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1. Introduction

Closed Riemannian spin manifolds M with positive scalar curvature (scal > 0) have 
vanishing Â genus Â(M) = 0, by a celebrated theorem of Lichnerowicz [19]. Indeed, the 
Dirac operator D on the spinor bundle of M satisfies

D2 = ∇∗∇ + scal
4 , (1.1)

and, by the Atiyah–Singer Index Theorem, Â(M) "= 0 implies its kernel is nontrivial. 
Thus, Â(M) "= 0 is a topological obstruction to the existence of Riemannian metrics 
with scal > 0 on such M ; e.g., this shows that K3 surfaces do not admit scal > 0.

In this paper, we establish similar obstructions to stronger curvature conditions. More 
precisely, we find curvature conditions that are, on the one hand, weak enough to be 
satisfied by large classes of manifolds M , in particular, are preserved under surgeries 
of high codimension; on the other hand, strong enough to imply vanishing of certain 
rational cobordism invariants if M is spin, such as twisted Â genera in Theorem A, 
Witten genus, elliptic genus, and signature in Theorem C, or even all the Pontryagin 
numbers and hence the rational cobordism class itself in Theorem D.

1.1. Curvature conditions Cp(R) > 0

Let R : ∧2 TM → ∧2TM be the curvature operator of (Mn, g), and ν1 ≤ · · · ≤ ν(n2)
be its eigenvalues. For each 0 < r ≤

(n
2
)
, let

Σ(r,R) = ν1 + · · · + ν"r# + (r − 'r()ν"r#+1.

In particular, if r ∈ N is a positive integer, then Σ(r, R) is the sum of the smallest r
eigenvalues of R, and −Σ(r, −R) is the sum of the largest r eigenvalues of R. Note that 
2 Σ

((n
2
)
, R

)
= scal is the scalar curvature of (Mn, g). For each p ∈ N, define

rp = n2+(8p−1)n+8p(p−1)
n+8p(p+1) and r′p = n+p−2

p . (1.2)

Let µ be the largest eigenvalue of Ric, and define the functions Cp(R) : M → R as

C1(R) = min
{(

n
8 + 2

)
Σ(r1, R), scal

8

}
+ scal

8 − µ,

Cp(R) = min
{(

n
8 + p2 + p

)
Σ(rp, R), n(n−1)

8rp Σ(rp, R)
}

+ scal
8 + p2Σ(r′p,−R), p ≥ 2.

Clearly, the above quantities are linear combinations of the eigenvalues of R if p ≥ 2, and 
of R and Ric if p = 1. The coefficients of these linear combinations depend on the sign 
of Σ(rp, R) due to the terms involving minima. Moreover, Cp(R) > 0 implies Cq(R) > 0
for all 1 ≤ q < p, as well as scal > 0, see Proposition 4.9.
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1.2. Twisted Â genera

Given any complex vector bundle E → M , let

Â(M,E) = 〈Â(TM) · ch(E), [M ]〉,

where Â(TM) is the Â polynomial in the Pontryagin classes of TM , and ch(·) is the 
Chern character. By the Atiyah–Singer Index Theorem, if M is spin, then Â(M, E) is 
equal to the index of the Dirac operator on spinors of M twisted with E; in particular, 
it is an integer. Furthermore, if E is associated to the frame bundle of the Riemannian 
manifold (Mn, g) by a representation of SO(n), then Â(M, EC) is a universal rational lin-
ear combination of Pontryagin numbers of M that depends only on the rational oriented 
cobordism class of M , analogously to Â(M) = 〈Â(TM), [M ]〉.

Our main result is the following family of vanishing theorems for Â(M, EC):

Theorem A. Let M be a closed Riemannian spin manifold of dimension n = 4k, k ≥ 2, 
and E ⊆ TM⊗p be a parallel subbundle. If Cp(R) > 0, then Â(M, EC) = 0.

For specific parallel subbundles E ⊆ TM⊗p, e.g., E = ∧pTM or E = Symp TM , 
we give curvature conditions weaker than Cp(R) > 0 that still imply Â(M, EC) = 0, see 
Theorem 4.4. Simple examples of applications of Theorem A are that M = HP 2 does not 
admit C1(R) > 0, because it has Â(M, TMC) "= 0, see also Theorem D; and M = CaP 2

does not admit C2(R) > 0, since it has Â(M, ∧2TMC) "= 0.
Let us examine in further detail the case in which p = 1 and E = TM ; this is of 

relevance in Mathematical Physics in connection with Rarita–Schwinger fields (spin 3
2

fermions), see [16]. Under symmetry assumptions, Dessai [8] proved that spin manifolds 
with positive sectional curvature satisfy Â(M) = Â(M, TMC) = 0. Note that C1(R) ≥ 0
if Σ(r1, R) ≥ 0, where r1 = n(n+7)

n+16 , and scal
8 Id− Ric . 0; and C1(R) > 0 if either term 

is positive.

Theorem B. The curvature condition C1(R) > 0 satisfies the following:

(i) it is preserved under surgeries of codimension at least 10;
(ii) every oriented cobordism class [Mn], n ≥ 10, which is not a nontrivial torsion class 

is represented by a Riemannian manifold with C1(R) > 0;
(iii) every spin cobordism class [Mn], n ≥ 10, with Â(M) = Â(M, TMC) = 0 has a 

multiple which is represented by a spin Riemannian manifold with C1(R) > 0.

By Theorem B, the spin condition in Theorem A is necessary if p = 1. Indeed, without 
the spin condition, C1(R) > 0 places no restriction on the rational cobordism type of 
a manifold of dimension at least 10, and the conclusion of Theorem A, along with the 
vanishing of the Â genus, are the only restrictions on the rational spin cobordism type 
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of a spin manifold such that C1(R) > 0. Furthermore, Theorem B implies that the 
curvature condition C1(R) > 0 does not restrict any Betti numbers nor any individual 
Pontryagin numbers in sufficiently large dimensions.

We also prove a surgery stability result for the curvature conditions Cp(R) > 0, 
p ≥ 2. Namely, Cp(R) > 0 is preserved under surgeries of codimension d on manifolds of 
dimension n provided that (d − 1)(d − 2) > 8p(p + n − 2), see Proposition 7.1.

1.3. Witten genus and elliptic genus

The Witten genus and the elliptic genus are rational cobordism invariants that can be 
written as formal power series with coefficients given by linear combinations of Pontrya-
gin numbers. The elliptic genus generalizes both Â and L genera, see (2.9) for details. 
Using Theorem A, we prove:

Theorem C. Let M be a closed Riemannian spin manifold of dimension n = 4k.

(i) Set p = 'k
6 ( − 1 if k ≡ 1 mod 6, and p = 'k

6 ( otherwise. If p ≥ 1, Cp(R) > 0, and 
the first Pontryagin class of M vanishes, then the Witten genus of M vanishes.

(ii) If k ≥ 2 and C"k/2#(R) > 0, then the elliptic genus (and hence the signature) of M
vanishes.

The dimensional hypotheses in Theorem C, namely n ≥ 24 and n "= 28 in (i), and 
n ≥ 8 in (ii), only exclude situations already covered by Lichnerowicz. Namely, in (i), if 
p = 0 and the first Pontryagin class p1(TM) vanishes, then the Witten genus vanishes if 
and only if the Â genus vanishes; in (ii), the Witten, elliptic, and Â genera in dimension 
4 all vanish if and only if the signature vanishes. In Section 7, we show that there 
are nontrivial rational cobordism classes containing manifolds satisfying the curvature 
conditions in Theorem C (i). Furthermore, the curvature conditions in (i) and (ii) are 
satisfied by round spheres, and those in (i) are stable under connected sums and other 
high-codimension surgeries (see Proposition 7.1).

The Witten genus ought to vanish on closed Riemannian spin manifolds M with 
Ric 0 0 for which the spin characteristic class 1

2p1(TM) vanishes (these are so-called 
string manifolds, a condition weaker than p1(TM) = 0), according to a compelling 
conjecture of Stolz [28]. However, Cp(R) > 0 for p as in Theorem C is not implied by 
Ric 0 0. Even more, as Cp(R) > 0 is stable under certain surgeries, we can produce 
examples of string manifolds with infinite fundamental group satisfying Cp(R) > 0, 
which therefore do not admit metrics with Ric 0 0 by Myer’s theorem. On the other 
hand, in dimensions 24 ≤ n < 48 or n = 52, the Witten genus of spin manifolds Mn

with p1(TM) = 0 vanishes if and only if a multiple of the spin cobordism class [M ] is 
represented by a spin Riemannian manifold with C1(R) > 0.
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1.4. Rational cobordism class

Closed Riemannian n-manifolds (not necessarily spin) with Σ(n − p, R) > 0 for some 
0 < p ≤ 'n

2 ( have vanishing Betti number bp(M) = 0, by a recent work of Petersen 
and Wink [22]. Combining this with Theorem A, we find sufficient conditions for all
Pontryagin numbers to vanish, which, in turn, implies the vanishing of the rational 
cobordism class, namely:

Theorem D. Let M be a closed Riemannian spin manifold of dimension n = 4k.

(i) If k = 2, Σ(5, R) > 0, and M is Einstein, then M is null-cobordant.
(ii) If k ≥ 6 is even, Σ(2k + 4, R) > 0, and scal

8 Id− Ric . 0, then M is rationally 
null-cobordant.

(iii) If k ≥ 9 is odd, Σ(2k + 6, R) > 0, and scal
8 Id− Ric . 0, then M is rationally 

null-cobordant.

Closed oriented Riemannian manifolds of dimension n = 4k with Σ(2k, R) > 0 are 
rational homology spheres by [22]; these are rationally null-cobordant.

To facilitate comparison, let us further analyze the situation in dimension n = 8, in 
which case a metric satisfies scal

8 Id− Ric . 0 if and only if it is Einstein, and rationally 
null-cobordant manifolds are null-cobordant as there is no torsion in the cobordism group 
ΩSO

8 . A key example is the quaternionic projective plane HP 2, which is a spin manifold 
with signature 1, thus not null-cobordant. While it follows from [22] that HP 2 does not 
support metrics with Σ(4, R) > 0, we have by Theorem D that HP 2 does not support 
Einstein metrics with Σ(5, R) > 0; the same conclusions hold for connected sums #!HP 2, 
" ≥ 0. (The Fubini–Study metric on HP 2 is Einstein and has curvature operator R . 0
with kernel of dimension 18, hence Σ(r, R) > 0 only for r ≥ 19.)

In dimensions 16, 20, and 28, which are outside the scope of Theorem D, there are 
stronger hypotheses that allow to reach the same conclusion, see Theorem 5.2.

1.5. Key ideas and organization

A sensible approach to seek generalizations of the Lichnerowicz obstruction to scal > 0
is to twist the Dirac operator with different vector bundles, causing changes in the 
curvature term in (1.1) that can be aimed at detecting other curvature conditions. More 
precisely, given a Spin(n)-representation π, consider the twisted Dirac operator Dπ on 
the twisted spinor bundle S ⊗ Eπ → M , where S is the complex spinor bundle and Eπ

is associated via π to the principal bundle covering the frame bundle of M by the spinor 
representation πS. Then

D2
π = ∇∗∇ + Rπ,
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where the endomorphism Rπ is determined by the curvature operator R of M and the 
representation π; e.g., in case π is the trivial representation one has Rπ = scal

4 , recovering 
(1.1). The main difficulty in this approach is that Rπ 0 0 is algebraically very involved, 
and typically one can only ensure Rπ 0 0 by imposing unreasonably strong curvature 
assumptions such as R 0 0. Our first step towards overcoming this difficulty is to break 
Rπ into simpler parts as explained in Lemma 4.3, namely

Rπ = K(R,πS ⊗ π) + scal
8 Id−K(R,π),

where K(R, π) is the curvature endomorphism arising in the Weitzenböck formula ∆π =
∇∗∇ + t K(R, π) for Laplacians on the vector bundle Eπ, up to a factor t ∈ R, see (3.1); 
similarly for K(R, πS ⊗ π) on the bundle EπS⊗π = S ⊗ Eπ. For instance, if π is the 
defining representation of SO(n), then Eπ = TM and K(R, π) = Ric.

The second step, motivated by recent works of Petersen and Wink [22–24] and Nien-
haus, Petersen, and Wink [21], is to prove:

Theorem E. Let π be an irreducible orthogonal or unitary representation of SO(n) or 
Spin(n) with highest weight λ. Let ρ be the half-sum of positive roots in so(n, C) and 
r = 〈λ,λ+2ρ〉

‖λ‖2 . Then K(R, π) . ‖λ‖2 Σ(r, R) Id.

Theorem E generalizes the central estimate of [22], which is also at the heart of the 
other papers cited above, and casts it in a natural representation-theoretic framework. 
We prove Theorem E in a more general formulation (Proposition 3.9), relevant for man-
ifolds with special holonomy. This constitutes our main tool for relating the curvature 
endomorphisms K(R, π) and Rπ to linear combinations of the eigenvalues of R; with 
this in hand, standard Bochner-type arguments lead to the desired vanishing results, see 
Theorem 3.13 for the case of ∆π, and Theorem 4.4 for that of Dπ. As explained in Sec-
tion 4, Theorem A is a consequence of the latter, as Cp(R) is defined so that Theorem 4.4
can be applied to any subrepresentation π of the pth tensor power of the defining repre-
sentation. Regarding the former (see Section 3), besides recovering the results in [22–24]
that relate Σ(r, R) > 0 to the vanishing of Betti numbers in the Riemannian and Kähler 
settings, we are able to improve a Tachibana-type result relaxing the Einstein assump-
tion to harmonic curvature operator (Theorem 3.16), and to prove a vanishing theorem 
(Theorem 3.18) for trace-free conformal Killing tensors on manifolds with Σ(r, R) < 0, 
similar to results in [7] and [12] for manifolds with sec < 0.

In Section 6, we analyze the Witten genus and elliptic genus as modular forms to 
show they vanish whenever the characteristic numbers described in Theorem A vanish 
for sufficiently large p, proving Theorem C. Theorem D is proven in Section 5, using the 
results of [22] to show that all but two Pontryagin numbers vanish, and then showing 
that Â(M) and Â(M, TMC), which vanish by Lichnerowicz and Theorem A, are lin-
early independent in those two remaining Pontryagin numbers. In Section 7, we examine 
examples of closed manifolds with C1(R) > 0, including products of spheres, symmet-
ric spaces, and Milnor hypersurfaces, proving Theorem B. We also compute Cp(R) for 
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compact rank one symmetric spaces, examine surgery stability of Cp(R) > 0 using the 
criterion of [15], and identify nontrivial examples for which Cp(R) > 0 for the values of 
p given in Theorem C.
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2. Preliminaries

In order to fix notation and conventions, we recall some basic facts from topology and 
representation theory; for details, see [13] and [10], respectively.

2.1. Cobordisms, Pontryagin numbers, and genera

Let n = 4k and consider a multiindex I = (i1, . . . , i!) of nonnegative integers such 
that 

∑!
j=1 ij = k. Given a closed oriented n-manifold M , the Pontryagin number pI(M)

is defined as

pI(M) = 〈pi1(TM) · · · pi!(TM), [M ]〉 ∈ Z,

where pi(TM) ∈ H4i(M, Z) are the Pontryagin classes of TM → M . If M and N are 
oriented cobordant, then pI(M) = pI(N), and pI defines a map

pI : ΩSO
n −→ Z,

where ΩSO
n is the oriented cobordism group. If p(k) is the number of partitions of k, and 

I1, . . . , Ip(k) is a list of those partitions, then, by the work of Thom [30],

(pI1 , . . . , pIp(k)) : ΩSO
n ⊗Q −→ Qp(k)

is an isomorphism. Thus, if all Pontryagin numbers of an oriented manifold M vanish, 
then M is rationally null-cobordant, that is, the disjoint union (or connected sum) of some 
number of copies of M , all with the same orientation, bounds an oriented manifold. It 
also follows from work of Thom that the natural map

ΩSpin
n ⊗Q −→ ΩSO

n ⊗Q
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is an isomorphism, where ΩSpin
n is the spin cobordism group. So, if M is spin and rationally 

null-cobordant, some number of copies of M bound a spin manifold as well. Accordingly, 
we shall refer to rationally null-cobordant manifolds without distinguishing between the 
spin and oriented cases.

Let Q(x) = 1 + a2x2 + a4x4 + . . . be an even formal power series. For variables 
x1, . . . , xm, the product Q(x1) · · ·Q(xm) is a formal sum K0 + K1 + K2 + . . . of ho-
mogeneous symmetric polynomials Ki of degree i in the variables x2

1, . . . , x
2
m. Each Ki

can be written as a polynomial Ki(σ1, . . . , σi) in the elementary symmetric polynomials 
σi = σi(x2

1, . . . , x
2
m). Note that Ki does not depend on m if i ≤ m. Then, we define

K(TM)i = Ki

(
p1(TM), . . . , pi(TM)

)
,

K(TM) = 1 + K(TM)1 + K(TM)2 + . . .

For a closed orientable manifold M4k, set

K(M) = 〈K(TM)k, [M ]〉 .

Thus, K(M) is a rational linear combination of Pontryagin numbers, and one checks 
that K(M ×N) = K(M)K(N), so K defines a ring homomorphism

K : ΩSO
∗ ⊗Q −→ Q,

which is called a (multiplicative) genus. Let us mention the following examples:

(i) if Q(x) = x
tanh x , then the corresponding genus is called L. The signature of an 

orientable manifold M is equal to L(M), by Hirzebruch’s Signature Theorem;
(ii) if Q(x) = x/2

sinh(x/2) , then the corresponding genus is called Â. By the Atiyah–Singer 
Index Theorem, the index of the Dirac operator on a closed spin manifold M is 
equal to Â(M);

(iii) if Q(x) = 1 + x2k, then the corresponding genus is the Milnor invariant sk.

The latter is useful to describe the ring ΩSO
∗ due to theorems of Thom and Milnor:

Theorem 2.1. Let M4k be a closed oriented manifold for each positive integer k.

(i) [30] If sk(M4k) "= 0 for all k, then ΩSO
∗ ⊗Q = Q[M4, M8, . . . ]

(ii) [29, p. 207] If

sk(M4k) =
{
±p, if 2k + 1 = pr, p a prime,
±1, otherwise,

then ΩSO
∗ /torsion = Z[M4, M8, . . . ].
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Example 2.2. Useful generating sets can be constructed using Theorem 2.1 and the com-
putations sk(CP 2k) = 2k + 1, and sk(HP k) = 2k + 2 − 4k, see [13, Sec. 4.1] and [11]. 
Furthermore, for each i, j ≥ 2, Milnor defined a (2i + 2j − 2)-manifold Hij which is 
a complex hypersurface of degree (1, 1) in CP i × CP j , is the total space of a CP j−1

bundle over CP i, and for i +j odd satisfies s(i+j−1)/2(Hij) = −
(i+j

i

)
, see [13, p. 39]. One 

checks using divisibility properties of binomial coefficients that ΩSO
∗ /torsion is generated 

by CP 2k and Hij .

We describe the Chern character ch(EC) of the complexification EC of a real vector 
bundle E → M following a similar procedure. Consider the decomposition

m∑
i=1

2 cosh(xi) = 2m + ch2(σ1) + ch4(σ1,σ2) + . . .

into elementary symmetric polynomials σi = σi(x2
1, . . . , x

2
m), and set

ch2i(EC) = ch2i
(
p1(E), . . . , pi(E)

)

ch(EC) = dimE + ch2(E) + ch4(E) + . . .

It follows that ch(E ⊕ F ) = ch(E) + ch(F ), and ch(E ⊗ F ) = ch(E) ch(F ). Note

ch2i(σ1, . . . ,σi) = 2
(2i)!

m∑
j=1

x2i
j ,

so chi(·) can be computed using the relations between power sums and elementary sym-
metric polynomials given by Newton’s identities.

If E is associated to the frame bundle of M by a representation π of SO(2m), let 
{±λj} be the set of weights of the complexification of dπ. We consider each weight to be 
a linear functional λj : Cm → C. If we identify x1, . . . , xm with coordinates of Cm, then 
we can identify

ch(EC) =
∑
j

2 cosh
(
λj(x1, . . . , xm)

)
. (2.1)

Since the nonzero weights appear in pairs ±λj, only even powers of x1, . . . , xm remain. As 
the set of weights is invariant under the Weyl group of SO(2m), and thus permutations 
of x1, . . . , xm, it follows that ch(EC) can be expressed in terms of symmetric polynomials 
σi(x2

1, . . . , x
2
m), which are in turn identified with pi(TM).

The Atiyah–Singer Index Theorem states that if M is a closed spin manifold and 
E → M is a complex vector bundle, the index of the Dirac operator on spinors of M
twisted with E is given by

Â(M,E) =
〈
Â(TM) · ch(E), [M ]

〉
, (2.2)

see e.g. [18, Thm. 13.10]. Note that Â(M, E ⊕ F ) = Â(M, E) + Â(M, F ).
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2.2. Modular forms

Denote by H ⊂ C the open upper half-plane, and let Γ ⊂ SL(2, Z) be a subgroup of 
finite index. A modular form of weight k ∈ Z on Γ is a holomorphic function f : H → C

obeying the equivariance property

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), for all

(
a b
c d

)
∈ Γ.

Furthermore, for all 
(
a b
c d

)
∈ SL(2, Z), the function

τ 6→ (cτ + d)−kf

(
aτ + b

cτ + d

)
(2.3)

must have a Fourier expansion of the form 
∑∞

!=0 a!e
2πiτ!/N for some positive integer N . 

For 
(
a b
c d

)
=

( 0 −1
1 0

)
, that Fourier expansion is called the expansion at 0, and we define 

ord0(f) = "0/N , where "0 is the smallest integer such that a!0 "= 0 in the expansion 
at 0. Similarly, ord∞(f) is defined using the Fourier expansion of f(τ), i.e., choosing (
a b
c d

)
=

( 1 0
0 1

)
. For τ ∈ H, the order of vanishing of f at τ is defined in the usual manner 

and denoted by ordτ (f). The vector space of modular forms of weight k on Γ is denoted 
Mk(Γ); taken together, they form an algebra M∗(Γ) =

⊕
k Mk(Γ).

For a vector bundle E, consider the formal power series in the variable t,

Symt E = 1 + E t + Sym2 E t2 + . . .

∧tE = 1 + E t + ∧2E t2 + . . .
(2.4)

with coefficients given by the symmetric and exterior powers of E.
The Witten genus of a closed oriented manifold M4k is the formal power series

ϕW (M) = Â

(
M,

∞⊗
!=1

Symq! TMC

) ∞∏
!=1

(1 − q!)4k. (2.5)

The notation indicates that we apply Â(M, ·) to the coefficients of the given formal power 
series of bundles, cf. (2.2). If M4k is a closed spin manifold with p1(TM) = 0, then for 
q = e2πiτ , the series (2.5) is the Fourier expansion of a modular form ϕW (M)(τ) of 
weight 2k on SL(2, Z), see [13, Sec. 6.3].

The elliptic genus of a closed oriented manifold M4k is the formal power series

ϕ(M) =
(
2

∞∏
!=1

(1−q!)2
(1+q!)2

)2k〈
L(TM) · ch

(
Ψ2

( ∞⊗
!=1

Symq! TMC ⊗ ∧q!TMC

))
, [M ]

〉
,

where Ψ2 is an Adams operation, see [13, p. 75]. Again setting q = e2πiτ , the series 
ϕ(M)(τ) is a modular form of weight 2k on
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Γ0(2) =
{(

a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod 2

}
. (2.6)

Here, however, we make no restriction on p1(TM). Indeed, the elliptic genus defines a 
ring homomorphism ϕ : ΩSO

∗ ⊗Q → M∗(Γ0(2)).
Furthermore, the modified elliptic genus

ϕ̃(M)(τ) = τ−2kϕ(M)
(
− 1

τ

)
(2.7)

has a Fourier expansion with N = 2, which is the expansion at 0 of ϕ. Indeed, setting 
q = e2πiτ as before, one obtains

ϕ̃(M)(2τ) =
( ∞∏

!=1

(1−q2!)4
(1−q!)2

)2k
Â

(
M,

∞⊗
!=1

∧−q2!−1TMC ⊗ Symq2! TMC

)
(2.8)

and the function τ 6→ ϕ̃(M)(2τ) is again an element of M2k(Γ0(2)). Note that

lim
t→∞

ϕ(M)(it) = 4kL(M), and lim
t→∞

(it)−2kϕ(M)
(
− 1

it

)
= Â(M), (2.9)

so ϕ(M) interpolates between L and Â; for details, see [13, Sec. 6.1, 6.2].

2.3. Surgery stability

Given a manifold Mn with an embedding of Sn−d ×Dd, that is, an embedded sphere 
with a trivialization of its normal bundle, we can remove the embedded submanifold and 
glue the result to Dn−d+1 × Sd−1, forming

N = (M \ Sn−d ×Dd) ∪Sn−d×Sd−1 Dn−d+1 × Sd−1,

which is cobordant to the original manifold M . This process is referred to as a surgery of 
dimension n −d, or codimension d. Surgery of dimension n −d decreases the Betti number 
bn−d if the embedding Sn−d ⊂ M is nontrivial in rational homology, and increases bn−d+1
if Sn−d ⊂ M is trivial in rational homology.

If M has scal > 0 and d ≥ 3, then N also admits a Riemannian metric with scal > 0, 
by the celebrated works [26,11]. In general, a curvature condition C is called stable 
under surgeries of codimension d if N admits a metric satisfying C whenever it can 
be constructed using surgery of codimension d from a manifold M satisfying C. Let 
Sym2

b(∧2Rn) be the space of algebraic curvature operators, that is, symmetric endomor-
phisms R : ∧2 Rn → ∧2Rn that satisfy the first Bianchi identity. The following is a 
far-reaching generalization of surgery stability for scal > 0.

Theorem 2.3 (Hoelzel [15]). Let C be an open convex O(n)-invariant cone in Sym2
b(∧2Rn), 

and Rd be the curvature operator of Rn−d+1×Sd−1, 3 ≤ d ≤ n, with its standard product 
metric. If Rd ∈ C, then the condition R ∈ C is stable under surgeries of codimension d.
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2.4. Representation theory

Let G ⊂ SO(n) be a connected compact real Lie subgroup with Lie algebra g ⊂ so(n). 
An irreducible complex G-representation π : G → Aut(E) is called of real, complex, 
or quaternionic type according to whether it arises from a real G-representation by 
extension of scalars (real type), from a quaternionic G-representation by restriction of 
scalars (quaternionic type), or none of the above (complex type). Real and quaternionic 
types are respectively equivalent to the existence of a conjugate-linear endomorphism 
which squares to + Id and − Id. In particular, an irreducible real representation π : G →
Aut(E) is such that the complexified representation π : G → Aut(EC) is irreducible if 
and only if the latter is of real type. If, instead, π : G → Aut(EC) is reducible, then 
EC

∼= V ⊕ V ∗ for some irreducible G-representation V , which satisfies V ∗ ∼= V if and 
only if π is of quaternionic type.

Consider the complexification GC ⊂ SO(n, C), whose Lie algebra is gC ⊂ so(n, C). 
Given a (real or complex) representation π : G → Aut(E), we extend its lineariza-
tion dπ : g → End(E) to a gC-representation also denoted dπ. Throughout this pa-
per, so(n, C) ∼= ∧2Cn and its Lie subalgebras are endowed with the inner product 
〈X, Y 〉 = 1

2 Re trXY ∗. Fix a Cartan subalgebra h ⊂ gC, and identify the subspace 
h∗
0 ⊂ h∗ spanned by the roots of gC with a subspace h0 ⊂ h. Given a choice of simple 

roots, let ω!, 1 ≤ " ≤ rk(g), be the fundamental weights of gC, i.e., the basis of h0 dual 
to the basis of coroots. Let ρ be the half-sum of positive roots in gC, also called the Weyl 
vector, and recall that ρ =

∑rk(g)
!=1 ω!. Note that w0 ρ = −ρ, where w0 the unique element 

of the Weyl group that sends the positive Weyl chamber to the negative one. If λ ∈ h∗

is the highest weight of a GC-representation V , then the highest weight of the dual rep-
resentation V ∗ is −w0 λ. Thus, for simplicity, we shall refer to the highest weight λ ∈ h∗

of π : G → Aut(E) as being the highest weight of E if it is complex, of EC if E is real 
and EC is of real type, and of the complex G-representation V such that EC

∼= V ⊕V ∗ if 
E is real and EC is of complex or quaternionic type. There will be no ambiguity in the 
latter case, since throughout the paper we only use the quantities ‖λ‖2 = ‖w0 λ‖2 and 
〈λ, λ + 2ρ〉 = 〈−w0 λ, −w0 λ + 2ρ〉 associated to λ.

By the Highest Weight Theorem, there is a bijection between finite-dimensional irre-
ducible representations of gC and the set P++(gC) of dominant gC-integral weights. Given 
λ ∈ P++(gC), we denote by dπλ : gC → End(E) the unique (up to isomorphisms) irre-
ducible gC-representation with highest weight λ. Dominant GC-integral weights form a 
sublattice P++(GC) ⊂ P++(gC), and given λ ∈ P++(GC), we denote by πλ : GC → Aut(E)
the unique (up to isomorphisms) irreducible GC-representation whose linearization is 
dπλ : gC → End(E).

Given an orthonormal basis {αi} of gC, define the Casimir element Cas =
∑

i α
2
i in 

the universal enveloping algebra U(gC). Since Cas lies in the center of U(gC), by Schur’s 
Lemma, given an irreducible gC-representation dπλ on the vector space E, the operator 
dπλ(− Cas) = − 

∑
i dπλ(αi)2 acts on E as multiplication by a scalar, which is equal to 

〈λ, λ + 2ρ〉 by Freudenthal’s formula, see e.g. [31, Lem. 5.6.4].
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Example 2.4 (Type Dm). Consider the Lie groups SO(2m) and Spin(2m), of rank rk(G) =
m ≥ 3, whose complexified Lie algebras are isomorphic to gC = so(2m, C). Fix the Cartan 
subalgebra h = {H(θ1, . . . , θm) ∈ gC : θj ∈ C}, where

H(θ1, . . . , θm) := diag
([ 0 θ1

−θ1 0
]
,
[ 0 θ2
−θ2 0

]
, . . . ,

[ 0 θm
−θm 0

])
,

and let εi ∈ h∗ be the functionals defined by εi(H(θ1, . . . , θm)) = θi. According to the 
fixed inner product 〈·, ·〉 in so(2m, C), we have 〈εi, εj〉 = δij . Note that h0 = h. We choose 
εi ± εj , i < j, as positive roots, and ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm as simple roots. 
The fundamental weights ω1, . . . , ωm are given by:

ω! =






ε1 + · · · + ε!, if 1 ≤ " ≤ m− 2,
1
2
(
ε1 + · · · + εm−1 − εm

)
, if " = m− 1,

1
2
(
ε1 + · · · + εm−1 + εm

)
, if " = m,

and hence the half-sum of positive roots (also called the Weyl vector) is given by

ρ =
m∑
i=1

(m− i) εi. (2.10)

The set of dominant gC-integral weights is

P++(gC) =
{
λ =

m∑
j=1

aj εj : aj ∈ Z, ∀j, or aj + 1
2 ∈ Z, ∀j,

a1 ≥ a2 ≥ · · · ≥ am−1 ≥ |am| ≥ 0

}
,

and dominant SO(2m, C)-integral weights P++(SO(2m, C)) ⊂ P++(gC) form an index 
2 sublattice consisting of those elements with aj ∈ Z for all 1 ≤ j ≤ m. The gC-
representation dπλ is of complex type if m is odd and am−1 "= am, of quaternionic type 
if m ≡ 2 mod 4 and am−1 + am is odd, and of real type otherwise.

Let us recall certain representations in terms of irreducible representations πλ, with 
λ ∈ P++(GC). First, the defining representation of SO(2m) on R2m complexifies to the 
irreducible SO(2m, C)-representation πω1

∼= πε1 on C2m. Exterior powers ∧pC2m are 
irreducible SO(2m, C)-representations of real type for 1 ≤ p ≤ m − 1, and have highest 
weight ωp = ε1+· · ·+εp, i.e., ∧pC2m ∼= πωp if 1 ≤ p ≤ m −2, and ∧m−1C2m ∼= πωm−1+ωm . 
However, if p = m, then ∧mC2m ∼= ∧m

+C2m ⊕ ∧m
−C2m is not irreducible: it decomposes 

into the sum of ±1-eigenspaces of the Hodge star operator ∗, called self-dual and anti-
self-dual parts, which are irreducible and have highest weight ε1 + · · ·+ εm−1 ± εm, i.e., 
∧m

+C2m ∼= π2ωm and ∧m
−C2m ∼= π2ωm−1 . The remaining exterior powers m < p ≤ 2m

are identified via the isomorphisms ∧2m−pC2m ∼= ∧pC2m, 1 ≤ p ≤ 2m, given by ∗. 
Altogether,
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∧pC2m ∼= ∧pπω1
∼=






πωp , 1 ≤ p ≤ m− 2,
πωm−1+ωm , p = m− 1,
π2ωm ⊕ π2ωm−1 , p = m.

(2.11)

Traceless symmetric powers Symp
0 C

2m are SO(2m, C)-irreducible of real type for all 
p ≥ 1, and have highest weight p ω1. Symmetric powers Symp C2m decompose into the 
sum of traceless symmetric powers Symp−2j

0 C2m, 0 ≤ j ≤ p; or, in symbols:

Symp C2m ∼= Symp πω1
∼=

"p/2#⊕
j=0

π(p−2j)ω1 . (2.12)

Precomposing an SO(2m)-representation π : SO(2m) → Aut(E) with the double cover 
Spin(2m) → SO(2m) gives rise to a Spin(2m)-representation π̂. Their complexifications 
have the same highest weight, and the isomorphisms (2.11) and (2.12) remain valid when 
these are considered as Spin(2m, C)-representations.

A Spin(2m, C)-representation that is not the lift of any SO(2m, C)-representation is 
the spinor representation S = S+ ⊕ S−, which is the sum of (irreducible) positive and 
negative “half” spinor representations, each of dimension 2m−1. If m is even, then S+ ∼=
πωm and S− ∼= πωm−1 are self-dual and of real type if m ≡ 0 mod 4, quaternionic type 
if m ≡ 2 mod 4; while if m is odd, then S+ ∼= πωm−1 and S− ∼= πωm are of complex 
type and (S±)∗ ∼= S∓. For convenience, we often write πS := πωm ⊕πωm−1 for the spinor 
representation.

Example 2.5 (Type Bm). Consider G = SO(2m +1), which also has rk(G) = m. We shall 
use the same notation and same Cartan subalgebra h ⊂ so(2m, C) from Example 2.4
as a Cartan subalgebra of gC = so(2m + 1, C) by means of an appropriate embedding 
SO(2m, C) ⊂ SO(2m + 1, C). Choose εi ± εj , i < j, and εi as positive roots, and ε1 −
ε2, . . . , εm−1 − εm, εm as simple roots, and recall h0 = h. The fundamental weights 
ω1, . . . , ωm are given by:

ω! =
{
ε1 + · · · + ε!, if 1 ≤ " ≤ m− 1,
1
2
(
ε1 + · · · + εm−1 + εm

)
, if " = m,

and hence the half-sum of positive roots is given by

ρ =
m∑
i=1

(m− i + 1
2 ) εi. (2.13)

The set of dominant SO(2m + 1, C)-integral weights in gC is

P++
(
SO(2m + 1,C)

)
=

{
λ =

m∑
j=1

aj εj : aj ∈ Z, ∀j, a1 ≥ · · · ≥ am ≥ 0
}
.
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Similarly to Example 2.4, C2m+1 ∼= πω1
∼= πε1 is the complexification of the defining 

representation. Exterior powers are given by ∧pC2m+1 ∼= πωp for 1 ≤ p ≤ m − 1, and 
∧mC2m+1 ∼= π2ωm . The operator ∗ induces isomorphisms ∧2m+1−pC2m+1 ∼= ∧pC2m+1. 
Symmetric powers are given by Symp

0 C
2m+1 ∼= πpω1 for all p ≥ 1, and Symp C2m+1 ∼=⊕"p/2#

j=0 Symp−2j
0 C2m+1. All representations above are of real type.

Example 2.6. Let us consider U(m) ⊂ SO(2m), m ≥ 2, which is not semisimple, but 
is reductive, and has rk(U(m)) = m − 1. The complexification of its Lie algebra is 
gC = gl(m, C) ⊂ so(2m, C), and it splits as gC = g′C ⊕ z(gC), where g′C = sl(m, C) is the 
semisimple part (of type Am−1), and z(gC) = C Id are multiples of the identity. Fix the 
Cartan subalgebra h = h0 ⊕ z(gC), where h0 = {diag (θ1, . . . , θm) ∈ g′C : θj ∈ C} is the 
Cartan subalgebra of the semisimple part, which is spanned by the roots of gC. Using 
εj
(
diag(θ1, . . . θm)

)
= θj , the fundamental weights are given by

ω! = ε1 + · · · + ε! − !
m (ε1 + · · · + εm), 1 ≤ " ≤ m− 1,

and the half-sum of positive roots is

ρ = 1
2

m∑
j=1

(m− 2j + 1)εj . (2.14)

The set of dominant integral weights is given by

P++
(
GC

)
= P++

(
gC

)
=

{
λ =

m∑
j=1

ajεj : aj ∈ Z and a1 ≥ a2 ≥ · · · ≥ am

}
.

3. Revisiting the Bochner technique with representation theory

In this section, we develop a representation-theoretic framework that allows us to 
prove an abstract Bochner-type result (Theorem 3.13) simultaneously generalizing some 
recent results of Petersen–Wink [22–24], see Theorems 3.15, 3.16 and 3.19. We begin by
recalling the construction of Weitzenböck formulae.

3.1. Weitzenböck formulae

Let (Mn, g) be an orientable Riemannian manifold, and R : ∧2 TM → ∧2TM be 
its curvature operator. We denote by Hol(Mn, g) the holonomy group of (Mn, g), or 
its lift to Spin(n) if M is spin. Let G be a connected compact Lie subgroup of SO(n), 
or Spin(n), that contains Hol(Mn, g). Given an orthogonal or unitary representation 
π : G → Aut(E), let Eπ := Fr(M) ×π E be the associated bundle to the principal G-
bundle G → Fr(M) → M obtained by reducing the structure group of the bundle of 
SO(n)-frames, or Spin(n)-frames if M is spin. For instance, if G = SO(n) and π is the 
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defining representation on E = Rn, then Eπ = TM . Similarly, the representations ∧pπ

and Symp π give rise to the bundles ∧pTM and Symp TM , respectively.
The curvature term in the Weitzenböck formula ∆π = ∇∗∇ + t K(R, π) for sections 

of Eπ → M , where t ∈ R is an appropriate constant, is given by

K(R,π) = −
∑
a,b

Rab dπ(Xa) ◦ dπ(Xb) = −
∑
a

dπ(R(Xa)) ◦ dπ(Xa), (3.1)

where R =
∑

a,b Rab Xa ⊗ Xb is the curvature operator of (Mn, g), and {Xa} is an 
orthonormal basis of g ⊂ so(n) ∼= ∧2TpM , see e.g., [1, §1.I] or [14]. Note that the image 
of R is contained in g because Hol(Mn, g) ⊂ G, so we may consider R : g → g. To simplify 
notation, we also denote (3.1) by K(R, Eπ). The self-adjoint extension of R to gC, and 
of K(R, π) to (Eπ)C, are denoted by the same symbols. Note that the construction (3.1)
can be performed with dπ as a g-representation or a gC-representation, in which case 
{Xa} is taken to be an orthonormal basis of gC.

Proposition 3.1. The endomorphisms (3.1) satisfy the following basic properties:

(i) The linear map R 6→ K(R, π) is G-equivariant, and K(R, π) is self-adjoint;
(ii) If R . 0, then K(R, π) . 0 for any orthogonal or unitary G-representation π;
(iii) If π is reducible, say π ∼= π′⊕π′′, then K(R, π) = diag

(
K(R, π′), K(R, π′′)

)
is block 

diagonal according to the decomposition Eπ = Eπ′ ⊕ Eπ′′ ;
(iv) If π∗ : G → Aut(E∗) is the dual of π : G → Aut(E), then K(R, π∗) = K(R, π)∗;
(v) If λ ∈ P++(GC), then K(Id, πλ) = dπλ(− Cas) = 〈λ, λ + 2ρ〉 Id.

The proofs are elementary and left to the reader. Let us discuss a few examples:

Example 3.2. Let πS be the spinor representation, see Example 2.4. A standard computa-
tion using the symmetries of Clifford multiplication and the (first) Bianchi identity yields 
K(R, πS) = scal

8 Id, see [18, Thm. II.8.8]. The square of the Dirac operator D on the com-
plex spinor bundle S = EπS of a spin manifold (Mn, g) satisfies D2 = ∇∗∇ + t K(R, πS)
with t = 2, cf. (1.1).

Example 3.3. If π is either the defining representation of SO(n) on Rn, or its dual, then 
K(R, π) = Ric, see [2, Ex. 2.2] and Proposition 3.1 (iv). The Hodge Laplacian on the 
bundle TM∗ of 1-forms is ∆π = ∇∗∇ + t K(R, π) with t = 2.

Example 3.4. If π =
⊕

i πi is a decomposition into the direct sum of irreducibles, then 
the associated bundle Eπ decomposes into the corresponding direct sum of subbundles 
Eπ =

⊕
i Eπi . We denote by (Eπ)0 ⊂ Eπ the subbundle corresponding to the trivial

isotypic component, and write Eπ = (Eπ)0 ⊕ (Eπ)⊥0 . Note that (Eπ)0 → M is a trivial 
bundle, i.e., if the trivial isotypic component of π consists of q copies of the trivial 
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representation, then (Eπ)0 = M × Rq. Clearly, K(R, (Eπ)0) = 0 by (3.1), and thus 
K(R, Eπ) = diag(0, K(R, (Eπ)⊥0 )) by Proposition 3.1 (iii).

Recall the decomposition R = RU + RL + RW + R∧4 of R ∈ Sym2(∧2Rn) into O(n)-
irreducible components, see [1, §1.G]. In particular,

RU = scal
2n(n−1) g ! g, RL = 1

n−2 g !
(
Ric− scal

n

)
, (3.2)

where ! is the Kulkarni–Nomizu product. The Weyl part RW does not have g factors, 
nor does R∧4 , which vanishes if and only if R satisfies the Bianchi identity.

Example 3.5. The exterior and symmetric pth powers of the defining representation, 
respectively of its dual, give rise to bundles Eπ which are isomorphic to ∧pTM and 
Symp TM , respectively ∧pTM∗ and Symp TM∗. By Proposition 3.1 (iv), we only con-
sider the former. Note that K(R, ∧pTM) and K(R, Symp TM) are block diagonal accord-
ing to the decompositions into irreducibles in Examples 2.4 and 2.5, by Proposition 3.1
(iii). These blocks can be computed in terms of the decomposition of R ∈ Sym2(∧2Rn)
into O(n)-irreducible components (see [2, Thm B]):

K
(
R,∧pπω1

)
=

(
2(n−p)
p−1 RU + n−2p

p−1 RL − 2RW + 4R∧4

)
! g!(p−2)

(p−2)! ,

K(R, Symp
0 πω1) =

(
n+p−2
n(p−1)K(RU ,π2ω1) + n+2p−4

n(p−1) K(RL,π2ω1)

+ K(RW ,π2ω1)
)

" g"(p−2)

(p−2)! ,

for all p ≥ 2 and 2 ≤ p ≤ n − 2, respectively, where " is a symmetric version of the 
Kulkarni–Nomizu product. If p = 2, from [2, Thm B] and [12, Eq. (22)],

K(R,∧2πω1) = 2(n− 2)RU + (n− 4)RL − 2RW + 4R∧4 ,
(
K(R, Sym2 πω1)ϕ

)
(X,Y ) = ϕ(RicX,Y ) + ϕ(X,RicY ) − 2(R̊ϕ)(X,Y ),

where R̊ : Sym2 Rn → Sym2 Rn is given by (cf. [4, p. 74] and [1, p. 52])

(R̊ϕ)(X,Y ) =
∑
i,j
〈R(ei ∧X), ej ∧ Y 〉ϕ(ei, ej).

Note that K(R, Sym2 πω1) vanishes on the subspace spanned by g, since R̊g = Ric,
so K(R, Sym2 πω1) = diag

(
K(R, π2ω1), 0

)
according to the splitting Sym2 πω1

∼= π2ω1 ⊕
π0 of symmetric 2-tensors into traceless symmetric 2-tensors and multiples of the identity, 
respectively.

The Laplacian ∆π = ∇∗∇ +t K(R, π) is the Hodge Laplacian on p-forms if π = ∧pπ∗
ω1

and t = 2, and is the Lichnerowicz Laplacian on symmetric p-tensors if π = Symp π∗
ω1

and t = −2.
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3.2. Sufficient condition for K(R, π) . 0

Consider the following:

Definition 3.6. Given a self-adjoint operator R of a d-dimensional vector space, whose 
eigenvalues are ν1 ≤ ν2 ≤ · · · ≤ νd, we define for each real number 0 < r ≤ d,

Σ(r,R) = ν1 + · · · + ν"r# + (r − 'r()ν"r#+1.

We say R is r-nonnegative if Σ(r, R) ≥ 0, and r-positive if Σ(r, R) > 0. Similarly, R is 
r-nonpositive, or r-negative, if the operator −R is r-nonnegative, or r-positive.

For instance, R is 1-positive if and only if R 0 0, and 4
3 -positive if ν1 + 1

3ν2 > 0.
Note that Σ(r, R)/r is the (continuous) arithmetic mean of the smallest r eigenvalues 

of R, hence nondecreasing in r; and that −Σ(r, −R) is a sum involving the 'r(+1 largest 
eigenvalues of R. Moreover, Σ(r, R) and Σ(r, −R) are concave in R.

Motivated by the key algebraic method underlying the recent works of Petersen–
Wink [22–24], we introduce a representation-theoretic invariant:

Definition 3.7. Let G be a connected compact Lie subgroup of SO(n) or Spin(n), with 
Lie algebra g ⊂ so(n), and let ρ be the half-sum of positive roots in gC.

The Petersen–Wink invariant of a nontrivial irreducible orthogonal or unitary G-
representation π with highest weight λ ∈ P++(GC) is the positive real number

PWG(π) = 〈λ,λ + 2ρ〉
‖λ‖2 ,

and, in case 〈λ,λ+2ρ〉
‖λ‖2 ≥ dim g, we use the convention that PWG(π) = dim g. Furthermore, 

given the decomposition π =
⊕

i πi of an orthogonal or unitary G-representation into 
irreducibles, we set PWG(π) := min{PWG(πi) : πi is nontrivial}.

Remark 3.8. Given any connected compact Lie group G, there exist constants c > 0
and C > 0 such that c ‖λ‖2 ≤ 〈λ, λ + 2ρ〉 ≤ C ‖λ‖2 for all λ ∈ P++(GC), see e.g. [31, 
Lemma 5.6.6]. For all Lie groups G considered in this paper, C can be chosen such that 
C < dim g, see Remark 3.20 for G = SO(n) and Spin(n). However, it is unclear to us if 
this holds in general, so we use the convention in Definition 3.7.

The significance of PWG(π) to the Bochner technique hinges on the following result, 
which implies Theorem E in the Introduction:

Proposition 3.9. Let G be as above, π : G → Aut(E) be a nontrivial irreducible orthog-
onal or unitary G-representation with highest weight λ, and R : g → g be a self-adjoint 
operator. Then K(R, π) . ‖λ‖2 Σ(PWG(π), R) Id.



R.G. Bettiol, M.J. Goodman / Advances in Mathematics 458 (2024) 109995 19

As λ = 0 only for the trivial representation, Propositions 3.9 and 3.1 (iii) imply:

Corollary 3.10. Let G be as above, π : G → Aut(E) be an orthogonal or unitary G-
representation, and R : g → g be a self-adjoint operator.

(i) If R is PWG(π)-nonnegative, then K(R, π) . 0.
(ii) If R is PWG(π)-positive and π has no trivial components, then K(R, π) 0 0.

The following proof incorporates some arguments from [22] and [21, Lemma 3.2 and 
Remark 3.3].

Proof of Proposition 3.9. Let {Xi} be an orthonormal basis of g which diagonalizes R, 
so that R(Xi) = νi Xi, with νi ∈ R and ν1 ≤ ν2 ≤ · · · ≤ νdim g.

First, assume PWG(π) = 〈λ,λ+2ρ〉
‖λ‖2 < dim g. Let v ∈ E and let r = 'PWG(π)(. Since π

is orthogonal or unitary, dπ(Xi) is anti-self-adjoint, and by (3.1) we have

〈K(R,π)v, v〉 =
∑

i 〈dπ(R(Xi))(v),dπ(Xi)v〉
=

∑
i νi ‖dπ(Xi)v‖2

≥
r∑

i=1
νi ‖dπ(Xi)v‖2 + νr+1

dim g∑
i=r+1

‖dπ(Xi)v‖2

= −
r∑

i=1
(νr+1 − νi) ‖dπ(Xi)v‖2 + νr+1

dim g∑
i=1

‖dπ(Xi)v‖2

≥ −
r∑

i=1
(νr+1 − νi)‖λ‖2‖v‖2 + νr+1 〈λ,λ + 2ρ〉 ‖v‖2.

The last inequality above follows from Proposition 3.1 (v) and the observation that 
‖dπ(Xi)v‖ ≤ ‖λ‖‖v‖. Indeed, up to conjugating, we may assume that Xi is in a given 
Cartan subalgebra h ⊂ gC. The eigenvalues of dπ(Xi) are given by µ(Xi), for each weight 
µ ∈ h∗ of the complexification of π. Since λ has maximal length among such weights and 
‖Xi‖ = 1, we have |µ(Xi)| ≤ ‖λ‖, so the observation follows.

Applying Definitions 3.6 and 3.7 to the above inequality, we have

〈K(R,π)v, v〉 ≥ ‖λ‖2
(

r∑
i=1

νi + (PWG(π) − r) νr+1

)
‖v‖2

= ‖λ‖2 Σ(PWG(π), R) ‖v‖2.

Second, suppose PWG(π) = dim g ≤ 〈λ,λ+2ρ〉
‖λ‖2 . If νdim g ≥ 0, a similar argument holds, 

using νdim g instead of νr+1 in the second sum above. If νdim g < 0, and thus all νi < 0, 
the conclusion follows directly from ‖dπ(Xi)v‖ ≤ ‖λ‖‖v‖. !

Remark 3.11. Proposition 3.9 is sharp. Indeed, setting R = Id, it follows from Proposi-
tion 3.1 (v) that K(Id, π) = 〈λ, λ + 2ρ〉 Id = ‖λ‖2 Σ(PWG(π), Id) Id.
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Let us compute the Petersen–Wink invariant for some classes of representations.

Proposition 3.12. Let π be the irreducible orthogonal or unitary SO(n)-representation 

with highest weight λ =
m∑
j=1

ajεj, as in Examples 2.4 and 2.5, n ≥ 6. Then

PWSO(n)(π) = 1 +
∑m

j=1(n− 2j) aj
a2
1 + · · · + a2

m

, m = 'n
2 (. (3.3)

Proof. It follows from (2.10), (2.13), and Definition 3.7, that PWSO(n)(π) equals






1 + (2m−2)a1+(2m−4)a2+···+4am−2+2am−1
a2
1+···+a2

m
, if n = 2m,

1 + (2m−1)a1+(2m−3)a2+···+3am−1+am

a2
1+···+a2

m
, if n = 2m + 1,

and the above simplifies simultaneously for n = 2m and n = 2m + 1 to (3.3). !

In particular, by Proposition 3.12 and Examples 2.4 and 2.5 if n ≥ 6, and by direct 
computation using Definition 3.7 if 2 ≤ n ≤ 6, we have that, given any n ≥ 2,

PWSO(n)(∧pπω1) = n− p, for all 1 ≤ p ≤ 'n
2 (, (3.4)

PWSO(n)(Symp πω1) = n+p−2
p , for all p ≥ 1. (3.5)

Clearly, we have PWSpin(n)(π̂) = PWSO(n)(π), where π̂ is the precomposition of the 
SO(n)-representation π with the double cover Spin(n) → SO(n). Moreover, the Petersen–
Wink invariant PWSpin(n)(π) of an irreducible orthogonal or unitary Spin(n)-represen-
tation π with highest weight λ =

∑m
j=1 ajεj is also given by (3.3), as the proof of Propo-

sition 3.12 only requires λ ∈ P++(so(n, C)). Thus, we shall unambiguously write PW (π)
for both Spin(n)- and SO(n)-representations whose highest weight is λ ∈ P++(so(n, C))
as above, and compute it using (3.3).

3.3. Vanishing theorems

Throughout this subsection, (Mn, g) denotes a closed Riemannian n-manifold, n ≥ 2, 
with curvature operator R : ∧2 TM → ∧2TM . Consider the same setup as Section 3.1, 
where G is a connected compact Lie group that contains Hol(Mn, g), and recall that if 
π : G → Aut(E) is an orthogonal or unitary G-representation, then (Eπ)0 ⊂ Eπ is the 
subbundle corresponding to the trivial isotypic component of π, see Example 3.4. If π has 
no trivial component, (Eπ)0 = 0. To simplify notation, we write PWG(Eπ) = PWG(π), in 
the same way as K(R, Eπ) = K(R, π). In light of Corollary 3.10, the Bochner technique 
yields:
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Theorem 3.13. Let ∆π = ∇∗∇ +t K(R, π) be the Laplacian on Eπ → M , where R : g → g

is the curvature operator of (Mn, g) restricted to g ⊂ so(n). Given a harmonic section φ
of Eπ, i.e., ∆πφ = 0, the following hold:

(i) If t ≥ 0 and R is PWG(π)-nonnegative, then ∇φ ≡ 0.
(ii) If t > 0 and R is PWG(π)-positive, then φ ∈ (Eπ)0.
(iii) If t ≤ 0 and R is PWG(π)-nonpositive, then ∇φ ≡ 0.
(iv) If t < 0 and R is PWG(π)-negative, then φ ∈ (Eπ)0.

Proof. All assertions follow from Proposition 3.1 and Corollary 3.10, together with

0 =
∫

M

〈∆πφ,φ〉 =
∫

M

‖∇φ‖2 + t 〈K(R,π)φ,φ〉. (3.6)

Namely, let us consider only t ≥ 0. If R is PWG(π)-nonnegative, then K(R, π) . 0 by 
Corollary 3.10, so ∇φ ≡ 0. If R is PWG(π)-positive, then, as in Example 3.4, we have 
K(R, π) = diag(0, K(R, (Eπ)⊥0 )). Thus, K(R, (Eπ)⊥0 ) 0 0 by Corollary 3.10 because 
PWG(Eπ) = PWG((Eπ)⊥0 ), and hence φ ∈ (Eπ)0 provided that t > 0. !

Remark 3.14. In general, ∇φ ≡ 0 does not imply φ ∈ (Eπ)0. Instead, ∇φ ≡ 0 implies 
φ ∈ (Eπ′)0 where π′ is the restriction of π to Hol(Mn, g).

The classical vanishing theorems due to Bochner regarding Ricci curvature follow from 
the above ideas and Example 3.3. Namely, if (Mn, g) is a closed oriented Riemannian n-
manifold, let π be the dual of the defining representation of SO(n), so Eπ is the bundle of 
1-forms on (Mn, g). From Example 3.3, the Hodge Laplacian is ∆π = ∇∗∇ +2 K(R, π) =
(d + d∗)2 = dd∗ + d∗d, and K(R, π) = Ric. First, if Ric . 0, then any harmonic 1-form 
is parallel by (3.6) and hence b1(M) ≤ n; and if Ric 0 0, then harmonic 1-forms vanish 
so b1(M) = 0.

Second, decompose End(TM) ∼= TM∗ ⊗ TM∗ ∼= ∧2TM∗ ⊕ C∞(M) ⊕ Sym2
0 TM

∗

according to the decomposition into SO(n)-irreducibles of π ⊗ π. Given a 1-form φ, let 
Tφ be the component of ∇φ in Sym2

0 TM
∗. From [27, p. 507], we have:

∇∗∇φ = 1
2d∗dφ + 1

ndd∗φ + T ∗Tφ, (3.7)

2K(R,π)φ = 1
2d∗dφ + n−1

n dd∗φ− T ∗Tφ. (3.8)

Thus, if Ric < 0 and φ is dual to a conformal Killing vector field (i.e., Tφ = 0), then 
(3.8) implies that φ is harmonic, hence parallel, so the group Conf(Mn, g) of conformal 
diffeomorphisms has dimension ≤ n. If Ric ≺ 0, then φ ≡ 0, so Conf(Mn, g) is finite. The 
latter conclusions also apply to the isometry group Iso(Mn, g), since it is a subgroup of 
Conf(Mn, g). These facts are closely related to Theorem 3.13 applied to TM and TM∗: 
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it follows from Proposition 3.12 that PWSO(n)(TM) = PWSO(n)(TM∗) = n − 1, and 
Ric 0 0 if R is (n − 1)-positive.

Applying Theorem 3.13 to ∧pTM∗, since t > 0 for the Hodge Laplacian and 
PWSO(n)(∧pTM∗) = PWSO(n)(∧n−pTM∗) = max{p, n − p}, as computed in (3.4), one 
immediately recovers:

Theorem 3.15 (Petersen–Wink [22, Thm. A, B]). Given 1 ≤ p ≤ 'n
2 (, let q be such that 

1 ≤ min{q, n − q} ≤ p, and let φ ∈ ∧qTM∗ be a harmonic q-form.

(i) If R is (n − p)-nonnegative, then ∇φ ≡ 0. In particular, bq(M) ≤
(n
q

)
;

(ii) If R is (n − p)-positive, then φ ≡ 0. In particular,

b1(M) = · · · = bp(M) = 0, and bn−p(M) = · · · = bn−1(M) = 0.

Applying Theorem 3.13 to Sym2
b(∧2TM), we obtain slight generalizations of the 

Tachibana-type result [22, Thm. D], where the Einstein assumption is relaxed to har-
monic curvature operator or harmonic Weyl tensor (this was independently observed 
in [6,24]). Recall the second Bianchi identity yields dR = 0, viewing the curva-
ture operator R as a 2-form with values in ∧2TM , so R is called harmonic if it is 
divergence-free, i.e., d∗R = 0, see [1, Chap. 16]. Thus, R is harmonic if and only if 
0 = ∆πR = ∇∗∇R + 2K(R, π)R, where π = Sym2

b(∧2Rn).

Theorem 3.16. Suppose (Mn, g) has harmonic curvature operator, n ≥ 5.

(i) If R is n−1
2 -nonnegative, then (Mn, g) is locally symmetric;

(ii) If R is n−1
2 -positive, then (Mn, g) has constant sectional curvature.

For n = 3 or 4, the above statements remain true if n−1
2 is replaced with n2 .

Proof. Set G = SO(n). Recall the decomposition of the space of curvature operators 
Sym2

b(∧2Rn) = U ⊕ L ⊕ W into O(n)-irreducibles, where U , L, and W correspond 
respectively to multiples of the identity (curvature operators with constant sectional 
curvature), to the traceless Ricci part, and to the Weyl part. If n ≥ 5, then UC, LC, 
and WC are G-irreducible and of real type, and respectively isomorphic to the trivial 
representation, π2ε1 , and π2ε1+2ε2 . The same is true if n = 3 or 4, except for the fact 
that WC is trivial if n = 3, and it splits further as πε1+ε2 ⊕ πε1−ε2 if n = 4. Thus, the 
statement follows from Theorem 3.13 with t > 0, and the following computations using 
Proposition 3.12 for n ≥ 5, and Definition 3.7 otherwise:

PWG
(
Sym2

b(∧2Rn)
)

=






min{PWG(π2ε1), PWG(π2ε1+2ε2)}, if n ≥ 5,
min{PWG(π2ε1), PWG(πε1+ε2), PWG(πε1−ε2)}, if n = 4,
PWG(π2ε1), if n = 3,
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=






n−1
2 , if n ≥ 5,

2, if n = 4,
3
2 , if n = 3.

Note that R ∈ (Eπ)0, where π is the G-representation on E = Sym2
b(∧2Rn), if and only 

if R ∈ U ; and recall R is parallel if and only if (Mn, g) is locally symmetric. !

Remark 3.17. If n ≥ 4, then (Mn, g) has harmonic curvature operator if and only if it 
has constant scalar curvature and harmonic (i.e., divergence-free) Weyl tensor [1, §16.4]. 
Analyzing the irreducible components of ∇R ∈ TM∗ ⊗ Sym2

b(∧2TM) or arguing as [24]
implies Theorem 3.16 for (Mn, g) with harmonic Weyl tensor.

Next, consider Symp
0 TM , p ≥ 2. Recall that a section φ of Symp

0 TM is called a 
trace-free conformal Killing tensor if the projection P1(φ) of ∇φ ∈ TM ⊗ Symp

0 TM

onto Symp+1
0 TM vanishes identically. Following [12, Prop. 6.6], we write ∇φ = P1(φ) +

P2(φ) + P3(φ), where Pi(φ), i = 2, 3, are other first-order differential operators given by 
projecting ∇φ onto the remaining irreducibles. In terms of the above, the Weitzenböck 
formula ∆π = ∇∗∇ + t K(R, π) can be rewritten as

tK(R, Symp
0 R

n) = −pP ∗
1 P1 + (n + p− 2)P ∗

2 P2 + P ∗
3 P3,

in particular, the right-hand side is nonnegative on the space of trace-free conformal 
Killing tensors. Recall that t < 0 for this bundle and PWSO(n)(Symp

0 TM) = n+p−2
p by 

(3.5). Thus, applying Corollary 3.10, we have:

Theorem 3.18. Let φ ∈ Symp
0 TM be a trace-free conformal Killing tensor.

(i) If R is n+p−2
p -nonpositive, then ∇φ ≡ 0.

(ii) If R is n+p−2
p -negative, then φ ≡ 0.

Theorem 3.18 should be compared with [7, Thm. 1.6] and [12, Prop. 6.6], where (i) 
and (ii) are proven assuming instead that sec ≤ 0 and sec < 0, respectively.

Finally, setting G = U(m) ⊂ SO(2m) in Theorem 3.13, we also recover:

Theorem 3.19 (Petersen–Wink [23, Thm. B, C]). Let (M2m, g) be a closed Kähler 
manifold and consider its Kähler curvature operator R|u(m) : u(m) → u(m). Given 
1 ≤ p, q ≤ m, let φ ∈ ∧p,qTM∗ be a harmonic (p, q)-form and set

Cp,q = m + 1 − p2+q2

p+q .

(i) If R|u(m) is Cp,q-nonnegative, then ∇φ ≡ 0. In particular, hp,q(M) ≤
(m
p

)(m
q

)
;

(ii) If R|u(m) is Cp,q-positive, then φ ≡ 0. In particular, hp,q(M) = 0.
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In order to compute PWU(m)(∧p,qCm) = Cp,q, the main step is to obtain the decom-
position of ∧p,qCm into U(m)-irreducibles, which can be found in [23, Sec. 2], see also 
[5,9]. Namely, denote by ω ∈ ∧1,1Cm the Kähler form, and note that all its exterior 
powers ωk are fixed by U(m). Set V p,q

k := ∧p−k,0Cm ⊗C span{ωk} ⊗C ∧0,q−kCm, for 
0 ≤ k ≤ min{p, q}. According to [23, Thm. 2.1], the modules ∧p,q

k Cm := V p,q
k ∩ (V p,q

k+1)⊥
are U(m)-irreducible and

∧p,qCm =
min{p,q}⊕

k=0
∧p,q
k Cm,

cf. [9, Prop. 2.2]. According to [23, Lemma 2.5], the highest weight of ∧p,q
k Cm is 

λ(p, q, k) = ε1 + · · · + εp−k − (εm−(q−k)+1 + · · · + εm). So Definition 3.7 and (2.14)
yield:

PWU(m)(πλ(p,q,k)) = 1 + m(p+q)−p2−q2−2k(m−p−q)−2k2

p+q−2k .

The above is increasing with k, so its minimum is achieved with k = 0, i.e.,

PWU(m)(∧p,qCm) = min
0≤k≤min{p,q}

PWU(m)(πλ(p,q,k)) = PWU(m)(πλ(p,q,0)) = Cp,q.

Given the above, Theorem 3.19 now follows from Theorem 3.13 applied to ∧p,qTM , 
keeping in mind that t > 0 for the Hodge Laplacian on (p, q)-forms.

Remark 3.20. In light of Theorem 3.13, it is natural to ask which G-representations π, 
with G = SO(n) or Spin(n), maximize PW (π). From (3.3), with m = 'n

2 (,

(
n− 1 − PW (π)

)
(a2

1 + . . . a2
m) =

m∑
j=1

(n− 2)a2
j − (n− 2j)aj ≥

m∑
j=1

(n− 2j)(a2
j − aj) ≥ 0,

since a2
j ≥ aj because aj ∈ Z. Thus, PW (π) ≤ n − 1, and equality is achieved if and 

only if π is the irreducible representation of highest weight ω1, ωm−1, or ωm.

4. Twisted spinors

In this section, we prove a general vanishing theorem (Theorem 4.4) for twisted spinors 
on closed Riemannian spin manifolds using the representation-theoretic approach to the 
Bochner technique discussed in Section 3, namely Proposition 3.9. As a consequence of 
this general result, we prove Theorem A in the Introduction.

4.1. Representation theory of twisted spinors

Twisted Dirac operators act on vector bundles S ⊗ Eπ constructed from the repre-
sentation πS ⊗ π as explained in Section 3.1, where πS is the spinor representation (see 
Example 2.4).



R.G. Bettiol, M.J. Goodman / Advances in Mathematics 458 (2024) 109995 25

An essential step to compute the Petersen–Wink invariant of πS ⊗ π is to decompose 
it as a sum of irreducible representations. Consider, e.g., the tensor product πS ⊗ πω1 of 
πS

∼= S+ ⊕S− and the defining representation on Cn, where n = 2m and m ≥ 4 is even. 
Recall from Example 2.4 that S+ and S− have highest weight ωm and ωm−1, respectively. 
By Pieri’s formula, their tensor products decompose as πωm ⊗ πω1

∼= πωm+ω1 ⊕ πωm−1

and πωm−1 ⊗ πω1
∼= πωm−1+ω1 ⊕ πωm , and hence

PW (πωm ⊗ πω1) = min
{
PW (πωm+ω1), PW (πωm−1)

}
,

PW (πωm−1 ⊗ πω1) = min
{
PW (πωm−1+ω1), PW (πωm)

}
,

(4.1)

according to Definition 3.7. It follows from Proposition 3.12 that

PW (πωm+ω1) = PW (πωm−1+ω1) = n(n+7)
n+16 ,

PW (πωm) = PW (πωm−1) = n− 1,
(4.2)

and hence the minima in (4.1) are achieved by the former, so

PW (πS ⊗ πω1) = n(n+7)
n+16 . (4.3)

In what follows, we perform a similar computation for tensor products of πS with 
general alternating and symmetric powers of the defining representation πω1

∼= Cn. 
Recall from Example 2.4 the decompositions (2.11) and (2.12) of ∧pCn and Symp Cn

into irreducible SO(n)-representations, where n = 2m is even. For simplicity, we analyze 
only the components involving tensor products of S+ ∼= πωm , as the computations for 
those involving S− ∼= πωm−1 are completely analogous and ultimately not needed. We 
use the convention that ω0 = 0, and π0 is the trivial representation.

Proposition 4.1. If n = 4k, m = 2k, and k ≥ 2, then

PW
(
πωm ⊗ ∧pπω1

)
= n2+(8p−1)n−8p(p−1)

n+16p , 0 ≤ p ≤ m, (4.4)

PW
(
πωm ⊗ Symp πω1

)
= n2+(8p−1)n+8p(p−1)

n+8p(p+1) , p ≥ 0. (4.5)

Proof. The decomposition of πωm ⊗ ∧pπω1 into irreducibles follows from (2.11) and the 
following instances of the Littlewood–Richardson rule (see [20]):

πωm ⊗ πωp
∼=

p⊕
j=0

πωp−j+ωm−(j−2#j/2$) , 1 ≤ p ≤ m− 2, (4.6)

πωm ⊗ πωm−1+ωm
∼= πωm−1+2ωm ⊕

m−1⊕
j=1

πωm−j−1+ωm−(j−2#j/2$) , (4.7)

πωm ⊗ π2ωm
∼= π3ωm ⊕

m/2⊕
j=1

πωm−2j+ωm , (4.8)
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πωm ⊗ π2ωm−1
∼= π2ωm−1+ωm ⊕

m/2−1⊕
j=1

πωm−2j−1+ωm−1 , (4.9)

cf. [17, Thm O(2n)].
By (3.3), the Petersen–Wink invariant of the above irreducibles is given by

PW (πωp+ωm) = PW (πωp+ωm−1) = 2m2+(8p−1)m−4p(p−1)
m+8p , (4.10)

PW (πqωm−1+!ωm) = 2m2(q+!)+m(q+!−2)(q+!)−4q!
m(q+!)2−4q! , (4.11)

where 1 ≤ p ≤ m − 2, q, " ≥ 0, and (q, ") "= (0, 0). We proceed case-by-case, following 
(2.11). First, if 1 ≤ p ≤ m − 2, then ∧pπω1

∼= πωp , so by (4.6) and (4.10),

PW
(
πωm ⊗ ∧pπω1

)
= min

0≤j≤p
PW (πωp−j+ωm−(j−2#j/2$))

= min
0≤j≤p

2m2+(8p−8j−1)m−4(p−j−1)(p−j)
m+8(p−j)

= 2m2+(8p−1)m−4(p−1)p
m+8p = n2+(8p−1)n−8p(p−1)

n+16p ,

(4.12)

as the minimum above is achieved at j = 0.
Second, if p = m − 1, then ∧pπω1

∼= πωm−1+ωm , so using (4.7), (4.10), and (4.11),

PW
(
πωm ⊗ ∧pπω1

)
=

= min
{
PW (πωm−1+2ωm), min

1≤j≤m−1
PW (πωm−j−1+ωm−(j−2#j/2$))

}

= min
{

6m2+3m−8
9m−8 , min

1≤j≤m−1
3m(2m+1)−4j(j+3)−8

9m−8j−8

}
= 6m2+3m−8

9m−8 .

Finally, if p = m, then ∧pπω1
∼= π2ωm ⊕ π2ωm−1 , so using (4.8) – (4.11),

PW
(
πωm ⊗ ∧pπω1

)
=

= min
{
PW (π3ωm), PW (π2ωm−1+ωm), min

2≤j≤m
PW (πωm−j+ωm)

}

= min
{

2m+1
3 , 6m2+3m−8

9m−8 , min
2≤j≤m

3m(2m+1)−4j(j+1)
9m−8j

}
= 2m+1

3 .

Note that both of the above coincide with the values assumed by the last line of (4.12)
setting p = m − 1 and p = m, respectively, which concludes the proof of (4.4).

The decomposition of πωm ⊗ Symp πω1 into irreducibles follows from (2.12) together 
with πωm ⊗ πqω1

∼= πqω1+ωm ⊕ π(q−1)ω1+ωm−1 , q ≥ 1, which is a simple consequence of 
the Littlewood–Richardson rule; namely,
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πωm ⊗ Symp πω1
∼=

"p/2#⊕
j=0

(
πωm ⊗ π(p−2j)ω1

)

∼=
"p/2#⊕
j=0

π(p−2j)ω1+ωm
⊕

"p/2#−1⊕
j=0

π(p−2j−1)ω1+ωm−1 .

(4.13)

By (3.3), the Petersen–Wink invariant of these irreducibles is given by

PW (πqω1+ωm) = PW (πqω1+ωm−1) = 2m2+(8q−1)m+4q(q−1)
m+4q(q+1) , q ≥ 0. (4.14)

Thus, by (4.13) and (4.14),

PW
(
πωm ⊗ Symp πω1

)
= min

0≤q≤p
PW (πqω1+ωm) = min

0≤q≤p

2m2+(8q−1)m+4q(q−1)
m+4q(q+1)

= 2m2+(8p−1)m+4p(p−1)
m+4p(p+1) = n2+(8p−1)n+8p(p−1)

n+8p(p+1) ,

since the above minimum is achieved at q = p, concluding the proof of (4.5). !

Remark 4.2. From Proposition 4.1, PW
(
πωm ⊗ ∧pπω1

)
≥ PW

(
πωm ⊗ Symp πω1

)
for all 

0 ≤ p ≤ m, with equality if p = 0 or p = 1, and strict inequality if 2 ≤ p ≤ m.

Note that the constants defined in (1.2) are precisely (4.5) and (3.5), namely:

rp = PW
(
πωm ⊗ Symp πω1

)
and r′p = PW

(
Symp πω1

)
. (4.15)

4.2. General vanishing theorem

Let (Mn, g) be a closed Riemannian spin manifold and R : ∧2 TM → ∧2TM be its 
curvature operator, and G be a connected compact Lie subgroup of Spin(n) that contains 
Hol(Mn, g), as in Section 3.1. Let S → M be the complex spinor bundle, Eπ → M be 
another complex vector bundle defined by a unitary G-representation π, and consider 
the bundle S⊗Eπ defined by the tensor product G-representation πS⊗π. Using Clifford 
multiplication, the linearization of πS can be written in terms of an orthonormal basis 
ei of Rn, see [18, Cor. I.6.3]:

dπS(ei ∧ ej) = 1
2eiej . (4.16)

The twisted Dirac operator Dπ = DEπ acts on sections of S ⊗ Eπ, and satisfies D2
π =

∇∗∇ + Rπ, where

Rπ =
∑
i<j

(eiej ⊗ 1) ◦RS⊗Eπ
ei,ej , (4.17)

see [18, p. 155]. Here, RS⊗Eπ is the curvature tensor defined by the connection on S⊗Eπ

induced by the representation, hence RS⊗E
ei,ej = −d(πS ⊗ π)(R(ei ∧ ej)).
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Lemma 4.3. The curvature term (4.17) can be written in terms of (3.1) as follows:

Rπ = K(R,πS ⊗ π) + scal
8 Id−1 ⊗K(R,π)

Proof. Using (4.16) and expanding the linearized tensor product of representations,

Rπ = −2
∑
i<j

(dπS(ei ∧ ej) ⊗ 1) ◦ d(πS ⊗ π)(R(ei ∧ ej))

= −2
∑
i<j

(dπS(ei ∧ ej) ⊗ 1) ◦ (dπS(R(ei ∧ ej)) ⊗ 1 + 1 ⊗ dπ(R(ei ∧ ej)))

= −
∑
i<j

(dπS(ei ∧ ej) ⊗ 1) ◦ (dπS(R(ei ∧ ej)) ⊗ 1 + 1 ⊗ dπ(R(ei ∧ ej)))

+ K(R,πS) ⊗ 1 −
∑
i<j

dπS(ei ∧ ej) ⊗ dπ(R(ei ∧ ej)).

Since R is symmetric, one sees that
∑
i<j

dπS(ei ∧ ej) ⊗ dπ(R(ei ∧ ej)) =
∑
i<j

dπS(R(ei ∧ ej)) ⊗ dπ(ei ∧ ej).

Adding and subtracting 1 ⊗K(R, π) in the second and third lines below, respectively,

Rπ = −
∑
i<j

(dπS(ei ∧ ej) ⊗ 1) ◦ (dπS(R(ei ∧ ej)) ⊗ 1 + 1 ⊗ dπ(R(ei ∧ ej)))

−
∑
i<j

(1 ⊗ dπ(ei ∧ ej)) ◦ (dπS(R(ei ∧ ej)) ⊗ 1 + 1 ⊗ dπ(R(ei ∧ ej)))

+ K(R,πS) ⊗ 1 − 1 ⊗K(R,π)
= K(R,πS ⊗ π) + K(R,πS) ⊗ 1 − 1 ⊗K(R,π).

To conclude, recall K(R, πS) = scal
8 Id, see Example 3.2 or [18, Thm. II.8.8]. !

We now prove a general vanishing theorem for twisted spinors (Theorem 4.4) which 
is the primary ingredient in the proof of Theorem A. Furthermore, if twisting with 
Symp TMC or ∧pTMC, the hypotheses below are weaker than those stated in Theo-
rem A, since one may obtain a curvature expression c(R) ≥ Cp(R) directly using the 
computations in the proof of Proposition 4.1 together with (3.4) or (3.5).

Theorem 4.4. Let (Mn, g) be a closed Riemannian spin manifold of dimension n = 4k, 
k ≥ 2, with curvature operator R, let G be a connected compact Lie subgroup of Spin(n)
containing Hol(M, g), and π be an irreducible unitary G-representation with highest 
weight λ ∈ P++(GC). Consider the decomposition πS ⊗ π =

⊕
i πλi into irreducible 

G-representations, and let c(R) : M → R be given by

c(R) = min
i

{
‖λi‖2 Σ(PWG(πλi), R)

}
+ scal

8 + ‖λ‖2 Σ(PWG(π),−R), (4.18)
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with ‖λi‖2 Σ(PWG(πλi), R) = 0 if λi = 0. If c(R) ≥ 0 and E ⊆ Eπ is a parallel complex 
subbundle, then Â(M, E) = 0, or c(R) ≡ 0 and S ⊗ E has a nontrivial parallel section.

Proof. Using the splitting S = S+ ⊕ S−, and the fact that E ⊆ Eπ is parallel, we can 
restrict Dπ to S± ⊗ E to obtain D±

E : S± ⊗ E → S∓ ⊗ E. By the Atiyah–Singer Index 
Theorem, see e.g. [18, Thm. 13.10],

ind(D+
E) = dim kerD+

E − dim kerD−
E = Â(M,E).

If the above is nonzero, then kerDE ⊂ kerDπ contains a section φ "≡ 0. Combining 
Lemma 4.3 and Proposition 3.9, the hypotheses imply that Rπ ≥ c(R) Id. The standard 
Bochner argument, cf. (3.6), implies that ∇φ ≡ 0 and Rπ has nontrivial kernel at all 
points; in particular, c(R) ≡ 0. !

4.3. On the proof of Theorem A

First, we address the case p = 1, combining the proof of Theorem 4.4 with an analysis 
of the representations involved if π = πω1 .

Theorem 4.5. Let (Mn, g) be a closed Riemannian spin manifold of dimension n = 4k, 
k ≥ 2, with curvature operator R, and Ric < µ Id. Set r1 = n(n+7)

n+16 , and

C1(R) = min
{(

n
8 + 2

)
Σ(r1, R), scal

8
}

+ scal
8 − µ.

If C1(R) ≥ 0 and E ⊆ TMC is a parallel complex subbundle, then Â(M, E) = 0, or else 
C1(R) ≡ 0 and S ⊗ E has a nontrivial parallel section.

Proof. We argue as in Theorem 4.4, setting π = πω1 to be the lift to G = Spin(n) of the 
defining representation of SO(n), so that Eπ = TM . Letting m = 2k, then

πS ⊗ πω1
∼= πωm+ω1 ⊕ πωm−1 ⊕ πωm−1+ω1 ⊕ πωm ,

as explained in Section 4.1. Using Proposition 3.1 (iii) and Example 3.2, we have

K(R,πS ⊗ πω1) = K(R,πωm+ω1) ⊕K(R,πωm−1) ⊕K(R,πωm−1+ω1) ⊕K(R,πωm)

= K(R,πωm+ω1) ⊕
( scal

8 Id
)
⊕K(R,πωm−1+ω1) ⊕

( scal
8 Id

)
.

Applying Proposition 3.9, since PW (πωm+ω1) = PW (πωm−1+ω1) = r1 by (4.2), and 
‖ωm + ω1‖2 = ‖ωm−1 + ω1‖2 = n

8 + 2, we obtain

K(R,πωm+ω1) .
(
n
8 + 2

)
Σ(r1, R) Id, and K(R,πωm−1+ω1) .

(
n
8 + 2

)
Σ(r1, R) Id .
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Thus, K(R, πS ⊗ πω1) . min
{(

n
8 + 2

)
Σ(r1, R), scal

8
}

Id. From Example 3.3, we have 
K(R, πω1) = Ric. Therefore, by Lemma 4.3, we have Rπ . C1(R) Id . 0 and the 
conclusion follows as in the proof of Theorem 4.4. !

Remark 4.6. Despite similarities, C1(R) does not coincide with c(R) in (4.18) for π = πω1 , 
since we explicitly compute K(R, πω1), K(R, πωm) and K(R, πωm−1) in the proof above 
using Examples 3.2 and 3.3 instead of appealing to Proposition 3.9.

Second, in order to address the case p ≥ 2, we need compare the relevant quantities 
in Theorem 4.4 for different subrepresentations of the p-tensor representation π⊗p

ω1 , and 
of their tensor products with the spinor representation πS

∼= πωm ⊕ πωm−1 .

Lemma 4.7. Let n = 4k, k ≥ 2. Recall the constants rp and r′p in (1.2), cf. (4.15), and 
the Weyl vector ρ in (2.10). If π is an nontrivial irreducible subrepresentation of the 
SO(n)-representation π⊗p

ω1 , p ≥ 2, with highest weight λ ∈ P++(SO(n, C)),

PW (π) ≥ r′p, and 0 ≤ 〈λ,λ + 2ρ〉 ≤ p(n + p− 2).

Denoting also by π its lift to Spin(n), let πS ⊗ π =
⊕

i πλi be the decomposition into 
irreducible components. Then

PW (πλi) ≥ rp, and n(n−1)
8 ≤ 〈λi,λi + 2ρ〉 ≤ p(n + p− 1) + n(n−1)

8 .

Proof. Let m = 2k. Since λ ∈ P++(SO(n, C)), we have that λ =
∑m

j=1 ajεj with a1 ≥
a2 ≥ · · · ≥ |am| ≥ 0 and aj ∈ Z for all 1 ≤ j ≤ m, see Example 2.4. By Proposition 3.12, 
the Petersen–Wink invariant PW (π) does not depend on the sign of am because n = 2m
is even, see (3.3), so we may assume am = |am| ≥ 0. Moreover, λ is a weight of π⊗p

ω1 , so 
it can be written as λ = ±εj1 ± · · · ± εjp and thus 

∑m
j=1 aj ≤ p. Altogether, the vector 

(a1, . . . , am) of coefficients belongs to

?p =
{

(a1, . . . , am) ∈ Rm : a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and
m∑
j=1

aj ≤ p

}
,

which is an m-simplex in Rm; namely ?p is the convex hull of the vertices v0 = 0 and 
vq =

(p
q , . . . , 

p
q , 0, . . . , 0

)
∈ Rq ⊕ {0} ⊆ Rm, 1 ≤ q ≤ m. From (2.10), we have

p 〈λ, 2ρ〉 − 2(m− 1)‖λ‖2 = 2
m∑
j=1

(
p(m− j) aj − (m− 1) a2

j

)
. (4.19)

We claim that the right-hand side of (4.19) is nonnegative for all (a1, . . . , am) ∈ ?p. 
Indeed, this is a concave function of (a1, . . . , am) and hence attains its minimum on ?p

at a vertex vq, 0 ≤ q ≤ m. It can be easily checked that this minimum is equal to zero 
and it is achieved at the vertices v0 and v1. Therefore, as desired,
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PW (π) = 〈λ,λ+2ρ〉
‖λ‖2 ≥ 1 + 2(m−1)

p = n+p−2
p = r′p.

Moreover, using (2.10) again, we obtain

0 ≤ 〈λ,λ + 2ρ〉 ≤
(

m∑
j=1

aj

)2

+ 2(m− 1)
m∑
j=1

aj ≤ p2 + 2p(m− 1) = p(n + p− 2).

Let us also denote by π the lift to Spin(n) of the SO(n)-representation π, and recall that 
the weights of πS are of the form 

∑m
i=1 ±

1
2εi. Thus, the highest weight λi ∈ P++(so(n, C))

of an irreducible component of πS ⊗ π must be of the form λi =
∑m

j=1 bjεj , with bj =
aj ± 1

2 and aj ∈ Z such that 
∑m

j=1 |aj | ≤ p. It follows that |bm| = |am ± 1
2 | ≥

1
2 ; 

in particular, λi "= 0. Again, in light of (3.3), the sign of bm is irrelevant to compute 
PW (πλi) so we may assume bm = |bm| ≥ 0. Altogether, the vector (b1, . . . , bm) of 
coefficients belongs to the (translated) simplex

?p +
( 1

2 , . . . ,
1
2
)

=
{

(b1, . . . , bm) ∈ Rm : b1 ≥ · · · ≥ bm ≥ 1
2 and

m∑
j=1

bj ≤ p + m
2

}

whose vertices are vq +
( 1

2 , . . . , 
1
2
)
, 0 ≤ q ≤ m. Similarly to (4.19), we have that

(m4 + p2 + p) 〈λi, 2ρ〉 − 2(m− 1)(m4 + p)‖λi‖2 =

2
m∑
j=1

(m4 + p2 + p)(m− j) bj − (m− 1)(m4 + p) b2j

is nonnegative for all (b1, . . . , bm) ∈ ?p +
( 1

2 , . . . , 
1
2
)
, since this is a concave function of 

(b1, . . . , bm) and its minimum on ?p +
( 1

2 , . . . , 
1
2
)

is equal to zero and achieved at the 
vertex v1 +

( 1
2 , . . . , 

1
2
)
. Therefore, as desired,

PW (πλi) = 〈λi,λi+2ρ〉
‖λi‖2 ≥ 1 + 2(m−1)(m

4 +p)
m
4 +p2+p

= n2+(8p−1)n+8p(p−1)
n+8p(p+1) = rp.

Finally, we may bound

〈λi,λi + 2ρ〉 =
m∑
j=1

(
a2
j ± aj + 1

4
)

+ 2
m∑
j=1

(
aj ± 1

2
)
(m− j)

from above with

〈λi,λi + 2ρ〉 ≤ m
4 + p2 + p + 2p(m− 1) + (m−1)m

2 = p(n + p− 1) + n(n−1)
8 ,

and from below with

〈λi,λi + 2ρ〉 ≥
m∑
j=1

1
4 +

m∑
j=1

(m− j) = m(2m−1)
4 = n(n−1)

8 ,
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where we use that a2
j±aj ≥ 0 because aj ∈ Z, and bj = aj± 1

2 ≥ 1
2 because (b1, . . . , bm) ∈

?p +
( 1

2 , . . . , 
1
2
)
. !

Using Lemma 4.7, we shall now apply Theorem 4.4 to prove the following result, 
which implies Theorem A in the remaining case p ≥ 2. Note that a parallel subbundle 
EC ⊆ TM⊗p

C decomposes into the direct sum of parallel bundles, each contained in Eπ

for some irreducible subrepresentation π of π⊗p
ω1 .

Theorem 4.8. Let (Mn, g) be a closed Riemannian spin manifold of dimension n = 4k, 
k ≥ 2, with curvature operator R. Let π be an irreducible subrepresentation of the SO(n)-
representation π⊗p

ω1 , p ≥ 2, with highest weight λ ∈ P++(SO(n, C)), and

Cp(R) = min
{(

n
8 + p2 + p

)
Σ(rp, R), n(n−1)

8rp Σ(rp, R)
}

+ scal
8 + p2 Σ(r′p,−R),

with rp and r′p as in (1.2). If Cp(R) ≥ 0 and E ⊆ Eπ is a parallel complex subbundle, 
then Â(M, E) = 0, or Cp(R) ≡ 0 and S ⊗ E has a nontrivial parallel section.

Proof. Let πS⊗π =
⊕

i πλi be the decomposition into irreducible components. Recalling 
that r 6→ Σ(r, R)/r is nondecreasing in r, since PW (πλi) ≥ rp by Lemma 4.7,

‖λi‖2 Σ(PW (πλi), R) = 〈λi,λi + 2ρ〉 Σ(PW (πλi), R)
PW (πλi)

≥ 〈λi,λi + 2ρ〉 Σ(rp, R)
rp

.

Using Lemma 4.7 once more, if Σ(rp, R) ≤ 0, then

‖λi‖2 Σ(PW (πλi), R) ≥
(
p(n + p− 1) + n(n−1)

8

) Σ(rp, R)
rp

=
(
n
8 + p2 + p

)
Σ(rp, R)

(4.20)

otherwise, if Σ(rp, R) ≥ 0, then

‖λi‖2 Σ(PW (πλi), R) ≥ n(n− 1)
8

Σ(rp, R)
rp

. (4.21)

We claim that Σ(r′p, −R) ≤ 0. Indeed, suppose by contradiction Σ(r′p, −R) > 0. Then 
2 Σ

((n
2
)
, −R

)
= − scal > 0 and Σ(rp, R) < 0, so

Cp(R) <
(
n
8 + p2 + p

)
Σ(rp, R) + p2 Σ(r′p,−R)

=
(
p(n + p− 1) + n(n−1)

8

) Σ(rp, R)
rp

+ p(n + p− 2)
Σ(r′p,−R)

r′p
.

Since Σ(rp,R)
rp

≤ −Σ(r′p,−R)
r′p

≤ 0 and p(n + p − 1) + n(n−1)
8 > p(n + p − 2), we conclude 

that Cp(R) < 0, which contradicts our hypotheses, proving that Σ(r′p, −R) ≤ 0.
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From Lemma 4.7, we have PW (π) ≥ r′p and as r 6→ Σ(r, R)/r is nondecreasing,

‖λ‖2 Σ(PW (π),−R) = 〈λ,λ + 2ρ〉 Σ(PW (π),−R)
PW (π)

≥ 〈λ,λ + 2ρ〉 Σ(r′p,−R)
r′p

≥ p(n + p− 2)Σ(r′p,−R)
r′p

= p2 Σ(r′p,−R), (4.22)

where the last inequality uses Lemma 4.7 once again.
Therefore, combining (4.20), (4.21), and (4.22), we conclude that, for all i,

‖λi‖2 Σ(PW (πλi), R) + scal
8 + ‖λ‖2 Σ(PW (π),−R) ≥ Cp(R),

and hence the conclusion follows from Theorem 4.4. !

4.4. Monotonicity of Cp(R)

Using similar arguments, we now show that the curvature conditions Cp(R) > 0 are 
nested, and each implies scal > 0; that is:

Proposition 4.9. Let n ≥ 3 and 1 ≤ q < p. If R ∈ Sym2
b(∧2Rn) has Cp(R) ≥ 0, then 

scal
4 ≥ Cq(R) ≥ Cp(R).

Proof. First, we note that

scal
8 = n(n− 1)

8
Σ
((n

2
)
, R

)
(n
2
) ≥ n(n− 1)

8
Σ(r1, R)

r1
,

and that µ, being a trace of R over a subspace of ∧2Rn of dimension r′1 = n −1, satisfies 
µ ≤ −Σ(r′1, −R). Thus, it follows that

C1(R) ≥ min
{(

n
8 + 2

)
Σ(r1, R), n(n−1)

8r1 Σ(r1, R)
}

+ scal
8 + Σ(r′1,−R),

and the right-hand side is the result of setting p = 1 on the formula for Cp(R), p ≥ 2.
Since n > 2, both rp and r′p are decreasing functions of p. As demonstrated in the 

proof of Theorem 4.8, it follows from Cp(R) > 0 that Σ(r′p, −R) ≤ 0. Thus,

q2 Σ(r′q,−R) = q(n + q − 2)
Σ(r′q,−R)

r′q
≥ q(n + q − 2)

Σ(r′p,−R)
r′p

≥ p(n + p− 2)
Σ(r′p,−R)

r′p
= p2 Σ(r′p,−R).

If Σ(rq, R) ≤ 0, then
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min
{(

n
8 + q2 + q

)
Σ(rq, R), n(n−1)

8rq Σ(rq, R)
}

=
(
n
8 + q2 + q

)
Σ(rq, R)

= 1
8
(
n2 + (8q − 1)n + 8q(q − 1)

)
Σ(rq, R)/rq

≥ 1
8
(
n2 + (8p− 1)n + 8p(p− 1)

)
Σ(rq, R)/rq

≥ 1
8
(
n2 + (8p− 1)n + 8p(p− 1)

)
Σ(rp, R)/rp

=
(
n
8 + p2 + p

)
Σ(rp, R) ≥ min

{(
n
8 + p2 + p

)
Σ(rp, R), n(n−1)

8rp Σ(rp, R)
}
,

while, if Σ(rq, R) ≥ 0, then

min
{(

n
8 + q2 + q

)
Σ(rq, R), n(n−1)

8rq Σ(rq, R)
}

= n(n−1)
8rq Σ(rq, R)

≥ n(n−1)
8rp Σ(rp, R) ≥ min

{(
n
8 + p2 + p

)
Σ(rp, R), n(n−1)

8rp Σ(rp, R)
}
.

Therefore, in all cases, Cq(R) ≥ Cp(R).
Finally, assume C1(R) ≥ 0. If µ < 0, then scal < 0, and since r1 < r0 = n − 1 and 

µ ≥ Σ(n − 1, R), we have

C1(R) ≤ 1
8n(n + 7)Σ(r1, R)

r1
− µ ≤ 1

8n(n + 7)Σ(n− 1, R)
n− 1 − (n− 1)Σ(n− 1, R)

n− 1

=
(

n2−n+8
8n−8

)
Σ(n− 1, R) < 0.

Since this contradicts our assumption C1(R) ≥ 0, we conclude that µ ≥ 0, and

C1(R) ≤ min
{(

n
8 + 2

)
Σ(r1, R), scal

8

}
+ scal

8 ≤ scal
4 . !

5. Cobordism classes

If (Mn, g) is a closed Riemannian manifold of dimension n = 4k, k ≥ 2, whose curva-
ture operator is r-positive with 2k ≤ r ≤ n −1, then Theorem 3.15 implies the vanishing 
of its Betti numbers b1, . . . , bn−r, and br, . . . , bn−1. (To simplify notation, throughout 
this section, all Betti numbers bi = bi(M) and Pontryagin numbers pI = pI(M) are un-
derstood to refer to M , and all rational Pontryagin classes pi = pi(TM) to TM .) Thus, 
the rational Pontryagin classes in the corresponding degrees vanish, as do any Pontryagin 
numbers involving those Pontryagin classes. If, in addition, the conditions in Theorem A
are satisfied, then further linear combinations of Pontryagin numbers vanish. In this sec-
tion, we combine these results to give sufficient conditions for all Pontryagin numbers 
to vanish, that is, for M to be rationally null-cobordant. We first prove Theorem D (ii) 
and (iii), as follows:

Theorem 5.1. Let (Mn, g) be a closed Riemannian spin manifold of dimension n = 4k, 
with k ≥ 6 and k "= 7. If its curvature operator is r-positive, where
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r = 2k + 4 if k is even, and r = 2k + 6 if k is odd,

and scal
8 Id− Ric . 0, then M is rationally null-cobordant.

Proof. First, suppose k = 2" is even. By Theorem 3.15, since (Mn, g) has r-positive 
curvature operator with r = 4" + 4, the only possibly nonvanishing Betti numbers of 
M besides b0 and bn are b4!−3, . . . , b4!+3. Thus, all rational Pontryagin classes vanish, 
except possibly p! and p2!, i.e., the only possibly nonvanishing Pontryagin numbers are 
p(!,!) and p(2!). We now prove that these also must vanish.

In the above setup, a direct computation (e.g., using tools in [13, §1.8]) gives

Â(TM) = 1 + c2! p! + 1
2
(
c22! − c4!

)
p2
! + c4! p2!,

where ci is the coefficient of xi in the power series expansion of x
4 tan(x/2) at x = 0. Since 

M is spin and has scal > 0, by Lichnerowicz, we have

Â(M) = 1
2
(
c22! − c4!

)
p(!,!) + c4! p(2!) = 0. (5.1)

Using Newton’s identities for power sums and elementary symmetric polynomials,

ch(TMC) = 8" + (−1)!+1

(2!−1)! p! + 2!
(4!)! p

2
! − 1

(4!−1)! p2!.

The curvature operator R of (Mn, g) is r-positive with r < r1 and scal
8 Id− Ric . 0, 

therefore C1(R) > 0. Thus, we may apply Theorem A with p = 1 and obtain

Â(M,TMC) =
(

(−1)!+1

(2!−1)! c2! + 2!
(4!)!

)
p(!,!) − 1

(4!−1)! p(2!) = 0. (5.2)

In order to show that p(!,!) and p(2!) vanish, it suffices to show that the homogeneous 
linear system given by (5.1) and (5.2) on those variables only has the trivial solution. 
This is easily seen to be equivalent to

c2! "= 0 and (−1)!(2"− 1)! c2! "= 2(4"− 1)! c4!.

Using that 2(−1)!(2")! c2! = B2! is the 2"th Bernoulli number, the above conditions are 
satisfied if and only if B2! "= 0, which always holds, and B2! "= B4!, which holds if " "= 2, 
and we assumed k = 2" ≥ 6. Thus, p(!,!) = p(2!) = 0, as desired.

Next, assume k = 2" + 1 is odd. By Theorem 3.15, since the curvature operator R
of (Mn, g) is r-positive with r = 4" + 8, aside from b0 and bn, all Betti numbers vanish 
except possibly b4!−3, . . . , b4!+7. Thus, the only possibly nonzero rational Pontryagin 
classes are p!, p!+1, and p2!+1, i.e., the only possibly nonzero Pontryagin numbers are 
p(!,!+1) and p(2!+1). Similarly to the above, in this situation, as " > 1,
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Â(TM) = 1 + c2! p! + c2!+2 p!+1 + (c2!c2!+2 − c4!+2) p! p!+1 + c4!+2 p2!+1,

ch(TMC) = 8" + 4 + (−1)!+1

(2!−1)! p! + (−1)!
(2!+1)! p!+1 − 1

(4!+1)! p! p!+1 + 1
(4!+1)! p2!+1.

Once again, Â(M) = 0 because M is spin and has scal > 0, and Â(M, TMC) = 0 by 
Theorem A, because C1(R) > 0, as R is r-positive with r < r1 and scal8 Id− Ric . 0. The 
homogeneous linear system given by Â(M) = Â(M, TMC) = 0 on the variables p(!,!+1)
and p(2!+1) only has the trivial solution provided that

−(4" + 2)B2! B2!+2 + (2" + 2)B2! B4!+2 + (2")B2!+2 B4!+2 "= 0,

which holds if " "= 2, 3, and we assumed " ≥ 4. Thus p(!,!+1) = p(2!+1) = 0. !

Let us now address the remaining statement (i) in Theorem D, regarding the case 
k = 2. In dimension n = 8, since scal

8 Id− Ric is traceless, the condition scal
8 Id− Ric . 0

is equivalent to the Einstein condition Ric = scal
8 Id. Repeating the proof of Theorem 5.1

with k = 2 and r = 5, it follows that if (M8, g) is a closed Riemannian spin manifold with 
an Einstein metric and 5-positive curvature operator, then all its Pontryagin numbers 
vanish. In this dimension, the cobordism group ΩSpin

8
∼= Z ⊕ Z has no torsion and is 

hence completely determined by Pontryagin numbers, so we conclude that such M8 is 
null-cobordant, as claimed.

Next, we consider the relevant dimensions not covered by Theorem 5.1. In these 
dimensions, under the analogous hypotheses, the homogeneous linear system given by 
Â(M) = Â(M, TMC) = 0 on the only 2 possibly nonvanishing Pontryagin numbers 
degenerates, i.e., admits nontrivial solutions. Thus, we must ensure the vanishing of 
some other linear combination of these Pontryagin numbers, and Â(M, ∧2TMC) turns 
out to be a judicious choice. In order to obtain its vanishing, we make an assumption 
on K(R, ∧2TM) = K(R, ∧2πω1), which is given explicitly in Example 3.5; recall also 
that −K(R, ∧2TM) = K(−R, ∧2TM) can be bounded from below in terms of the n − 2
largest eigenvalues of R by Proposition 3.9 and (3.4).

Theorem 5.2. Let (Mn, g) be a closed Riemannian spin manifold of dimension n = 4k, 
k = 4, 5, or 7. If its curvature operator is r-positive, where r = 4k2+15k−4

k+8 , and 
scal
8 Id−K(R, ∧2TM) . 0, then M is rationally null-cobordant.

Proof. If k = 4, then r = 10, so p1 = 0 and p3 = 0 by Theorem 3.15. Computing as in 
the proof of Theorem 5.1 in terms of the only remaining Pontryagin numbers,

Â(M) = 1
211·34·52·7

(
13 p(2,2) − 22 · 3 p(4)

)
= 0. (5.3)

Since R is r-positive with r = PW (πS ⊗ ∧2πω1) by Proposition 4.1, we obtain from 
Corollary 3.10 (ii) that K(R, πS ⊗ ∧2πω1) 0 0, and thus that Rπ 0 0 for π = ∧2πω1 by 
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Lemma 4.3. Therefore, Â(M, ∧2TMC) = 0. Using (2.1), or computing ch(∧tTM) with 
the splitting principle and the multiplicative property of ∧t, see (2.4), we have

Â(M,∧2TMC) = 1
28·3·5·7

(
101 p(2,2) + 22 · 149 p(4)

)
= 0. (5.4)

Since the homogeneous linear system given by (5.3) and (5.4) only admits the trivial 
solution, it follows that p(2,2) = p(4) = 0, so all Pontryagin numbers vanish.

If k = 5, then r < 16, so p1 = p4 = 0, and by the same arguments, we have

Â(M) = 1
211·35·52·7·11

(
3 · 7 p(2,3) − 2 · 5 p(5)

)
= 0,

Â(M,∧2TMC) = 1
210·35·52·7·11

(
3 · 7 · 23 · 73 p(2,3) − 2 · 5 · 13 · 5003 p(5)

)
= 0,

which only has the trivial solution, so all Pontryagin numbers vanish.
Finally, if k = 7, then r < 20, so p1 = p2 = p5 = p6 = 0, and similarly we have

Â(M) = 1
215·36·53·72·11·13

(
283 p(3,4) − 22 · 5 · 7 p(7)

)
= 0,

Â(M,∧2TMC) = 1
214·35·53·72·11·13

(
−227 · 1009 p(3,4) − 22 · 5 · 7 · 32719 p(7)

)
= 0,

which only has the trivial solution, so all Pontryagin numbers vanish. !

The only dimensions n = 4k not addressed in Theorem D nor in Theorem 5.2 are the 
cases k = 1 and 3. For k = 1, it follows directly from the vanishing of Â(M) that a closed 
Riemannian spin 4-manifold with scal > 0 is null-cobordant. For k = 3, Theorem 3.15
implies that a closed Riemannian 12-manifold with 8-positive curvature operator has 
p1 = p2 = 0. If such M12 is spin, then Â(M) = 0 and thus p3 = 0, so once again M is 
rationally null-cobordant.

6. Elliptic genus and Witten genus

In this section, we use modularity of the elliptic genus ϕ and of the Witten genus ϕW , 
as defined in Section 2.2, to derive sufficient conditions for their vanishing (Theorem C). 
First, we prove a lemma with elementary considerations in the theory of modular forms; 
recall the definition (2.6) of the subgroup Γ0(2) ⊂ SL(2, Z).

Lemma 6.1. Let f ∈ Mm(SL(2, Z)) be a modular form of weight m. If

(i) m "≡ 2 mod 12 and ord∞(f) > 'm
12(, or

(ii) m ≡ 2 mod 12 and ord∞(f) > 'm
12( − 1,

then f = 0. If g ∈ Mm(Γ0(2)) and ord∞(g) > 'm
4 (, then g = 0.
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Proof. As 
( 1 1

0 1
)
∈ Γ0(2), we have f(τ + 1) = f(τ) and g(τ + 1) = g(τ), so f and g

have a Fourier expansion in integer powers of q = e2πiτ and ord∞(f), ord∞(g) ∈ Z are 
nonnegative integers, i.e., N = 1 in the notation of Section 2.2. If f "= 0, then

∑
τ 1=i, e2πi/3 ordτ (f) + 1

3 orde2πi/3(f) + 1
2 ordi(f) + ord∞(f) = m

12 ,

see [13, Appendix I, Thm 4.1] or [32, Prop. 2]. In case (i), as all terms on the left-hand 
side are nonnegative, it is strictly larger than the right-hand side yielding the desired 
contradiction. In case (ii), we have m ≡ 2 mod 12, so if f "= 0,

4 orde2πi/3(f) ≡ 2 mod 6.

Since orde2πi/3(f) ≥ 0, by the above orde2πi/3(f) ≥ 2, so we obtain the contradiction

ord∞(f) ≤ 1
6 + 'm

12( −
2
3 < 'm

12(.

The final statement follows once again by contradiction using the equivalent formula for 
g ∈ Mm(Γ0(2)), see [13, Appendix I, §4.2], namely, if g "= 0 then

∑
τ 1= 1+i

2
ordτ (g) + 1

2 ord 1+i
2

(g) + 2 ord0(g) + ord∞(g) = m
4 . !

We now prove Theorem C using the above lemma together with Theorem A to find 
curvature conditions which imply that sufficiently many coefficients of the Fourier ex-
pansion of ϕ or ϕW vanish so that the entire modular form vanishes.

Proof of Theorem C. Consider the formal power series of bundles, see (2.4),

∞⊗
!=1

Symq! TM and
∞⊗
!=1

∧−q2!−1TM ⊗ Symq2! TM.

Each is a product of sums of terms of the form Eqd, with E ⊆ TM⊗s and s ≤ d. 
Multiplication of two such terms preserves that property, so the coefficient of qd in each 
bundle is a (formal) linear combination of parallel subbundles of TM⊗s with s ≤ d. Such 
property is also preserved multiplying by a power series with scalar coefficients. Thus, 
the coefficient of qd in ϕW (M)(τ) and in ϕ̃(M)(2τ), see (2.5) and (2.8) respectively, is a 
linear combination of terms Â(M, EC) for parallel subbundles E ⊆ TM⊗s, s ≤ d.

To prove (ii), if C"k/2#(R) > 0, then all such terms Â(M, EC) vanish for d ≤ 'k/2(
by Theorem A, hence ord∞(ϕ̃(M)(2τ)) > 'k/2(. Since ϕ̃(M)(2τ) ∈ M2k(Γ0(2)), as 
n = 2m = 4k, Lemma 6.1 implies that ϕ̃(M)(2τ) = 0, so ϕ(M) = 0 by (2.7).

Next, to prove (i), assume p1(TM) = 0, so that ϕW (M)(τ) ∈ M2k(SL(2, Z)). If 
Cp(R) > 0, with p as in the statement of the theorem, then, as above, Theorem A
implies that ord∞(ϕW (M)(τ)) > p, so ϕW (M) = 0 by Lemma 6.1 with m = 2k. !



R.G. Bettiol, M.J. Goodman / Advances in Mathematics 458 (2024) 109995 39

7. Examples and surgery stability

In this section, we examine some examples of closed Riemannian manifolds (Mn, g)
whose curvature operator R satisfies Cp(R) > 0 and prove Theorem B.

As a first example, consider the unit round sphere Sn, for which RSn = Id, hence

Cp(RSn) = 1
4n

2 −
(
p + 1

4
)
n− p(p− 2), p ≥ 1. (7.1)

Recall that the curvature operator RM×N of a product M × N is RM ⊕ RN ⊕ 0 on 
∧2(T (M ×N)) ∼= ∧2TM ⊕ ∧2TN ⊕ (TM ⊗ TN).

Proposition 7.1. The following hold:

(i) Let (Mn, g) be a Riemannian manifold of dimension n with an Einstein metric 
satisfying R . 0 and scal > 0. (For instance, M can be chosen to be a product of 
compact rank one symmetric spaces Sq, CP q, HP q, CaP 2.) Let Hi1j1 , . . . , Hikjk be 
Milnor surfaces, see Example 2.2, and N be any closed manifold. If n + 2(j1 − 1) +
· · · + 2(jk − 1) > 8, then the manifold

M ×Hi1j1 × · · ·×Hikjk ×N

admits a metric with C1(R) > 0.
(ii) The condition C1(R) > 0 is stable under surgeries of codimension d ≥ 10.
(iii) The condition Cp(R) > 0, p ≥ 2, is stable under surgeries of codimension d on 

manifolds of dimension n provided that (d − 1)(d − 2) > 8p(p + n − 2).

Proof. The Milnor surface Hij is the total space of a CP j−1-bundle over CP i. It can be 
equipped with a connection metric using the two Fubini–Study metrics, and by scaling 
the metric on the base by a large positive constant the curvature operator can be made 
arbitrarily close to that of CP j−1 × R2i with the standard product metric. By scaling 
any metric on N similarly, the manifold in (i) admits a metric with curvature operator 
R arbitrarily close to the curvature operator R∗ of

M × CP j1−1 × · · ·× CP jk−1 ×R2(i1+···+ik)+dimN ,

where the non-Euclidean factors can be scaled such that the metric on their product is 
Einstein. Since R∗ . 0 and the largest eigenvalue of the Ricci operator of R∗ is µ = scal

! , 
where " = n +2(j1−1) + · · ·+2(jk−1), we have that C1(R∗) ≥ scal

8 − scal
! . In particular, 

with " > 8, it follows that C1(R) is arbitrarily close to C1(R∗) > 0, hence C1(R) > 0.
For each p ≥ 1, the set 

{
R ∈ Sym2

b(∧2Rn) : Cp(R) > 0
}

is an open convex O(n)-
invariant cone, since scal and Ric are linear in R, and Σ(r, R) is concave in R. Let Rd, 
3 ≤ d ≤ n, be the curvature operator of the product metric on Rn−d+1 × Sd−1. One 
easily checks that rp < dim kerRd for all p ≥ 1, so C1(Rd) > 0 if d ≥ 10, and
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Cp(Rd) ≥ 1
8 (d− 1)(d− 2) − p(p + n− 2), if p ≥ 2.

Therefore, statements (ii) and (iii) follow directly from Theorem 2.3. !

Remark 7.2. For all n ≥ 4 and p ≥ 2, the convex cone of curvature operators R ∈
Sym2

b(∧2Rn) satisfying Cp(R) ≥ 0 is a spectrahedron, as a consequence of [25, Thm. 3.3]. 
Thus, determining membership in this set is an algebraic task that can be efficiently 
completed using semidefinite programming, see [3].

As a consequence of Proposition 7.1 (i), the curvature condition C1(R) > 0 imposes no 
restriction on the Betti numbers b1, . . . , bn−9 of an orientable manifold Mn of dimension 
n ≥ 10; in particular, by Poincaré duality, no restrictions on any Betti numbers if n ≥ 18. 
Next, we show that in the absence of the spin condition, C1(R) > 0 imposes no restriction
on the rational cobordism type nor on Pontryagin numbers in large enough dimensions, 
while, in the spin setting, the consequences of Theorem A are the only restriction on 
rational spin cobordism type:

Proposition 7.3. The following hold:

(i) If [Mn] ∈ ΩSO
n is not torsion, n ≥ 10, then M is oriented cobordant to a connected 

manifold admitting a metric with C1(R) > 0.
(ii) If, furthermore, Mn is spin and Â(M) = Â(M, TMC) = 0, then, for some ", the 

manifold #!Mn is spin cobordant to a manifold with C1(R) > 0.

Proof. By Theorem 2.1 (ii), the set 
{
[CP 2m], [Hij ] : m ≥ 1, i ≥ 2, j ≥ 6

}
generates 

ΩSO
∗ /torsion. Thus, [Mn] can be represented by an integer linear combination of products 

to which Proposition 7.1 (i) applies. Furthermore C1(R) > 0 is preserved by connected 
sums (surgeries of codimension d = n) by Proposition 7.1 (ii). Therefore, the linear 
combination can be replaced with a connected sum with the proper orientations, while 
preserving the curvature condition, which proves (i).

Let K4 represent a generator of ΩSpin
4 , e.g., a K3 surface, so that Â(K4) = −2. By 

Theorem 2.1 (i), the set {[K4], [HP k] : k ≥ 2} generates ΩSpin
∗ ⊗Q. Noting that

Â
(
M ×N,T (M ×N)C

)
= Â(M) Â(N,TNC) + Â(N) Â(M,TMC),

it follows that a product Nq of elements of the above generating set satisfies Â(N) =
Â(N, TNC) = 0 unless it is (K4)q, for which Â(N) = (−2)q, or (K4)q−2 × HP 2, for 
which Â(N, TNC) = −(−2)q−2. So, if the conditions in (ii) hold, [M ] is represented by a 
rational linear combination of products with factors either HP 2 ×HP 2 or HP k, k > 2. 
Each such product admits a metric with C1(R) > 0 by Proposition 7.1 (i). Thus, there 
is an integer " such that #!Mn is spin cobordant to a connected sum (of the above 
products) admitting a metric with C1(R) > 0. !
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Table 1
Eigenvalues of the curvature operator RM of projective 
spaces M endowed with the Fubini–Study metric with 
1 ≤ sec ≤ 4.

M Eigenvalues Multiplicity

CPm, m ≥ 2
0
2
2m + 2

m(m − 1)
m2 − 1
1

HPk, k ≥ 2
0
4
4k

3(2k + 1)(k − 1)
k(2k + 1)
3

CaP 2 0
8

84
36

Theorem B follows from Proposition 7.1 together with Proposition 7.3.
Let us now discuss examples of manifolds that admit Cp(R) > 0, p ≥ 2. First, by 

(7.1) and Proposition 7.1 (iii), the condition Cp(R) > 0 is satisfied by round spheres 
in sufficiently large dimensions, and is stable under connected sums and surgeries of 
high codimension. Thus, we can construct examples of manifolds with Cp(R) > 0 having 
arbitrarily large first Betti number, as well as other Betti numbers of low degree. In order 
to analyze examples which are not null-cobordant, recall the spectrum of the curvature 
operator of compact rank one symmetric spaces [4].

All curvature operators R in Table 1 satisfy dim kerR > rp and dim ImR > r′p, hence 
are such that Cp(R) = scal

8 + p2Σ(r′p, −R). Thus, it follows that, for all p ≥ 2,

Cp(RCPm) = 1
2m

2 +
( 1

2 − 4p− 2p2)m− 2p(p− 2),

Cp(RHPk) =
{

2k2 + 4
(
1 − 4p− 3p2) k + 8p(p + 1), if p ≤ 2k − 1,

2(1 − 8p)k2 + 4
(
1 + 2p− p2) k, if p > 2k − 1.

(7.2)

Clearly, for each fixed p ≥ 2, the above are positive in sufficiently large dimension; while, 
for each fixed dimension, they are positive for finitely many p ≥ 2. However,

Cp(RCaP 2) = 72 − 112p− 8p2

is negative for all p ≥ 2. Note this is in accordance with Theorem A, since, e.g., M =
CaP 2 has Â(M, ∧2TMC) "= 0 hence does not admit a metric with C2(R) > 0.

Next, consider p defined in terms of the dimension n = 4k as in Theorem C (i):

p = 'k
6 ( − 1 if k ≡ 1 mod 6, and p = 'k

6 ( otherwise.

For p = 1, corresponding to dimensions n between 24 and 44 as well as dimension 
n = 52, in which the Witten genus ϕW (M) is determined by Â(M) and Â(M, TMC), the 
examples of Propositions 7.1 and 7.3 demonstrate that a spin manifold with p1(TM) = 0
has vanishing Witten genus if and only if it is rationally cobordant to a spin manifold 
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admitting a metric with C1(R) > 0. For p = 2, corresponding to dimensions n between 48
and 68 as well as dimension n = 76, one checks with (7.2) that the Fubini–Study metric 
on CP 32, CP 34, and CP 38, along with product metrics on CP 2 × CP 32, CP 2 × CP 36, 
CP 4 × CP 34, CP 2 × CP 2 × CP 34, and HP 2 × CP 34 satisfy Cp(R) > 0. In the case of 
products, an appropriate scaling on certain factors is required. Those examples show 
that C2(R) > 0 is not so stringent as to imply rational null-cobordism for a general 
closed oriented manifold.
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