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Abstract

Motivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via
a dot plot. Innovative approaches such as StainedGlass have improved upon this classic visualization by rendering dot
plots as a heatmap of sequence identity, enabling researchers to better visualize multi-megabase tandem repeat arrays
within centromeres and other heterochromatic regions of the genome. However, computing the similarity estimates for
heatmaps requires high computational overhead and can suffer from decreasing accuracy.
Results: In this work we introduce ModDotPlot, an interactive and alignment-free dot plot viewer. By approximating
average nucleotide identity via a k-mer-based containment index, ModDotPlot produces accurate plots orders of magnitude
faster than StainedGlass. We accomplish this through the use of a hierarchical modimizer scheme that can visualize the
full 128 Mbp genome of Arabidopsis thaliana in under 5 minutes on a laptop. ModDotPlot is bundled with a graphical
user interface supporting real-time interactive navigation of entire chromosomes.
Availability and Implementation: ModDotPlot is available at https://github.com/marbl/ModDotPlot.
Contact: alex.sweeten@nih.gov, adam.phillippy@nih.gov
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Introduction

Large tandemly repeating blocks of DNA, such as satellite

repeats and their complex higher-order structures, are

ubiquitous in many eukaryotic genomes, yet have been

notoriously difficult to sequence and assemble. These motifs

occur disproportionately in telomeric, centromeric, and

heterochromatic regions of the genome , and are commonly

referred to as genomic “dark matter” due to their prior absence

from reference genomes (Sedlazeck et al. 2018). Recent

advances in long-read sequencing and assembly tools have

enabled genomics researchers to successfully assemble these

complex regions, culminating in the first complete human

genome (Nurk et al. 2022) as well as important model

organisms such as Arabidopsis (Naish et al. 2021) and non-

human primates (Makova et al. 2024). More broadly, with

tools such as Verkko (Rautiainen et al. 2023) and hifiasm

(UL) (Cheng et al. 2024) now able to automatically assemble

complete “telomere-to-telomere” chromosomes, developing new

methods to analyze these previously dark regions of the genome

has taken on new importance.

Traditionally, dot plots have been useful visualizations to

characterize the structure of complex repeats (Maizel et al.

1988). To generate such a plot, a sequence S is typically

aligned with itself using software such as MUMmer (Marçais

et al. 2018), and plotted in a two dimensional space. This

approach results in a set of line segments from [x, y] to

[x + l − 1, y + l − 1] for all matches of length l (above some

minimum length threshold) beginning at positions x and y

in S. This yields a single diagonal line segment, representing

the sequence aligned with itself, and all off-diagonal segments

representing the location of paralogous repeat copies. If based

on a gapped sequence alignment, these segments may also be

colored by their average sequence identity, but the internal,

fine-grained structure of the repeats cannot be represented by

this technique.

To overcome this limitation, recent work by Vollger et al.

introduced StainedGlass (Vollger et al. 2022), which relies on a

rasterized rather than vectorized approach. In this framework,

the aim is to generate a similarity matrix Mw where each cell

Mw(Ai, Bj) relates two genomic intervals Ai and Bj of length

w beginning at positions wi and wj in S. By re-framing the

problem in terms of intervals rather than single bases, a percent

identity can be computed between all pairs of intervals and the

matrix Mw can be rendered as a heatmap where each cell (pixel)

represents the percent identity between the two substrings
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at the corresponding interval positions. This technique has

extended the previously binary dot plot into a rich spectrum of

information and proven highly effective for visualizing patterns

of sequence evolution within tandem repeat arrays of both

humans and plants (Logsdon et al., 2024; Wlodzimierz et al.,

2023).

Although heatmaps produced by StainedGlass have been

useful in practice, the workflow used to generate them has

inherent limitations. First, StainedGlass uses Minimap2 (Li

2018) to determine sequence identity by computing the number

of matches, mismatches, insertions, and deletions between pairs

of substrings. Minimap2’s alignment heuristic is not well-suited

for repetitive sequences (Sahlin et al. 2023) and leads to long

runtimes, especially for short tandem repeats. For example,

a single 3 Mbp human centromere requires over one hour to

plot when running on a high performance compute cluster.

Furthermore, StainedGlass partitions the input sequence into

intervals of a fixed size. Similar substrings that are split across

this boundary may fail to align, leading to inaccurate identity

estimates.

To improve upon these limitations, we propose a k-mer-

based approach that bypasses the computationally expensive

requirement of sequence alignment. Estimating sequence

identity from sets of k-length substrings (k-mers) has seen

increasing use in genomics (Ondov et al. 2016). Such tools

typically utilize downsampling methods, such as minhash, to

reduce the size of each k-mer set before estimating sequence

identity using the Jaccard index or related set similarity

measure.

In this work, we introduce ModDotPlot, a novel heatmap

visualization tool that rapidly estimates sequence identity using

hierarchical modimizers, a form of fractional minhashing

(Irber et al. 2022). Modimizers are defined as hashed k-

mer values that have no remainder when divided by some

number s, which we refer to as the sparsity. Here we restrict

s to powers of two, s = 2d, which conveniently results

in the set of modimizers being: (1) precisely those hash

values with d zeros in their least significant bits, and (2) a

strict subset of the modimizers defined by s = 2d−1. We

use this efficient membership test and hierarchical property

to efficiently downsample genomic k-mers at multiple levels

of sparsity. We show that the resulting modimizers can be

used to accurately estimate the average nucleotide identity

(ANI) of two substrings, while being resistant to segmentation

artifacts and orders of magnitude faster than StainedGlass. To

conclude, we demonstrate ModDotPlot’s ability to elucidate the

centromeric satellite structure of both plants and animals.

Materials and Methods

ModDotPlot takes as input a list of sequences in FASTA format

and outputs a self-identity heatmap for each sequence, as

well as comparative heatmaps for all pairwise combinations

of sequences. In describing our methods, we assume the

construction of a self-identity heatmap, but the necessary

modifications for constructing comparative heatmaps is

straightforward. ModDotPlot can be run one of two ways,

specified at runtime: Static mode produces a static image file

for each plot, while Interactive mode builds a plot hierarchy

using multiple modimizer values so that the plot resolution can

be adjusted in real time as the user adjusts the zoom level. We

outline the workflow of both possible modes of ModDotPlot in

Figure 1.

ModDotPlot first decomposes each sequence S of length n

into a list of its constituent k-mers Sk. Each k-mer and its

reverse complement are passed through a hash function h :

Ω → [0, H] for some H ∈ R, with the smaller of the two values

added into Sk. Once broken down into k-mers, ModDotPlot

partitions Sk into evenly sized and non-overlapping genomic

intervals of size w, also referred to as the window size. We

define the number of intervals as r = n−k+1
w , which we refer

to as the resolution. This determines the height and width

of the resulting heatmap. To reduce the runtime and space

complexity of handling large sequences, ModDotPlot sketches

each interval A into sets based on a modulo function, as

originally proposed by (Broder 1997). We formally define our

algorithm for sketching Sk in Supplementary Algorithm 1. This

generates the following set for each interval:

MODs(A) = ∀a ∈ {Sk[A]} : a ≡ 0 mod s (1)

We refer to any k-mer present in the sketch MODs(A) as a

modimizer. We define s ∈ Z
+ as the modimizer sparsity and

restrict s to powers of 2. Note that the sparsity value is inversely

related to the number of modimizers selected (i.e. the density),

with s = 2 resulting in approximately every second k-mer being

selected, s = 4 with every fourth k-mer, and so on. Given a set

of k-mers sampled from a long random string, the expected

number of modimizers per window is:

m = E[|MODs(A)|] =
w

s
(2)

We refer to m as the modimizer sketch size, with larger

values of m increasing the accuracy of the minhash similarity

estimates. Given a desired plot resolution r and target sketch

size m, the corresponding window size w = n
r and required

sparsity s = w
m can be automatically derived. Based on prior

work (Ondov et al. 2016), we use m = 1, 000 as a good

compromise between accuracy and efficiency.

In practice, if the k-mers in interval A are highly repetitive,

then the true size of MODs(A) can be significantly less than m.

To avoid selecting too few k-mers in a window, we introduce a

threshold set to half the expected number of modimizers. If the

size of MODs(A) is less than this threshold, modimizers are

iteratively recomputed at half the sparsity until the modimizer

count threshold is met or the sparsity hits one (i.e. every k-mer

in A is included in the sketch).

Once the input sequence is partitioned and sketched,

ModDotPlot produces a similiarity matrix Mw by estimating

the identity between each pairwise combination of intervals A

and B, which we refer to as a cell in the matrix. We estimate

the proportion of k-mers in A that are contained in B, and

vice-versa, via the containment index (Broder 1997):

ĉmod(A,B) =
|MODs(A) ∩ MODs(B)|

|MODs(A)|
(3)

Hera et al. show that for the FracMinHash scheme, a

correction factor is needed for an unbiased estimate of the

containment index (Hera et al. 2023), to account for

cases where |MODs(A)| differs greatly from |MODs(B)|.
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Figure 1. Overview of ModDotPlot’s workflow for producing a self-identity plot. Static mode: Hashed k-mers are evenly partitioned into intervals

of length w. Modimizers are selected based on an estimated sketch size m within each interval. For each pairwise combination of intervals, identity

is computed and stored in a matrix Mw. Finally, a heatmap is created based on the color thresholds provided. Interactive mode: Three distinct

modimizer partitions are produced from a minimum interval length of ŵ=1 up to w=4. At launch, a heatmap is rendered for the largest window size

(here, w=4). When the field of view is zoomed by half (highlighted region), the dot plot is rendered using a submatrix created from the partition at

w=2. This process can extend until a plot produced from the minimum interval length ŵ is reached, with m remaining constant among all layers. While

m = 1 is used here for demonstration, ModDotPlot adjusts the modimizer sparsity such that m ≈ 1000 in practice.

In practice, this can occur when interval A occurs in a

repetitive genomic interval while interval B does not. Since

modulo hashing is a variant of fractional minhashing, the

same correction applies and we include the expected value

in the denominator to achieve an unbiased estimate of the

containment index:

cmod(A,B) =
|MODs(A) ∩ MODs(B)|

|MODs(A)|(1 − (1 − 1
s )

|{A}|)
(4)

Furthermore, since the containment index drops exponentially

with respect to the mutation rate (Koslicki et al. 2019), it

is useful to represent this as an estimate of percent sequence

identity. As implemented in MashScreen (Ondov et al. 2019),

we model the probability of mutation at each position in a k-

mer with the binomial distribution to estimate the ANI as:

ANIc(A,B) = cmod(A,B)
1

k (5)

For self-identity plots, ModDotPlot sets Mw(A,B) =

max{ANIc(A,B), ANIc(B,A)} to ensure the resulting matrix

is symmetric. We note that the containment index is not a

distance metric, as it neither satisfies the symmetry property

nor the triangle inequality property; however, for two equally

sized intervals, we show that ANIc correlates well with an

alignment-based ANI. Furthermore, the containment index has

the desirable property of not requiring a set operation in its

denominator, meaning it is possible to increase the length of

interval B without penalizing ANIc. We take advantage of this

property to overcome segmentation artifacts, as described later.

Once the matrix of containment indices is computed,

ModDotPlot outputs an identity heatmap analogous to a

genomic dot plot. The heatmap is assigned a range of color

values, ranging from t (a user provided threshold identity

threshold) to 100. Any cells in the matrix < t are left uncolored.

Use of t < 85 is not recommended, as the identity estimate

rapidly loses accuracy below this value for typical values of

k and m, since the higher divergence may result in very few,

or zero, k-mers shared between the two intervals. Given a

symmetric self-identity dot plot, the upper diagonal of the dot

plot can be used to produce a triangular dot plot in addition

to the standard square.

Modimizer Hierarchy

Modimizers present a quick and efficient sketching approach,

as given a sparsity of s = 2d, only the first d bits of each k-

mer hash need to be checked to verify membership in MODs.

In addition, modimizers are context-independent, providing

a guarantee that any k-mer selected as a modimizer in one

set will also be a modimizer in every other set, regardless

of the neighboring context or genomic interval. Given these

properties, it is guaranteed that any modimizer in MODs1
(A)

will also occur in MODs2
(A) when s1 is an integer multiple of

s2:

MODs1
(A) ⊆ MODs2

(A) if
s1

s2
∈ Z

+
(6)

Thus, for a geometric sequence of sparsity values, the

smaller modimizer sets will always be subsets of the larger

ones. We call this the hierarchical property of modimizers. This

property distinguishes hierarchical modimizers from using a

modulo function to uniformly sample sample k-mers (Das et al.

2022), and to the best of our knowledge is a novel introduction

of this property. As we describe below, we leverage this property

in order to reduce the memory and runtime overhead when

generating dot plots at multiple zoom levels.
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A hierarchical modimizer index consists of l modimizer

sets with window sizes ŵ, 2ŵ, ..., 2(l−1)ŵ and corresponding

sparsities ŝ, 2ŝ, ..., 2(l−1)ŝ. Given a user-specified modimizer

sketch size m̂ and minimum window size ŵ, the initial sparsity

is defined as ŝ = 2⌊log2(
ŵ

m̂
)⌋. To construct progressively sparser

levels of the hierarchy, let A be an interval of size 2w, and AL

and AR be the w-sized left and right halves of A respectively.

Due to the hierarchical property, the modimizers for the next

sparser level can be sampled from the previous level since

MOD2s(A) ⊆ MODs(AL) ∪ MODs(AR). Repeating this

process, additional levels of the hierarchy are sampled until the

window size exceeds |S|
r , i.e. the resulting number of intervals

would be less than the minimum resolution. For example, a

250 Mbp sequence plotted with a minimum window size of

10 Kbp and a resolution of 1,000 would result in 5 layers, since

l = 5 is the largest l such that 2(l−1)ŵ ≤ |S|
r . We formally

define our algorithm for producing the modimizer hierarchy in

Supplementary Algorithm 2.

The runtime and space complexity for building the initial

modimizer layer is O(n), as this requires linear scan of

the sequence of size n. The expected complexity of each

successive layer is half the previous due to the sparsity

increasing by powers of two, so the overall runtime and space

complexity of Supplementary Algorithm 2 remains O(n). This

approach mirrors the “multilevel winnowing” (Jain et al.

2018) or “SHIMMER” (Chin et al. 2019) indices, but our

use of modimizers rather than minimizers allows for unbiased

containment estimates. From this index, similarity matrices can

be efficiently computed for any pair of genomic ranges of the

input sequence, with the maximum resolution determined by

the minimum window size chosen when building the hierarchy.

Offset and Window Expansion

When partitioning the input sequence into discrete intervals,

it’s possible that two highly similar sequences can be

partitioned in different ways, resulting in an inaccurate

sequence identity estimate between them (Figure 2). This

occurs whenever the two similar sequences are “out of register”

and have a different offset relative to the start of the full

sequence and that difference is not a multiple of the interval

length. The result is that the sequences of the two intervals only

partially overlap, rather than fully match. This can also occur

within tandem repeats when the unit size is larger than the

interval length, such as the rDNA arrays of human acrocentric

chromosomes.

To overcome this offset issue, ModDotPlot extends each

interval B by w
2 in each direction to form the expanded

interval B′. The containment index is then computed as

cmod(A,B′)1/k, accounting for any sequence similarities that

extend beyond the boundaries of B. We show the effect

of this approach when computing the containment index in

Figure 2, as well as a practical example with human rDNA

in Supplementary Figure 1. Since B does not appear in the

denominator of Equation 4, expanding the size of B does

not penalize or bias the containment index. Doubling the

size of B accounts for the worst-case scenario of a match

diagonal beginning in the middle of the interval, and so is the

default behavior, but this expansion factor can be turned off or

adjusted if necessary.

Figure 2. Sample cases for different interval offsets. k-mers shared

between intervals A (blue) and B (green) are visualized with a red line.

a) In an ideal partition, the shared k-mers are perfectly captured in both

intervals. b) In a worse-case partition, only half of the the shared k-mers

are captured in the cell, leading to a misleading identity estimate for

this region. c) By keeping A fixed, but expanding B to B′, ModDotPlot

is able to better capture the similarity between two similar sequences

with different offsets. The containment index of A in B′ is then used to

determine the score of the dot plot matrix cell Mw(A,B).

Implementation and User Interface

ModDotPlot is implemented in the Python programming

language (version 3.7 or later). By default, ModDotPlot runs in

interactive mode using Plotly with Dash (Hossain 2019), which

itself uses the Flask web framework. Consequently, plots are

visualized on a web browser connected to the user’s localhost.

Interactive ModDotPlot can also be run remotely, e.g. on a

compute cluster, via port forwarding over an ssh tunnel. In

static mode, containment indices are saved into a compressed

BED file, and dot plots are produced using the Plotnine plotting

library (Plotnine 2024) https://github.com/has2k1/plotnine.

In addition to the standard rectangular plots, static mode also

supports triangular plot styles.

An important parameter common to all k-mer based

methods is the choice of k, as this represents a trade-off

between sensitivity and specificity. Smaller k-mers are more

sensitive for detecting identity within divergent intervals, but

lose specificity due to chance k-mer collisions. ModDotPlot

allows for flexibility in setting k, but based on prior work

(Ondov et al. 2016), we set a default k = 21 to ensure accurate

estimates in most cases.

k-mers are hashed using MurmurHash3 (Appleby 2016)

https://github.com/aappleby/smhasher/wiki/MurmurHash3 and

all similarity matrices are stored in the form of NumPy arrays

(Harris et al. 2020). The size of a similarity matrix is

proportional to O(r2) rather than the length of the genome

sequence. By default, ModDotPlot uses a resolution of r =

1, 000 for efficient visualizations on most standard displays.

To enable a responsive interface in interactive mode, a

full similarity matrix is precomputed for each level of the
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modimizer hierarchy. However, since the number of layers scales

logarithmically with the sequence length, only a few layers are

needed in practice (e.g. l ≤ 5). When zooming on the plot,

the appropriate matrix is chosen such that the number of cells

in the matrix is at least the number of pixels in the plot.

To prevent redundant computations of similarity matrices for

future exploration, NumPy matrices can be saved as binary files

and loaded directly as input.

Supplementary Figure 2 shows a screenshot of ModDotPlot’s

user interface in interactive mode. Hovering over the plot shows

the exact genomic coordinates, along with the corresponding

estimated identity of each section. This example shows a plot

highlighting the repeat-rich 30 Mbp Y chromosome from a

siamang gibbon (Symphalangus syndactylus). Users can select

a number of preset color-schemes, including high contrast

schemes to aid visually impaired or color-blind users, or specify

custom colors, either in hex code or RGB format. ModDotPlot

also supports the creation of fully-customizable static plots as

PDF and PNG files.

Results

Plot Accuracy

To showcase the improvements of ModDotPlot over StainedGlass,

Figure 3 shows the plots produced by both tools for the

centromeric alpha satellite array of the human HG002 X

chromosome. The StainedGlass default window size of 2,000

produces a highly “checkered” plot containing streaks of

apparently low identity within the array. However, this is not

representative of any sort of centromere biology; rather, it is an

artifact of partitioning the genome into windows of a fixed size.

The canonical DXZ1 higher-order repeat (HOR) present in this

array consists of twelve monomers totaling ∼2,050 bp (Miga

et al. 2014), which is slightly longer than the selected window

size. Using a window size of 5,000 is sufficient to contain a

complete HOR and alleviate this problem, but this comes at the

cost of a lower resolution plot and requires advance knowledge

of the repeat structure. In contrast, ModDotPlot produces an

accurate plot regardless of window length and HOR size.

Figure 4 shows the strong correlation between ModDotPlot

ANIc values and an alignment-based ANIm computed by

MUMmer (Marçais et al. 2018), but with the accuracy

of ANIc decreasing with increasing sparsity (reduced sketch

size), as expected (Supplementary Figure 3). For each pairwise

combination of HORs present in chrX:58,000,771–58,200,827,

the MUMmer ANIm was taken from the “AvgIdentity” of 1-

to-1 alignments computed by the v4.0.1 “dnadiff” program.

The vast majority of HORs, representing the canonical 12-mer

structure, fall within the consensus range of 97–100% sequence

identity (Miga et al. 2014) with high concordance (r =

0.965) between ModDotPlot and MUMmer. Larger differences

between the two methods arise from pairs of windows

containing structural variation that confound MUMmer’s

alignment-based similarity.

The containment index used by ModDotPlot does

not penalize k-mer copy number differences or large

insertions/deletions (indels) in the same way a global alignment

would. For example, within the chromosome X centromeric

array we observed a small number of windows where the ANIm

and ANIc values differed substantially. Closer investigation

Figure 3. Plots produced by StainedGlass (column 1) and ModDotPlot

(column 2), representing the upper diagonal self-identity heatmap of

the HG002 DXZ1 satellite array (ChrX:57,680,000–61,000,000). Rows

represent a window size of 2, 000 (r = 1, 570 in ModDotPlot) and 5, 000

(r = 678) respectively. ModDotPlot was run with a default m = 1, 000.

Plotting artifacts in the StainedGlass w = 2, 000 example are due to

interactions between the partitioning window size and tandem repeat

periodicity.

Figure 4. Scatterplots showing the linear relationship between

MUMmer ANIm and ModDotPlot ANIc, using CHM13

chrX:58,000,771–58,200,827. The outlier group labeled in red represents

a non-canonical 10-mer HOR (chrX:58,060,405–58,062,120), which is

scored differently by the two methods due to the presence of a large

deletion when compared to the 12-mer HOR. The dashed line represents

ANIm = ANIc.

revealed the presence of a single non-canonical HOR, consisting

of a shorter 10 monomer repeat that was scored higher by ANIc

when compared to the canonical 12 monomer repeat (Figure 4).

The difference between these two repeats is interpreted as

a large indel by MUMmer, resulting in a reduced ANIm.

However, this difference is not penalized by ANIc, as the 10

monomers present in the shorter HOR are well-contained within

the canonical 12 monomer.

Thus, ANIc is more akin to a local alignment similarity,

i.e. the average similarity between the sequences that are

shared, and reflects the point mutation rate between two

sequences rather than the rate of larger structural variants.

This is an important distinction, because in this case MUMmer

ANIm confounds these two evolutionary processes, while
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Figure 5. Self-identity plot of the centromere of CHM13 Chromosome 1,

overlaid with a smoothed unique k-mer frequency chart. Using a window

size w = 4, 000 and a sparsity s = 4, the expected number of modimizers

per window is m = 1, 000. When using an uncorrected sparsity value

(red), the number of unique modimizers per window can drop to under

200. By detecting the unexpectedly small set sizes and adjusting the

sparsity of these windows, the total number of modimizers in each window

can be increased to at least m
2

(or, in pathological cases, all k-mers in

the window).

ANIc isolates the point mutation rate of the individual

monomers. Such differences between ANIc and ANIm are

most pronounced within HOR satellite arrays, which are prone

to unequal crossing over leading to frequent expansion and

contraction of the arrays (Altemose et al. 2022). For this

reason, the UniAligner (Bzikadze et al. 2023) tool, which is

specifically built for aligning long tandem repeats, similarly

uses an indel penalty of zero during its k-mer alignment phase.

Modimizer Sparsity

Compared to other sketching approaches, modimizers lack any

sort of “window guarantee,” meaning that no lower bounds

exist on the number of k-mers that will be selected for each

interval. In addition, the containment index is computed on

sets of k-mers, not multisets (i.e. only the presence or absence

of a k-mer is considered), so highly repetitive intervals will

typically result in smaller k-mer sets, which can lead to reduced

accuracy when estimating the containment. Although this is

partially taken into account by the error term provided in

Equation 4, we demonstrate that by dynamically modifying the

sparsity, as done in Supplementary Algorithm 1, the number of

modimizers selected per window can be kept above acceptable

levels. Figure 5 shows this on a 4 Mbp centromeric region of

CHM13 chromosome 1. Regions of alpha satellite repeats show a

steep decline in the number of distinct k-mers; however, this can

be corrected by adaptively reducing the modimizer sparsity in

this region to boost the number of k-mers selected per window

to at least m
2 and thus improve the containment estimates.

Without this correction, we find that real similarities between

low-complexity satellite arrays can go entirely undetected.

Comparative Plots

In addition to self-identity plots, ModDotPlot is also able to

generate comparative plots between two different sequences. As

an example, we showcase a pairwise dot plot between the DXZ1

alpha satellite arrays of two different human X chromosome

Figure 6. Comparative dot plot of chromosome X DXZ1 satellite array

from the HG002 and CHM13 genomes, overlaid with self-identity plots,

using a 99% identity threshold. A faint, high-identity diagonal is visible in

the comparative plot, indicating the orthologous sequences between these

two highly variable arrays.

centromeres, one from the HG002 genome and one from

the CHM13 genome (Figure 6). These two arrays have been

previously assembled and compared (Altemose et al. 2022),

but it is difficult to understand their structural differences

by comparing only their self-identity plots. By plotting the

two arrays against each other, their orthology relationship

becomes clear. The comparative dot plot of the HG002 and

CHM13 DXZ1 arrays reveals a faint diagonal representing

the shared history of the two sequences, punctuated by over

300 large duplications/deletions distributed throughout the

array (Bzikadze et al. 2023). As noted above, centromeric

satellite arrays are one of the fastest evolving regions of

the human genome and accumulate many such structural

variants through various recombinational mechanisms. Because

of their unique evolutionary patterns, and propensity for bulk

insertions/deletions, they have been one of the most difficult

regions of the genome to align using traditional approaches.

Runtime and Memory

In Table 1, we compare the runtime and memory usage

of ModDotPlot to StainedGlass across input sequences of

various species and sizes. These include the HG002 X

chromosome centromere (same sequence as Figure 3), the

gibbon Y chromosome (Supplementary Figure 2), the human

Y chromosome (Rhie et al. 2023), and the entire gap-

free reference genomes of Arabadopsis (Naish et al. 2021)

and CHM13 (Nurk et al. 2022), containing 5 and 24

chromosomes, respectively. For each input, both a static matrix

and interactive matrices containing three layers were produced,

based on a window size proportional to the length of the largest

chromosome in the input group. Interactive StainedGlass plots

were created in a similar way to ModDotPlot (i.e. a bottom-

up approach based on a minimum window size), and stored in

Cooler format (Abdennur et al. 2020).

In all cases, ModDotPlot exhibits orders of magnitude

lower runtime and memory requirements than StainedGlass. An
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Sequence
ModDotPlot StainedGlass

n (mbp) Plot Type w (bp) CPU time (s) Memory (GB) CPU time (s) Memory (GB)

Human CHM13 4.0 Static 4000 11.10 0.43 1871.31 12.95

Chr1 Centromere Interactive 1000 204.85 1.16 2812.49 13.44

Gibbon mSymSyn1 29.9 Static 32000 51.16 2.05 9857.57 30.13

ChrY Interactive 8000 193.22 2.41 11264.01 33.50

Human HG002 62.5 Static 64000 80.47 4.06 11214.19 43.18

ChrY Interactive 16000 269.84 5.90 14806.91 48.95

Arabadopsis Col-CEN 128.5 Static 32000 289.12 6.13 16014.17 33.41

Whole Genome c = 5 Interactive 8000 1734.11 9.57 20187.19 35.20

Human CHM13 3117.3 Static 256000 15238.04 40.24 – –

Whole Genome c = 24 Interactive 64000 29101.76 44.31 – –
Table 1. Analysis of memory and runtime needed to produce the similarity matrix (this does not include plot runtime, as that is the same

between StainedGlass and ModDotPlot). ModDotPlot was run with a target sketch size of m = 1, 000 for all samples. For the whole genome

assemblies of Arabadopsis and CHM13, the runtime includes the comparative matrix between each pairwise combination of chromosomes,

in addition to self-identity comparisons. StainedGlass was unable to complete CHM13 whole genome within 72 h of CPU time.

analysis of the Snakemake report generated by StainedGlass

showed that the Minimap2 alignment dominated the runtime

and memory usage and was the clear bottleneck of the

pipeline. We note that despite both tools requiring the sequence

identity computation of r2 cells in each matrix, importantly,

ModDotPlot’s runtime is independent of sequence length n.

Computing ANIc for each cell requires a set intersection

operation on two sets of size m, making Equation 5’s runtime

complexity O(m). This can be observed in Table 1, as in

interactive mode with high r, both Y chromosomes and

the Human Chr1 centromere took a similar amount of CPU

time, despite each sequence being vastly different in size. In

contrast, StainedGlass requires each cell to run Minimap2 on

an unsketched sequence of length w = n
r . The O(n) runtime

for identity estimation hinders the ability of StainedGlass to

visualize whole genomes and large sequences.

Discussion

Traditional dot plot methods have struggled with the

complexity and abundance of genomic repeats, often leading

to oversimplified or inaccurate representations. The use

of heatmaps offers a substantial improvement over classic

vectorized dotplots as they allow for a more natural and

nuanced representation of tandem repeats, thereby capturing

subtle variations and patterns that vectorized plots obscure.

This is especially true for the typical use case where the

genomic sequences are manyfold larger than the resolution of

the display so that a single pixel intrinsically represents many

kilobases of sequence (e.g. a gigabase genome plotted on a

4K display). ModDotPlot improves upon previous methods

in terms of speed and computing requirements by an order

of magnitude, enabling visualization of whole genomes on

a laptop. At the heart of ModDotPlot’s efficiency is its

use of hierarchical modimizers, which enable the interactive

visualization of vertebrate-sized genomes on a typical laptop.

Additionally, the use of expanded intervals combined with the

containment index efficiently corrects for registration artifacts

inherent to rasterized similarity heatmaps. This is especially

important for centromeric and rDNA repeats that are composed

of large subunits that can straddle adjacent windows.

A number of additional features could be added to further

extend the utility of ModDotPlot. We note how readily satellite

arrays and other repeat classes can be visually identified from

the dot plots, e.g. satellite arrays appear as dense blocks of

color, segmental duplications as lines, and palindromes as lines

that cross the diagonal. This raises the possibility of repeat

annotation and classification using automated interpretation

of dot plots, possibly through machine learning techniques.

Additionally, the integration of arbitrary annotation tracks

alongside the dot plots would add the ability to visualize genes

and other notable features in the context of structural repeats

and variation, as is possible with other visualization tools such

as HiGlass (Kerpedjiev et al. 2018). Lastly, ModDotPlot

currently computes similarity matrices in advance of plotting,

but with sufficiently fast set operations it would be possible

to compute similarity matrices directly from the hierarchical

modimizer index on the fly. This would enable interactive

exploration of plots with essentially arbitrary resolution.

ModDotPlot highlights the power of minhashing as a fast

yet accurate heuristic for sequence alignment, even within

the most complex satellite repeat arrays. While our results

show that using modimizers to estimate ANIC is accurate

within the recommended 85% identity threshold, alternative

sketching approaches may further the utility of this approach.

Minmers, for example, allow for an unbiased and accurate

identity estimate, with the added advantage of having a window

guarantee (Kille et al. 2023). While such methods can

improve sensitivity for more diverged sequences, this comes

at the expense of being slower to compute. However, the

results presented here suggest that such methods may be able

to guide alignments through highly repetitive and variable

satellite arrays, ultimately improving our understanding of the

structure, function, and evolution of these previously dark

regions of the genome.
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