance comparison, numerical validation, and phys-
ical insight; see Table 2.

The above highlights the intended contributions of
this paper. In terms of presentation for both Tests 3 and
2, Sect.2.1 summarizes the procedure for decompos-
ing the strain, €(f;) = &4(t;) + &(t;), while Sect.2.2

Table 2 Scope of dynamic simulations in this study

Model Schematic Sec. State
No. ID Variables
I A A A @ u®
1 linear linear Appendix E.1 P(t)
Pp . X(t)
C
- u®)
=AW
L] OO
linear linear : P(t)
2 Appendix E.1 [X(t)
C
=8
mem- linear P(t)
dashpot :
3 Appendix E.2 [X(t) ]
- u()
-
L] OO P(t)
mem-  partial R(t)
dashpot Masing :
4 Appendix E.3 X4 (t)

Xs(t)

assesses the proposed decomposition in terms of strain
energy dissipated during each loading cycle. Sec-
tion 3.1 identifies the one-to-one mappings of the mem-
dashpots for Tests 2 and 3, while Sect.3.2 applies the
extended Masing model [2, 17, 18] for the mem-springs
not only for modeling but also for validation. Section4
discusses simulation results and future work. Section 5
offers concluding remarks. Appendix D is a precursor
to nonlinear simulation, addressing one limitation of
this study. Appendix E contains all simulation details
and results in this study.

2 Data analysis using mem-model concepts

Despite the basic idea given in [40,42], the specified
real-world data requires an algorithmic procedure for a
correct and consistent implementation so that our work
is reproducible. This entails the work under Sect.2.1.
The results from the data analysis are further examined
using dissipated energy, an important physical aspect,
so that the correctness of the analysis can be validated
and the high quality of the selected dataset can be appre-
ciated. This is the motivation for Sect.2.2.

2.1 Decomposition of strain data

Figure 4 shows the model presented in [40,42] which
is used throughout this study. For presentation effi-
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Fig. 9 Flowchart of strain
decomposition using Test 3
as an example, where the
two subjective decisions

o(t) in Fig. 8 —>

Stage 1: “offset”

differentation

made are highlighted in

green and links to key Start &(;) in Fig. 3(b) / / o(t;) in Fig. 3(a) / T}, in Fig. 10

figures for visualization are

embedded

integration

p(t:) in Fig. 7(a) p(Ty) in Fig. 11(b)

compatibility

a(Ty) in Fig. 11(b)

Stage 2: linear interp.

eq(t;) in Fig. 11(d)

subtraction

ciency and contrasting purpose, linear dashpot and
mem-dashpot occupy the slot for the dashpot, while
linear spring, the proposed mem-spring, and partial
extended Masing model (minor loop only), occupy the
slot for the spring in the illustration. Formulations for
the proposed mem-dashpot, and partial extended Mas-
ing model as mem-spring will be discussed in this
paper; all model parameters will be identified using
the soil data.

Serial connectivity in Fig. 4 implies additivity of
strains:
& = 8[11‘ + 85‘, for Models 1 and 2
eq + ¢k, for Model 3 (12)
e =eq +eM, for Model 4

where the superscript L stands for linear, while the
superscript M stands for partial extended Masing
model, which will be presented in Sect.3.2 where it
will be made clear that partial extended Masing model
is a mem-spring.

Focusing on mem-dashpot and mem-spring in series,
the modeling elements labelled as (ii) and (c) in Fig. 4,
Egs. (6) and (8) are applied, respectively. In addition,
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H

| R
s(t;) in Fig. 11(f)
[

Stop

serial connectivity implies stress equality oy = o5 =
o, and consequently pg; = ps = p, so that Eq. (12)
becomes:

e = Fy(p) + Ws(p)o 13)

which is identified using the method given in [40]: The-
oretically, when o = 0, we have ¢, = Wi (p)o = 0.

Equivalently, when ¢ = 0, we have ¢ = ¢4. Pro-
cedurally, cycle separation times 77 < T» < T3...
corresponding to o(Ty) = 0,k € Z* are identi-

fied first. Next, identify F, for the mem-dashpot using
ed(Ty) = Fg(p(Ty)). Last, identify the residue as the
mem-spring. This is the basic idea given in [40,42].
To carry out this simple idea, thorough examinations
of the data, careful thinking, and numerical treatments
were needed; see the detailed flowchart in Fig. 9 with
embedded links to key figures to illustrate numerical
challenge and proposed numerical treatment.
Subjective decisions take place in two stages as illus-
trated in Fig. 9, where approximation errors propagate.
Stage 1 involves decomposing the strain history into
load cycles defined by the time instants 7; by choos-
ing the value for “offset”. See Fig. 10a and b for typ-
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Fig. 10 Time histories of the first 11 cycles of Test 3 dataset,
where the first and 11th cycles are highlighted in cyan and blue,
respectively, and the red diamonds are separation points for strain
decomposition with an offset value of 3: a and b measured stress
and strain time history, respectively, where the cycle separation
time instants 7} < T» < T3... < Tj; are marked, and ¢ and
(d) numerically differentiated stress and strain rate time history,
respectively

ical zoomed-in views of measured time histories of
stress and strain, where plateaus around zeros and local
minima can be seen for stress and strain, respectively.
These are the numerical details that are simple con-
ceptually but not so easily quantified numerically. To
capture cycle separation time instants 7 numerically,
local peaks in ¢ are identified first, followed by deter-
mining offset values empirically. Results of a study of
offset values in Stage 1 are presented in Appendix C;
the empirically determined offset values are 2 and 3
for Tests 2 and 3, respectively. We apply the MATLAB
code central_diff.m [8] to ensure forward and backward
differences at the left and right ends, respectively, and
with the same second-order of accuracy as the central
difference for the mid-portion.

Stage 2 involves decomposing the measured strain
history data within each cycle into mem-dashpot and
mem-spring strains; see Fig. 11. The residue for

(c) p (kPa sec) (b) p (kPa sec) (a) p (kPa sec)

t (sec)

Fig. 11 Time histories of the first 11 cycles of Test 3 dataset,
where the first and 11th cycles are highlighted in cyan and blue,
respectively, and the red diamonds are separation points for strain
decomposition with an offset value of 3: a integrated generalized
momentum p time history, b the identified £4 (7} ) and p(7}) pairs
plus the origin, ¢ the piecewise linearly interpreted p — g4, d the
obtained &, time history, e the measured strain € time history,
and f the obtained &, time history

the mem-spring is obtained by first fitting the mem-
dashpot, e4(t;) = F4z(p(t;)), using simple linear inter-
polation (interpl in MATLAB). The identified mem-
spring is not as accurate as the dashpot.

The mem-dashpot strain at the end of each cycle
ex = &4(Ty) is called the “ratcheting strain” in this
study because physically the reduced length of the soil
specimen at the k-th cycle is determined by g;. In
Fig. 11b, the red diamonds indicate points (g, px) but
no curve connecting these points is shown, which is
the status of strain decomposition at the end of Stage
1. Figure 11c shows these points connected by straight
lines which is a consequence of assuming and imposing
piecewise linear interpolation in Stage 2.

Returning to Fig. 6, panel (b) shows the ratcheting
strain g4(#;) for the first 200 cycles while panel (c)
shows the remaining part of the strain that is attributed
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Fig. 12 a—c Hysteresis loops, and d one-to-one mapping of the
first 11 cycles of Test 3 dataset, where the first and 11th cycles
are highlighted in cyan and blue, respectively, and the red dia-
monds are separation points for strain decomposition with an
offset value of 3, where 11 values of ¢ = ¢, are marked with the
corresponding &, = 0: a measured stress—strain curve; b decom-
posed stress—strain for the underlying mem-dashpot model; ¢
decomposed stress—strain for the underlying mem-spring model,
and d stress time integral-strain time integral for Panel (c)

to the mem-spring; i.e., &(t;) = &(t;) — €4(t;). Note
that the vertical scales of panels (b) and (c) in Fig.6
differ by a factor of 20.

Figure 12 shows hysteresis loops (stress versus
strain) using the decomposed strains. Decomposed
stress—strain curves and their corresponding one-to-one
mappings for Test 3 are presented in Fig. 13; the coun-
terpart for Test 2 is presented in Fig. 23.

These outcomes of the proposed decomposition
make sense intuitively: Figs. 12a and 13a display repet-
itive stress—strain loops, all of which appear to anchor
around their lower left corners. The anchor points do
not remain in one place. Rather, they seem to drift from
cycle to cycle. These observations are about the period-
icity, and inter-cycle strain ratcheting in the data. These
repetitive loops are not stationary; intra-cycle gradual
densification is the cause. The proposed decomposi-
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Fig. 13 a-c Hysteresis loops, and d and e one-to-one mappings
of the first 200 cycles of Test 3 dataset, where the first, 11th (the
largest) and last (the smallest) cycles are highlighted in cyan,
blue, and dark blue, respectively, with a strain decomposition
with an offset value of 3: a measured stress—strain curve; b and
¢ decomposed stress—strain relations for the underlying mem-
dashpot and mem-spring as in Fig. 4, respectively, and d and e
the input—output one-to-one mappings for b and ¢, to define the
mem-dashpot and mem-spring, respectively

tion thus assists quantitative data analysis with physical
insights, creating an algorithmic procedure that would
be hard to reason otherwise.

What will follow is how to identify these two mod-
eling components independently as in Sect. 3. Before
getting there, we will examine dissipated energy before
and after the decomposition to validate the imple-
mented decomposition and appreciate the high quality
of the selected datasets.

2.2 Dissipated energy

Energy (per unit volume) dissipated by the specimen
during the kth loading cycle, Dy, is defined as:

Tyt
Dy = / o(t)de(t) (14)
Ty

k
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Table 3 Details of estimated energy (per unit volume) Dy dis-
sipated during the kth cycle for Test 3; see Fig. 12a

Cyclen. Index Index Ty £ Dy,

k ip io (sec) (%) J/m3)

1 1 37 1.2000 0.3409  184.0334
2 37 76 2.5000 0.5774  168.1251
3 76 113 3.7330 0.8000  169.9906
4 113 150 4.9670 1.0017  178.0853
5 150 189 6.2670 1.2243  178.7751
6 189 227 7.5330 1.4087  179.3887
7 227 265 8.8000 1.6139  177.3015
8 265 303 10.0670  1.7843  182.0625
9 303 340 11.3000  1.9861 185.9214
10 340 377 12.5330  2.1739  178.1904
11 377 416 13.8330  2.3270 181.6914

where T; and Ty are the identified beginning and
end times (respectively) of the kth cycle with &k =
1,2,3,...,199. Dy is estimated in this study using
the trapezoidal rule:

i=i,
Dy = Z % (0i +0it1) (Eiv1 — &) (15)

i=ip
where i is the index of the time series (¢;, 0;, &;) where
i = ip,ip+1,...1. 1s the kth cycle, with i, and i,
being the beginning and end index, respectively. Table 3
gives computational details of Dy for Test 3, associated
with Fig. 12a, while Fig. 14 presents the dissipated
energy not only for the specimen but also for the two
decomposed components (i.e., mem-dashpot and mem-
spring) since ¢ = g4 + &. The counterparts for Test
2 are Table 6 and Fig. 24. It is interesting to observe
the (automatically) identified values Ty in these two
tables: According to Fig. 2, the increment of 7} from
cycle to cycle should be constant — equal to the period
T = 1.25 seconds — but in fact these increments devi-
ate somewhat from this value, a vivid reminder of the
noisiness inherent in all real-world data.

In both tests, the energy dissipated during each
load cycle Dy is always positive, fluctuating some-
what from cycle to cycle. Positive Dy for each k is
to be expected since the soil specimen was intention-
ally stressed beyond its elastic limit during each cycle.
In Test 2, D; decreases somewhat as k increases, with
the mem-spring dissipated energy D being nearly 100
percent of the dissipated energy per cycle compared to

[ 20 40 60 80 100 120 140 160 180 200

cycle number
200 T T T

(b) Dy (3/m)

0 20 40 60 80 100 120 140 160 180 200
cycle number
200 T T T

() D, (3/m?)

0 20 40 60 80 100 120 140 160 180 200
cycle number

Fig. 14 Dissipated energy (per unit volume) for each load cycle:
a Dy for Test 3, b D, for the mem-dashpot, ¢ D; for the mem-
spring, where cycle numbers 1, 11 and 200 are highlighted in
cyan, blue, and dark blue, respectively

Table 4 Mem-dashpot parameters gy and pg obtained by fitting
hyperbolic curve Eq. (16) using first 200 cycles of test data

Test 2 3 Unit
£0 1.05 12.5 %
Po 950 1,400 kPa-sec

the mem-dashpot dissipated energy D,. We note here
that D = D4 + D; for each cycle because the strain
decomposition satisfies ¢ = ¢4 + &, for each time ¢;.
However slightly negative values of mem-dashpot dis-
sipated energy were noted at a few time points #; for
Test 2, due to the fact that the strain decomposition of
Test 2 is numerically more sensitive than Test 3.

3 Identified mem-models
3.1 Two mem-dashpot models

As shown in Fig. 13d, the one-to-one mapping for the
mem-dashpot labelled as Item (ii) in Fig. 4, is clearly
nonlinear. Hyperbolic curve fitting following Eq. (16) is
applied toit; the results of the two identified parameters,
&o and py, are given in Table 4.

(#)

eq = Fa(p) = SOW (16)
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We take a moment to examine Eq. (16), in which
the variable p appears in a normalized form, %. Given
this functional form, each parameterized mem-dashpot
model is loading-rate independent, although mem-
dashpots are loading-rate dependent models. More-
over, strain ratcheting is known to be a loading-rate
dependent phenomenon. For our purposes, Eq. (16)
works for each test simply by using different values
of po and &.

Even though cyclic stress—strain behaviors in these
compression tests are complex, the proposed model
assembly in Fig. 4 is relatively simple and each mod-
eling element is intended to be defined by a relatively
simple nonlinear static one-to-one function such as the
hyperbolic curve with two parameters for the mem-
dashpot. This manifests one of the key aspects of our
mem-modeling approach to these test data.

3.2 Minor loops of extended masing model for
mem-springs

Looking next at Panel (e) in Fig. 13, the Test 3 one-to-
one mapping for the mem-spring is (or at first glance
seems to be) a straight line. A linear regression result is
presented using a red dashed line for the discrete pairs
of (ag, p) with a slope of Ey &~ 10.8 MPa. Referring
to [38], we have % = j—fs, meaning that the secants
of the stress—strain loops in Panel (c) are equal to
the corresponding tangents of generalized momentum-
absement curve in Panel (e). Eg is thus also drawn in a
red dashed line in Panel (c), representing the identified
average Young’s modulus of the stress—strain loops, an
insightful concept that will be followed up on momen-
tarily.

The extended Masing model (presented herein) fol-
lows [2,17,18]. The virgin loading curve starts with
one particularly simple functional form proposed in Eq.
(5.29) in [17] so that the expressions for minor loops
are as follows - specifically for this study, among all
equivalent options:

-0
(‘3’M=E<1—GA; )éM,

u

loading reloading (this study) 17)
* J—
&M=E<l—w)éM,
20,
unloading (this study) (18)
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where E stands for the initial tangent modulus for the
virgin loading curve and all unloading and reloading
curves. Whereas o, is the yield strength for the virgin
loading curve, 20, is the yield strength for all minor
loops following the Masing rule reviewed in [3]. o*
is the stress at the pivoting point where ¢, = 0 and
oy = 0 simultaneously. There are three independent
parameters, oy, E, and n in [17], however weusen = 1
in this study for simplicity.

The idea of using minor loops of extended Masing
model to model the mem-spring is given in [40,42].
Figure 15 presents individual approximations of three
typical mem-spring loops from load cycles 1, 11 and
200. Note either a loading/reloading or unloading
branch is needed to identify the two parameters, o, and
E. Both the loading/reloading and unloading branches
could be used for the identification, further leading to
averaged results. The key message here, however, is
that both 0, and E values vary from cycle to cycle.
Figure 16 further presents both o,, and E values for all
200 cycles. Using extended Masing models for individ-
ual loops is thus inadequate. The proposed mem-spring
addresses this modeling need. [11] proposes a deterio-
rating Masing, however the approach differs from this
study.

This study enriches the extended Masing model
using either absement or generalized momentum to
approximate o, and E. This means that the cycle num-
bers in Fig. 16 can be replaced with their corresponding
either absement a or generalized momentum p, with
the latter choice leading to Fig. 17.

See Fig. 17 first for identified and normalized o, and
E,each plotted as a function of p. Recall [36] points out
that absement and generalized momentum introduce
means for time parameterization. For this study, we
use the following normalized fits:

4 = a1 — exp (a2 + a3) (19)
max(p)

E = by +exp (bz P4 b3> (20)
max(p)

so that we apply Egs. (19) and (20) to obtain o, =
o.max(c) and E = FI':;:((;)), respectively. See
Fig. 17 also for the fitted results of Test 3. Table 5
gives identified parameters for both Tests 2 and 3.
The identified average modulus E( is marked in both

Figs. 15 and 16 so that the value of E at the start of
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Fig. 15 Experimental data in Test 3 decomposed with an offset of 3 in contrast with fitted curve directly from using one particularly
simple functional form [17] and from applying Masing rule: From left to right, the first, 11th, and 200th cycles
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Fig.16 Results of identified o, and E from all loading/reloading
branches of Test 3 with an offset of 3, and the identified value of
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Fig.17 Resultsof identified o, and E from all loading/reloading
branches of Test 3 with an offset of 3, and those from applying
Egs. (19) and (20) with the identified parameter values given in
Table 5

each cycle can be compared with the average value
Ey. Since the initial slope of a stress—strain loop is the
maximum tangent modulus of that loop, comparison

Table 5 Parameter values from normalized fit using Eqgs. (19)
and (20). Tat 200 cycles

Testt a; a aj by by b3

2 0.9738 -0.0328 -0.3914 1.8337 0.2656  -1.0895
3 0.2889 -8.2269 -2.9120 2.5004 -38.6961 0.8370

of E and Ey in both Figs. 15 and 16 quantifies the
maximum stiffness of the soil specimen during each
cycle (as compared to the linear spring). A proper stiff
solver will be adopted later.

4 Discussion of simulation results and future work

Referring to Appendix E, where full-system dynami-
cal simulation method, details, results and discussions
using Models 1 to 4 under Table 2 are presented, grad-
ual improvements in comparison with the experimen-
tal measurements are shown from model to model due
to the introduced mem-dashpot and mem-spring. Only
Figs. 18 and 19, selected results from Model 4, are
included in the main text.

Different types of parametric plots are useful in
mem-modeling. For example, Fig. 18 has five differ-
ent parametric plots, each of which presents results
from Model 4 simulations overlaid with corresponding
measured data for the first 200 cycles whereas Fig. 19
shows the same plots for the first 11 cycles. Panel (a)
in those two figures show parametric plots of stress
versus strain, a type of plot that is commonly used to
display hysteresis loops. Less common are panels (d)
and (e), both of which show one-to-one mappings that
are fundamental in this study. In Fig. 18d, the plot of
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Fig. 18 a—c Hysteresis loops, and d and e one-to-one mappings
of the first 200 cycles of Test 3 dataset in pale blue, where the
first, 11th and 200th cycles are highlighted in cyan, blue, and
dark blue, respectively, overlaid with the full-system simulation
results in brown, where the first, 11th, and 200th cycles are high-
lighted in yellow, orange and dark orange, respectively. Model 4
in Table 2 is adopted with { = 4. The “event option” under MAT-
LAB ode5s is used with AbsTol = 107!2, RelTol = 1073, and
Refine = 1

generalized momentum p versus ratcheting strain g4
indicates that the mem-dashpot captures a significant
part of the nonlinear response of the soil specimen over
the course of 200 cycles; similarly the plot of p ver-
sus mem-spring absement a, in Fig. 18e shows that
the mem-spring captures most of the remaining non-
linear response during 200 cycles. However Figs. 19d
and e indicate that additional modeling effort would be
required to improve the first 11 cycles.

Both Figs. 14 and 24 indicate the dominance of the
mem-springs for the dissipated energy, calling for con-
tinued effort to advance mem-spring models. To enrich
the extended Masing model with the mem-model con-
cepts, n = 1 is fixed in this study for model simplicity
but other n values could be explored.

For SDOF dynamic simulations concerning the
selected datasets, it remains to be seen if incorporat-
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Fig.19 a-c Hysteresis loops, and d and e one-to-one mappings
of the first 11 cycles of Test 3 dataset in pale blue, where the first
and 11th cycles are highlighted in cyan and blue, respectively,
overlaid with the simulation results in brown, where the first and
11th cycles are highlighted in yellow and orange, respectively.
Model 4 in Table 2 is adopted with ¢ = 4. The “event option”
under MATLAB odel5s is used with AbsTol = 10~!2, RelTol =
1073, and Refine = 1

ing geometric nonlinearity would be fruitful. Another
idea is to replace the linear viscous damper for numer-
ical damping in Models 2 to 4 in Table 2 with a
mem-dashpot. This is because this numerical damping
may be displacement-dependent, i.e., a mem-dashpot.
Multi-degree-of-freedom (MDOF) dynamic simula-
tions using identified mem-models are to be investi-
gated too. These are among the future work that we
envision.

A separate comprehensive investigation should also
be undertaken to study how the quality of (i.e., exces-
sive noise in) experimental data would affect the identi-
fied mem-models and SDOF and MDOF dynamic sim-
ulations.

Last but not least, correlating relevant material prop-
erties with the parameters in the mem-models, i.e., the
two in Eq. (16) for time-varying ratcheting, and six in
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Egs. (19) and (20) for time-varying extended Masing
model, calls for future studies to reveal both statistical
patterns and physical insights.

5 Concluding remarks

This study has introduced the mem-models to geotech-
nical engineering applications using two published
datasets. The selected case study is challenging due
to modeling time-varying systems. Two mem-models,
mem-dashpot and mem-spring, have been devised in
series to capture time-varying ratcheting and densifi-
cation, respectively, in cyclic responses. Both identifi-
cation (inverse problem) of the model parameters and
simulation (forward problem) using the identified mod-
els have been carried out in this study.

To complement the existing theoretical foundation,
a numerical procedure has been proposed for strain
signal decomposition, leading to quantification of an
otherwise hard-to-quantify significant physical insight.
This aspect of the work alone contributes to a tool
for visualization and data analysis. Modeling physical
attributes in a decoupled manner is a leading feature of
this work.

This study has substantiated both problem formu-
lation and key numerical simulation details to benefit
SDOF dynamic simulations using mem-models. Bond
graph theory has been used to choose state variables;
state event location algorithm and a stiff solver are used
to solve piecewise smooth dynamics.

This study has greatly benefited from full time
history measurements of high quality. The selected
datasets have been used to effectively teach the abstract
concepts in mem-models. A suite of comparative mod-
els have been employed for contrast and comparison
purpose to appreciate the great benefit from using time
integrals of stress and strain as in mem-dashpots and
mem-springs, opening the door to many other similar
and more challenging real-world applications involv-
ing modeling of hysteresis.
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A Notation

a Strain absement, first time integral of
strain &

b Subscript to be used with index i for
“beginning”

d Subscript to be used with strain ¢,

one-to-one mapping F, and dissipated
energy D for “dashpot”

e Subscript to be used with index i for
“ending”

i Index

k Dummy index for cycle number

n Power term in extended Masing model

t Time

P Generalized momentum, the first time
integral of o

Po Coefficient used to normalize p in fitting
mem-dashpot’s one-to-one mapping

u Applied stress

y State variables
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A Absement, first time integral of
displacement X
Damping coefficient of linear numerical
damper in Models 2 to 4
Dissipated energy per unit volume
Diameter of soil specimen
Initial tangent modulus for virgin loading
curve in extended Masing model
Linearly regressed Young’s modulus of
soil stress-strain loops
One-to-one mapping for mem-model in an
effort-controlled setting
Height of soil specimen
Stiffness of soil specimen
Superscript to be used with strain ¢ for
“Linear”
Mass of soil specimen
Superscript to be used with strain ¢ for
“Masing”
Length of a dataset
Generalized momentum, the first time
integral of R
Restoring force of soil specimen
Secant stiffness function in a
stress-controlled mem-spring model
Applied force to soil specimen
Volume of soil specimen
Displacement at soil specimen’s top
Strain
£0 Coefficient used to normalize &4 in fitting
mem-dashpot’s one-to-one mapping
P Density of soil specimen
o Stress
oy Yield strength of virgin loading curve in
extended Masing model
T Relaxation time for linear damper in
Models 1 and 2
¢ Damping ratio of linear numerical damper
in Models 2 to 4
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B Results of test 2

See Table 6, and Figs. 20-26.
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Fig. 20 Measured time histories in Panels a and b to be used in
this study, together with decomposed ones with an offset of 2 in
Panels ¢ and d for Test 2
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Table 6 Details of estimated energy (per unit volume) Dy dis-
sipated during the kth cycle for Test 2; see Fig. 22
Cycleno. Index Index Ty e Dy,
k ip i (sec) (%) J/m3) - e -
en oo Catsotiin £ig Qﬂq‘\
1 1 31 1.2000 0.0192  97.2572 e (%)
2 31 62 2.4400 0.0729  106.2925 ?6" T T T
3 62 94 3.7200 0.0921  98.0569 % o ]
4 94 125 4.9600 0.1305 97.1784 :z\ 20 ]
5 125 156 6.2000 0.1497  92.1115 T S -4—3 -
6 156 188 74800  0.1689  95.2087 o
7 188 219 8.7200 0.1881  92.6572
8 219 251 10.0000  0.2073  94.8052 7
9 251 282 11.2400  0.2226  92.4610 |
10 282 314 12.5200 0.2418  94.0875 L -
11 314 345 13.7600  0.2610  90.7621 Sen catn catsiantn gy oo
shifted e, (%)
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Fig. 21 Time histories of the first 11 cycles of Test 2 dataset,
where the first and 11th cycles are highlighted in cyan and blue,
respectively, and the red diamonds are separation points for strain
decomposition with an offset value of 2: a and b measured stress
and strain time history, respectively, where the separation time
instants 77 < T < Ts... < Ty are marked, and ¢ and d numeri-
cally differentiated stress and strain rate time history, respectively

Fig. 22 a-—c Hysteresis loops, and d one-to-one mapping of the
first 11 cycles of Test 2 dataset, where the first and 11th cycles
are highlighted in cyan and blue, respectively, and the red dia-
monds are separation points for strain decomposition with an
offset value of 3, where 11 values of ¢ = g; are marked with the
corresponding &, = 0: a measured stress—strain curve; b decom-
posed stress—strain for the underlying mem-dashpot model; ¢
decomposed stress—strain for the underlying mem-spring model,
and d stress time integral-strain time integral for Panel ¢

C More on decomposition

Alternative decomposition schemes were tried in this
study, for example, detecting the valleys of either o (¢)
or £(t). These decomposition results, using matlab
command find, also depended on the values of the gov-
erning parameters. They were not guaranteed to lead
one separation point per cycle, thus not adopted in this
study.

Selected effect of the proposed offset values is pre-
sented in Figs. 27 and 28 for Tests 3 and 2, respectively.

D Linear dynamic maxwell simulations

Before embarking on mem-model simulations, linear
dynamic Maxwell simulations were conducted using
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Fig. 23 a—c Hysteresis loops, and d and e one-to-one mappings
of the first 200 cycles of Test 2 dataset, where the first, 11th (the
largest) and last (the smallest) cycles are highlighted in cyan,
blue, and dark blue, respectively, with a strain decomposition
with an offset value of 2: a measured stress—strain curve; b and
¢ decomposed stress—strain relations for the underlying mem-
dashpot and mem-spring as in Fig. 4, respectively, and d and e
the input—output one-to-one mappings for b and ¢, to define the
mem-dashpot and mem-spring, respectively

Table 7 Young’s modulus E( and relaxation time t used in
linear dynamic Maxwell simulations

Test 2 3 Unit
Ey 11.5 10.8 MPa
T 10 1 sec

the two linear dynamic Maxwell systems subjected to
the trapezoidal loading shown in Fig. 2. A key result
from this part of our study is that a substantial amount of
additional energy dissipation per load cycle (beyond the
measured dissipated energy Dy ) is needed when using
this simple dynamic uniaxial model. This additional
dissipation (in the form of a linear viscous damper)
is even more important when conducting nonlinear
(mem-model) simulations involving hundreds of load
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Fig. 24 Dissipated energy evolution for a the mem-dashpot, b
the mem-spring, and ¢ the total for Test 2, where the first, 11th
(the largest) and 200th (the smallest) cycles are highlighted in
cyan, blue, and dark blue, respectively
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Fig.25 Resultsofidentified o, and E from all loading/reloading
branches of Test 2 with an offset of 2, and those from applying
Egs. (19) and (20) with the identified parameter values given in
Table 5

cycles. The modeling elements and their connectivi-
ties are identical to those in Models 1 and 2 in Table 2,
respectively, however the choices of state variables dif-
fer. Conventional choices of state variables are exer-
cised here for reference, while those suggested by bond
graph theory are exercised there.

In the case of Model 1, the governing equation of
motion is:

MX(@)+ R(t) = U @), 1)

where the mass M refers to a standard cylindrical

. . . . 2
cored soil specimen with a cross-sectional area %
and height H. X is the displacement at the top of the

specimen, R is the specimen’s axial restoring force and
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Fig. 26 a—c Hysteresis loops, and d and e one-to-one mappings
of the first 200 cycles of Test 2 dataset in pale blue, where the
first, 11th and 200th cycles are highlighted in cyan, blue, and
dark blue, respectively, overlaid with the full-system simulation
results in brown, where the first, 11th, and 200th cycles are high-
lighted in yellow, orange and dark orange, respectively. Model 4
in Table 2 is adopted with ¢ = 4. The “event option” under MAT-
LAB ode5s is used with AbsTol = 107!2, RelTol = 1073, and
Refine = 1

U is the applied force due to the trapezoidal loading for
Tests 2 and 3 (reproduced in Fig. 2). We have M = pV
where V = ”TDZH is the volume of a standard soil
specimen and its density is p = 2000 kg/m> (given
in [28]). Hence M = 1.09 kg is the mass of a typ-
ical soil specimen. Also, we have the applied force,
U@) = ”TDzu(t), at the top of the specimen where u(¢)
denotes the applied “deviator stress” shown in Fig. 2
of [28].

For a linear dashpot (linear Maxwell model) con-
nected in series with a linear spring, we have:

R . .
T LR=KX (22)
T

EgtD2 . . .
where K = =2 7 — is the axial stiffness of a cylin-
drical specimen with Young’s modulus equal to Ej

(Hooke’s law) and t is a relaxation time. The esti-

04 05 06 0 0.1 02 03 04 05 06

0.3
s (%) s (%)

o 01 02

Fig. 27 A parametric study of offset value on the underlying
mem-spring’s stress—strain plot for Test 3: From left to right, and
top to bottom, the offset values are 0, 1, 2, 3, 4, and 5

mated value of Eq for Test 3 is presented in Fig. 13d;
similarly E( for Test 2 appears in Fig. 23d. Given the
modulus for a particular test, the corresponding value
of T was obtained by conducting trial-and-error sim-
ulations until the simulated ratcheting strain approxi-
mately matched the measured strain data during the first
few loading cycles. Table 7 gives the values of Eq and
7 used in these linear dynamic Maxwell simulations.

Simulations were conducted by numerically inte-
grating the coupled ordinary differential equations
(ODEs) in Eq. (21) and Eq. (22). After re-writing these
ODEs as a system of three first-order ODEs in terms
of the three state variables X, X and R (as is usually
done as reviewed in [39]), we have:

Y (1) X
Y={Y2) !} = l X ]
Y (3) R
Y (2)
Y=1{5U@®0-YA3) (23)

~19 4 kv
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Fig. 28 A parametric study of offset value on the underlying
mem-spring’s stress—strain plot for Test 2: From left to right, and
top to bottom, the offset values are 0, 1, 2, 3, 4, and 5

The simulation results from the first 11 cycles of
loading, obtained by numerically integrating Eq. (23),
starting with the three initial conditions, X (0) = 0,
X(@©) = 0 and R(O) = 0 are similar to those in
Fig. 29. These results illustrate a fundamental flaw of
Model 1, namely spurious high-frequency oscillations
— corresponding to the natural frequency w, = /K/M
— which are absent in the test data. These oscilla-
tions are triggered by the piecewise trapezoidal loading
Uui) = 7TTDzu(t) which has four points in time (per
cycle) when the time derivative of the applied force per
unit mass changes instantaneously, creating four jerks
(units of m /s3) per cycle. These high-frequency oscil-
lations increase in amplitude with each cycle because
the damping introduced by 7 is insufficient to remove
them. This is especially apparent for larger 7 values
(e.g., Test 2). As is commonly done, for both physical
and numerical reasons, additional damping was intro-
duced to deal with this problem, as described next.

To remove the unwanted and non-physical high-
frequency oscillations in Fig. 29, a linear viscous
damper was added as shown in Model 2, leading to
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the following equation of motion:
MX(t)+CX(t)+ R(t) = U(1) 24)

where the damping coefficient C = 2(Mw, =
2¢ /' M K hasbeen expressed in standard form using the
dimensionless parameter ¢ (critical dampingis ¢ = 1).
Upon choosing the same three state variables X, X and
R as above, Eq. (24) and Eq. (22) can be re-written as
the following set of three first-order ODEs:

Y(2)
Y=14U®H-CYQ2-YQ3) (25)
I8 4 KY ()

The improved simulation results using ¢ = 1 for the
first 11 cycles of loading are similar to those in Fig. 30.

E Nonlinear simulations involving mem-models

Table 2 presents the scope of all dynamic simulations
in this study, and choices of state variables following
bond graph theory. Model 1 involves serial connec-
tivity only, while the last three models share mixed
connectivity as reasoned in Appendix D. Generalized
momentum P and displacement X are selected first
and foremost as state variables following the insights
in the bond graph theory, as explained in [39]. This
series of simulations form a careful validation of the
proposed mem-models by progressively making con-
trast with simpler linear dynamic models to reveal the
usefulness of mem-modeling concepts and techniques.
Note that Tests 2 and 3 have ratcheting strains (i.e.,
accumulation of strain) that differ by an order of mag-
nitude; all models in Table 2 are validated using both
Tests 2 and 3 data.

Throughout Table 2, mass M and excitation force
U follow Appendix D. In addition to the conversions
made in Egs. (1) and (2), we have P = ”Tsz.

Modular codes are prepared using MATLAB ode45
or ode15s [48] to facilitate model comparison and jus-
tify the usefulness of mem-models.

E1 Overview, choices of state variables, and revisiting
linear models

The current subsection reviews the choices for two state
variables in bond graph theory, and applies these state
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variables to Models 1 and 2 in Table 2, which are a
Maxwell model and standard fluid model, respectively.

Options to formulate Model 1 are as many as four
as discussed in [39]. Given the choice of state variables
specified in Table 2, we have:

[ P@)
Y_{X(t)}, (26)

P(1)
q R(1) —=H+ KX (1)
Y= {X(t)} - {_P(t) n Jo Us)ds } 27)
M M

where a typo for this formulation in Table 1 of [39] is
corrected. The value for 7 follows Appendix D.

For Models 2 and 3 in Table 2, we integrate Eq. (24)
with respect to time on both sides, leading to an
equivalent equation of motion in an integral form as

follows:
t

MX(t)+ CX(t) + P(1) =f U(s)ds (28)
0

from which X (1) will be expressed using state variables
P(t) and X () and excitation U (t), leading to one state
equation for both Models 2 and 3.

For the standard fluid model under Model 2, the
other state equation is as follows:

P()
R() = E— + KX (1) (29)

based on deformation compatibility & = 85 + exL with
the superscript L stands for linear (dashpot and spring).
For Model 2, the linear viscous damping is { = 1 as
in Appendix D. For Models 1 to 3, the linear spring

stiffness K = # follows Appendix D.
Simulation results for Models 1 and 2, which are
linear, are presented in Figs. 29 and 30 for the first 11
cycles. The spurious oscillations in Fig. 29 no longer
appear in Fig. 30 justifying the need of replacing Model
1 with 2. For Model 2, the comparison with test data
steadily worsens if the number of cycles is increased
from 11 to 200, as can be seen in Fig. 31a. This was
expected since these cyclic triaxial tests were designed
to repeatedly stress each specimen beyond its elastic
limit. For the ratcheting strain, the concept of the one-
to-one mapping between p and g4 as applied in Fig. 32a
vividly indicates the inadequacy of the adopted lin-
ear viscous damper. For every cycle, the loading and
unloading are the same straight line in terms of o ver-
sus & (not shown). To improve this basic linear elastic
dynamic uniaxial model, we explored mem-modeling
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Fig.29 Time histories of the first 11 cycles of the linear dynamic
Maxwell model compared to the Test 3 dataset in black and pale
blue, where the first and 11th cycles are highlighted in cyan and
blue, respectively, overlaid with the simulation results in brown,
where the first and 11th cycles are highlighted in yellow and
orange, respectively. Model 1 in Table 2 is adopted with 7 = 1.
The MATLAB ode45 is used with AbsTol = 107°, RelTol =
1073, and Refine = |

concepts. It should be noted that more numerical damp-
ing, meaning ¢ = 4 (or sometimes even more), will be
needed when conducting nonlinear simulations using
minor loops of the extended Masing model, Sect. 3.2.

E2 Simulations with mem-dashpot models

For Model 3 where a mem-dashpot replaces the linear
dashpot, the other state equation is as follows:
L)

i K] PO
R(t) = —eoKI s

4 Po

+ KX (30)

also based on deformation compatibility ¢ = ¢4 + esL
with the first term on the righthand side following

Eq. (16), and linear strain el = Eio The conver-

N
sion between the force-displacement and stress—strain

expressions called for a careful attention.
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Fig. 30 Time histories of the first 11 cycles of the critically
damped linear dynamic Maxwell model compared to the Test 3
dataset in black and pale blue, where the first and 11th cycles
are highlighted in cyan and blue, respectively, overlaid with crit-
ically damped simulation results in brown, where the first and
11th cycles are highlighted in yellow and orange, respectively.
Model 2 in Table 2 is adopted with 7 = 1 and ¢ = 1. The MAT-
LAB ode45 is used with AbsTol = 107, RelTol = 103, and
Refine = 1

A representative view of the dynamic simulation
result using Model 3 is given in Fig. 31b, where it can
be seen that the strain ratcheting behavior has been sat-
isfactorily captured for 200 cycles as a whole. Mean-
while, the comparison of the corresponding experi-
mental and simulated one-to-one mapping between p
and &4 in Fig. 32b is consistent. Figures 31 and 32
are designed not only to show the improvement from
Models 2 to 3 in terms of modeling ratcheting strain,
but also illustrate the conciseness of using the mem-
dashpot concept to encode strain ratcheting.

The energy dissipated during each cycle, however,
is still not captured at all as shown in Fig. 31b. This
is because a linear spring is used. Recalling Fig. 14,
the energy dissipation from the mem-spring contributes
more significantly than the mem-dashpot to the total
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Fig. 31 Hysteresis loops of the first 200 cycles of Test 3 dataset
in pale blue, where the first, 1 1th and 200th cycles are highlighted
in cyan, blue, and dark blue, respectively, overlaid with the sim-
ulation results in brown, where the first, 11th, and 200th cycles
are highlighted in yellow, orange and dark orange, respectively.
a Model 2 in Table 2 is adopted withz = l and ¢ = 1, and b
Model 3 in Table 2 is adopted with ¢ = 1. For both models, the
MATLAB ode45 is used with AbsTol = 1076, RelTol = 103,
and Refine = 1
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Fig. 32 One-to-one mappings of the first 200 cycles of Test 3
dataset in pale blue, where the first, 11th and 200th cycles are
highlighted in cyan, blue, and dark blue, respectively, overlaid
with the simulation results in brown, where the first, 11th, and
200th cycles are highlighted in yellow, orange and dark orange,
respectively. a Model 2 in Table 2 is adopted with t = 1 and
¢ =1, and b Model 3 in Table 2 is adopted with { = 1. For
both models, the MATLAB ode45 is used with AbsTol = 1079,
RelTol = 10*3, and Refine = 1

dissipated energy. Thus, the mem-spring needs to be
devised. This motivates Model 4 in Table 2.

E3 Simulation with minor loops of extended Masing
model

We benefit from [3] in terms of selecting state variables
and determining state equations for the extended Mas-
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ing model. We have the states and state equations as
follows:

P(1)
R(1)
Y=1xuo [ Gb
Xm(t)
R(1) Y (2)
v Ro [ _| Rro
X (@) Y ()
Xup(t) Xu (@)
Y(2)
K* (1 - %) Y(4), reloading
= K* (1 — R*Z_T};(Z)> Y (4), unloading
Y4
Xu(t)
(32)

where we have applied Egs. (17) and (18) to Y(Z)
for loading/reloading, and unloading branches, respec-

E# h E = Emax(a) d E
71— Where = Efxe: an

follows Eq. (20), while R} = au”sz, where 0, =

o, max(o), and o follows Eq. (19). R* is the restor-
ing force at the pivoting value where Xy = 0 and
R =0 simultaneously. These three variables, each
marked with an asterisk, are algebraic variables in this
formulation.

The expression for Y (4) = X p(7) can be obtained

continuing with Eq. (24) as follows:

tively. K* =

M (Xq(t) + X)) + C (Xa() + Xy () + R(t) = U (1)

(33)
(Xa) + Xu(0) + < (Xa(®) + Xy (1) + Ry _U®
M M )

Knowing that X4(r) = F;(P (1)), we have X, (t) =

dFy(P) dP dFy(P 5 d*F,(P
PP — PR and Xy() = CEPIR? 4

%R, and then:

Rt C U

() = =52 = 5 (Xa) + Xur ) + % — Xa4(0)
(35)

. R C (dF;(P . U

S =50 - ( L )R+XM<z>> TR

R (36)

(dZFd(P)R2 dEﬂP).)

dpP? dp
directly leads to the important state equation. In sum-
mary, Eq. (36) is for Y (4). In addition to the four state
variables, there are three algebraic variables in this for-
mulation. This formulation is thus a differential alge-
braic equation (DAE) - not an ODE. See [5].

The use of the “event” option, i.e., the state event
location algorithm [47], is critical, while the under-
lying mathematical background is a hybrid dynami-
cal system as outlined in [3,39,41,57]. There are two
modes for this system: loading (including initial load-
ing and reloading) versus unloading. A mode indicator
tag,, following the notation used in our publications,
take the values of 1 and -1 associated with loading and
unloading mode, respectively. The flow maps for both
modes are given in Eq. (32). The event functions are:

Event Type#1 : Y (4) = 0, when Y (4) is ascending
(37)

Event Type#2 : Y (4) = 0, when Y (4) is descending
(38)

The reset map contains assigning Y(4) = 0 and
tagr) = —tago on all occasions. Additionally, at an
Event Type #1, both K* and R} values will be updated.
These two values will be held constant within the cycle.
At an Event Type #2, assign the current value of Y (2)
to R*. This R* value will be held constant for the rest
of the cycle.

Using the first 11 cycles for a more effective visu-
alization, Figs. 33 and 19 present the time histories,
and hysteresis loops and one-to-one mappings, respec-
tively. In these two figures, the first and 11th cycles
are highlighted for this time-varying system. Figure 34
repeats Fig. 33 but highlighting the two types of events
defined in Egs. (37) and (38). It can be seen that Event
Types #1 and #2 are correctly captured for each cycle.
This is achieved by properly choosing the MATLAB
values of relative and absolute tolerances (shorthanded
as RelTol and AbsTol, respectively) following [48]. In
addition to the state variables, which vary continuously
with time, Fig. 35 presents how modes switch from
loading to unloading within each cycle, and how the
three algebraic variables evolve from cycle to cycle.

Eventually, Fig. 18 serves as a snapshot for the sim-
ulated first 200 cycles, where the first, 11th, and 200th
cycles are highlighted to emphasize their differences,
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Fig. 33 Time histories of the stress and strains of the first 11
cycles of Test 3 dataset in black and pale blue, where the first
and 11th cycles are highlighted in cyan and blue, respectively,
overlaid with the simulation results in brown, where the first and
11th cycles are highlighted in yellow and orange, respectively.
Model 4 in Table 2 is adopted with ¢ = 4. The “event option”
under MATLAB odel5s is used with AbsTol = 107!2, RelTol =
1073, and Refine = 1

in comparison with the decomposed experimental data.
Figure 36 further investigates the dissipated energy
from cycle to cycle, which is another effective means
to assess the performance of the proposed Model 4.

Given the stiff nature of Model 4 and the need to
damp out a range of of higher frequencies associated
with the minor loops of the Masing model in our simple
uniaxial model, results using increasing ¢ values are
presented in Fig. 37. It can be seen that there may not
be an ideal choice for this value.

As an adaptive time stepping scheme, odelSs in
MATLAB does not have fixed time steps. The control of
time step is done through specifying AbsTol, RelTol,
MaxStep, and InitialStep via odeset. Following [57],
the accuracy of our numerical solutions is assessed by
studying the global error (GE) of the displacement at a
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Fig. 34 Time histories of the stress and strains of the first 11
cycles of Test 3 dataset in black and pale blue, overlaid with the
full-system simulation results in brown. Model 4 in Table 2 is
adopted with { = 4. The “event option” under MATLAB odel5s
is used with AbsTol = 107!2, RelTol = 1073, and Refine = 1.
The first and second types of events are marked in red diamonds
and green circles, respectively

specific time #,:
GE(ty) = |X (1) — X (1) (39)

where X (¢,) is the exact displacement at #,,, and X (tp)
is the approximated displacement at that time. Since the
exact displacement is unknown, we obtain a converged
solution by using a very small value of RelTol in MAT-
LAB. In each numerical solution in this study, we fix
the value of AbsTol, thus allowing the value of RelTol
to control the approximation accuracy. This is the so-
called tolerance proportionality (TP) property (see [7]
for a review). The work-accuracy diagram [49,50], as
the name implies, quantifies the work (measured by
either the elapsed time or number of function evaluation
(FE)) versus accuracy (measured by GE). The toler-
ance proportionality (TP) diagram and work-accuracy
diagrams are presented in Fig. 38. Both TP and work-
accuracy diagrams indicate good computational stabil-
ity for the numerical solution, meaning that a small



Mem-modeling of strain ratcheting using early-time soil fatigue data

06 T T T T T T
<y
=X o4t y
@
Ok 1
0 S N S N N - VD SR N Y . N A L
[ 2 4 6 8 10 12
52| 9
=
& si8f 1
S stel 1
N L J
o 51.4
—~ 512 4
)
= s1p b
L . . . . . \
0 2 4 6 8 10 12
t (sec)
35 T T T T T T
—
<
a
<3
a0t 1
g
b
—_ ]
©
=
25 . . . . . .
0 2 4 6 8 10 12
t (sec)
50 T T T T T T
—
£
S aor 1
=2
Mgt e
Z
20 . . . . . .
0 2 4 6 8 10 12
t (sec)

Fig. 35 Time histories of the modes and three algebraic vari-
ables of the first 11 cycles of Test 3 of the simulation results in
brown, where the first and 11th cycles are highlighted in yel-
low and orange, respectively. Model 4 in Table 2 is adopted with
¢ = 4. The “event option” under MATLAB odel5s is used with
AbsTol = 10712, RelTol = 1073, and Refine = 1
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Fig. 36 Dissipated energy for the first 200 cycles of Test 3
obtained using the raw and decomposed experimental data in
pale blue and purple, respectively, overlaid with the full-system
simulation results in brown. Model 4 in Table 2 is adopted with
¢ = 4. The “event option” under MATLAB odel5s is used when
with AbsTol = 10712, RelTol = 1073, and Refine = 1
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Fig. 37 Hysteresis loops of the first 200 cycles of Test 3 dataset
in pale blue, where the first, 1 1th and 200th cycles are highlighted
in cyan, blue, and dark blue, respectively, overlaid with the full-
system simulation results in brown, where the first, 11th, and
200th cycles are highlighted in yellow, orange and dark orange,
respectively. Model 4 in Table 2 is adopted with ¢ = 4, 5, 6,
and 7. The “event option” under MATLAB odel5s is used with
AbsTol = 10712, RelTol = 1073, and Refine = 1
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Fig. 38 a TP, and b and ¢ work-accuracy diagrams for X, the
third state variable, at the end of the first, 11th, and 200th cycles of
Test 3 obtained using the full-system simulation results. Model 4
in Table 2 is adopted with { = 4. The “event option” under MAT-
LAB odel5s is used when AbsTol = 107!2, and Refine = 1. GE
stands for global error, while FE stands for function evaluation

change in RelTol leads to a small change in GE, accom-
panied by a small change in both elapsed time and num-
ber of function evaluation.

It is worthwhile to highlight the numerical tools
in this study, as a continuation of our applications of
Professor Larry Shampine’s ODE solvers under MAT-
LAB [48] to hysteresis modeling [3,39,45,57,58]. We
appreciate the efficiency and convenience of using
ode45 versus RK4, and the power of odel5s to solve
stiff ODEs. Both ode45 and odel5s have the option of
“event” to implement the state event location algorithm.

@ Springer



J.-S. Pei et al.

—
<
o
& T -
30 —
=
N
=
5 . . . . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
p (kPa sec)

o . . . . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
p (kPa sec)

= =)
~— 30 = 50
et — .

; 29 ; s\
2 28 s 2 a0 N -

= ] 2 \\
g7 e 235 S

T . D ]

~

T 26 b= T a0 ]

g g | =

S 25 g 25

R o 100 200 30 100 200 300

p (kPa sec) p (kPa sec)

Fig. 39 Verification of the o, and E values used for the simu-
lation of the first 200 cycles of Test 3 in contrast with Fig. 17.
Model 4 in Table 2 is adopted with ¢ = 4. The “event option”
under MATLAB odel5s is used when with AbsTol = 10712,
RelTol = 1073, and Refine = 1

Model 4 in Table 2 is solved using ode15s with “event”.
Theoretically, DAE and hybrid dynamical system the-
ory will further guide us. For DAE, Fig. 39 first serves
an example to illustrate the behavior of algebraic vari-
ables in this study. Figure 35c and d should be recalled
for Fig. 39a and b, respectively. The values for these
two algebraic variables are held constant within each
cycle, which demonstrates how to use the two fitted
functions in Fig. 17. Global variables are used in the
simulation of Model 4, despite the discouragements
from mathworks.com. Figure 39 also verifies our uses
of global variables, in addition to the TP diagram given
in Fig. 38.
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