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1. Introduction

Closed Riemannian spin manifolds M with positive scalar curvature (scal > 0) have
vanishing A genus A(M) = 0, by a celebrated theorem of Lichnerowicz [19]. Indeed, the
Dirac operator D on the spinor bundle of M satisfies

D? = V*V + sl (1.1)

and, by the Atiyah—Singer Index Theorem, fl(M ) # 0 implies its kernel is nontrivial.
Thus, fl(M ) # 0 is a topological obstruction to the existence of Riemannian metrics
with scal > 0 on such M; e.g., this shows that K3 surfaces do not admit scal > 0.

In this paper, we establish similar obstructions to stronger curvature conditions. More
precisely, we find curvature conditions that are, on the one hand, weak enough to be
satisfied by large classes of manifolds M, in particular, are preserved under surgeries
of high codimension; on the other hand, strong enough to imply vanishing of certain
rational cobordism invariants if M is spin, such as twisted A genera in Theorem A,
Witten genus, elliptic genus, and signature in Theorem C, or even all the Pontryagin
numbers and hence the rational cobordism class itself in Theorem D.

1.1. Curvature conditions C,(R) > 0

Let R: A2TM — A*TM be the curvature operator of (M™,g), and v; < --- < Y(n)

2

be its eigenvalues. For each 0 < r < (Z), let
S(rR)=vi+-F v+ (r =[]V

In particular, if » € IN is a positive integer, then X(r, R) is the sum of the smallest r
eigenvalues of R, and —X(r, —R) is the sum of the largest r eigenvalues of R. Note that
2 Z((g),R) = scal is the scalar curvature of (M",g). For each p € IN, define

rp = n?+(8p—1)n+8p(p—1) and T; _ n+[1))—2' (12)

n+8p(p+1) -

Let p be the largest eigenvalue of Ric, and define the functions C,(R): M — R as

Cr(R) = min{(§ +2) 21, B), %} + 25—,

Cp(R) = min{(% + 1% +p)S(ry, B), "G00 (ry, R} + 221 + p?S(r, ~R), p = 2.

Clearly, the above quantities are linear combinations of the eigenvalues of R if p > 2, and
of R and Ric if p = 1. The coefficients of these linear combinations depend on the sign
of X(rp, R) due to the terms involving minima. Moreover, Cp,(R) > 0 implies Cy(R) > 0
for all 1 < ¢ < p, as well as scal > 0, see Proposition 4.9.
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1.2. Twisted A genera
Given any complex vector bundle £ — M, let

where A(TM) is the A polynomial in the Pontryagin classes of TM, and ch(-) is the
Chern character. By the Atiyah—Singer Index Theorem, if M is spin, then A(M ,E) is
equal to the index of the Dirac operator on spinors of M twisted with F; in particular,
it is an integer. Furthermore, if F is associated to the frame bundle of the Riemannian
manifold (M™, g) by a representation of SO(n), then A(M, E¢) is a universal rational lin-
ear combination of Pontryagin numbers of M that depends only on the rational oriented
cobordism class of M, analogously to A(M) = (A(TM), [M]).
Our main result is the following family of vanishing theorems for A(M, Eg):

Theorem A. Let M be a closed Riemannian spin manifold of dimension n = 4k, k > 2,
and E C TM®? be a parallel subbundle. If C,(R) > 0, then A(M, E¢) = 0.

For specific parallel subbundles £ C TM®P, e.g., E = APTM or E = Sym? TM,
we give curvature conditions weaker than C,(R) > 0 that still imply A(M ,Ec) =0, see
Theorem 4.4. Simple examples of applications of Theorem A are that M = HP? does not
admit Cy(R) > 0, because it has A(M,TMg) # 0, see also Theorem D; and M = CaP?
does not admit Cy(R) > 0, since it has A(M, A2T M) # 0.

Let us examine in further detail the case in which p = 1 and E = TM; this is of
relevance in Mathematical Physics in connection with Rarita—Schwinger fields (spin %
fermions), see [16]. Under symmetry assumptions, Dessai [8] proved that spin manifolds
with positive sectional curvature satisfy A(M) = A(M,TMc) = 0. Note that Cy(R) > 0

if ¥(r1, R) > 0, where 11 = "flTl'g), and *2! Id — Ric = 0; and C1(R) > 0 if either term

is positive.
Theorem B. The curvature condition C1(R) > 0 satisfies the following:

(i) @t is preserved under surgeries of codimension at least 10;
(if) every oriented cobordism class [M™], n > 10, which is not a nontrivial torsion class
is represented by a Riemannian manifold with C1(R) > 0;
(iii) every spin cobordism class [M™], n > 10, with A(M) = A(M,TM¢) = 0 has a
multiple which is represented by a spin Riemannian manifold with C1(R) > 0.

By Theorem B, the spin condition in Theorem A is necessary if p = 1. Indeed, without
the spin condition, C7(R) > 0 places no restriction on the rational cobordism type of
a manifold of dimension at least 10, and the conclusion of Theorem A, along with the
vanishing of the A genus, are the only restrictions on the rational spin cobordism type
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of a spin manifold such that Cq(R) > 0. Furthermore, Theorem B implies that the
curvature condition C;(R) > 0 does not restrict any Betti numbers nor any individual
Pontryagin numbers in sufficiently large dimensions.

We also prove a surgery stability result for the curvature conditions C,(R) > 0,
p > 2. Namely, C,(R) > 0 is preserved under surgeries of codimension d on manifolds of
dimension n provided that (d — 1)(d — 2) > 8p(p + n — 2), see Proposition 7.1.

1.3. Witten genus and elliptic genus

The Witten genus and the elliptic genus are rational cobordism invariants that can be
written as formal power series with coefficients given by linear combinations of Pontrya-
gin numbers. The elliptic genus generalizes both Aand L genera, see (2.9) for details.
Using Theorem A, we prove:

Theorem C. Let M be a closed Riemannian spin manifold of dimension n = 4k.

(i) Setp= L%J —14ifk=1 mod6, and p = L%j otherwise. If p > 1, C,(R) > 0, and
the first Pontryagin class of M vanishes, then the Witten genus of M wvanishes.

(i) If k> 2 and C|i2)(R) > 0, then the elliptic genus (and hence the signature) of M
vanishes.

The dimensional hypotheses in Theorem C, namely n > 24 and n # 28 in (i), and
n > 8 in (ii), only exclude situations already covered by Lichnerowicz. Namely, in (i), if
p = 0 and the first Pontryagin class p; (T'M) vanishes, then the Witten genus vanishes if
and only if the A genus vanishes; in (ii), the Witten, elliptic, and A genera in dimension
4 all vanish if and only if the signature vanishes. In Section 7, we show that there
are nontrivial rational cobordism classes containing manifolds satisfying the curvature
conditions in Theorem C (i). Furthermore, the curvature conditions in (i) and (ii) are
satisfied by round spheres, and those in (i) are stable under connected sums and other
high-codimension surgeries (see Proposition 7.1).

The Witten genus ought to vanish on closed Riemannian spin manifolds M with
Ric > 0 for which the spin characteristic class %pl (TM) vanishes (these are so-called
string manifolds, a condition weaker than p;(TM) = 0), according to a compelling
conjecture of Stolz [28]. However, C,(R) > 0 for p as in Theorem C is not implied by
Ric > 0. Even more, as C,(R) > 0 is stable under certain surgeries, we can produce
examples of string manifolds with infinite fundamental group satisfying C,(R) > 0,
which therefore do not admit metrics with Ric >= 0 by Myer’s theorem. On the other
hand, in dimensions 24 < n < 48 or n = 52, the Witten genus of spin manifolds M"
with py (T'M) = 0 vanishes if and only if a multiple of the spin cobordism class [M] is
represented by a spin Riemannian manifold with C1(R) > 0.
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1.4. Rational cobordism class

Closed Riemannian n-manifolds (not necessarily spin) with X(n — p, R) > 0 for some
0 < p < |%] have vanishing Betti number b,(M) = 0, by a recent work of Petersen
and Wink [22]. Combining this with Theorem A, we find sufficient conditions for all
Pontryagin numbers to vanish, which, in turn, implies the vanishing of the rational
cobordism class, namely:

Theorem D. Let M be a closed Riemannian spin manifold of dimension n = 4k.

(i) If k=2, 2(5,R) >0, and M is Finstein, then M is null-cobordant.

(ii) If k > 6 is even, (2k +4,R) > 0, and 2 1d — Ric = 0, then M is rationally
null-cobordant.

(iii) If k > 9 is odd, ©(2k + 6,R) > 0, and 2 1d —Ric = 0, then M is rationally

null-cobordant.

Closed oriented Riemannian manifolds of dimension n = 4k with X(2k, R) > 0 are
rational homology spheres by [22]; these are rationally null-cobordant.

To facilitate comparison, let us further analyze the situation in dimension n = 8, in
which case a metric satisfies %ﬁl Id — Ric > 0 if and only if it is Einstein, and rationally
null-cobordant manifolds are null-cobordant as there is no torsion in the cobordism group
ng. A key example is the quaternionic projective plane HP?, which is a spin manifold
with signature 1, thus not null-cobordant. While it follows from [22] that TLP? does not
support metrics with ¥(4, R) > 0, we have by Theorem D that HP? does not support
Einstein metrics with 3(5, R) > 0; the same conclusions hold for connected sums #HP?,
¢ > 0. (The Fubini-Study metric on HLP? is Einstein and has curvature operator R = 0
with kernel of dimension 18, hence ¥(r, R) > 0 only for r > 19.)

In dimensions 16, 20, and 28, which are outside the scope of Theorem D, there are
stronger hypotheses that allow to reach the same conclusion, see Theorem 5.2.

1.5. Key ideas and organization

A sensible approach to seek generalizations of the Lichnerowicz obstruction to scal > 0
is to twist the Dirac operator with different vector bundles, causing changes in the
curvature term in (1.1) that can be aimed at detecting other curvature conditions. More
precisely, given a Spin(n)-representation m, consider the twisted Dirac operator D, on
the twisted spinor bundle S ® E, — M, where S is the complex spinor bundle and E,
is associated via 7 to the principal bundle covering the frame bundle of M by the spinor
representation mg. Then

D2 =V*V + Ry,
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where the endomorphism R is determined by the curvature operator R of M and the
representation 7; e.g., in case 7 is the trivial representation one has R, = %al, recovering
(1.1). The main difficulty in this approach is that R, > 0 is algebraically very involved,
and typically one can only ensure R, > 0 by imposing unreasonably strong curvature
assumptions such as R > 0. Our first step towards overcoming this difficulty is to break

R into simpler parts as explained in Lemma 4.3, namely
Rr=K(R7ms®m)+ 2 1d—K(R,m),

where K (R, ) is the curvature endomorphism arising in the Weitzenbock formula A, =
V*V +t K (R, w) for Laplacians on the vector bundle E., up to a factor ¢t € R, see (3.1);
similarly for K(R,7s ® 7) on the bundle E; g, = S ® F,. For instance, if 7 is the
defining representation of SO(n), then E; = TM and K(R,7) = Ric.

The second step, motivated by recent works of Petersen and Wink [22-24] and Nien-
haus, Petersen, and Wink [21], is to prove:

Theorem E. Let © be an irreducible orthogonal or unitary representation of SO(n) or
Spin(n) with highest weight A. Let p be the half-sum of positive roots in so(n,C) and

r = <Am§p>‘ Then K(R,7) = |A|? 2(r, R) Id.

Theorem E generalizes the central estimate of [22], which is also at the heart of the
other papers cited above, and casts it in a natural representation-theoretic framework.
We prove Theorem E in a more general formulation (Proposition 3.9), relevant for man-
ifolds with special holonomy. This constitutes our main tool for relating the curvature
endomorphisms K(R,7) and R, to linear combinations of the eigenvalues of R; with
this in hand, standard Bochner-type arguments lead to the desired vanishing results, see
Theorem 3.13 for the case of A, and Theorem 4.4 for that of D,. As explained in Sec-
tion 4, Theorem A is a consequence of the latter, as Cp,(R) is defined so that Theorem 4.4
can be applied to any subrepresentation 7 of the p'" tensor power of the defining repre-
sentation. Regarding the former (see Section 3), besides recovering the results in [22-24]
that relate ¥(r, R) > 0 to the vanishing of Betti numbers in the Riemannian and Kéhler
settings, we are able to improve a Tachibana-type result relaxing the Finstein assump-
tion to harmonic curvature operator (Theorem 3.16), and to prove a vanishing theorem
(Theorem 3.18) for trace-free conformal Killing tensors on manifolds with X(r, R) < 0,
similar to results in [7] and [12] for manifolds with sec < 0.

In Section 6, we analyze the Witten genus and elliptic genus as modular forms to
show they vanish whenever the characteristic numbers described in Theorem A vanish
for sufficiently large p, proving Theorem C. Theorem D is proven in Section 5, using the
results of [22] to show that all but two Pontryagin numbers vanish, and then showing
that A(M) and A(M,TMc), which vanish by Lichnerowicz and Theorem A, are lin-
early independent in those two remaining Pontryagin numbers. In Section 7, we examine
examples of closed manifolds with Cy(R) > 0, including products of spheres, symmet-
ric spaces, and Milnor hypersurfaces, proving Theorem B. We also compute C,(R) for
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compact rank one symmetric spaces, examine surgery stability of Cp,(R) > 0 using the
criterion of [15], and identify nontrivial examples for which C,(R) > 0 for the values of
p given in Theorem C.
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2. Preliminaries

In order to fix notation and conventions, we recall some basic facts from topology and
representation theory; for details, see [13] and [10], respectively.

2.1. Cobordisms, Pontryagin numbers, and genera

Let n = 4k and consider a multiindex I = (iy,...,i¢) of nonnegative integers such
that Zle i; = k. Given a closed oriented n-manifold M, the Pontryagin number pr(M)
is defined as

pr(M) = (pi,(TM) - - p;, (TM), [M]) € Z,

where p;(TM) € H*(M,Z) are the Pontryagin classes of TM — M. If M and N are
oriented cobordant, then p;(M) = pr(N), and p; defines a map

pr: on — 7,

where Q39 is the oriented cobordism group. If p(k) is the number of partitions of k, and
I, ..., Inm is a list of those partitions, then, by the work of Thom [30],

(p117 e apIp(k)): QELO ® Q — Qp(k)

is an isomorphism. Thus, if all Pontryagin numbers of an oriented manifold M vanish,
then M is rationally null-cobordant, that is, the disjoint union (or connected sum) of some
number of copies of M, all with the same orientation, bounds an oriented manifold. It
also follows from work of Thom that the natural map

2P eQ — %’ eq
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is an isomorphism, where Q3P is the spin cobordism group. So, if M is spin and rationally
null-cobordant, some number of copies of M bound a spin manifold as well. Accordingly,
we shall refer to rationally null-cobordant manifolds without distinguishing between the
spin and oriented cases.

Let Q(z) = 1+ asx® + agx* 4+ ... be an even formal power series. For variables
Z1,...,Tm, the product Q(x1)---Q(zy,) is a formal sum Ko+ Ky + Ko + ... of ho-
mogeneous symmetric polynomials K; of degree i in the variables z?,...,z2 . Each K;

can be written as a polynomial K;(o1,...,0;) in the elementary symmetric polynomials

o; = oi(22,...,22). Note that K; does not depend on m if i < m. Then, we define

? m

K(TM); = Ki(p1(TM), ..., pi(TM)),
K(TM) =1+ K(TM), + K(TM)s + ...

For a closed orientable manifold M*, set
K(M) = (K(T'M)y, [M]) .

Thus, K (M) is a rational linear combination of Pontryagin numbers, and one checks
that K(M x N) = K(M)K(N), so K defines a ring homomorphism

K: Qi’o RQ — Q,
which is called a (multiplicative) genus. Let us mention the following examples:

(i) if Q(x) = =Z—, then the corresponding genus is called L. The signature of an

tanh z’

orientable manifold M is equal to L(M), by Hirzebruch’s Signature Theorem;

(i) if Q(z) = %, then the corresponding genus is called A. By the Atiyah-Singer
Index Theorem, the index of the Dirac operator on a closed spin manifold M is
equal to A(M);

(iii) if Q(x) = 1+ 22*, then the corresponding genus is the Milnor invariant sy,.

The latter is useful to describe the ring Q%° due to theorems of Thom and Milnor:
Theorem 2.1. Let M** be a closed oriented manifold for each positive integer k.

() [20] If s, (M**) # 0 for all k, then Q3° @ Q = Q[M*, M?,...]
(ii) /29, p. 207] If

(M4k:) :l:pa Zf2k+1 :p'r‘, p apm'me,
Sk =
+1, otherwise,

then Q5° /torsion = Z[M*, M?, .. .].
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Example 2.2. Useful generating sets can be constructed using Theorem 2.1 and the com-
putations sx(CP?*) = 2k + 1, and s;(HP*) = 2k + 2 — 4% see [13, Sec. 4.1] and [11].
Furthermore, for each ¢,j > 2, Milnor defined a (2¢ + 2j — 2)-manifold H,; which is
a complex hypersurface of degree (1,1) in CP? x CP/, is the total space of a CP’/~!
bundle over CP?, and for i+ 5 odd satisfies S(i4j—1y/2(Hiz) = (H']) see [13, p. 39]. One
checks using divisibility properties of binomial coefficients that Q3° /torsion is generated
by CP2k and Hij~

We describe the Chern character ch(Eg¢) of the complexification E¢ of a real vector
bundle £ — M following a similar procedure. Consider the decomposition

> 2cosh(x;) = 2m + cha(o1) + chy(oy,00) + ...

i=1

into elementary symmetric polynomials o; = (22, ..., 22), and set

Chgi(Ec) = Chgi (p1 (E’)7 e 7p1(E))
ch(E¢) = dim E + chy(E) + chy(E) +

It follows that ch(E @ F') = ch(E) + ch(F'), and ch(F ® F) = ch(F) ch(F). Note

h 2§

choi(01,...,04) = —

21(01 o ) (2 ) ;

so ch;(-) can be computed using the relations between power sums and elementary sym-
metric polynomials given by Newton’s identities.

If E is associated to the frame bundle of M by a representation 7 of SO(2m), let
{£A;} be the set of weights of the complexification of dr. We consider each weight to be
a linear functional A\;: C"™ — C. If we identify z1,..., 2, with coordinates of C™, then
we can identify

ch(E¢) = ;ZCosh()\j(xl,...,xm)). (2.1)

Since the nonzero weights appear in pairs +;, only even powers of z1, ..., x,, remain. As
the set of weights is invariant under the Weyl group of SO(2m), and thus permutations
of x1,...,Zm, it follows that ch(E¢) can be expressed in terms of symmetric polynomials
oi(x3,...,22)), which are in turn identified with p;(TM).

The Atiyah—Singer Index Theorem states that if M is a closed spin manifold and
E — M is a complex vector bundle, the index of the Dirac operator on spinors of M
twisted with E' is given by

A(M,E) = (A(TM) - ch(E), [M]), (2.2)

see e.g. [18, Thm. 13.10]. Note that A(M,E ® F) = A(M, E) + A(M, F).
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2.2. Modular forms

Denote by $ C C the open upper half-plane, and let I' C SL(2,7Z) be a subgroup of
finite index. A modular form of weight k € Z on T is a holomorphic function f: $ — C
obeying the equivariance property

f (aT+b) = (et +d)*f(r), forall (g Z) el

ct+d

Furthermore, for all (Z Z) € SL(2,7Z), the function

T (cr—l—d)*kf (Z:i;) (2.3)

2miTl /N

must have a Fourier expansion of the form ZZO age for some positive integer N.

For (Z Z) = ((1) _01)7 that Fourier expansion is called the ezpansion at 0, and we define
ordg(f) = £o/N, where £, is the smallest integer such that ag, # 0 in the expansion
at 0. Similarly, ord.(f) is defined using the Fourier expansion of f(7), i.e., choosing
(‘Cl Z) = ((1) 2) For 7 € 9, the order of vanishing of f at 7 is defined in the usual manner
and denoted by ord,(f). The vector space of modular forms of weight k on I' is denoted
M;,(T); taken together, they form an algebra M, (I') = @, M(T).

For a vector bundle FE, consider the formal power series in the variable t,

Sym, E=1+FEt+Sym’>Et*+...
ME=1+FEt+NEt?+...

with coefficients given by the symmetric and exterior powers of F.
The Witten genus of a closed oriented manifold M** is the formal power series

o0

ow(M)=A (M, ;:él Sym, TMC> 61;[1(1 — gH)*, (2.5)

A~

The notation indicates that we apply A(M, ) to the coefficients of the given formal power
series of bundles, cf. (2.2). If M** is a closed spin manifold with py(T'M) = 0, then for
q = e*™7 the series (2.5) is the Fourier expansion of a modular form oy (M)(7) of
weight 2k on SL(2,7Z), see [13, Sec. 6.3].

The elliptic genus of a closed oriented manifold M** is the formal power series

© . 4o 2k oo
(M) = (2[1_[1 %) <L(TM) -ch <\I/2 (ZQ Squtz TMg ® /\quMc>>, [M]> ,

where W, is an Adams operation, see [13, p. 75]. Again setting ¢ = e?™", the series
@(M)(7) is a modular form of weight 2k on
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ro(z){(cc‘ 2>GSL(2,Z):0_O modZ}. (2.6)

Here, however, we make no restriction on p;(7TM). Indeed, the elliptic genus defines a
ring homomorphism ¢: Q3° ® Q — M. (I'o(2)).
Furthermore, the modified elliptic genus

PM)(r) =7 (M) (-1) (2.7)
has a Fourier expansion with N = 2, which is the expansion at 0 of . Indeed, setting
g = €2™7 as before, one obtains

~ o\ >
p(M)(271) = El:ll =T A (M, g N_gze-1T Mg & Sym 2 T Mc (2.8)

and the function 7 — @(M)(27) is again an element of Moy (T'9(2)). Note that

lim p(M)(it) = 4"L(M), and lim (it) 2 (M) (- 1) = A(M), (2.9)

t—00 t—o0

s0 ¢(M) interpolates between L and A; for details, see [13, Sec. 6.1, 6.2].
2.8. Surgery stability

Given a manifold M™ with an embedding of $"~%¢ x D?, that is, an embedded sphere
with a trivialization of its normal bundle, we can remove the embedded submanifold and
glue the result to D=9+ x §9-1 forming

N = (M\$"%x DY) Ugn-ayga—1 D" x g4=1

which is cobordant to the original manifold M. This process is referred to as a surgery of
dimension n—d, or codimension d. Surgery of dimension n—d decreases the Betti number
b, _q if the embedding $"~¢ C M is nontrivial in rational homology, and increases b, _ 441
if =4 C M is trivial in rational homology.

If M has scal > 0 and d > 3, then N also admits a Riemannian metric with scal > 0,
by the celebrated works [26,11]. In general, a curvature condition C' is called stable
under surgeries of codimension d if N admits a metric satisfying C' whenever it can
be constructed using surgery of codimension d from a manifold M satisfying C. Let
Symg (A’R™) be the space of algebraic curvature operators, that is, symmetric endomor-
phisms R: A% R"™ — A?R™ that satisfy the first Bianchi identity. The following is a
far-reaching generalization of surgery stability for scal > 0.

Theorem 2.3 (Hoelzel [15]). Let C be an open convex O(n)-invariant cone in Symj (A?R™),
and Rq be the curvature operator of R4+ x §4=1 3 < d < n, with its standard product
metric. If Rq € C, then the condition R € C is stable under surgeries of codimension d.
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2.4. Representation theory

Let G C SO(n) be a connected compact real Lie subgroup with Lie algebra g C so(n).
An irreducible complex G-representation 7: G — Aut(E) is called of real, complex,
or quaternionic type according to whether it arises from a real G-representation by
extension of scalars (real type), from a quaternionic G-representation by restriction of
scalars (quaternionic type), or none of the above (complex type). Real and quaternionic
types are respectively equivalent to the existence of a conjugate-linear endomorphism
which squares to +Id and — Id. In particular, an irreducible real representation 7: G —
Aut(FE) is such that the complexified representation 7: G — Aut(E¢) is irreducible if
and only if the latter is of real type. If, instead, 7: G — Aut(E¢) is reducible, then
FEc 2V @ V* for some irreducible G-representation V', which satisfies V* =& V if and
only if 7 is of quaternionic type.

Consider the complexification G¢ C SO(n, €C), whose Lie algebra is g¢ C so(n, C).
Given a (real or complex) representation 7: G — Aut(FE), we extend its lineariza-
tion dm: g — End(E) to a gg-representation also denoted dm. Throughout this pa-
per, so(n,C) = A2C™ and its Lie subalgebras are endowed with the inner product
(X,v) = %Re tr XY*. Fix a Cartan subalgebra §h C g¢, and identify the subspace
by C b* spanned by the roots of g¢ with a subspace hy C h. Given a choice of simple
roots, let wy, 1 < £ < 1k(g), be the fundamental weights of gg¢, i.e., the basis of hy dual
to the basis of coroots. Let p be the half-sum of positive roots in g¢, also called the Weyl
vector, and recall that p = szz(f ) wy. Note that wg p = —p, where wy the unique element
of the Weyl group that sends the positive Weyl chamber to the negative one. If A\ € h*
is the highest weight of a Gg-representation V', then the highest weight of the dual rep-
resentation V* is —wg A. Thus, for simplicity, we shall refer to the highest weight A € h*
of m: G — Aut(E) as being the highest weight of E if it is complex, of F¢ if F is real
and Eg is of real type, and of the complex G-representation V such that E¢ 2 V@ V* if
E is real and E¢ is of complex or quaternionic type. There will be no ambiguity in the
latter case, since throughout the paper we only use the quantities |A||? = |jwo A||? and
(M A+ 2p) = (—wo A, —wg A + 2p) associated to A.

By the Highest Weight Theorem, there is a bijection between finite-dimensional irre-
ducible representations of g¢ and the set Py (g¢) of dominant ge-integral weights. Given
A € Pii(gc), we denote by dmy: g¢ — End(F) the unique (up to isomorphisms) irre-
ducible ge-representation with highest weight A\. Dominant Gg-integral weights form a
sublattice P4 (G¢) C P++(g¢), and given A € P, (Gg), we denote by my: Gg — Aut(E)
the unique (up to isomorphisms) irreducible Gg-representation whose linearization is
dmy: go — End(E).

Given an orthonormal basis {a;} of g¢, define the Casimir element Cas = Y, a? in
the universal enveloping algebra U(g¢). Since Cas lies in the center of U(g¢), by Schur’s
Lemma, given an irreducible gg-representation dmy on the vector space E, the operator
dmy(—Cas) = — Y, dma(a;)? acts on E as multiplication by a scalar, which is equal to
(A, A+ 2p) by Freudenthal’s formula, see e.g. [31, Lem. 5.6.4].
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Example 2.4 (Type D,, ). Consider the Lie groups SO(2m) and Spin(2m), of rank rk(G) =
m > 3, whose complexified Lie algebras are isomorphic to g¢ = s0(2m, C). Fix the Cartan
subalgebra ) = {H(01,...,0,,) € g¢ : §; € C}, where

H(0r,...,0m) =diag ([ 5 T1.[ % ¢l [0 %)

and let ¢; € h* be the functionals defined by ¢;(H(61,...,0:)) = ;. According to the
fixed inner product (-, -) in s0(2m, C), we have (g;, ;) = d;;. Note that hp = . We choose

g; £ €5, 1 < j, as positive roots, and €1 — €2,...,Em—1 — Em, Em—1 + Em as simple roots.
The fundamental weights wy, ..., w,, are given by:
e14 - +er, if1<0<m-2,
wp = %(51+~-~—|—€m,1—5m), if{=m—1,
%(51+"’+5m—1+5m), 1f£:m,

and hence the half-sum of positive roots (also called the Weyl vector) is given by

or

Il
-

p=>.(m—1i)e;. (2.10)

K2

The set of dominant gg-integral weights is

m a; € Z,Vj, or a;+ i €Z,Vj
P c)=3A=>aje;: 7 N 72 T ,
++(g ) { ng 7 ay ZGQ Z "'Zaf'm—l Z |am‘ ZO

and dominant SO(2m, C)-integral weights Py (SO(2m,C)) C P11 (g¢) form an index
2 sublattice consisting of those elements with a; € Z for all 1 < j < m. The g¢-
representation dmy is of complex type if m is odd and a,,—1 # a,,, of quaternionic type
if m =2 mod 4 and a,,_1 + a,, is odd, and of real type otherwise.

Let us recall certain representations in terms of irreducible representations my, with
A € P, (Gg). First, the defining representation of SO(2m) on R*™ complexifies to the
irreducible SO(2m, C)-representation 7, = m., on C*™. Exterior powers APC*™ are
irreducible SO(2m, C)-representations of real type for 1 < p < m — 1, and have highest
weight wy, = e14- - -+&p, L.e., APC*™ 2w, if 1 <p<m—2,and N 1C*™ 2, 4,
However, if p = m, then A™C?*™ = AMC*™ @ AN™C*™ is not irreducible: it decomposes
into the sum of +1-eigenspaces of the Hodge star operator *, called self-dual and anti-
self-dual parts, which are irreducible and have highest weight €1 4+ -+ &,,_1 £ &, i.e.,
/\TCQm = my,,, and AT C2T Tow,,_,- Lhe remaining exterior powers m < p < 2m
are identified via the isomorphisms A2"~PC?™ = APC?™ 1 < p < 2m, given by *.
Altogether,
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7Twp7 1 é p S m— 27
APCP™ X NP, p=m—1, (2.11)

7T2W'm @ 7720-’171—17 p=m.

Traceless symmetric powers Sym) C*™ are SO(2m, C)-irreducible of real type for all
p > 1, and have highest weight pw;. Symmetric powers Sym? C?™ decompose into the
sum of traceless symmetric powers Symg_QJ C?™, 0 < j < p; or, in symbols:

Sym® C*™ = Sym? 7,,, = 'S ; 2.12
ym = oym” T, = 690 T(p—25)wn (2.12)
j=

Precomposing an SO(2m)-representation 7: SO(2m) — Aut(E) with the double cover
Spin(2m) — SO(2m) gives rise to a Spin(2m)-representation 7. Their complexifications
have the same highest weight, and the isomorphisms (2.11) and (2.12) remain valid when
these are considered as Spin(2m, C)-representations.

A Spin(2m, C)-representation that is not the lift of any SO(2m, C)-representation is
the spinor representation S = St @ S~, which is the sum of (irreducible) positive and
negative “half” spinor representations, each of dimension 2 ~!. If m is even, then S+ =

Tw,, and S~ = m, . are self-dual and of real type if m =0 mod 4, quaternionic type

if m = 2 mod 4; while if m is odd, then St = 7, , and S~ = 7, are of complex
type and (S*)* = ST. For convenience, we often write 7g := 7, ©m,,, _, for the spinor

representation.

Example 2.5 (Type B,, ). Consider G = SO(2m + 1), which also has rk(G) = m. We shall
use the same notation and same Cartan subalgebra ) C so(2m,C) from Example 2.4
as a Cartan subalgebra of g¢ = s0(2m + 1, C) by means of an appropriate embedding
SO(2m,C) C SO(2m + 1,C). Choose ¢; £ ¢, i < j, and ¢; as positive roots, and 1 —

€2,y Em—1 — Em,Em as simple roots, and recall hy = h. The fundamental weights
W1,...,Wm are given by:
g1+ -+ ey, if1<l<m-—1,
Wy =
ter+ - +emo1+em), ifl=m,

and hence the half-sum of positive roots is given by

p=>(m—i+3)e. (2.13)

or

i=1

The set of dominant SO(2m + 1, C)-integral weights in g¢ is

Jj=

P++(SO(2m+1,@))={>\= Y. ajeja; €7, V], a12-'-2am20}.
=1
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Similarly to Example 2.4, C?m*1 = 1, = 7_ is the complexification of the defining
representation. Exterior powers are given by APC?7+! =~ 7o, for 1 <p <m —1, and
AMC?m L o 1o, . The operator * induces isomorphisms A2 H=PC2mHL o2 APC2mAL
Symmetric powers are given by Symh C*"*+1 = 7, for all p > 1, and Sym? ¢?"+! =

@]Li /02J Symg_Qj C?m+1. All representations above are of real type.

Example 2.6. Let us consider U(m) C SO(2m), m > 2, which is not semisimple, but
is reductive, and has rk(U(m)) = m — 1. The complexification of its Lie algebra is
gc = gl(m, C) C so(2m, C), and it splits as gc = g B 3(gc), where g = sl(m, C) is the
semisimple part (of type A,,—1), and 3(g¢) = CId are multiples of the identity. Fix the
Cartan subalgebra b = by @ 3(gc), where by = {diag (01,...,0,,) € g¢ : 0; € C} is the
Cartan subalgebra of the semisimple part, which is spanned by the roots of g¢. Using
e;(diag(6y,...6,,)) = 6;, the fundamental weights are given by

w£:€1+"'+€g_%(51"_"‘—’_677’7,)7 ]-Sggm_]-?

and the half-sum of positive roots is

p=73 Zl(m—2j+1)5j. (2.14)
]:

The set of dominant integral weights is given by

P_H_(G@) = P++(g@) = {)\ = ilajsj ta; €Z anday >ay > -+ > am}.
j=

3. Revisiting the Bochner technique with representation theory

In this section, we develop a representation-theoretic framework that allows us to
prove an abstract Bochner-type result (Theorem 3.13) simultaneously generalizing some
recent results of Petersen—Wink [22-24], see Theorems 3.15, 3.16 and 3.19. We begin by
recalling the construction of Weitzenbock formulae.

3.1. Weitzenbock formulae

Let (M",g) be an orientable Riemannian manifold, and R: A2 TM — A2TM be
its curvature operator. We denote by Hol(M™,g) the holonomy group of (M", g), or
its lift to Spin(n) if M is spin. Let G be a connected compact Lie subgroup of SO(n),
or Spin(n), that contains Hol(M™,g). Given an orthogonal or unitary representation
m: G = Aut(E), let E, := Fr(M) X, E be the associated bundle to the principal G-
bundle G — Fr(M) — M obtained by reducing the structure group of the bundle of
SO(n)-frames, or Spin(n)-frames if M is spin. For instance, if G = SO(n) and = is the
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defining representation on £ = R", then F, = TM. Similarly, the representations AP
and Sym?” 7 give rise to the bundles APTM and Sym” T'M, respectively.

The curvature term in the Weitzenbock formula A, = V*V + ¢t K(R, ) for sections
of E; — M, where t € R is an appropriate constant, is given by

K(R7 71—) = Z Ray dT‘—(Xa) © dﬂ—(Xb) = - zdﬂ—(R(Xa)) © dﬂ—(Xa)7 (31)

a,b

where R =} , Ry Xo ® X, is the curvature operator of (M",g), and {X,} is an
orthonormal basis of g C so(n) 2 A?T, M, see e.g., [1, §1.I] or [14]. Note that the image
of R is contained in g because Hol(M™, g) C G, so we may consider R: g — g. To simplify
notation, we also denote (3.1) by K (R, E). The self-adjoint extension of R to g¢, and
of K(R,m) to (Ex)¢, are denoted by the same symbols. Note that the construction (3.1)
can be performed with d7m as a g-representation or a gg-representation, in which case
{X,} is taken to be an orthonormal basis of g¢.

Proposition 3.1. The endomorphisms (3.1) satisfy the following basic properties:

(i) The linear map R — K(R, ) is G-equivariant, and K(R,7) is self-adjoint;
(ii) If R = 0, then K(R,7) = 0 for any orthogonal or unitary G-representation m;
(iii) If 7 is reducible, say m = «’' & 7", then K(R, ) = diag(K (R, '), K(R,7")) is block
diagonal according to the decomposition Er = E ® E.n;
(iv) If 7*: G — Aut(E*) is the dual of m: G — Aut(E), then K(R,7*) = K(R, m)*;
(v) If A € P11 (Gg), then K(Id, my) = dmy(— Cas) = (A, A + 2p) Id.

The proofs are elementary and left to the reader. Let us discuss a few examples:

Example 3.2. Let g be the spinor representation, see Example 2.4. A standard computa-
tion using the symmetries of Clifford multiplication and the (first) Bianchi identity yields
K(R,mg) = %2 1d, see [18, Thm. I1.8.8]. The square of the Dirac operator D on the com-
plex spinor bundle S = E,_ of a spin manifold (M™, g) satisfies D? = V*V +t K(R, 7g)
with ¢t = 2, cf. (1.1).

Example 3.3. If 7 is either the defining representation of SO(n) on R", or its dual, then
K(R,7) = Ric, see [2, Ex. 2.2] and Proposition 3.1 (iv). The Hodge Laplacian on the
bundle TM* of 1-forms is A, = V*V +t K(R, w) with ¢t = 2.

Example 3.4. If 7 = @, m; is a decomposition into the direct sum of irreducibles, then
the associated bundle E, decomposes into the corresponding direct sum of subbundles
E; = @, Ex,. We denote by (Er)o C E, the subbundle corresponding to the trivial
isotypic component, and write E, = (E,)o ® (E)g. Note that (E,)o — M is a trivial
bundle, i.e., if the trivial isotypic component of 7 consists of g copies of the trivial
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representation, then (E)g = M x RY. Clearly, K(R,(Ex)o) = 0 by (3.1), and thus
K(R, E,) = diag(0, K (R, (E,)g)) by Proposition 3.1 (iii).

Recall the decomposition R = Ryy + Rz + Ryy + Rps of R € Sme(/\QJR") into O(n)-
irreducible components, see [1, §1.G]. In particular,

Ru=gnn808  Re=g580 (Rie—3), (3:2)

where ® is the Kulkarni-Nomizu product. The Weyl part Ry, does not have g factors,
nor does Rp4, which vanishes if and only if R satisfies the Bianchi identity.

Example 3.5. The exterior and symmetric pt* powers of the defining representation,
respectively of its dual, give rise to bundles F, which are isomorphic to APTM and
Sym? T M, respectively APTM* and Sym? TM*. By Proposition 3.1 (iv), we only con-
sider the former. Note that K (R, APT'M ) and K (R, Sym? T M) are block diagonal accord-
ing to the decompositions into irreducibles in Examples 2.4 and 2.5, by Proposition 3.1
(iii). These blocks can be computed in terms of the decomposition of R € Sym?(A2R™)
into O(n)-irreducible components (see [2, Thm B]):

g®(p72)
(p—2)!"

K (R A7) = (2252 Ry + 222 Ry — 2 Ry + 4R ) ©

p—1

K(R,Sym{m,,) = (Zz;”:jK(Ru, o) + SEETE K (R, o, )

@(p—2)

+K(RW77T2w1)> Q g(p,—g)“

for all p > 2 and 2 < p < n — 2, respectively, where @ is a symmetric version of the
Kulkarni-Nomizu product. If p = 2, from [2, Thm B] and [12, Eq. (22)],

K(R,N*71,)=2(n—2)Ry + (n—4) Rr — 2Ry + 4 Rpa,
(K (R, Sym® 7, )9)(X,Y) = ¢(Ric X,Y) + o(X,RicY) — 2(Ry)(X,Y),

where R: Sym?R"™ — Sym?R™ is given by (cf. [4, p. 74] and [1, p. 52])

(Rp)(X,Y) = Yo(R(es A X),e5 AY)p(ei ¢))-

(2]

Note that K (R, Sym? T, ) vanishes on the subspace spanned by g, since ]o%g = Ric,
so K(R,Sym? 7, ) = diag (K (R, T2, ),0) according to the splitting Sym? 7, = T,
7o of symmetric 2-tensors into traceless symmetric 2-tensors and multiples of the identity,
respectively.

The Laplacian A, = V*V +t K(R, ) is the Hodge Laplacian on p-forms if 7 = AP},
and t = 2, and is the Lichnerowicz Laplacian on symmetric p-tensors if 7 = Sym” 7,
and t = —2.
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3.2. Sufficient condition for K(R,m) = 0
Consider the following:

Definition 3.6. Given a self-adjoint operator R of a d-dimensional vector space, whose
eigenvalues are 11 < vy < - < vy, we define for each real number 0 < r < d,

X(r,R) =11 v+ (r— LTJ)VLT‘J"Fl'

We say R is r-nonnegative if ¥(r, R) > 0, and r-positive if X(r, R) > 0. Similarly, R is
r-nonpositive, or r-negative, if the operator —R is r-nonnegative, or r-positive.

For instance, R is 1-positive if and only if R > 0, and %—pOSitive if ) + %1/2 > 0.

Note that X(r, R)/r is the (continuous) arithmetic mean of the smallest r eigenvalues
of R, hence nondecreasing in r; and that —3(r, —R) is a sum involving the || +1 largest
eigenvalues of R. Moreover, X(r, R) and X(r, —R) are concave in R.

Motivated by the key algebraic method underlying the recent works of Petersen—
Wink [22-24], we introduce a representation-theoretic invariant:

Definition 3.7. Let G be a connected compact Lie subgroup of SO(n) or Spin(n), with
Lie algebra g C so(n), and let p be the half-sum of positive roots in g¢.

The Petersen—Wink invariant of a nontrivial irreducible orthogonal or unitary G-
representation 7 with highest weight A € P, (Gg) is the positive real number

(A A +2p)

P ="

and, in case % > dim g, we use the convention that PWg(7) = dim g. Furthermore,

given the decomposition 7 = @, m; of an orthogonal or unitary G-representation into
irreducibles, we set PWg(m) := min{ PW¢(7;) : m; is nontrivial}.

Remark 3.8. Given any connected compact Lie group G, there exist constants ¢ > 0
and C' > 0 such that c|[A|? < (\, A+ 2p) < C||A||? for all A € P (Ge), see e.g. [31,
Lemma 5.6.6]. For all Lie groups G considered in this paper, C' can be chosen such that
C < dimg, see Remark 3.20 for G = SO(n) and Spin(n). However, it is unclear to us if
this holds in general, so we use the convention in Definition 3.7.

The significance of PWg(7) to the Bochner technique hinges on the following result,
which implies Theorem E in the Introduction:

Proposition 3.9. Let G be as above, w: G — Aut(E) be a nontrivial irreducible orthog-
onal or unitary G-representation with highest weight A\, and R: g — g be a self-adjoint
operator. Then K(R,7) = ||\|?> 2(PWg(r), R)Id.
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As XA = 0 only for the trivial representation, Propositions 3.9 and 3.1 (iii) imply:

Corollary 3.10. Let G be as above, m: G — Aut(FE) be an orthogonal or unitary G-
representation, and R: g — g be a self-adjoint operator.

(i) If R is PWg(m)-nonnegative, then K(R,m) = 0.
(if) If R is PWq(m)-positive and m has no trivial components, then K(R,m) > 0.

The following proof incorporates some arguments from [22] and [21, Lemma 3.2 and
Remark 3.3].

Proof of Proposition 3.9. Let {X;} be an orthonormal basis of g which diagonalizes R,
so that R(X;) = v; X, with v; e Rand v <o < -+ < Vdimg-

First, assume PWg(w) = <>‘i‘):\'ﬁ22p> < dimg. Let v € F and let r = | PWg(7)]. Since 7
is orthogonal or unitary, d=(X;) is anti-self-adjoint, and by (3.1) we have

(K(R,m)v,v) = 3 (dr(R(X;))(v), dm(X;)v)
= 3 villdm (Xl

T dim g
> ; vi | dm(Xa)o )| + vi ‘_2;1 ld (X;)ol|*
T 9 dim g 9
= - z:l(’/r+1 —vi) [dm(Xa)vl|” + v Zl [[dm (X))o
1= 1=

3

Y

= 2 e = ) APV + vrga (A X+ 20) o]

3

Il
-

The last inequality above follows from Proposition 3.1 (v) and the observation that
||dm (X))ol < [|Alll|v]l. Indeed, up to conjugating, we may assume that X; is in a given
Cartan subalgebra b C g¢. The eigenvalues of dn(X;) are given by u(X;), for each weight
1 € b* of the complexification of 7. Since A has maximal length among such weights and
| X;]| = 1, we have |u(X;)| < ||All, so the observation follows.

Applying Definitions 3.6 and 3.7 to the above inequality, we have

(K (R, 7)o, v) > A (; Vit (PWe(r) — 1) +) o]

= |AI* S(PWe(n), R) |[]|>.

Second, suppose PWG(ﬂ') = dlmg < <>\h);|r‘22p> CIf Vdim g > 0, a similar argument holds,
using Vgim ¢ instead of v, in the second sum above. If vgim g < 0, and thus all v; < 0,

the conclusion follows directly from ||dm(X;)v| < ||Allljv]]. O

Remark 3.11. Proposition 3.9 is sharp. Indeed, setting R = Id, it follows from Proposi-
tion 3.1 (v) that K(Id, 7) = (\, A + 2p) Id = || \||> 2(PWeg(7),1d) Id.
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Let us compute the Petersen—Wink invariant for some classes of representations.

Proposition 3.12. Let w be the irreducible orthogonal or unitary SO(n)-representation

with highest weight X =Y aje;, as in Examples 2./ and 2.5, n > 6. Then
j=1

27:1(71 —2j)a;

PWsom (1) = 1
som) () =1+ =0

Com=13 (33)

Proof. It follows from (2.10), (2.13), and Definition 3.7, that PWsgo(,)(7) equals

2m—2)a1+(2m—4)as+-+4am —2+2am 1

e taZ, , it n=2m,

1+ 4

2m—1)a1+(2m—3)as+-+3am_1+am
T, !

1+ ¢

ifn=2m+1,
and the above simplifies simultaneously for n =2m and n =2m+1 to (3.3). O

In particular, by Proposition 3.12 and Examples 2.4 and 2.5 if n > 6, and by direct
computation using Definition 3.7 if 2 < n < 6, we have that, given any n > 2,

PWSO(n) (/\pﬂ-on) =n-—-p, for all 1 < p< L%Ja (34)

PWso ) (Sym” 7, ) = %ﬁ’_z, for all p > 1. (3.5)
Clearly, we have PWsyin(n)(T) = PWson)(m), where 7 is the precomposition of the
SO(n)-representation 7 with the double cover Spin(n) — SO(n). Moreover, the Petersen—
Wink invariant PWspine,) () of an irreducible orthogonal or unitary Spin(n)-represen-
tation 7 with highest weight A\ = Z;nzl a;e; is also given by (3.3), as the proof of Propo-
sition 3.12 only requires A € Py (s0(n,C)). Thus, we shall unambiguously write PW ()
for both Spin(n)- and SO(n)-representations whose highest weight is A € Py (so(n, C))
as above, and compute it using (3.3).

3.3. Vanishing theorems

Throughout this subsection, (M™, g) denotes a closed Riemannian n-manifold, n > 2,
with curvature operator R: A2 TM — A?TM. Consider the same setup as Section 3.1,
where G is a connected compact Lie group that contains Hol(M™,g), and recall that if
m: G — Aut(F) is an orthogonal or unitary G-representation, then (E;)o C E, is the
subbundle corresponding to the trivial isotypic component of 7, see Example 3.4. If 7 has
no trivial component, (E)o = 0. To simplify notation, we write PW¢g(E,) = PWg(n), in
the same way as K(R, E;) = K(R, ). In light of Corollary 3.10, the Bochner technique
yields:
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Theorem 3.13. Let A, = V*V+t K(R, ) be the Laplacian on E, — M, where R: g — g
is the curvature operator of (M™,g) restricted to g C s0(n). Given a harmonic section ¢
of Ex, i.e., Ar¢ =0, the following hold:

(i) Ift >0 and R is PWg(m
(if) Ift > 0 and R is PWg(w
(iii) Ift <0 and R is PWe(r
(iv) Ift <0 and R is PWe(n

-nonnegative, then Vo = 0.
-positive, then ¢ € (Er)o.
-nonpositive, then Vo = 0.
-negative, then ¢ € (Ex)o.

— — — —

Proof. All assertions follow from Proposition 3.1 and Corollary 3.10, together with

0= [(an0.0) = Al IVGI2 + ¢ (K (R, 7). ). (3.6)

M

Namely, let us consider only ¢ > 0. If R is PWg(m)-nonnegative, then K (R, 7) > 0 by
Corollary 3.10, so V¢ = 0. If R is PW¢(7)-positive, then, as in Example 3.4, we have
K(R,7) = diag(0, K(R, (E)g)). Thus, K(R,(E,)g) = 0 by Corollary 3.10 because
PWg(E,) = PWs((Ex)s), and hence ¢ € (E,)q provided that t > 0. O

Remark 3.14. In general, V¢ = 0 does not imply ¢ € (E;). Instead, V¢ = 0 implies
¢ € (Ex)o where 7’ is the restriction of 7 to Hol(M™, g).

The classical vanishing theorems due to Bochner regarding Ricci curvature follow from
the above ideas and Example 3.3. Namely, if (M™, g) is a closed oriented Riemannian n-
manifold, let 7 be the dual of the defining representation of SO(n), so E is the bundle of
1-forms on (M", g). From Example 3.3, the Hodge Laplacian is A, = V*V+2 K(R,7) =
(d+ d*)? = dd* + d*d, and K(R,w) = Ric. First, if Ric = 0, then any harmonic 1-form
is parallel by (3.6) and hence b1 (M) < n; and if Ric > 0, then harmonic 1-forms vanish
so by (M) = 0.

Second, decompose End(TM) = TM* @ TM* = N*TM* @ C(M) @ Symj TM*
according to the decomposition into SO(n)-irreducibles of 7 ® m. Given a 1-form ¢, let
T'¢ be the component of V¢ in Sym2 TM*. From [27, p. 507], we have:

V*V¢ = 3d*d¢ + Ldd*¢ + T*T¢, (3.7)
2K(R,m)¢ = Ld*d¢ + 2=2dd* ¢ — T*T¢. (3.8)

Thus, if Ric < 0 and ¢ is dual to a conformal Killing vector field (i.e., T¢ = 0), then
(3.8) implies that ¢ is harmonic, hence parallel, so the group Conf(M™, g) of conformal
diffeomorphisms has dimension < n. If Ric < 0, then ¢ = 0, so Conf(M™, g) is finite. The
latter conclusions also apply to the isometry group Iso(M™,g), since it is a subgroup of
Conf(M™,g). These facts are closely related to Theorem 3.13 applied to TM and TM*:
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it follows from Proposition 3.12 that PWso(,)(T'M) = PWso(,)(TM*) = n — 1, and
Ric > 0 if R is (n — 1)-positive.

Applying Theorem 3.13 to APTM*, since t > 0 for the Hodge Laplacian and
PWsom)(NPTM*) = PWson)(A""PTM*) = max{p,n — p}, as computed in (3.4), one
immediately recovers:

Theorem 3.15 (Petersen—Wink [22, Thm. A, B]). Given 1 < p < | %], let q be such that
1 <min{qg,n — q} < p, and let ¢ € NITM* be a harmonic q-form.

(i) If R is (n — p)-nonnegative, then V¢ = 0. In particular, by(M) < (Z) ;

(i) If R is (n — p)-positive, then ¢ = 0. In particular,
by (M) = =b,(M) =0, and by_p(M)=--=by_1(M)=0.

Applying Theorem 3.13 to Symg(/@T M), we obtain slight generalizations of the
Tachibana-type result [22, Thm. D], where the FEinstein assumption is relaxed to har-
monic curvature operator or harmonic Weyl tensor (this was independently observed
in [6,24]). Recall the second Bianchi identity yields dR = 0, viewing the curva-
ture operator R as a 2-form with values in A2TM, so R is called harmonic if it is
divergence-free, i.e., d*R = 0, see [1, Chap. 16]. Thus, R is harmonic if and only if
0= AR =V*VR+ 2K (R, )R, where m = Sym? (A?R").

Theorem 3.16. Suppose (M™,g) has harmonic curvature operator, n > 5.
n—1

i) If R is “5=-nonnegative, then (M",g) is locally symmetric;
2

ii) If R is "=L-positive, then (M™,g) has constant sectional curvature.
2

For n =3 or 4, the above statements remain true if ”Tfl is replaced with % .

Proof. Set G = SO(n). Recall the decomposition of the space of curvature operators
Symi(A’R™) = U @ L ® W into O(n)-irreducibles, where U, £, and W correspond
respectively to multiples of the identity (curvature operators with constant sectional
curvature), to the traceless Ricci part, and to the Weyl part. If n > 5, then Ug, Lc,
and W¢ are G-irreducible and of real type, and respectively isomorphic to the trivial
representation, ma.,, and ma, yo.,. The same is true if n = 3 or 4, except for the fact
that We is trivial if n = 3, and it splits further as m., 4., ® 7., ¢, if n = 4. Thus, the
statement follows from Theorem 3.13 with ¢ > 0, and the following computations using
Proposition 3.12 for n > 5, and Definition 3.7 otherwise:

min{PWG(ﬂ'gel),PWG(W251+252)}, if n>5,
PWg(Symj (A*R™)) = { min{ PWq(maz, ), PWe(me,4e,), PWe(me,—cy)}, ifn =4,
PWg(mae, ), if n =23,
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nlifn>5,
if n =4,

2,
%, if n=3.

Note that R € (FE,)o, where 7 is the G-representation on E = Symj (A?R™), if and only
if R € U; and recall R is parallel if and only if (M™,g) is locally symmetric. O

Remark 3.17. If n > 4, then (M™,¢g) has harmonic curvature operator if and only if it
has constant scalar curvature and harmonic (i.e., divergence-free) Weyl tensor [1, §16.4].
Analyzing the irreducible components of VR € TM* ® Symj (AT M) or arguing as [24]
implies Theorem 3.16 for (M™,g) with harmonic Weyl tensor.

Next, consider SymfTM, p > 2. Recall that a section ¢ of Symf TM is called a
trace-free conformal Killing tensor if the projection P;(¢) of V¢ € TM ® SymfTM
onto Sym? ™" TM vanishes identically. Following [12, Prop. 6.6], we write Vo = Py(¢) +
Py(¢) + P3(¢), where Pi(¢), i = 2,3, are other first-order differential operators given by
projecting V¢ onto the remaining irreducibles. In terms of the above, the Weitzenbdck
formula A; = V*V + ¢t K(R, ) can be rewritten as

t K(R,SymiR") = —p PPy + (n+p—2) P; P, + Py P,

in particular, the right-hand side is nonnegative on the space of trace-free conformal
Killing tensors. Recall that ¢ < 0 for this bundle and PWsg(,,)(Sym{ TM) = %”_2 by
(3.5). Thus, applying Corollary 3.10, we have:

Theorem 3.18. Let ¢ € Sym) T'M be a trace-free conformal Killing tensor.

(i) If R is %{H-nonpositive, then V¢ = 0.
(i) If R is %ﬂ—negative, then ¢ = 0.

Theorem 3.18 should be compared with [7, Thm. 1.6] and [12, Prop. 6.6], where (i)
and (ii) are proven assuming instead that sec < 0 and sec < 0, respectively.
Finally, setting G = U(m) C SO(2m) in Theorem 3.13, we also recover:

Theorem 3.19 (Petersen—Wink [23, Thm. B, C]). Let (M*™,g) be a closed Kdihler
manifold and consider its Kdhler curvature operator R|y(m): u(m) — u(m). Given
1<p,q<m,let p € \PITM* be a harmonic (p,q)-form and set
a— p’+d*
Cp 9= m + 1-— W
(1) If Rly@m) is CP9-nonnegative, then V¢ = 0. In particular, h?7(M) < (7;) (ZZ) ;
(i) If Rlu(m) is CP9-positive, then ¢ = 0. In particular, h?9(M) = 0.
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In order to compute PWy(,)(AP9C™) = CP4, the main step is to obtain the decom-
position of AP9C™ into U(m)-irreducibles, which can be found in [23, Sec. 2], see also
[5,9]. Namely, denote by w € AMC™ the Kéhler form, and note that all its exterior
powers w* are fixed by U(m). Set VP? := AP=R0C™ ¢ span{w®} @¢ A®9=FC™, for
0 < k < min{p, ¢}. According to [23, Thm. 2.1], the modules ALIC™ := VI 1 (VF4)+
are U(m)-irreducible and

" min{p,q} -
ANIC™ = AYICT,
k=0

cf. [9, Prop. 2.2]. According to [23, Lemma 2.5], the highest weight of AP?C™ is
A, q, k) = €1+ -+ epk — (Em—(q—k)+1 + -+ + €m). So Definition 3.7 and (2.14)
yield:

m _m2_ 2 kim—p—qg)— k2
PWym) (Ta(pg py) = 1+ 2EFO=E—Cmpa) 26

The above is increasing with k, so its minimum is achieved with £ =0, i.e.,

PWU(m)(/\quCm) = mi_n PWU(m) (ﬂ-)\(p,q,k)) = PWU(m) (71-)\(:0’(170)) = (P,
0<k<min{p,q}
Given the above, Theorem 3.19 now follows from Theorem 3.13 applied to AP4T M,
keeping in mind that ¢ > 0 for the Hodge Laplacian on (p, ¢)-forms.

Remark 3.20. In light of Theorem 3.13, it is natural to ask which G-representations 7,
with G = SO(n) or Spin(n), mazimize PW (r). From (3.3), with m = | %],
m m

(n—2)af — (n —2j)a; > 3 (n —2j)(af —a;) 20,
j=1 j=1

(nf 1 7PW(7T))((1%+...(I%L) =

since a? > a; because a; € Z. Thus, PW(m) < n — 1, and equality is achieved if and
only if 7 is the irreducible representation of highest weight w1, wy,_1, Or Wyy,.

4. Twisted spinors

In this section, we prove a general vanishing theorem (Theorem 4.4) for twisted spinors
on closed Riemannian spin manifolds using the representation-theoretic approach to the
Bochner technique discussed in Section 3, namely Proposition 3.9. As a consequence of
this general result, we prove Theorem A in the Introduction.

4.1. Representation theory of twisted spinors
Twisted Dirac operators act on vector bundles S ® E, constructed from the repre-

sentation mg ® m as explained in Section 3.1, where 7g is the spinor representation (see
Example 2.4).
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An essential step to compute the Petersen—Wink invariant of mg ® 7 is to decompose
it as a sum of irreducible representations. Consider, e.g., the tensor product 7s ® 7, of
ms = ST @S~ and the defining representation on C", where n = 2m and m > 4 is even.
Recall from Example 2.4 that ST and S~ have highest weight w,,, and w,,_1, respectively.
By Pieri’s formula, their tensor products decompose as m,,, ® Tw, = T, 4w, P Tw,n_s
and m,,, | ® Ty, = T, 14w P Tw,,, and hence

PW(ry,, ®my, )= min{PW(wmerwl), PW(mefl)},

(4.1)
PW (7, ® Tu,y) = min{PW(meq-i-wl),PW(me)}v

according to Definition 3.7. It follows from Proposition 3.12 that

PW (T, 4w ) = PW (T, tw) = %7 (4.2)
PW(n,,, ) =PW(r,, ,)=n—1,

and hence the minima in (4.1) are achieved by the former, so

PW (rs ® 1) = S04, (4.3)

In what follows, we perform a similar computation for tensor products of mg with
general alternating and symmetric powers of the defining representation m,, = C".
Recall from Example 2.4 the decompositions (2.11) and (2.12) of APC™ and Sym? C™
into irreducible SO(n)-representations, where n = 2m is even. For simplicity, we analyze
only the components involving tensor products of ST = 7, | as the computations for
those involving S~ = m,,  _, are completely analogous and ultimately not needed. We
use the convention that wy = 0, and 7 is the trivial representation.

Proposition 4.1. If n = 4k, m = 2k, and k > 2, then

PW (ra,, ® APr,) = 2EElnete=l) g < p <im, (4.4)

n24(8p—1)n+8 —1
PW (7rwm ® Sym” 7Tw1) H 75)—"-813(1;‘1:0)(1) : ’

Il
i
\%
o

(4.5)

Proof. The decomposition of m, & AP7,, into irreducibles follows from (2.11) and the
following instances of the Littlewood—Richardson rule (see [20]):

p
Tom ® T, = G%)Wwp’j-'_wm*(jfzu/ﬂ)’ l<p=m-2, (4.6)
j=
m—1
T @ T 14wm = Mo 142wm D 69 Mm 14+ Wm—(j—214/2])? (4'7)
Jj=1
m/2
T & T2, = Taw,, D EB Twm—2j+wWm s (4'8)

Jj=1
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m/2—1

T @ M2, o = 20 14w O @ T wWm—2j—1+Wm—13 (49)
Jj=1

cf. [17, Thm O(2n)].
By (3.3), the Petersen—Wink invariant of the above irreducibles is given by

2 1 )m— _
PW(Wwp+wm) = PW(”prrwm,l) _ 2m +(8pm1-i)-8p 4p(p 1)7 (4.10)
2 —_ —
PW (g1 +t,) = 2l 20D dal, (4.11)

where 1 < p <m—2,¢,¢ > 0, and (g,¢) # (0,0). We proceed case-by-case, following
(2.11). First, if 1 < p <m — 2, then AP7,, = 7, , so by (4.6) and (4.10),

PW(WWM ® /\pﬂ'wl) = 0I<nji2p PW(ﬂ'wp_j+wm7(j72u/2J))
_ e 2mP+(8p—8j—1)m—4(p—j—1)(p—j)
- Og}gp T8 (4.12)

_ 2m?4+(8p—1)m—4(p—1)p _ n?*4+(8p—1)n—8p(p—1)
- m+8p n+16p ’

as the minimum above is achieved at j = 0.
Second, if p =m — 1, then APm,, = T, 4w, so using (4.7), (4.10), and (4.11),

PW(’]Twm ® /\p’ﬂ'wl) =

= min {PW(T(—LUNLIJFQUJW’L)’ min PW(ﬂ-Uij1+WM—(_7'—2L_7'/2J))}

1<j<m—1

. 24 30— . 3m(2m+1)—4;(j+3)—8 24 3m—
= min W, min 3™ m9+ )8VJ(§+ ) — 6m’+3m-8
m— 1<j<m—1 m—8j-

Finally, if p = m, then A7, = ma,, B Ty, ,, SO using (4.8) — (4.11),

PW (me ® /\pﬂ'wl) =

—min{PW<W3wm>,PW<mm1+wm>, i PW(mM+wm>}

2<5<m

3

. 2 3m— . 3m(2m41)—45(j+1
— min 2wg+1’ 6m9+?ir§ 8 min m( m9+ ZS_J(J+ ) | 2mt1
m 2<5<m m=8j

Note that both of the above coincide with the values assumed by the last line of (4.12)
setting p = m — 1 and p = m, respectively, which concludes the proof of (4.4).

The decomposition of m,, ® Sym” m,, into irreducibles follows from (2.12) together
with 7, & Tgw, = Tgwy+wm P T(g—1)wi+wm_1> ¢ = 1, which is a simple consequence of
the Littlewood—Richardson rule; namely,
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lp/2]
Mooy @ Sym? 1o, = @ (T, ® T(p-2j) )
=0
! (4.13)
L2l lp/2]-1
= @ T(p—2§)wr+wm D @ T(p—2j—1)wi+wm—1-
7=0 7=0
By (3.3), the Petersen—Wink invariant of these irreducibles is given by
2m>+(8¢—1)m+4q(g—1
PW (Tguoy ) = PW (Tgo, 4oy, ) = 2t Cipitli=) g > 0, (4.14)

Thus, by (4.13) and (4.14),

. . 2m24(8q—1)m+4q(q—1)
PW (m Sym? T = min PW(m = min
( W QDY m) 059<p ( QW1+wm) 0595p m+aq(q+1)

_ 2m’+(8p—1)m+4p(p=1) _ n’+(8p—1)n+8p(p—1)
m+4p(p+1) n+8p(p+1) ’

since the above minimum is achieved at ¢ = p, concluding the proof of (4.5). O

Remark 4.2. From Proposition 4.1, PW (me ® /\pm,l) > PW (me ® Sym? 7Twl) for all
0 < p < m, with equality if p = 0 or p = 1, and strict inequality if 2 < p < m.

Note that the constants defined in (1.2) are precisely (4.5) and (3.5), namely:

rp = PW (7, ® SymPr,,) and 1), = PW(Sym’m,, ). (4.15)

4.2. General vanishing theorem

Let (M™,g) be a closed Riemannian spin manifold and R: A2 TM — A*TM be its
curvature operator, and G be a connected compact Lie subgroup of Spin(n) that contains
Hol(M™,g), as in Section 3.1. Let S — M be the complex spinor bundle, E, — M be
another complex vector bundle defined by a unitary G-representation 7, and consider
the bundle S ® E, defined by the tensor product G-representation g ® . Using Clifford
multiplication, the linearization of wg can be written in terms of an orthonormal basis
e; of R™, see [18, Cor. 1.6.3]:

dﬁs(ei A ej) = %eiej. (416)

The twisted Dirac operator D, = Dg_ acts on sections of S ® E,, and satisfies D2 =
V*V + R, where

R = Z (eiej ® 1) o Ri?e?”, (417)
1<j

see [18, p. 155]. Here, R°®¥~ is the curvature tensor defined by the connection on S® E,
induced by the representation, hence RS,‘?;? = —d(msg @ m)(R(e; A ej)).

=
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Lemma 4.3. The curvature term (4.17) can be written in terms of (3.1) as follows:
Rr=K[R,rs@m)+21d-1® K(R,)
Proof. Using (4.16) and expanding the linearized tensor product of representations,

Rr=-2) (drs(e; Nej)@1)od(nmg @ m)(R(e; Aej))

=23 (drs(e; Aej) @1) o (dms(R(e; Aej)) @1+ 1@ dm(R(e; Aej)))
== (drs(e; Aej) ®1) o (dms(R(ei Aej)) @1+ 1@ dm(R(ei Aej)))
—+ K(R, 7'('5) ® 1 — Z d’iTS(ei A 6]') ® d’]T(R(el A ej)).

Since R is symmetric, one sees that

Yo dmg(e; Nej) @dm(R(e; Aej)) = > drs(R(e; Aej)) @ dm(e; Aej).

i<j i<j
Adding and subtracting 1 ® K (R, 7) in the second and third lines below, respectively,

Rr=—7> (drg(e; Nej) ®1) o (dmg(R(e; Nej)) @1+ 1@ dn(R(e; Aej)))

=Y (1®@dm(e; Aej))o(dms(R(e; Aej)) @1+ 1@dm(R(e; Aej)))
+K(Ryms)®1 -1 K(R, )
=K(R,ms®@m)+ K(R,m5)®1—-1® K(R,™).

To conclude, recall K(R,7g) = %‘*1 Id, see Example 3.2 or [18, Thm. I1.8.8]. O

We now prove a general vanishing theorem for twisted spinors (Theorem 4.4) which
is the primary ingredient in the proof of Theorem A. Furthermore, if twisting with
Sym? TM¢ or APT' Mg, the hypotheses below are weaker than those stated in Theo-
rem A, since one may obtain a curvature expression ¢(R) > C,(R) directly using the
computations in the proof of Proposition 4.1 together with (3.4) or (3.5).

Theorem 4.4. Let (M™,g) be a closed Riemannian spin manifold of dimension n = 4k,
k > 2, with curvature operator R, let G be a connected compact Lie subgroup of Spin(n)
containing Hol(M,g), and m be an irreducible unitary G-representation with highest
weight X\ € P11 (Gg). Consider the decomposition mg @ 1 = @, m», into irreducible
G-representations, and let ¢(R): M — R be given by

c(R) = min {||\i[|* B(PWe(my,), R)} + 55 + |A|* B(PWe(m), —R), (4.18)
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with | Ai]|? S(PWe(my,), R) =0 if \; = 0. If ¢(R) > 0 and E C E, is a parallel complex
subbundle, then A(M,E) =0, or ¢(R) =0 and S ® E has a nontrivial parallel section.

Proof. Using the splitting S = ST @ S—, and the fact that £ C E, is parallel, we can
restrict D, to ST ® E to obtain Df: S* @ E — ST ® E. By the Atiyah-Singer Index
Theorem, see e.g. [18, Thm. 13.10],

ind(D};) = dimker D}, — dimker D, = A(M, E).

If the above is nonzero, then ker D C ker D, contains a section ¢ # 0. Combining
Lemma 4.3 and Proposition 3.9, the hypotheses imply that R, > ¢(R)Id. The standard
Bochner argument, cf. (3.6), implies that V¢ = 0 and R, has nontrivial kernel at all
points; in particular, ¢(R) =0. O

4.3. On the proof of Theorem A

First, we address the case p = 1, combining the proof of Theorem 4.4 with an analysis
of the representations involved if 7 = 7, .

Theorem 4.5. Let (M™,g) be a closed Riemannian spin manifold of dimension n = 4k,

n(n+7)
16 and

k > 2, with curvature operator R, and Ric < pId. Set ry =
Cy(R) = min {(§ +2) S(r, B), 51} + 5 — o

If C1(R) > 0 and E C TMc is a parallel complex subbundle, then A(M,E) =0, or else
C1(R) =0 and S ® E has a nontrivial parallel section.

Proof. We argue as in Theorem 4.4, setting m = 7, to be the lift to G = Spin(n) of the
defining representation of SO(n), so that E, = TM. Letting m = 2k, then

~
TS @ Ty = T twr D w1 D T 1 +w1 D T, s

as explained in Section 4.1. Using Proposition 3.1 (iii) and Example 3.2, we have

K(R,ms @ my,) = K(R, T, 4w,) © K(R, 7w, 1) ® K(R, 7w, 4w,) ® K(R, 7y,,)
= K(R, Ty, 40,) ® (2 1d) & K (R, Teo,,_y+y) ® (221 1d) .

Applying Proposition 3.9, since PW (7, +w,) = PW (7, 1+w,) = 71 by (4.2), and
|wm + w1]|* = |wm-1 + w1 = £ + 2, we obtain

K(R, T twy) = (% +2) X(r1, R)1d, and K(R, Tw,,_,4w,) = (% +2) S(r1, R)1d.
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Thus, K(R, 7 ® my,) = min{(% +2) S(r1, R), %2} 1d. From Example 3.3, we have
K(R,m,,) = Ric. Therefore, by Lemma 4.3, we have R, = C1(R)Id »= 0 and the
conclusion follows as in the proof of Theorem 4.4. 0O

Remark 4.6. Despite similarities, C1 (R) does not coincide with ¢(R) in (4.18) for 7 = 7, ,
since we explicitly compute K (R, 7, ), K(R, 7, ) and K(R,m,,,_,) in the proof above
using Examples 3.2 and 3.3 instead of appealing to Proposition 3.9.

Second, in order to address the case p > 2, we need compare the relevant quantities
in Theorem 4.4 for different subrepresentations of the p-tensor representation 7r§’1p, and

of their tensor products with the spinor representation 7g = m,, @ m,, _,-

Lemma 4.7. Let n = 4k, k > 2. Recall the constants r, and 1, in (1.2), cf. (4.15), and
the Weyl vector p in (2.10). If m is an nontrivial irreducible subrepresentation of the
SO(n)-representation =SP, p > 2, with highest weight A € Py, (SO(n, C)),

PW(m)>r!

>r, and 0 < (AA+2p) <p(n+p-—2).

Denoting also by w its lift to Spin(n), let g @ @ = @, mx, be the decomposition into
irreducible components. Then

PW(my,) > 1rp,  and "(ngfl) <A i +2p) <pn+p—1)+ n(nsil)'

Proof. Let m = 2k. Since A € P11 (SO(n,C)), we have that A = 37" a;e; with a; >
ag > -+ > |am| > 0and a; € Z for all 1 < j < m, see Example 2.4. By Proposition 3.12,
the Petersen—Wink invariant PW (m) does not depend on the sign of a,, because n = 2m
is even, see (3.3), so we may assume a,, = |a,,| > 0. Moreover, \ is a weight of 7357, so
it can be written as A = £¢;, £--- 4 ¢; and thus Z;n:l a; < p. Altogether, the vector
(a1,...,an) of coefficients belongs to

m
Apz{(al,...,am)elRm:al>a2>~-~>am>0 and Zaj<p},

Jj=1

which is an m-simplex in R™; namely A, is the convex hull of the vertices v9 = 0 and
Vg = (%...,%,0,...,0) eR?® {0} CR™, 1< g <m.From (2.10), we have

pO2p) = 2m =N =2 3 (plm =)o, — (m=1)a2).  (219)

We claim that the right-hand side of (4.19) is nonnegative for all (a1,...,am) € A,.
Indeed, this is a concave function of (aq, ..., an) and hence attains its minimum on A,
at a vertex vg, 0 < ¢ < m. It can be easily checked that this minimum is equal to zero
and it is achieved at the vertices vy and vy. Therefore, as desired,
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A+ m— n+p—
PW () = ¢ NE >>1—|—2( D = +£ 2:7";.

Moreover, using (2.10) again, we obtain

m

2
0< (MA+2p) < <Z aj> —|—2(m—1)iaj§p2+2p(m—1):p(n+p—2).

Jj=1

Let us also denote by 7 the lift to Spin(n) of the SO(n)-representation 7, and recall that
the weights of mg are of the form "/ | +1¢;. Thus, the highest weight \; € Py (so(n, C))
of an irreducible component of g ® 7 must be of the form \; = Z;ﬂ:l bjej, with b; =
a; = 3 and a; € Z such that Z;’;l la;| < p. It follows that |by,| = |am £ 3| > 3;
in particular, A\; # 0. Again, in light of (3.3), the sign of b, is irrelevant to compute
PW (my,) so we may assume by, = |by,| > 0. Altogether, the vector (bi,...,by) of
coefficients belongs to the (translated) simplex

(SIS

d Y b <p+
j=1

wl3
——

Np+(3,...,3) :{(bl,...,bm)eRm:bl > .. > by, >
whose vertices are vy + (%, ceey %), 0 < ¢ < m. Similarly to (4.19), we have that

(F +0°+0) (A, 20) = 2(m = 1) (7 + p)lINil* =

23 (% +02 4 p)m )by — (m = (3 + )0

is nonnegative for all (by,...,b,) € &y + (%, cee %), since this is a concave function of
(b1,...,by) and its minimum on A, + (%, ce %) is equal to zero and achieved at the
vertex vi + (%, ceny %) Therefore, as desired,

_ Qi Nit2p) 2(m=1)(F+p) _ n’+(Bp—1)n+8p(p—1) _
pW(TrA ) - ”)\il‘zp > 1+ —+p2+p 7f)+8p(p+11;p = Tp-

Finally, we may bound

s

s hi +20) = 3 (af £ a; +3) +2

j=1 J

(a5 £ 3) (m — j)

1

from above with

iy Xi +2p) < 4 p? + p 4 2p(m — 1) + 0™ — p(n 4 p— 1) 4 22

and from below with

1 az N m(2m—-1) _ n(n—-1)
7t m-—-7)= - 9
= 4 ]z::l( ) 4 8

3
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where we use that af:l:aj > 0 because a; € Z, and b; = aj:I:% > % because (by,...,by) €

Np+(3,...,2). O

Using Lemma 4.7, we shall now apply Theorem 4.4 to prove the following result,
which implies Theorem A in the remaining case p > 2. Note that a parallel subbundle
E¢ C TMégp decomposes into the direct sum of parallel bundles, each contained in E,
for some irreducible subrepresentation 7 of 75”.

Theorem 4.8. Let (M™,g) be a closed Riemannian spin manifold of dimension n = 4k,
k > 2, with curvature operator R. Let w be an irreducible subrepresentation of the SO(n)-
representation T3¥, p > 2, with highest weight X € P (SO(n,C)), and

Cy(R) = min{ (% + 5 + p) S(ry, B), "2 Sy, R)} + 250 + 02 (), — R),

with T, and r;, as in (1.2). If C,(R) > 0 and E C Er is a parallel complex subbundle,
then A(M,E) =0, or C,(R) =0 and S ® E has a nontrivial parallel section.

Proof. Let mg®m = P, mx, be the decomposition into irreducible components. Recalling
that r — 3(r, R)/r is nondecreasing in r, since PW (7y,) > 1, by Lemma 4.7,

(PW(mx,), R)

> >
M2 S(PW (2., B) = (v, A + 29) > (s 4+ 2p) 2l B

PW(’]T)\i) T‘p

Using Lemma 4.7 once more, if ¥(rp, R) < 0, then

ln— X(ry, R n
NI S(PW (), R) = (p(n+p— 1) + 20 (;’ .
p
(4.20)
otherwise, if ¥(r,, R) > 0, then
Il S(PW (), ) 2 D EC R (1.21)
p

We claim that ¥(r;,, —R) < 0. Indeed, suppose by contradiction ¥(rj,, —R) > 0. Then
22((3), —R) = —scal > 0 and X(r,, R) <0, so

Cp(R) < (% +p°+p) E(rp, R) + p* X(r), —R)

E(TP,R) +p(n +p— 2)2(7.;;7 _R)

_ -1 n(nfl))
<p(n +p )+ 3 . !

. > >(r! ,—R
Since —(’;‘“’R) < 20poR) = )

. §Oandp(n+p71)+% > p(n + p — 2), we conclude
P
that C,(R) < 0, which contradicts our hypotheses, proving that (r}, —R) < 0.
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From Lemma 4.7, we have PW () > r;, and as r + X(r, R)/r is nondecreasing,

A2 S(PW (), —R) = (A, A + 2p) 2L

E(rz’),—R) E(r/p,—R)
) 2

7
TP

> (MA+2p =p*3(r,—R), (4.22)

P2

>pn+p—2)

where the last inequality uses Lemma 4.7 once again.
Therefore, combining (4.20), (4.21), and (4.22), we conclude that, for all i,

[Aill? S(PW (7x,), R) + %2 + || X||> £(PW (7), —R) > Cy(R),
and hence the conclusion follows from Theorem 4.4. O
4.4. Monotonicity of Cp(R)

Using similar arguments, we now show that the curvature conditions Cp(R) > 0 are
nested, and each implies scal > 0; that is:

Proposition 4.9. Let n > 3 and 1 < ¢ < p. If R € Symj(A?R") has C,(R) > 0, then
5> Cy(R) 2 Cy(R).

Proof. First, we note that

and that yu, being a trace of R over a subspace of A2R" of dimension 7} = n — 1, satisfies
u < =X(rf, —R). Thus, it follows that

8rq

Ci1(R) > min{(% +2) X(r1, R), le=l) E(Tl,R)} + %al + X(r, —R),

and the right-hand side is the result of setting p = 1 on the formula for C,,(R), p > 2.
Since n > 2, both r;, and 7, are decreasing functions of p. As demonstrated in the
proof of Theorem 4.8, it follows from Cj,(R) > 0 that X(r), —R) < 0. Thus,

E(T/a_R) E(Tla_R)
¢ E(ry,—R) =q(n+q— 2)— S — zaln+q-2)——
q
(!, —R)
> pintp-2 2 pengr g)
P

If ¥(ry, R) <0, then
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min { (3 +¢° + ) S(rg, R), "F= 500, B) | = (% +¢* + 0)S(ry, R)
=1 (n*+ (8¢ —1)n+8q¢(q—1)) X(rg, R)/rq
> % (n2 + (8p—1)n+8p(p— 1)) X(rq, R)/7q
> % n? 4 (8p — 1)n + 8p(p — 1)) X(rp, R)/rp
= (249" +p) 2(rp, R) > min { (£ +p? + p) 5y, R), Mgt E(TP,R)},

> "5y, R) = min { (2 + p? +p) Dy, B), "G 0y, )}
Therefore, in all cases, Cy(R) > Cp(R).

Finally, assume C(R) > 0. If u < 0, then scal < 0, and since 1 < rg = n — 1 and
w>3(n—1,R), we have

S(r1, R) S(n—1,R) S(n—1,R)
< 1 - 7 < 1 _ _
Ci(R) < gn(n+7) - p<gn(n+7) — (n—1) —1

= (=5225) =(n - 1,R) <0.

Since this contradicts our assumption C7(R) > 0, we conclude that p > 0, and
Ci(R) < min{ (2 +2)S(r, R), 22} sl < sl
5. Cobordism classes

If (M™, g) is a closed Riemannian manifold of dimension n = 4k, k > 2, whose curva-
ture operator is r-positive with 2k < r < n—1, then Theorem 3.15 implies the vanishing
of its Betti numbers by,...,b,—r, and by, ..., b,—1. (To simplify notation, throughout
this section, all Betti numbers b; = b;(M) and Pontryagin numbers py = py(M) are un-
derstood to refer to M, and all rational Pontryagin classes p; = p;(TM) to TM.) Thus,
the rational Pontryagin classes in the corresponding degrees vanish, as do any Pontryagin
numbers involving those Pontryagin classes. If, in addition, the conditions in Theorem A
are satisfied, then further linear combinations of Pontryagin numbers vanish. In this sec-
tion, we combine these results to give sufficient conditions for all Pontryagin numbers
to vanish, that is, for M to be rationally null-cobordant. We first prove Theorem D (ii)
and (iii), as follows:

Theorem 5.1. Let (M™,g) be a closed Riemannian spin manifold of dimension n = 4k,
with k > 6 and k # 7. If its curvature operator is r-positive, where
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r=2k+4 if k is even, and 1 =2k-+6 ifk is odd,
and %al Id — Ric = 0, then M is rationally null-cobordant.

Proof. First, suppose k = 2¢ is even. By Theorem 3.15, since (M",g) has r-positive
curvature operator with r = 44 + 4, the only possibly nonvanishing Betti numbers of
M besides by and b, are bys_3,...,bget3. Thus, all rational Pontryagin classes vanish,
except possibly py and poy, i.e., the only possibly nonvanishing Pontryagin numbers are
P(e,e) and p(ag). We now prove that these also must vanish.

In the above setup, a direct computation (e.g., using tools in [13, §1.8]) gives

A(TM) =1+ carpy + 5 (¢3¢ — cae) P} + caepar,

where ¢; is the coefficient of 2" in the power series expansion of —"—7ms an(zya) AT = 0. Since

M is spin and has scal > 0, by Lichnerowicz, we have
A(M) = 3 (c30 — car) Pee) + Caepaey = 0. (5.1)
Using Newton’s identities for power sums and elementary symmetric polynomials,
W(TMe) = 8¢ 4+ (D7 20 2 1
ch(T'Me) = 8¢ + =gy Pe + Tagy Pi — {ar—1y1 P2t

The curvature operator R of (M™,g) is r-positive with r < r; and %ﬁl Id — Ric = 0,
therefore C1(R) > 0. Thus, we may apply Theorem A with p = 1 and obtain

~ e+
A(M,TM¢) = (%ng + %) D(e,e) — (4££1)! D(2e) = 0. (5.2)

In order to show that p(, ) and p(ae) vanish, it suffices to show that the homogeneous
linear system given by (5.1) and (5.2) on those variables only has the trivial solution.
This is easily seen to be equivalent to

coe 70 and  (=1)%(20 — 1) cop # 2(40 — 1) cyy.

Using that 2(—1)¢(2¢)! cop = By is the 2/ Bernoulli number, the above conditions are
satisfied if and only if Boy # 0, which always holds, and Bgy # Bye, which holds if £ #£ 2,
and we assumed k = 2¢ > 6. Thus, p(,¢) = p2r) = 0, as desired.

Next, assume k = 2¢ + 1 is odd. By Theorem 3.15, since the curvature operator R
of (M™,g) is r-positive with r = 4¢ + 8, aside from by and by, all Betti numbers vanish
except possibly bg_3,...,bse+7. Thus, the only possibly nonzero rational Pontryagin
classes are pg, pey1, and pogt1, i.e., the only possibly nonzero Pontryagin numbers are
Pt,e+1) and p(g¢41). Similarly to the above, in this situation, as £ > 1,
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A(TM) =1+ oo pe + cavya pest + (CoeCars2 — Cavya) PePe1 + Cao2 Pacii,s

h(TMg) =80+ 4+ S M p— L
C ( C) +4+ (20—1)! D¢ + (20+1)! Pe+1 (dZ+1)! DePet1 + (@r+1)! P2e+1-

Once again, A(M) = 0 because M is spin and has scal > 0, and A(M, TM¢) = 0 by
Theorem A, because C1(R) > 0, as R is r-positive with r < r; and %al Id — Ric > 0. The
homogeneous linear system given by fl(M ) = A(M ,TMc) = 0 on the variables p ¢41)
and p(g41) only has the trivial solution provided that

—(4E + 2) Boy Boyqo + (2@ + 2) Boy Byt + (25) Bogyo Bagto # 0,
which holds if £ # 2,3, and we assumed ¢ > 4. Thus p ¢41) = p2e+1) =0. O

Let us now address the remaining statement (i) in Theorem D, regarding the case
k = 2. In dimension n = §, since %al Id — Ric is traceless, the condition %al Id—Ric >0
is equivalent to the Einstein condition Ric = %al Id. Repeating the proof of Theorem 5.1
with k& = 2 and r = 5, it follows that if (M®, g) is a closed Riemannian spin manifold with
an Einstein metric and 5-positive curvature operator, then all its Pontryagin numbers
vanish. In this dimension, the cobordism group Q5P" 2 Z @ Z has no torsion and is
hence completely determined by Pontryagin numbers, so we conclude that such M? is
null-cobordant, as claimed.

Next, we consider the relevant dimensions not covered by Theorem 5.1. In these
dimensions, under the analogous hypotheses, the homogeneous linear system given by
A(M ) = A(M ,T"M¢) = 0 on the only 2 possibly nonvanishing Pontryagin numbers
degenerates, i.e., admits nontrivial solutions. Thus, we must ensure the vanishing of
some other linear combination of these Pontryagin numbers, and A(M ,A°T Mg) turns
out to be a judicious choice. In order to obtain its vanishing, we make an assumption
on K(R,A°TM) = K(R,A?r,,), which is given explicitly in Example 3.5; recall also
that —K(R,A*’TM) = K(—R, A>T M) can be bounded from below in terms of the n — 2
largest eigenvalues of R by Proposition 3.9 and (3.4).

Theorem 5.2. Let (M™,g) be a closed Riemannian spin manifold of dimension n = 4k,
4k>+15k—4

o and

k = 4, 5, or 7. If its curvature operator is r-positive, where r =
sl Jd —K (R, A>T M) = 0, then M is rationally null-cobordant.

Proof. If £ = 4, then r = 10, so p; = 0 and p3 = 0 by Theorem 3.15. Computing as in
the proof of Theorem 5.1 in terms of the only remaining Pontryagin numbers,

A(M) = 2113}% (13}?(272) — 22 . 3])(4)) = 0 (53)

Since R is r-positive with r = PW(rs ® A%m,,) by Proposition 4.1, we obtain from
Corollary 3.10 (ii) that K(R,7s ® A’m,,) = 0, and thus that R, = 0 for 7 = A%m,, by
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Lemma 4.3. Therefore, A(M, \*TMg) = 0. Using (2.1), or computing ch(A,TM) with
the splitting principle and the multiplicative property of Ay, see (2.4), we have

A(M,N’TMc) = 553+ (101 pa.2) + 2% - 149 p(s)) = 0. (5.4)

Since the homogeneous linear system given by (5.3) and (5.4) only admits the trivial
solution, it follows that p(2 2y = p4) = 0, so all Pontryagin numbers vanish.
If K =5, then r < 16, so p; = p4 = 0, and by the same arguments, we have

~

AM) = grrgsery (3 TP3) —2-5p(s)) =0,
A(M, N*TM¢) = sogmezear (3723 73p(a,s) — 2+ 5- 13- 5003 p(s)) = 0,

which only has the trivial solution, so all Pontryagin numbers vanish.
Finally, if £ = 7, then r < 20, so p1 = p2 = p; = ps = 0, and similarly we have

AM) = srgrstmrrrs (283p@a) —2°-5-Tp)) =0,
A(M, /\2TMC) = m (*227 . 100910(374) — 22 -5-7- 32719]7(7)) = O,

which only has the trivial solution, so all Pontryagin numbers vanish. O

The only dimensions n = 4k not addressed in Theorem D nor in Theorem 5.2 are the
cases k = 1 and 3. For k = 1, it follows directly from the vanishing of A(M) that a closed
Riemannian spin 4-manifold with scal > 0 is null-cobordant. For k = 3, Theorem 3.15
implies that a closed Riemannian 12-manifold with 8-positive curvature operator has
p1 = p2 = 0. If such M2 is spin, then A(M) = 0 and thus p3 = 0, so once again M is
rationally null-cobordant.

6. Elliptic genus and Witten genus

In this section, we use modularity of the elliptic genus ¢ and of the Witten genus ¢,
as defined in Section 2.2, to derive sufficient conditions for their vanishing (Theorem C).
First, we prove a lemma with elementary considerations in the theory of modular forms;
recall the definition (2.6) of the subgroup I'o(2) C SL(2,Z).

Lemma 6.1. Let f € M,,,(SL(2,Z)) be a modular form of weight m. If

(i) m #2 mod 12 and ordso (f) > |
(ii) m =2 mod 12 and ordo(f) > |

|, or
-1

EISE

then f =0. If g € My (T'o(2)) and ordeo(g9) > [F], then g = 0.
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Proof. As ((1) }) € To(2), we have f(r +1) = f(7) and g(t + 1) = g(7), so f and ¢

have a Fourier expansion in integer powers of ¢ = €?™" and ord (f),ords(g) € Z are
nonnegative integers, i.e., N = 1 in the notation of Section 2.2. If f # 0, then

>ty exmiss 00y (f) + g ordeamisa (f) + 5 ordi(f) + ordoo (f) = 13,
see [13, Appendix I, Thm 4.1] or [32, Prop. 2]. In case (i), as all terms on the left-hand

side are nonnegative, it is strictly larger than the right-hand side yielding the desired
contradiction. In case (ii), we have m =2 mod 12, so if f # 0,

4ord,z~is3(f) =2 mod 6.
Since ord,z~i/s(f) > 0, by the above ordzri/s(f) > 2, so we obtain the contradiction
ordeo(f) < 5+ L15) — § < Lf3).

The final statement follows once again by contradiction using the equivalent formula for
g € M, (To(2)), see [13, Appendix I, §4.2], namely, if g # 0 then

Zmﬁ% ord,(g) + 1 ord.s

i
2

(9) +2o0rdo(g) +ordes(9) = 3. O

We now prove Theorem C using the above lemma together with Theorem A to find
curvature conditions which imply that sufficiently many coefficients of the Fourier ex-
pansion of ¢ or ¢y vanish so that the entire modular form vanishes.

Proof of Theorem C. Cousider the formal power series of bundles, see (2.4),
@ Symy, TM  and @ A_gee 1 TM @ Sym 20 TM.
=1 =1

Each is a product of sums of terms of the form Eq? with E C TM®® and s < d.
Multiplication of two such terms preserves that property, so the coefficient of ¢% in each
bundle is a (formal) linear combination of parallel subbundles of TM®* with s < d. Such
property is also preserved multiplying by a power series with scalar coefficients. Thus,
the coefficient of ¢¢ in py (M)(7) and in G(M)(27), see (2.5) and (2.8) respectively, is a
linear combination of terms fl(M , E¢) for parallel subbundles E C TM®%, s < d.

To prove (ii), if C|x/2j(R) > 0, then all such terms A(M, Eg) vanish for d < |k/2]
by Theorem A, hence orde.(@(M)(27)) > [k/2]. Since $(M)(27) € Mar(To(2)), as
n = 2m = 4k, Lemma 6.1 implies that (M)(27) = 0, so o(M) = 0 by (2.7).

Next, to prove (i), assume pi(T'M) = 0, so that pw (M)(1) € My (SL(2,7Z)). If
Cp(R) > 0, with p as in the statement of the theorem, then, as above, Theorem A
implies that orde (¢w (M)(7)) > p, so ow (M) =0 by Lemma 6.1 with m = 2k. O
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7. Examples and surgery stability

In this section, we examine some examples of closed Riemannian manifolds (M™, g)
whose curvature operator R satisfies Cj,(R) > 0 and prove Theorem B.
As a first example, consider the unit round sphere $", for which Rg» = Id, hence

Cp(Rgn) = 1n> — (p+ ) n—pp-2), p>1 (7.1)

Recall that the curvature operator Ry;xn of a product M x N is Ry; @ Ry @ 0 on
AT (M x N)) =2 N*TM & N*TN & (TM @ TN).

Proposition 7.1. The following hold:

(i) Let (M™,g) be a Riemannian manifold of dimension n with an Finstein metric
satisfying R = 0 and scal > 0. (For instance, M can be chosen to be a product of
compact rank one symmetric spaces $¢, CPY, HP?, CaP?.) Let H; ..., Hyj, be
Milnor surfaces, see Example 2.2, and N be any closed manifold. If n+2(j; — 1) +
<o+ +2(jr — 1) > 8, then the manifold

M x H; 5 x--- X Hy j, x N

admits a metric with C1(R) > 0.

(i) The condition C1(R) > 0 is stable under surgeries of codimension d > 10.

(iii) The condition Cp(R) > 0, p > 2, is stable under surgeries of codimension d on
manifolds of dimension n provided that (d —1)(d —2) > 8p(p +n — 2).

Proof. The Milnor surface H;; is the total space of a CP?~!-bundle over CP*. It can be
equipped with a connection metric using the two Fubini-Study metrics, and by scaling
the metric on the base by a large positive constant the curvature operator can be made
arbitrarily close to that of CP/~! x R?" with the standard product metric. By scaling
any metric on N similarly, the manifold in (i) admits a metric with curvature operator
R arbitrarily close to the curvature operator R, of

M x CP*7 1 x ... x CPIr1 x R0t Fie)+dim N

where the non-Euclidean factors can be scaled such that the metric on their product is
Einstein. Since R, > 0 and the largest eigenvalue of the Ricci operator of R, is p = %ﬂl,
where £ = n+2(j1 — 1)+ +2(ji — 1), we have that C1(R,) > 52l — sl Tp particular,
with ¢ > 8, it follows that C;(R) is arbitrarily close to Cy(R.) > 0, hence C1(R) > 0.
For each p > 1, the set {R € Sym;(A*R") : C,(R) > 0} is an open convex O(n)-
invariant cone, since scal and Ric are linear in R, and X(r, R) is concave in R. Let Ry,
3 < d < n, be the curvature operator of the product metric on R*~4t! x §9=1. One

easily checks that r, < dimker Ry for all p > 1, so C1(Rq) > 0 if d > 10, and
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Cp(Ra) 2 5(d=1)(d=2) —plp+n—-2), ifp>2.
Therefore, statements (ii) and (iii) follow directly from Theorem 2.3. O

Remark 7.2. For all n > 4 and p > 2, the convex cone of curvature operators R €
Symj (A*R™) satisfying C,(R) > 0 is a spectrahedron, as a consequence of [25, Thm. 3.3].
Thus, determining membership in this set is an algebraic task that can be efficiently
completed using semidefinite programming, see [3].

As a consequence of Proposition 7.1 (i), the curvature condition C;(R) > 0 imposes no
restriction on the Betti numbers by, ..., b,_g of an orientable manifold M™ of dimension
n > 10; in particular, by Poincaré duality, no restrictions on any Betti numbers if n > 18.
Next, we show that in the absence of the spin condition, Cy (R) > 0 imposes no restriction
on the rational cobordism type nor on Pontryagin numbers in large enough dimensions,
while, in the spin setting, the consequences of Theorem A are the only restriction on
rational spin cobordism type:

Proposition 7.3. The following hold:

(i) If [M™] € Q39 is not torsion, n > 10, then M is oriented cobordant to a connected
manifold admitting a metric with C1(R) > 0.

(i) If, furthermore, M™ is spin and A(M) = A(M, TMc¢) = 0, then, for some ¢, the
manifold #*M™ is spin cobordant to a manifold with C1(R) > 0.

Proof. By Theorem 2.1 (i), the set {[CP?™], [H;;] : m > 1,7 > 2, j > 6} generates
Q39 /torsion. Thus, [M"] can be represented by an integer linear combination of products
to which Proposition 7.1 (i) applies. Furthermore C;(R) > 0 is preserved by connected
sums (surgeries of codimension d = n) by Proposition 7.1 (ii). Therefore, the linear
combination can be replaced with a connected sum with the proper orientations, while
preserving the curvature condition, which proves (i).

Let K* represent a generator of Qipi", e.g., a K3 surface, so that A(K4) = —2. By
Theorem 2.1 (i), the set {[K*], [HP*] : k > 2} generates Q2"" @ Q. Noting that

A(M x N, T(M x N)¢) = A(M) A(N,TN¢) + A(N) A(M, TM¢),

it follows that a product N? of elements of the above generating set satisfies A(N ) =
A(N,TNg) = 0 unless it is (K*)9, for which A(N) = (=2)¢, or (K*)7~2 x HP?, for
which A(N,TNg) = —(—2)72. So, if the conditions in (ii) hold, [M] is represented by a
rational linear combination of products with factors either HP? x HP? or HP*, k > 2.
Each such product admits a metric with C;(R) > 0 by Proposition 7.1 (i). Thus, there
is an integer ¢ such that #°M™ is spin cobordant to a connected sum (of the above
products) admitting a metric with C1(R) > 0. O
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Table 1
Eigenvalues of the curvature operator Rj; of projective
spaces M endowed with the Fubini-Study metric with

1 <sec<4.
M Eigenvalues Multiplicity
0 m(m — 1)
CP™, m > 2 2 m? —1
2m + 2 1
0 32k +1)(k—1)
HP*, k> 2 4 k(2k +1)
4k 3
L P2 0 84
CaP 3 36

Theorem B follows from Proposition 7.1 together with Proposition 7.3.

Let us now discuss examples of manifolds that admit C,(R) > 0, p > 2. First, by
(7.1) and Proposition 7.1 (iii), the condition C,(R) > 0 is satisfied by round spheres
in sufficiently large dimensions, and is stable under connected sums and surgeries of
high codimension. Thus, we can construct examples of manifolds with C,(R) > 0 having
arbitrarily large first Betti number, as well as other Betti numbers of low degree. In order
to analyze examples which are not null-cobordant, recall the spectrum of the curvature
operator of compact rank one symmetric spaces [4].

All curvature operators R in Table 1 satisfy dimker R > r, and dimIm R > r;,, hence
are such that Cp(R) = =2l + p*X(r), —R). Thus, it follows that, for all p > 2,

Cp(Repm) = gm® + (3 — 4p — 2p°)m — 2p(p — 2),

2k +4 (1 —4p—3p*) k+8p(p+ 1), ifp<2k—1, (7.2)

Co(Rypr) =
v(Bapr) {2(18p)k2+4(1+2pp2)k, ifp>2k—1.

Clearly, for each fixed p > 2, the above are positive in sufficiently large dimension; while,
for each fixed dimension, they are positive for finitely many p > 2. However,

Cp(Reap2) = 72 — 112p — 8p?

is negative for all p > 2. Note this is in accordance with Theorem A, since, e.g., M =
CaP? has A(M, 2T Mg) # 0 hence does not admit a metric with Cy(R) > 0.
Next, consider p defined in terms of the dimension n = 4k as in Theorem C (i):

p=|L]-1ifk=1 mod6, andp=|%] otherwise.

For p = 1, corresponding to dimensions n between 24 and 44 as well as dimension
n = 52, in which the Witten genus oy (M) is determined by A(M) and A(M, TMc), the
examples of Propositions 7.1 and 7.3 demonstrate that a spin manifold with p1(TM) = 0
has vanishing Witten genus if and only if it is rationally cobordant to a spin manifold
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admitting a metric with C (R) > 0. For p = 2, corresponding to dimensions n between 48
and 68 as well as dimension n = 76, one checks with (7.2) that the Fubini-Study metric
on CP32,CP3*, and CP3%, along with product metrics on CP? x CP32, CP? x CP36,
CP* x CP31, CP? x CP? x CP3!, and HP? x CP3* satisfy C,(R) > 0. In the case of
products, an appropriate scaling on certain factors is required. Those examples show
that C3(R) > 0 is not so stringent as to imply rational null-cobordism for a general
closed oriented manifold.

References

[1] A.L. Besse, Einstein Manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008, Reprint of
the 1987 edition, MR 2371700.

[2] R.G. Bettiol, R.A.E. Mendes, Sectional curvature and Weitzenbock formulae, Indiana Univ. Math.
J. 71 (3) (2022) 1209-1242, MR, 4448583.

[3] R.G. Bettiol, M. Kummer, R.A.E. Mendes, Convex algebraic geometry of curvature operators, SIAM
J. Appl. Algebra Geom. 5 (2) (2021) 200-228, MR 4252070.

[4] J.-P. Bourguignon, H. Karcher, Curvature operators: pinching estimates and geometric examples,
Ann. Sci. Ec. Norm. Supér. 11 (1) (1978) 71-92, MR 493867.

[5] S-s. Chern, On a generalization of Kahler geometry, in: Algebraic Geometry and Topology. A Sym-
posium in Honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 103-121,
MR 0087172.

[6] G. Colombo, M. Mariani, M. Rigoli, Tachibana-type theorems on complete manifolds, Ann. Sc.
Norm. Super. Pisa, Cl. Sci. (5) 25 (2) (2024) 1033-1083, MR 4778470.

[7] N.S. Dairbekov, V.A. Sharafutdinov, Conformal Killing symmetric tensor fields on Riemannian
manifolds, Mat. Tr. 13 (1) (2010) 85-145, MR 2682769.

[8] A. Dessai, Characteristic numbers of positively curved Spin-manifolds with symmetry, Proc. Am.
Math. Soc. 133 (12) (2005) 3657-3661, MR 2163604.

[9] A. Fujiki, On the de Rham cohomology group of a compact Kéhler symplectic manifold, in: Algebraic
Geometry, Sendai, 1985, in: Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987,
pp. 105-165, MR 946237.

[10] R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants, Graduate Texts in Math-
ematics, vol. 255, Springer, Dordrecht, 2009, MR 2522486.

[11] M. Gromov, H.B. Lawson Jr., The classification of simply connected manifolds of positive scalar
curvature, Ann. Math. (2) 111 (3) (1980) 423-434, MR 577131.

[12] K. Heil, A. Moroianu, U. Semmelmann, Killing and conformal Killing tensors, J. Geom. Phys. 106
(2016) 383-400, MR 3508929.

[13] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Aspects of Mathematics, E20,
Friedr. Vieweg & Sohn, Braunschweig, 1992, MR 1189136.

[14] N. Hitchin, A note on vanishing theorems, in: Geometry and Analysis on Manifolds, in: Progr.
Math., vol. 308, Birkhduser/Springer, Cham, 2015, pp. 373-382, MR 3331406.

[15] S. Hoelzel, Surgery stable curvature conditions, Math. Ann. 365 (1-2) (2016) 13-47, MR 3498902.

[16] Y. Homma, U. Semmelmann, The kernel of the Rarita-Schwinger operator on Riemannian spin
manifolds, Commun. Math. Phys. 370 (3) (2019) 853-871, MR 3995921.

[17] G. Kempf, L. Ness, Tensor products of fundamental representations, Can. J. Math. 40 (3) (1988)
633-648, MR 960599.

[18] H.B. Lawson Jr., M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, vol. 38, Prince-
ton University Press, Princeton, NJ, 1989, MR 1031992.

[19] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci., Paris 257 (1963) 7-9, MR 156292.

[20] P. Littelmann, A generalization of the Littlewood-Richardson rule, J. Algebra 130 (2) (1990)
328-368, MR 1051307.

[21] J. Nienhaus, P. Petersen, M. Wink, Betti numbers and the curvature operator of the second kind,
J. Lond. Math. Soc. (2) 108 (4) (2023) 1642-1668, MR 4655274.

[22] P. Petersen, M. Wink, New curvature conditions for the Bochner technique, Invent. Math. 224 (1)
(2021) 33-54, MR, 4228500.


http://refhub.elsevier.com/S0001-8708(24)00511-5/bibB1C4CFC5E3060C0A297C3DF2D82B8179s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibB1C4CFC5E3060C0A297C3DF2D82B8179s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib991F99CCC54026E3DEB2B02E53413EFEs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib991F99CCC54026E3DEB2B02E53413EFEs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibF97E50E9A1B6F9DE6E29D239AE4D64CCs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibF97E50E9A1B6F9DE6E29D239AE4D64CCs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib7E7EC59D1F4B21021577FF562DC3D48Bs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib7E7EC59D1F4B21021577FF562DC3D48Bs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib361428EADE263F0A4C79859DF8FCA445s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib361428EADE263F0A4C79859DF8FCA445s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib361428EADE263F0A4C79859DF8FCA445s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib827FAC6A4D016D53B6874573CF37FC05s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib827FAC6A4D016D53B6874573CF37FC05s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib4707350C9D5289CF0ACDC7F8F12EBCFEs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib4707350C9D5289CF0ACDC7F8F12EBCFEs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib6FD7A89D85958C341B3B3BDEAFFEB2C1s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib6FD7A89D85958C341B3B3BDEAFFEB2C1s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib83A462CED2F7AEBA50031D6D877D936Ds1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib83A462CED2F7AEBA50031D6D877D936Ds1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib83A462CED2F7AEBA50031D6D877D936Ds1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib54DB4400E624F9F5D54EA5AD6E1E010Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib54DB4400E624F9F5D54EA5AD6E1E010Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib5E31DADAD1158375C8CFF4C7513F3CD0s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib5E31DADAD1158375C8CFF4C7513F3CD0s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib67B75781B18AB757D39EDFB13CF90113s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib67B75781B18AB757D39EDFB13CF90113s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib94B0018E93EFE5F5588451BB483B44B0s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib94B0018E93EFE5F5588451BB483B44B0s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib153AEF30EB5D6FABCD657088C5EBF443s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib153AEF30EB5D6FABCD657088C5EBF443s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib2501BC87D8D6DDBD2BCDBBB40D25B2D9s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib30B7D428BD5B5A15716B7B6F114B224Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib30B7D428BD5B5A15716B7B6F114B224Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibE88CB959D3B1860446018FF32B1B3361s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibE88CB959D3B1860446018FF32B1B3361s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib4FF6F7EA831E7CBAE65F49860028BE55s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib4FF6F7EA831E7CBAE65F49860028BE55s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibC3EB75B8220EF591F7D99A50BD75F9B1s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib05DB2382B3BE31F2B77C55A03214B59As1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib05DB2382B3BE31F2B77C55A03214B59As1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib66F39C3CF221439D9C11801D6EF9B590s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib66F39C3CF221439D9C11801D6EF9B590s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib8B4D5D2E151C7DA5ABB9AE825B222511s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib8B4D5D2E151C7DA5ABB9AE825B222511s1

R.G. Bettiol, M.J. Goodman / Advances in Mathematics 458 (2024) 109995 43

[23] P. Petersen, M. Wink, Vanishing and estimation results for Hodge numbers, J. Reine Angew. Math.
780 (2021) 197-219, MR 4333978.

[24] P. Petersen, M. Wink, Tachibana-type theorems and special holonomy, Ann. Glob. Anal. Geom.
61 (4) (2022) 847-868, MR 4423127.

[25] R. Sanyal, J. Saunderson, Spectral polyhedra, Forum Math. Sigma, in press, arXiv:2001.04361.

[26] R. Schoen, S.T. Yau, On the structure of manifolds with positive scalar curvature, Manuscr. Math.
28 (1-3) (1979) 159183, MR 535700.

[27] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (3) (2003)
503-527, MR 2021568.

[28] S. Stolz, A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304 (4)
(1996) 785-800, MR 1380455.

[29] R.E. Stong, Notes on Cobordism Theory, Mathematical Notes, Princeton University Press, Prince-
ton, N.J., University of Tokyo Press, Tokyo, 1968, MR 0248858.

[30] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954)
17-86, MR 61823.

[31] N.R. Wallach, Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, vol. 19,
Marcel Dekker, Inc., New York, 1973, MR 0498996.

[32] D. Zagier, Elliptic modular forms and their applications, the 1-2-3 of modular forms, in: Universitext,
Springer, Berlin, 2008, pp. 1-103, MR 2409678.


http://refhub.elsevier.com/S0001-8708(24)00511-5/bib141850016EB34A3C00792F496DE9D994s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib141850016EB34A3C00792F496DE9D994s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibA9E0B4FAD1D8847F4E026B3A3A204CAEs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibA9E0B4FAD1D8847F4E026B3A3A204CAEs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib7D934515C3A7A153BA1912C2D47D4C4Fs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib15C710F3B9063B5F386939151E026BE1s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib15C710F3B9063B5F386939151E026BE1s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibC418F34F261EFE1473465ADE95BFC22Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibC418F34F261EFE1473465ADE95BFC22Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibE8FEDA17D03B95BDA3E8717E79DC07B8s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibE8FEDA17D03B95BDA3E8717E79DC07B8s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibB022C562A2901421C64AA6C89AD8EF7As1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bibB022C562A2901421C64AA6C89AD8EF7As1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib736FF6A958D6B1C54B897BE957323698s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib736FF6A958D6B1C54B897BE957323698s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib90C5E576C60D8D8355892087596844A3s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib90C5E576C60D8D8355892087596844A3s1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib0225FF8BFC1D3E99C96E6FEA105D1F3Cs1
http://refhub.elsevier.com/S0001-8708(24)00511-5/bib0225FF8BFC1D3E99C96E6FEA105D1F3Cs1

	Curvature operators and rational cobordism
	1 Introduction
	1.1 The curvature conditions
	1.2 Twisted a hat genera
	1.3 Witten genus and elliptic genus
	1.4 Rational cobordism class
	1.5 Key ideas and organization
	Acknowledgments

	2 Preliminaries
	2.1 Cobordisms, Pontryagin numbers, and genera
	2.2 Modular forms
	2.3 Surgery stability
	2.4 Representation theory

	3 Revisiting the Bochner technique with representation theory
	3.1 Weitzenböck formulae
	3.2 Sufficient condition for positivity of curvature term
	3.3 Vanishing theorems

	4 Twisted spinors
	4.1 Representation theory of twisted spinors
	4.2 General vanishing theorem
	4.3 On the proof of Theorem A
	4.4 Monotonicity

	5 Cobordism classes
	6 Elliptic genus and Witten genus
	7 Examples and surgery stability
	References


