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Abstract

Motivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via
a dot plot. Innovative approaches such as StainedGlass have improved upon this classic visualization by rendering dot
plots as a heatmap of sequence identity, enabling researchers to better visualize multi-megabase tandem repeat arrays
within centromeres and other heterochromatic regions of the genome. However, computing the similarity estimates for
heatmaps requires high computational overhead and can suffer from decreasing accuracy.

Results: In this work we introduce ModDotPlot, an interactive and alignment-free dot plot viewer. By approximating
average nucleotide identity via a k-mer-based containment index, ModDotPlot produces accurate plots orders of magnitude
faster than StainedGlass. We accomplish this through the use of a hierarchical modimizer scheme that can visualize the
full 128 Mbp genome of Arabidopsis thaliana in under 5 minutes on a laptop. ModDotPlot is bundled with a graphical
user interface supporting real-time interactive navigation of entire chromosomes.

Availability and Implementation: ModDotPlot is available at https://github.com/marbl/ModDotPlot.

Contact: alex.sweeten@nih.gov, adam.phillippy@nih.gov
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Introduction 1988). To generate such a plot, a sequence S is typically
aligned with itself using software such as MUMmer (Margais
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arge tandemly repeating blocks o such as sajelite et al. 2018), and plotted in a two dimensional space. This

repeats and their complex higher-order structures, are . X
approach results in a set of line segments from [z,y] to

[z 4+1—1,y + 1 — 1] for all matches of length ! (above some
minimum length threshold) beginning at positions z and y

ubiquitous in many eukaryotic genomes, yet have been
notoriously difficult to sequence and assemble. These motifs

occur disproportionately in telomeric, centromeric, and K L . . K .
. . in S. This yields a single diagonal line segment, representing
heterochromatic regions of the genome , and are commonly K T X
L » . . the sequence aligned with itself, and all off-diagonal segments
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advances in long-read sequencing and assembly tools have . . R X
. colored by their average sequence identity, but the internal,
enabled genomics researchers to successfully assemble these .
. K . . fine-grained structure of the repeats cannot be represented by
complex regions, culminating in the first complete human . K
. this technique.
genome (Nurk et al. 2022) as well as important model

organisms such as Arabidopsis (Naish et al. 2021) and non- o
To overcome this limitation, recent work by Vollger et al.

introduced StainedGlass (Vollger et al. 2022), which relies on a
rasterized rather than vectorized approach. In this framework,

human primates (Makova et al. 2024). More broadly, with
tools such as Verkko (Rautiainen et al. 2023) and hifiasm
(UL) (Cheng et al. 2024) now able to automatically assemble

« , . the aim is to generate a similarity matrix M,, where each cell
complete “telomere-to-telomere” chromosomes, developing new L
. . M, (A;, Bj) relates two genomic intervals A; and Bj of length
methods to analyze these previously dark regions of the genome . . . . R
. w beginning at positions wi and wj in S. By re-framing the
has taken on new importance. . . K
problem in terms of intervals rather than single bases, a percent

‘s . L identity can be computed between all pairs of intervals and the
Traditionally, dot plots have been useful visualizations to Y P W P v

trix Mo, b dered heat h, h cell (pixel
characterize the structure of complex repeats (Maizel et al. matrix My, can be rendered as a heatmap where each cell (pixel)

represents the percent identity between the two substrings
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at the corresponding interval positions. This technique has
extended the previously binary dot plot into a rich spectrum of
information and proven highly effective for visualizing patterns
of sequence evolution within tandem repeat arrays of both
humans and plants (Logsdon et al., 2024; Wlodzimierz et al.,
2023).

Although heatmaps produced by StainedGlass have been
useful in practice, the workflow used to generate them has
inherent limitations. First, StainedGlass uses Minimap2 (Li
2018) to determine sequence identity by computing the number
of matches, mismatches, insertions, and deletions between pairs
of substrings. Minimap2’s alignment heuristic is not well-suited
for repetitive sequences (Sahlin et al. 2023) and leads to long
runtimes, especially for short tandem repeats. For example,
a single 3 Mbp human centromere requires over one hour to
plot when running on a high performance compute cluster.
Furthermore, StainedGlass partitions the input sequence into
intervals of a fixed size. Similar substrings that are split across
this boundary may fail to align, leading to inaccurate identity
estimates.

To improve upon these limitations, we propose a k-mer-
based approach that bypasses the computationally expensive
requirement of sequence alignment. Estimating sequence
identity from sets of k-length substrings (k-mers) has seen
(Ondov et al. 2016). Such tools

typically utilize downsampling methods, such as minhash, to

increasing use in genomics

reduce the size of each k-mer set before estimating sequence
identity using the Jaccard index or related set similarity
measure.

In this work, we introduce ModDotPlot, a novel heatmap
visualization tool that rapidly estimates sequence identity using
hierarchical modimizers, a form of fractional minhashing
(Irber et al. 2022). Modimizers are defined as hashed k-
mer values that have no remainder when divided by some
number s, which we refer to as the sparsity. Here we restrict
s to powers of two, s = 2% which conveniently results
in the set of modimizers being: (1) precisely those hash
values with d zeros in their least significant bits, and (2) a
strict subset of the modimizers defined by s = 2¢7%. We
use this efficient membership test and hierarchical property
to efficiently downsample genomic k-mers at multiple levels
of sparsity. We show that the resulting modimizers can be
used to accurately estimate the average nucleotide identity
(ANTI) of two substrings, while being resistant to segmentation
artifacts and orders of magnitude faster than StainedGlass. To
conclude, we demonstrate ModDotPlot’s ability to elucidate the
centromeric satellite structure of both plants and animals.

Materials and Methods

ModDotPlot takes as input a list of sequences in FASTA format
and outputs a self-identity heatmap for each sequence, as
well as comparative heatmaps for all pairwise combinations
of sequences. In describing our methods, we assume the
construction of a self-identity heatmap, but the necessary
modifications for constructing comparative heatmaps is
straightforward. ModDotPlot can be run one of two ways,
specified at runtime: Static mode produces a static image file
for each plot, while Interactive mode builds a plot hierarchy
using multiple modimizer values so that the plot resolution can

be adjusted in real time as the user adjusts the zoom level. We
outline the workflow of both possible modes of ModDotPlot in
Figure 1.

ModDotPlot first decomposes each sequence S of length n
into a list of its constituent k-mers Sjp. Each k-mer and its
reverse complement are passed through a hash function h :
Q — [0, H] for some H € R, with the smaller of the two values
added into Sk. Once broken down into k-mers, ModDotPlot
partitions Si into evenly sized and non-overlapping genomic
intervals of size w, also referred to as the window size. We

define the number of intervals as r = 7"757”

, which we refer
to as the resolution. This determines the height and width
of the resulting heatmap. To reduce the runtime and space
complexity of handling large sequences, ModDotPlot sketches
each interval A into sets based on a modulo function, as
originally proposed by (Broder 1997). We formally define our
algorithm for sketching Sy in Supplementary Algorithm 1. This

generates the following set for each interval:
MOD,(A) =Va € {Sk[A]} : a =0 mod s (1)

We refer to any k-mer present in the sketch MOD (A) as a
modimizer. We define s € Z1 as the modimizer sparsity and
restrict s to powers of 2. Note that the sparsity value is inversely
related to the number of modimizers selected (i.e. the density),
with s = 2 resulting in approximately every second k-mer being
selected, s = 4 with every fourth k-mer, and so on. Given a set
of k-mers sampled from a long random string, the expected
number of modimizers per window is:

o

m =E[|[MOD,(A)| (2)
We refer to m as the modimizer sketch size, with larger
values of m increasing the accuracy of the minhash similarity
estimates. Given a desired plot resolution r and target sketch

size m, the corresponding window size w = 7 and required
sparsity s = > can be automatically derived. Based on prior
work (Ondov et al. 2016), we use m = 1,000 as a good

compromise between accuracy and efficiency.

In practice, if the k-mers in interval A are highly repetitive,
then the true size of MOD,(A) can be significantly less than m.
To avoid selecting too few k-mers in a window, we introduce a
threshold set to half the expected number of modimizers. If the
size of MOD;(A) is less than this threshold, modimizers are
iteratively recomputed at half the sparsity until the modimizer
count threshold is met or the sparsity hits one (i.e. every k-mer
in A is included in the sketch).

Once the input sequence is partitioned and sketched,
ModDotPlot produces a similiarity matrix M,, by estimating
the identity between each pairwise combination of intervals A
and B, which we refer to as a cell in the matrix. We estimate
the proportion of k-mers in A that are contained in B, and
vice-versa, via the containment index (Broder 1997):

IMOD,(A) N MOD,(B)|
|MOD;(A)]

émod(Av B) = (3)
Hera et al. show that for the FracMinHash scheme, a
correction factor is needed for an unbiased estimate of the

containment index (Hera et al. 2023), to account for
cases where |[MOD,(A)| differs greatly from |[MOD,(B)|.



Window length

Static Mode

BEEE [

xulxxlxz

69 ‘ 56

81 | 70

Window length ‘ 73 | 70 | 95 | 60
w=4

w=4
Modimizers Modimizers
([ [+]

A B 05| 05| o | 10

~~ -
0 0o |1of o

=~ Window length

& 05 [ 10| o | os w=2

—_— - 10| os| o | os Modimizers

m=1

< Window length

w=1

/ Modimizers

m=1

ModDotPlot | 3

Interactive Mode DotPlot

53 7u‘xx|5| 92 x\‘xx 82|69 | 56 xl‘m‘

| ‘ | l53‘7“‘w

5192 ‘\'ll“‘ & l | l ‘

1 ) Y

u[s[efofw]s]n]

51|92

Figure 1. Overview of ModDotPlot’s workflow for producing a self-identity plot. Static mode: Hashed k-mers are evenly partitioned into intervals

of length w. Modimizers are selected based on an estimated sketch size m within each interval. For each pairwise combination of intervals, identity

is computed and stored in a matrix M,,.

Finally, a heatmap is created based on the color thresholds provided. Interactive mode: Three distinct

modimizer partitions are produced from a minimum interval length of ww=1 up to w=4. At launch, a heatmap is rendered for the largest window size

(here, w=4). When the field of view is zoomed by half (highlighted region), the dot plot is rendered using a submatrix created from the partition at

w=2. This process can extend until a plot produced from the minimum interval length @ is reached, with m remaining constant among all layers. While

m = 1 is used here for demonstration, ModDotPlot adjusts the modimizer sparsity such that m = 1000 in practice.

In practice, this can occur when interval A occurs in a
repetitive genomic interval while interval B does not. Since
modulo hashing is a variant of fractional minhashing, the
same correction applies and we include the expected value
in the denominator to achieve an unbiased estimate of the

containment index:

|MOD,(A) N MOD,(B)|

tmoa(A, B) = IMOD. (A)[(1— (1 — L)IAr)

4

Furthermore, since the containment index drops exponentially
(Koslicki et al. 2019), it
is useful to represent this as an estimate of percent sequence
identity. As implemented in MashScreen (Ondov et al. 2019),
we model the probability of mutation at each position in a k-

with respect to the mutation rate

mer with the binomial distribution to estimate the ANI as:

ANI.(A, B) = cmoa(A, B)* (5)
For self-identity plots, ModDotPlot sets M, (A,B) =
max{ANI.(A,B), ANI.(B, A)} to ensure the resulting matrix
is symmetric. We note that the containment index is not a
distance metric, as it neither satisfies the symmetry property
nor the triangle inequality property; however, for two equally
sized intervals, we show that ANI. correlates well with an
alignment-based ANI. Furthermore, the containment index has
the desirable property of not requiring a set operation in its
denominator, meaning it is possible to increase the length of
interval B without penalizing ANI.. We take advantage of this
property to overcome segmentation artifacts, as described later.

Once the matrix of containment indices is computed,
ModDotPlot outputs an identity heatmap analogous to a
genomic dot plot. The heatmap is assigned a range of color

values, ranging from ¢ (a user provided threshold identity
threshold) to 100. Any cells in the matrix < t are left uncolored.
Use of t < 85 is not recommended, as the identity estimate
rapidly loses accuracy below this value for typical values of
k and m, since the higher divergence may result in very few,
or zero, k-mers shared between the two intervals. Given a
symmetric self-identity dot plot, the upper diagonal of the dot
plot can be used to produce a triangular dot plot in addition

to the standard square.

Modimizer Hierarchy

Modimizers present a quick and efficient sketching approach,
29 only the first d bits of each k-
mer hash need to be checked to verify membership in MOD;.

as given a sparsity of s =

In addition, modimizers are context-independent, providing

a guarantee that any k-mer selected as a modimizer in one

set will also be a modimizer in every other set, regardless

of the neighboring context or genomic interval. Given these

properties, it is guaranteed that any modimizer in MOD;, (A)

will also occur in MOD,,(A) when s; is an integer multiple of
So:

MOD,, (A) C MOD,,(A) if z—l czt (6)

2
Thus, the
smaller modimizer sets will always be subsets of the larger

for a geometric sequence of sparsity values,

ones. We call this the hierarchical property of modimizers. This
property distinguishes hierarchical modimizers from using a
modulo function to uniformly sample sample k-mers (Das et al.
2022), and to the best of our knowledge is a novel introduction
of this property. As we describe below, we leverage this property
in order to reduce the memory and runtime overhead when
generating dot plots at multiple zoom levels.
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A hierarchical modimizer index consists of | modimizer
sets with window sizes @, 20, ..., 2" Y% and corresponding
sparsities §, 2§, ..., 2=V 3. Given a user-specified modimizer
sketch size 7 and minimum window size 1, the initial sparsity
is defined as § = 211°52(Z)) . To construct progressively sparser
levels of the hierarchy, let A be an interval of size 2w, and A,
and Agr be the w-sized left and right halves of A respectively.
Due to the hierarchical property, the modimizers for the next
sparser level can be sampled from the previous level since
MOD3,(A) € MOD.(AL) U MOD.(ARr). Repeating this
process, additional levels of the hierarchy are sampled until the
window size exceeds @, i.e. the resulting number of intervals
would be less than the minimum resolution. For example, a
250 Mbp sequence plotted with a minimum window size of
10 Kbp and a resolution of 1,000 would result in 5 layers, since
| = 5 is the largest [ such that 20=14p < @ We formally
define our algorithm for producing the modimizer hierarchy in
Supplementary Algorithm 2.

The runtime and space complexity for building the initial
modimizer layer is O(n), as this requires linear scan of
the sequence of size m. The expected complexity of each
successive layer is half the previous due to the sparsity
increasing by powers of two, so the overall runtime and space
complexity of Supplementary Algorithm 2 remains O(n). This
approach mirrors the “multilevel winnowing” (Jain et al.
2018) or “SHIMMER” (Chin et al. 2019) indices, but our
use of modimizers rather than minimizers allows for unbiased
containment estimates. From this index, similarity matrices can
be efficiently computed for any pair of genomic ranges of the
input sequence, with the maximum resolution determined by
the minimum window size chosen when building the hierarchy.

Offset and Window Expansion

‘When partitioning the input sequence into discrete intervals,
it’s possible that two highly similar sequences can be
partitioned in different ways, resulting in an inaccurate
sequence identity estimate between them (Figure 2). This
occurs whenever the two similar sequences are “out of register”
and have a different offset relative to the start of the full
sequence and that difference is not a multiple of the interval
length. The result is that the sequences of the two intervals only
partially overlap, rather than fully match. This can also occur
within tandem repeats when the unit size is larger than the
interval length, such as the rDNA arrays of human acrocentric
chromosomes.

To overcome this offset issue, ModDotPlot extends each
interval B by % in each direction to form the expanded
interval B’. The containment index is then computed as
cmod(A,B/)l/k, accounting for any sequence similarities that
extend beyond the boundaries of B. We show the effect
of this approach when computing the containment index in
Figure 2, as well as a practical example with human rDNA
in Supplementary Figure 1. Since B does not appear in the
denominator of Equation 4, expanding the size of B does
not penalize or bias the containment index. Doubling the
size of B accounts for the worst-case scenario of a match
diagonal beginning in the middle of the interval, and so is the
default behavior, but this expansion factor can be turned off or
adjusted if necessary.

| A} {8}

a) &l

b)

Figure 2. Sample cases for different interval offsets. k-mers shared
between intervals A (blue) and B (green) are visualized with a red line.
a) In an ideal partition, the shared k-mers are perfectly captured in both
intervals. b) In a worse-case partition, only half of the the shared k-mers
are captured in the cell, leading to a misleading identity estimate for
this region. ¢) By keeping A fixed, but expanding B to B’, ModDotPlot
is able to better capture the similarity between two similar sequences
with different offsets. The containment index of A in B’ is then used to
determine the score of the dot plot matrix cell M, (A, B).

Implementation and User Interface

ModDotPlot is implemented in the Python programming
language (version 3.7 or later). By default, ModDotPlot runs in
interactive mode using Plotly with Dash (Hossain 2019), which
itself uses the Flask web framework. Consequently, plots are
visualized on a web browser connected to the user’s localhost.
Interactive ModDotPlot can also be run remotely, e.g. on a
compute cluster, via port forwarding over an ssh tunnel. In
static mode, containment indices are saved into a compressed
BED file, and dot plots are produced using the Plotnine plotting
library (Plotnine 2024) https://github.com/has2kl/plotnine.
In addition to the standard rectangular plots, static mode also

supports triangular plot styles.

An important parameter common to all k-mer based
methods is the choice of k, as this represents a trade-off
between sensitivity and specificity. Smaller k-mers are more
sensitive for detecting identity within divergent intervals, but
lose specificity due to chance k-mer collisions. ModDotPlot
allows for flexibility in setting k, but based on prior work
(Ondov et al. 2016), we set a default k = 21 to ensure accurate
estimates in most cases.

k-mers are hashed using MurmurHash3 (Appleby 2016)
https://github.com/aappleby/smhasher/wiki/MurmurHash3 and
all similarity matrices are stored in the form of NumPy arrays

(Harris et al. 2020). The size of a similarity matrix is
proportional to O(r?) rather than the length of the genome
sequence. By default, ModDotPlot uses a resolution of r =
1,000 for efficient visualizations on most standard displays.
To enable a responsive interface in interactive mode, a
full similarity matrix is precomputed for each level of the



modimizer hierarchy. However, since the number of layers scales
logarithmically with the sequence length, only a few layers are
needed in practice (e.g. | < 5). When zooming on the plot,
the appropriate matrix is chosen such that the number of cells
in the matrix is at least the number of pixels in the plot.
To prevent redundant computations of similarity matrices for
future exploration, NumPy matrices can be saved as binary files
and loaded directly as input.

Supplementary Figure 2 shows a screenshot of ModDotPlot’s
user interface in interactive mode. Hovering over the plot shows
the exact genomic coordinates, along with the corresponding
estimated identity of each section. This example shows a plot
highlighting the repeat-rich 30 Mbp Y chromosome from a
siamang gibbon (Symphalangus syndactylus). Users can select
a number of preset color-schemes, including high contrast
schemes to aid visually impaired or color-blind users, or specify
custom colors, either in hex code or RGB format. ModDotPlot
also supports the creation of fully-customizable static plots as
PDF and PNG files.

Results
Plot Accuracy

To showcase the improvements of ModDotPlot over StainedGlass,

Figure 3 shows the plots produced by both tools for the
centromeric alpha satellite array of the human HGO002 X
chromosome. The StainedGlass default window size of 2,000
“checkered”

apparently low identity within the array. However, this is not

produces a highly plot containing streaks of
representative of any sort of centromere biology; rather, it is an
artifact of partitioning the genome into windows of a fixed size.
The canonical DXZ1 higher-order repeat (HOR) present in this
array consists of twelve monomers totaling ~2,050 bp (Miga
et al. 2014), which is slightly longer than the selected window
size. Using a window size of 5,000 is sufficient to contain a
complete HOR and alleviate this problem, but this comes at the
cost of a lower resolution plot and requires advance knowledge
of the repeat structure. In contrast, ModDotPlot produces an
accurate plot regardless of window length and HOR size.

Figure 4 shows the strong correlation between ModDotPlot
ANI. values and an alignment-based ANI,, computed by
MUMmer 2018),
of ANI. decreasing with increasing sparsity (reduced sketch

(Margais et al. but with the accuracy
size), as expected (Supplementary Figure 3). For each pairwise
combination of HORs present in chrX:58,000,771-58,200,827,
the MUMmer ANI,, was taken from the “Avgldentity” of 1-
to-1 alignments computed by the v4.0.1 “dnadiff” program.
The vast majority of HORs, representing the canonical 12-mer
structure, fall within the consensus range of 97-100% sequence
identity (Miga et al. 2014) with high concordance (r =
0.965) between ModDotPlot and MUMmer. Larger differences
between the two methods arise from pairs of windows
containing structural variation that confound MUMmer’s
alignment-based similarity.

ModDotPlot
differences or

index does
copy large

insertions/deletions (indels) in the same way a global alignment

The containment used by

not penalize k-mer number
would. For example, within the chromosome X centromeric
array we observed a small number of windows where the ANT,,

and ANI. values differed substantially. Closer investigation

ModDotPlot
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Figure 3. Plots produced by StainedGlass (column 1) and ModDotPlot
(column 2), representing the upper diagonal self-identity heatmap of
the HG002 DXZ1 satellite array (ChrX:57,680,000-61,000,000). Rows
represent a window size of 2,000 (r = 1,570 in ModDotPlot) and 5, 000
(r = 678) respectively. ModDotPlot was run with a default m = 1, 000.
Plotting artifacts in the StainedGlass w = 2,000 example are due to
interactions between the partitioning window size and tandem repeat
periodicity.

100.0

ANI,

99.0 100.0

S3CXH1L.12-11_8/10_7-1 S3CXH1L.12-1

CESEIETTCE CEOIeETIETTIEE®
10-mer HOR 12-mer HOR
Figure 4. Scatterplots showing the linear relationship between

MUMmer ANI,, and ModDotPlot ANI,., using CHM13
chrX:58,000,771-58,200,827. The outlier group labeled in red represents
a non-canonical 10-mer HOR (chrX:58,060,405-58,062,120),
scored differently by the two methods due to the presence of a large

which is

deletion when compared to the 12-mer HOR. The dashed line represents
ANI,, = ANI,.

revealed the presence of a single non-canonical HOR, consisting
of a shorter 10 monomer repeat that was scored higher by ANI.
when compared to the canonical 12 monomer repeat (Figure 4).
The difference between these two repeats is interpreted as
a large indel by MUMmer, resulting in a reduced ANI,,

However, this difference is not penalized by ANI., as the 10
monomers present in the shorter HOR are well-contained within
the canonical 12 monomer.

Thus, ANI. is more akin to a local alignment similarity,
i.e. the average similarity between the sequences that are
shared,

sequences rather than the rate of larger structural variants.

and reflects the point mutation rate between two

This is an important distinction, because in this case MUMmer

ANI,, confounds these two evolutionary processes, while
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Figure 5. Self-identity plot of the centromere of CHM13 Chromosome 1,
overlaid with a smoothed unique k-mer frequency chart. Using a window
size w = 4,000 and a sparsity s = 4, the expected number of modimizers
per window is m = 1,000. When using an uncorrected sparsity value
(red), the number of unique modimizers per window can drop to under
200. By detecting the unexpectedly small set sizes and adjusting the
sparsity of these windows, the total number of modimizers in each window
m

can be increased to at least = (or, in pathological cases, all k-mers in

the window).

ANI,. isolates the point mutation rate of the individual
monomers. Such differences between ANI. and ANI,, are
most pronounced within HOR satellite arrays, which are prone
to unequal crossing over leading to frequent expansion and
contraction of the arrays (Altemose et al. 2022). For this
(Bzikadze et al. 2023) tool, which is
specifically built for aligning long tandem repeats, similarly
uses an indel penalty of zero during its k-mer alignment phase.

reason, the UniAligner

Modimizer Sparsity

Compared to other sketching approaches, modimizers lack any
sort of “window guarantee,” meaning that no lower bounds
exist on the number of k-mers that will be selected for each
interval. In addition, the containment index is computed on
sets of k-mers, not multisets (i.e. only the presence or absence
of a k-mer is considered), so highly repetitive intervals will
typically result in smaller k-mer sets, which can lead to reduced
accuracy when estimating the containment. Although this is
partially taken into account by the error term provided in
Equation 4, we demonstrate that by dynamically modifying the
sparsity, as done in Supplementary Algorithm 1, the number of
modimizers selected per window can be kept above acceptable
levels. Figure 5 shows this on a 4 Mbp centromeric region of
CHM13 chromosome 1. Regions of alpha satellite repeats show a
steep decline in the number of distinct k-mers; however, this can
be corrected by adaptively reducing the modimizer sparsity in
this region to boost the number of k-mers selected per window
to at least 3 and thus improve the containment estimates.
Without this correction, we find that real similarities between

low-complexity satellite arrays can go entirely undetected.

Comparative Plots

In addition to self-identity plots, ModDotPlot is also able to
generate comparative plots between two different sequences. As
an example, we showcase a pairwise dot plot between the DXZ1
alpha satellite arrays of two different human X chromosome

CHM13 chrX:
57817899-60927196
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X : it
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s 902
bes

@ 001
| 990

HGO002 chrX:
57,680,000-61000000

I ! L :
t t t t
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Figure 6. Comparative dot plot of chromosome X DXZ1 satellite array
from the HG002 and CHMI13 genomes, overlaid with self-identity plots,
using a 99% identity threshold. A faint, high-identity diagonal is visible in
the comparative plot, indicating the orthologous sequences between these

two highly variable arrays.

centromeres, one from the HGO002 genome and one from
the CHM13 genome (Figure 6). These two arrays have been
previously assembled and compared (Altemose et al. 2022),
but it is difficult to understand their structural differences
by comparing only their self-identity plots. By plotting the
two arrays against each other, their orthology relationship
becomes clear. The comparative dot plot of the HG002 and
CHM13 DXZ1 arrays reveals a faint diagonal representing
the shared history of the two sequences, punctuated by over
300 large duplications/deletions distributed throughout the
array (Bzikadze et al. 2023). As noted above, centromeric
satellite arrays are one of the fastest evolving regions of
the human genome and accumulate many such structural
variants through various recombinational mechanisms. Because
of their unique evolutionary patterns, and propensity for bulk
insertions/deletions, they have been one of the most difficult
regions of the genome to align using traditional approaches.

Runtime and Memory

In Table 1, we compare the runtime and memory usage
of ModDotPlot to StainedGlass across input sequences of
These include the HG002 X
chromosome centromere (same sequence as Figure 3), the
gibbon Y chromosome (Supplementary Figure 2), the human

various species and sizes.

Y chromosome (Rhie et al. 2023), and the entire gap-
free reference genomes of Arabadopsis (Naish et al. 2021)
and CHMI13  (Nurk et al. 2022), containing 5 and 24

chromosomes, respectively. For each input, both a static matrix
and interactive matrices containing three layers were produced,
based on a window size proportional to the length of the largest
chromosome in the input group. Interactive StainedGlass plots
were created in a similar way to ModDotPlot (i.e. a bottom-
up approach based on a minimum window size), and stored in
Cooler format (Abdennur et al. 2020).

In all cases, ModDotPlot exhibits orders of magnitude
lower runtime and memory requirements than StainedGlass. An
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S ModDotPlot StainedGlass
equence

4 n (mbp) Plot Type w (bp) CPU time (s) Memory (GB) CPU time (s) Memory (GB)
Human CHM13 4.0 Static 4000 11.10 0.43 1871.31 12.95
Chrl Centromere Interactive 1000 204.85 1.16 2812.49 13.44
Gibbon mSymSyn1l 29.9 Static 32000 51.16 2.05 9857.57 30.13
ChrY Interactive 8000 193.22 2.41 11264.01 33.50
Human HGO002 62.5 Static 64000 80.47 4.06 11214.19 43.18
ChrY Interactive 16000 269.84 5.90 14806.91 48.95
Arabadopsis Col-CEN 128.5 Static 32000 289.12 6.13 16014.17 33.41
‘Whole Genome c=5 Interactive 8000 1734.11 9.57 20187.19 35.20
Human CHM13 3117.3 Static 256000 15238.04 40.24 — —
‘Whole Genome c =24 Interactive 64000 29101.76 44.31 - —

Table 1. Analysis of memory and runtime needed to produce the similarity matrix (this does not include plot runtime, as that is the same
between StainedGlass and ModDotPlot). ModDotPlot was run with a target sketch size of m = 1,000 for all samples. For the whole genome
assemblies of Arabadopsis and CHM13, the runtime includes the comparative matrix between each pairwise combination of chromosomes,
in addition to self-identity comparisons. StainedGlass was unable to complete CHM13 whole genome within 72 h of CPU time.

analysis of the Snakemake report generated by StainedGlass
showed that the Minimap2 alignment dominated the runtime
and memory usage and was the clear bottleneck of the
pipeline. We note that despite both tools requiring the sequence
identity computation of r2 cells in each matrix, importantly,
ModDotPlot’s runtime is independent of sequence length n.
Computing ANI. for each cell requires a set intersection
operation on two sets of size m, making Equation 5’s runtime
complexity O(m). This can be observed in Table 1, as in
interactive mode with high r, both Y chromosomes and
the Human Chrl centromere took a similar amount of CPU
time, despite each sequence being vastly different in size. In
contrast, StainedGlass requires each cell to run Minimap2 on
an unsketched sequence of length w = 2. The O(n) runtime
for identity estimation hinders the ability of StainedGlass to
visualize whole genomes and large sequences.

Discussion

Traditional dot plot methods have struggled with the
complexity and abundance of genomic repeats, often leading
The use

of heatmaps offers a substantial improvement over classic

to oversimplified or inaccurate representations.

vectorized dotplots as they allow for a more natural and
nuanced representation of tandem repeats, thereby capturing
subtle variations and patterns that vectorized plots obscure.
This is especially true for the typical use case where the
genomic sequences are manyfold larger than the resolution of
the display so that a single pixel intrinsically represents many
kilobases of sequence (e.g. a gigabase genome plotted on a
4K display). ModDotPlot improves upon previous methods
in terms of speed and computing requirements by an order
of magnitude, enabling visualization of whole genomes on
a laptop. At the heart of ModDotPlot’s efficiency is its
use of hierarchical modimizers, which enable the interactive
visualization of vertebrate-sized genomes on a typical laptop.
Additionally, the use of expanded intervals combined with the
containment index efficiently corrects for registration artifacts
inherent to rasterized similarity heatmaps. This is especially
important for centromeric and rDNA repeats that are composed
of large subunits that can straddle adjacent windows.

A number of additional features could be added to further
extend the utility of ModDotPlot. We note how readily satellite
arrays and other repeat classes can be visually identified from
the dot plots, e.g. satellite arrays appear as dense blocks of
color, segmental duplications as lines, and palindromes as lines
that cross the diagonal. This raises the possibility of repeat
annotation and classification using automated interpretation
of dot plots, possibly through machine learning techniques.
Additionally, the integration of arbitrary annotation tracks
alongside the dot plots would add the ability to visualize genes
and other notable features in the context of structural repeats
and variation, as is possible with other visualization tools such
as HiGlass (Kerpedjiev et al. 2018). Lastly, ModDotPlot
currently computes similarity matrices in advance of plotting,
but with sufficiently fast set operations it would be possible
to compute similarity matrices directly from the hierarchical
modimizer index on the fly. This would enable interactive
exploration of plots with essentially arbitrary resolution.

ModDotPlot highlights the power of minhashing as a fast
yet accurate heuristic for sequence alignment, even within
the most complex satellite repeat arrays. While our results
show that using modimizers to estimate ANIc is accurate
within the recommended 85% identity threshold, alternative
sketching approaches may further the utility of this approach.
Minmers, for example, allow for an unbiased and accurate
identity estimate, with the added advantage of having a window
(Kille et al. 2023). While such methods can
improve sensitivity for more diverged sequences, this comes

guarantee

at the expense of being slower to compute. However, the
results presented here suggest that such methods may be able
to guide alignments through highly repetitive and variable
satellite arrays, ultimately improving our understanding of the
structure, function, and evolution of these previously dark

regions of the genome.
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