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Abstract: Icing on the blades of wind turbines during winter seasons causes a reduction in power
and revenue losses. The prediction of icing before it occurs has the potential to enable mitigating
actions to reduce ice accumulation. This paper presents a framework for the prediction of icing on
wind turbines based on Supervisory Control and Data Acquisition (SCADA) data without requiring
the installation of any additional icing sensors on the turbines. A Temporal Convolutional Network
is considered as the model to predict icing from the SCADA data time series. All aspects of the
icing prediction framework are described, including the necessary data preprocessing, the labeling of
SCADA data for icing conditions, the selection of informative icing features or variables in SCADA
data, and the design of a Temporal Convolutional Network as the prediction model. Two performance
metrics to evaluate the prediction outcome are presented. Using SCADA data from an actual wind
turbine, the model achieves an average prediction accuracy of 77.6% for future times of up to 48 h.

Keywords: wind energy; prediction of icing on wind turbines; Temporal Convolutional
Network (TCN)

1. Introduction

The share of wind energy among energy sources has been steadily growing in recent
years [1]. This growth is driven by the fact that wind energy is a renewable source of energy,
which has allowed lowering dependency on fossil fuels [2]. In cold climates, a challenge
facing the use of wind energy involves the reduction or loss of wind-generated power due
to icing on the blades of wind turbines during winter seasons [3-5]. Ice accretion on the
blades causes rotation imbalance, leading to the turbine structure getting damaged [6].
Also, ice accretion causes power reduction or downtimes and hence loss of revenue [7].

Most of the works in the open literature on turbine icing using SCADA data only have
focused on ice detection. Detection addresses the question “Is there ice now?” on a turbine.
The purpose of our work is to answer the question “Will there be ice at a future time?”
That is, we seek to predict the future occurrence of icing on a turbine. The prediction of
icing on wind turbines before it occurs would allow taking actions to minimize power
losses. Examples of mitigating actions that can be taken once icing is predicted include
changing the turbine control settings, turning on heaters if available on the turbines, or
applying anti-icing fluids to the blades. In addition, the prediction of icing would allow
one to conduct a cost/benefit analysis by comparing the cost of the mitigating action with
the revenue losses due to icing. The prediction of icing on wind turbines before it occurs
would allow taking actions to minimize power reduction or loss due to icing. Mitigating
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actions that can be taken include changing the turbine control settings, turning on heaters
for those turbines that are equipped with them, or applying anti-icing fluids to the blades.

A number of articles have already appeared in the literature addressing the prediction
of icing on wind turbines. The approaches presented can be grouped into two main
categories. The first approach involves the installation or utilization of special-purpose
sensors to detect icing on wind turbines. Examples of such sensors include thermal imaging
cameras and ultrasonic sensors [8-10]. There exists installation, operation, and maintenance
costs associated with these sensors which can pose a challenge for their use. The second
approach involves the use of Supervisory Control and Data Acquisition (SCADA) data [11]
that are already available as part of a wind turbine infrastructure. In this approach, a data-
driven method is used to develop a prediction model based on past values of the variables
or features in SCADA data, as well as past values of meteorological data when available [12].
In [13], Kreutz et al. presented a method for predicting icing on wind turbines based on
SCADA and meteorological data using a deep neural network. In [14], Tao et al. discussed
a method for icing prediction on wind turbines by combining a Convolutional Neural
Network (CNN) with a Gated Recurrent Unit (GRU). Zhang et al. [15] utilized Federated
Learning (FL) to predict icing on wind turbines. The framework in this reference does not
require the installation of any new sensors on the turbine.

The choice of variables or features from the SCADA data used by a prediction model
can greatly impact the outcome of the prediction. A data preprocessing step, dubbed feature
selection, is often carried out to select those variables or features that are informative for
icing conditions. As discussed in [16], the selection of informative features led to lower
training time as well as higher prediction accuracy. Furthermore, since, in practice, the
occurrence of icing events is less frequent than in normal operation, there exists a data
imbalance between the number of samples associated with icing and normal conditions.
Such a data imbalance, if present during training, can adversely impact the prediction
outcome [17]. In [18], Liu et al. studied the impact of data imbalance by examining different
methods to establish balanced numbers of data samples for icing and normal conditions.
In [19], it was shown that this data preprocessing improved prediction accuracy.

The main contribution of this paper is the development of a data processing frame-
work for the prediction of icing in wind turbines. This framework covers key aspects of
SCADA data processing, the labeling of SCADA data for icing conditions when labels are
not available, the selection of informative features or variables in SCADA data for icing
prediction, and using a deep neural network Temporal Convolutional Network (TCN) for
icing prediction. In summary, the main contribution of this work is the development of an
icing prediction framework based on SCADA data.

Temporal Convolutional Networks (TCNs) are being increasingly used in various
prediction tasks and have been shown, e.g., [20,21], to be more effective in capturing long-
range dependencies in data sequences compared with RNNs (recurrent neural networks)
and LSTMs (Long Short-Term Memory networks). This is due to their use of dilated
convolutions, which enable them to capture a larger receptive field with fewer parameters
as compared with the above predictive models. Furthermore, they exhibit more stable
consistent training compared with these models, which suffer from the vanishing gradient
problem. Another predictor architecture superior to RNNs and LSTMs is the Bi-LSTM [22].
This network architecture has recently been proposed by [23,24] to predict the flow past a
wind turbine rotor.

It is worth restating that the main contribution in our paper is the development of a
data-driven framework to predict icing conditions on a wind turbine based on historical
SCADA data without installing any new sensors on the turbine. As far as the predictor
part of this framework is concerned, we utilized TCN in this paper, noting that in prior
works [20,21], a better performance was shown for TCN compared with LSTM. It is very
much possible to use other predictors such as Bi-LSTM, as discussed in [23,24].

The manuscript is organized as follows. Section 2 describes the dataset used and
the preprocessing steps. Section 3 provides an overview of our TCN prediction model,
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followed by the icing prediction results and their discussion in Section 4. The processes for
conditioning the data and training the predictor, as well as the results, are summarized in
Section 5, which also describes potential future work.

2. Dataset and Data Preprocessing

The SCADA dataset considered, as well as its labeling of icing conditions, is described
in this section. This dataset is from a wind turbine located in the northern part of the
US. There are 11 SCADA data variables or features in the dataset, which are listed in
Table 1, covering a time duration from 1 January 2023 to 1 July 2023. A binary feature
denoting the operation state of the turbine is also listed in this table, which is used for
data preprocessing. Consecutive samples in the dataset are 10 min apart. There are a total
of 26,209 data samples in the dataset. Missing values are filled by performing a linear
interpolation between adjacent nonmissing data samples. In addition, weather data listed
in Table 2 for the same time period and location are obtained from the VisualCrossing
weather database [25]. The rated power of this wind turbine is 2 MW with cut-in wind
speed of 4 m/s, rated wind speed of 12 m/s, and cut-out wind speed of 25 m/s.

Table 1. Variables or features in the SCADA dataset.

Variable or Feature Unit Description
Power_Avg kW Generated power
Wind Speed m/s Wind speed
Gen_RPM RPM Generator speed
Wind Direction degree (°) Wind direction
Nacel_Direct degree (°) Nacelle direction
Blade_Pitch degree (°) Blade pitch angle
Yaw_Error degree (°) Yaw error
Temper_Nac Celsius (°C) Nacelle temperature
Temper_Amb Celsius (°C) Ambient temperature
Temper_Gen Celsius (°C) Generator bearing temperature
Temper_Gear Celsius (°C) Gear bearing temperature
Oper_State - Flagged for normal operating condition

Table 2. Variables or features in the VisualCrossing weather database.

Variables or Features Unit Description
Temperature Celsius (°C) Air temperature from the weather database
Relative Humidity % Relative humidity from the weather database

Data samples in this dataset or other SCADA datasets may not be labeled for icing
conditions. Three rules are considered here to label the data samples as “ice” or “normal”
based on the icing conditions described in [26,27]. These rules are listed in Table 3, which
reflect temperature, relative humidity, and actual power. If all the conditions in these rules
are met for a data sample, that data sample is labeled as “ice” and is represented by “1” as
the output of our prediction model. Otherwise, it is labeled as “normal” and is represented
by “0” as the output of our prediction model.

Table 3. Rules for ice labeling of data samples.

Region 2 of Power Curve Region 3 of Power Curve
Temperature < 0 °C Temperature <0 °C
Relative Humidity > 85% Relative Humidity > 85%

Actual Power < 85% x Power Curve Actual Power < 85% x Rated Power
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Different window sizes were examined, and the one with the best match between the
cases of normal state (Oper_State, obtained from Table 1) and labels created from Table 3
(normal, represented by “0”) was selected. After the ice labeling process, it is noted that
the ratio of ice data samples to normal data samples was 1 to 6. To balance the number
between ice and normal samples, downsampling was performed on normal data samples
within the time series to select the most representative samples in a deterministic way.

Feature selection is a data preprocessing step to reduce the number of features or
variables used in a prediction model. A lower number of features reduces the complexity as
well as the training time of the prediction model. This step involves removing redundant
or noninformative features for icing detection and prediction. In this work, feature selec-
tion is performed by computing the Fisher Distance [28], which is a separation measure
between the distributions of a feature for the normal and icing conditions or classes as per
Equation (1):

2
FD = 7022 +’;22) (1)
1792

where p1 and 07 denote the mean and standard deviation of the “ice” class distribution,
and y; and 0y denote the mean and standard deviation of the “normal” class distribution.
Fisher Distance is used to rank order all the features from the most significant to the least
significant ones in terms of their ability to distinguish between icing and normal conditions.
There are a total of 13 features or variables, 11 features or variables from the SCADA
dataset and 2 features or variables from the weather database. All 13 Fisher Distances are
computed and ranked in descending order, see Table 4. A feature with a higher Fisher
Distance provides a higher separation between the “ice” and “normal” distributions or
classes. As an example, the distributions for the feature or variable with the highest Fisher
Distance, i.e., generated power, between “ice” and “normal” classes is shown in Figure 1.
Note the concentration of the icing case around the low-power region for this particular
wind turbine. All samples shown for the “normal” and “ice” labels are flagged as “normal
operating condition” (see Table 1).

In order to select the most informative features for icing, first the highest Fisher
Distance in Table 4 or Power_Avg is used as the only input feature to our prediction
model discussed in Section 3. Then, the first two highest Fisher Distance features, that is,
Power_Avg and Temp_Gear, are used as the inputs to our prediction model. The number of
features is steadily increased according to their Fisher Distance till all 13 features are used
as the inputs to our prediction model. Each time, the model prediction accuracy (described
later in Section 4) is computed; see Table 5. As seen from this table, the highest accuracy is
obtained when the top 12 features are used as the inputs to our prediction model. The last
feature does not provide any added benefit, and thus, it is not considered as an input to
our prediction model. This feature selection strategy is general and can be applied to any
other SCADA dataset.

Table 4. Fisher Distances for all the features or variables examined.

Feature Fisher Distance
Power_Avg 1.01 x 10°
Temp_Gear 8.34 x 1071
Gen_RPM 6.35 x 107!
Relative Humidity (local weather station) 6.09 x 10~1
Wind Speed 5.07 x 107!
Temp_Gen 459 x 1071
Temper_Nac 1.40 x 1071
Blade_Pitch 7.98 x 1072
Temperature (local weather station) 3.98 x 1072

Wind Direction 2.56 x 1073
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Table 4. Cont.

Feature Fisher Distance
Nacel_Direct 231 x1073
Temper_Amb 1.73 x 1073
Yaw_Error 1.01 x 1073
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Figure 1. Distributions of the feature or variable power for “ice” and “normal” classes.

Table 5. Prediction performance using different number of features.

Number of Features in Descending Order of

Their Fisher Distance Prediction Accuracy (%)

74.70
74.69
74.77
76.47
76.86
77.24
7724
77.61
77.97
78.85
79.36

80.07
79.92
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3. Prediction Model

An overview block diagram of our prediction framework is shown in Figure 2. Our
prediction framework includes three data processing blocks: Data Preprocessing, Prediction
Model Components, and Prediction Evaluation. The steps of the Data Preprocessing block
are described in the previous section. In this section, the Prediction Model Components
block and the Prediction Model Evaluation block are described.
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A Temporal Convolutional Network (TCN) is used in this work as our prediction
model, noting that in other applications, this network has been shown to be more effective
than other similar prediction models [29,30]. An illustration of the TCN architecture
is shown in Figure 3. This architecture consists of so-called convolution layers, ReLU
(Rectified Linear Unit) layers, and dropout layers. The convolution layer takes in a two-
dimensional input tensor or matrix of size ws by F, where ws denotes the input window size
and F denotes the number of features. To obtain the output corresponding to each feature
sequence or time series, the dot product of the input sequence and a kernel vector of size 3 is
computed. This kernel size was found to produce the highest accuracy compared with other
kernel sizes. A zero padding of size 2 is performed to ensure that the output sequence for
each feature has the same length as the input sequence. Prediction is normally conducted
by considering the present and previous values of the features. The number of previous
feature values is shown in Figure 4, which illustrates both the input window size and the
number of features used. The experiments reported in Section 4 showed that an input
window size of 21 data samples (corresponding to 3.5 h) achieved the highest accuracy.
No major changes were seen beyond this input window size for the dataset considered.
The output is a binary integer number, indicating the prediction outcome (1 if the output
is “ice” and 0 if the output is “normal”). After the convolution layer, a ReLU layer is used
as the activation function, which addresses the vanishing gradient problem [31]. Then, a
dropout layer with a dropout probability of 0.2 as normally performed is then used for
regularization to prevent overfitting during the training session [32].

Data Pre-processing

l

g

Fill Missing Data

Assign Ice Label

Balance Sample Classes

Feature Selection

4
=
T
T
[ T

Figure 2. Block diagram of icing prediction framework consisting of Data Preprocessing, Prediction
Model Components, and Prediction Model Evaluation.

The training session starts by first ensuring that all the selected 12 features have the
same dynamic range for the prediction model training; they are normalized using the
standard min—max normalization approach expressed by Equation (2):

X — Xmin

Xnorm = T )
Xmax — X¥min

where x denotes a feature value, and x,;, and xmax denote its minimum and maximum
values in the dataset, respectively. After this normalization, the values for all the features
to carry out the model training are between 0 and 1.

During the training session, for each epoch or one complete pass through the dataset,
the TCN model takes in a batch of training input samples and generates an output label,
which is then compared with the actual icing label. Based on the Binary Cross-Entropy loss
function, the error between the predicted icing label and the actual icing label is computed



Energies 2024, 17, 2175

7 of 13

output variable
(yeRY)

|

Sigmoid
Layer

Fully
Connected
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via the Adam optimizer with a learning rate of 0.001 in order to update kernel weights to
minimize the error. The TCN model parameters used in the training session are shown in
Table 6.

Conv. layer
dot
product
Kernel size
(3 samples)
input tensor
L A )
T Y
zero-padding input length
(2 samples) (21 samples)

Figure 3. TCN architecture of the developed icing prediction framework.

Table 6. TCN model parameters used.

Parameters Value or Setting
Optimizer Adam
Loss Function Binary Cross-Entropy
Epoch 10
Learning rate 0.001
Batch size 8
Kernel size 3
Dropout Probability 0.2

Input Window Size

pasn sainjea jo JaquinN

t

Figure 4. Construction of input tensors illustrating the input window size and the number of features.
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There are 288 predictors designed with prediction horizons from 10 min ahead until
2 days ahead. For example, if one desires to predict icing one hour into the future (or 6 sam-
ples ahead), each training output sample needs to be assigned an icing label corresponding
to 1 h ahead, as illustrated in Figure 5. Our prediction framework is designed in such a
way that different prediction horizons can be selected or specified by the user.

Prediction Horizon :
1 hour into the future
(6 samples ahead)

7N

Present Future
Past

Figure 5. Illustration of prediction horizon.

4. Results and Discussion

In this section, two widely used measures derived from the so-called confusion matrix
are used to evaluate the prediction model introduced in Section 3. The measures are
accuracy and Fj score, which are reported for different prediction horizons. The confusion
matrix for the problem under consideration consists of two entries, corresponding to “ice”
and “normal”; see Table 7. This matrix consists of four entries or metrics, True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN), and their definitions
are stated in Table 8. The confusion matrix is a table that can assess the performance of
a prediction model in a complete manner as compared with just accuracy. In our case, a
binary prediction is performed by classifying each test sample into “ice” or “normal”. The
test samples correspond to 20% of the dataset samples. These test samples were randomly
selected and have no overlap with the training samples, i.e., they represent fresh data used
to evaluate prediction performance.

Table 7. Confusion matrix for icing prediction.

Predicted Ice Predicted Normal
Actual ice TP EN
Actual normal FP ™™N
Table 8. Definition of metrics.
Metric Definition

Portion of the samples the model correctly predicted as positive
cases (“ice”).
Portion of the samples the model correctly predicted as negative
cases (“normal”).

Portion of the samples the model incorrectly predicted as positive cases
(“ice”) when they were actually negative cases (“normal”).
Portion of the samples the model incorrectly predicted as negative cases
(“normal”) when they were actually positive cases (“ice”).

True Positive (TP)
True Negative (TN)
False Positive (FP)

False Negative (FN)
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Based on TP, TN, FP, and FN, the two commonly used performance metrics of accuracy
and F; score are computed as follows:

Accuracy = % @3)
Precision = TI;F-:)FP (4)
Recall = TP?—I;N 6)

Fone = i Kol 0

Accuracy indicates the proportion of correctly classified samples out of all the samples.
Precision indicates the proportion of true positive predictions among all positive predictions.
It reflects the ability of the model to avoid false positives. Recall indicates the proportion of
true positive predictions among all actual positive predictions. It reflects the ability of the
model to identify all positive predictions.

We use two metrics, “accuracy” and “F; score”, as they are complementary. Accuracy
indicates the number of times predictions are correct as reflected in the diagonal elements
of the confusion matrix. F; score provides a measure of incorrect predictions or type I
and type Il errors, as reflected in the off-diagonal elements of the confusion matrix. Type
I errors denote the false positive prediction samples, where normal prediction samples
are incorrectly classified as ice prediction samples, and type II errors denote the false
negative prediction samples, where ice prediction samples are incorrectly classified as
normal prediction samples. Since the F; score is obtained by the harmonic mean of type I
and type Il errors, lower incorrectly predicted samples result in higher F; score values.

Our prediction framework was used to conduct icing prediction for up to 48 h or
two days into the future, corresponding to 288 prediction units, with one unit denoting
10 min. The duration of the predicted icing time series covered the winter season time
frame from January to April. Figure 6 shows a plot of accuracy and F; scores obtained for
all prediction horizons up to two days. The best accuracy (87.2%) and F; score (0.67) are
obtained for the 10 min prediction horizon, which is expected, since this is the smallest
horizon. To provide a better idea of performance across several prediction horizons, note
that the average accuracy for prediction horizons from 10 min (zero hour) to 1 day (dash
vertical line in Figure 6) is 81.6%. The average accuracy drops to 77.6% when calculated
across all prediction horizons up to 2 days. Similarly, F; score averages are 0.6 and 0.5, for
up to 1 day and 2 days, respectively. Additional averages can be found in Table 9, which
shows average accuracy and F; scores for four different prediction horizon cases: from
10 min (0 h) to 12 h, from 12 h to 24 h, from 24 h to 36 h, and from 36 h to 48 h.

With a prediction horizon of ten minutes into the future (see Predictorl in Figure 6),
the best prediction accuracy of 87.2% was obtained among all the cases. The confusion
matrix for this case is shown in Table 10. Also, to visualize the predictions as a function of
time, a portion of the predicted icing time series for this case is shown in Figure 7. In this
figure, blue regions correspond to actual icing labels, while green regions correspond to
predicted icing labels generated by our prediction model. Most of the icing durations were
correctly predicted by our model, while some false alarms were also generated. Recall that
the predicted time series corresponds to the one-step ahead (10 min) predictor.

Table 9. Average accuracy and Fj score across varying prediction horizons.

Prediction Horizon (Hours) Average Prediction Accuracy (%) Average F; Score
0-12 81.8 0.60
12-24 81.4 0.59
24-36 73.7 0.48

36-48 73.4 0.45
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Figure 7. Time series of icing prediction when using the one-step-ahead predictor.

It should be noted that since different datasets are used in different papers, and these
datasets are not publicly available, it is not possible to compare the performance of our
prediction model with the prediction models previously published. Nevertheless, the
prediction accuracies obtained in this work are comparable to those previously reported.
Furthermore, it is worth pointing out that when the true ice labels are unknown, a portion
of the prediction errors could be due to the ice labeling procedure and not due to the
prediction algorithm. What distinguishes our results from previously reported work is that
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we explained all the steps involved when developing a framework for icing prediction
from SCADA data.

It takes 0.33 milliseconds on a PC equipped with an Nvidia GPU RTX A4000 for the
TCN predictor network to provide one output sample at a specified future time in response
to a time window of past SCADA data measurements. This means that the prediction can
be conducted in real time for the SCADA data measurements captured every 10 min.

Table 10. Confusion matrix of one unit or sample ahead case (Predictorl).

Predicted Ice Predicted Normal
Actual ice 2185 674
Actual normal 1536 12,863

5. Conclusions and Future Work

In this paper, a data-driven framework has been developed to predict icing on wind
turbines based on SCADA data. The prediction of icing enables the assessment of a possible
drop in energy supply from wind power due to incoming cold weather. This information
would allow operators to prepare for shifting supply to generators that are less impacted by
icing events and/or to take actions to mitigate ice accumulation in order to reduce energy
losses from wind turbines.

The proposed icing prediction framework can be summarized as follows:

*  Data preprocessing: Fill in missing data, assign icing labels, balance the number of
samples between normal and ice conditions, and select the features from the SCADA
and meteorological data for icing prediction.

e  Predictor: Separate the selected features into “training” and “testing” samples to
develop and evaluate a Temporal Convolutional Network (TCN) with binary output
(ice or normal condition).

The experimental results from an actual wind turbine in a cold climate can be summa-
rized as follows:

*  The accuracy and F; score of the TCN predictor from a 10 min prediction horizon to
a 48 h prediction horizon are shown in Figure 6. This figure shows how predictor
performance decreases with the prediction horizon, which is expected.

¢  The average accuracy and F; score every 12 h interval are in Table 9.

¢ The average accuracy for a short-term prediction horizon (from 10 min to 1 day) is
81.6%, while the average accuracy for a long-term prediction horizon (from 10 min to
2 days) drops to 77.6%.

In most applications, it is of interest to know the icing conditions across an entire wind
farm. An extension of the work reported in this paper would be to predict icing conditions
at the farm level.
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