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Abstract: 33 

Given the pressing challenges posed by climate change, it is crucial to develop a deeper 34 

understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and 35 

the vital services they offer. Soil and plant water potential play a pivotal role in governing the 36 

dynamics of water within ecosystems and exert direct control over plant function and mortality 37 

risk during periods of ecological stress. However, existing observations of water potential suffer 38 

from significant limitations, including their sporadic and discontinuous nature, inconsistent 39 

representation of relevant spatio-temporal scales, and numerous methodological challenges. 40 

These limitations hinder the comprehensive and synthetic research needed to enhance our 41 

conceptual understanding and predictive models of plant function and survival under limited 42 

moisture availability. In this article, we present PSInet, a novel collaborative network of 43 

researchers and data, designed to bridge the current critical information gap in water potential 44 

data. The primary objectives of PSInet are: (1) Establishing the first openly accessible global 45 

database for time series of plant and soil water potential measurements, while providing 46 

important linkages with other relevant observation networks. (2) Fostering an inclusive and 47 

diverse collaborative environment for all scientists studying water potential in various stages of 48 

their careers. (3) Standardizing methodologies, processing, and interpretation of water potential 49 

data through the engagement of a global community of scientists, facilitated by the dissemination 50 

of standardized protocols, best practices, and early career training opportunities. (4) Facilitating 51 

the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our 52 

understanding of plants’ physiological responses to various environmental stressors. The PSInet 53 

initiative is integral to meeting the fundamental research challenge of discerning which plant 54 
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species will thrive and which will be vulnerable in a world undergoing rapid warming and 55 

increasing aridification.  56 

Key words: 57 

Water potential, plant hydraulics, database, plants, drought, network.   58 
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Water potential data are crucial for understanding plant responses to changing 59 

environmental conditions. 60 

Ecosystem function is strongly controlled by water potential (Ψ) gradients from soil to plants and 61 

to the atmosphere. In many ways, Ψ can be imagined as the “blood pressure” of the ecosystem; 62 

in the same way that blood pressure is a key measure of human health, Ψ is a key indicator of 63 

plant performance. Gradients in Ψ – within the soil, between plant roots and leaves, and between 64 

leaves and the atmosphere - are the energetic basis for ecosystem water fluxes. Leaf water 65 

potential (ΨL) directly controls stomatal conductance and photosynthesis (Jarvis, 1976; Sperry, 66 

2000) and is coupled with branch and stem water potential (ΨX), which determine the risk of 67 

drought-driven hydraulic failure (Choat et al., 2012). Moisture stress can cause detrimental 68 

declines in plant ΨL and ΨX, which can in turn induce stomatal closure, cause reductions in 69 

photosynthesis and growth, propagate embolism through the xylem network, and limit water 70 

transport. Consequently, Ψ is a first order control on how much carbon ecosystems remove from 71 

the atmosphere, how much water they move to the atmosphere in the process, and the likelihood 72 

that plants survive droughts. Over the past decade, there has been a surge of interest in 73 

uncovering the relationships between Ψ and physiological traits (Kannenberg et al., 2021; Flo et 74 

al. 2021; Li et al., 2020;  McCulloh et al., 2019; Martínez-Vilalta et al., 2017), incorporating 75 

plant hydraulics into predictive models (Kennedy et al., 2019; Mirfenderesgi et al., 2019; Sperry 76 

et al., 2017, Li et al., 2020), and advancing diverse remote-sensing approaches for detecting Ψ 77 

(Momen et al., 2017; Konings et al., 2019, 2021).  78 

However, while our understanding of plant Ψ is theory-rich, it is currently data-poor and 79 

there exist significant challenges in its study. Despite the abundance of time series data collected 80 

in some regions, accessibility remains a considerable hurdle due to the absence of a centralized 81 

database. Additionally, published Ψ studies tend to be biased towards ecosystems within North 82 

America (United States and Canada) and Europe (Figure 1), which together comprise 83 

approximately 47% of studies conducted globally even though these regions represent only 24% 84 

of the global land area. A major challenge in studying Ψ lies in the absence of a centralized 85 

repository that could facilitate the synthesis of essential knowledge and bridge prominent gaps in 86 

our comprehension of plants' physiological responses to diverse environmental stressors. The 87 

absence of a unified information source, coupled with geographical biases, plays a pivotal role in 88 
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conspicuously underrepresenting critical ecosystems globally. Furthermore, this deficiency in Ψ 89 

data deprives the scientific community of indispensable insights necessary for a holistic 90 

comprehension of Earth's interlinked systems and their responses to environmental dynamics. 91 

Plant water potential measurements: Status and future needs.  92 

The predominant approach for assessing plant ΨL and ΨX currently involves manual 93 

measurements using a Scholander-style "pressure chamber" (Scholander, 1965). These 94 

measurements provide estimates of plant ΨL and ΨX under specific conditions at a specific 95 

moment in time. However, for a more comprehensive understanding of a plant's water stress, it 96 

is essential to collect data multiple times during the day (typically at least pre-dawn and 97 

midday) and at intervals spanning weeks or longer, to capture gradients in key environmental 98 

drivers. While pressure chamber data is temporally discrete, these data are usually collected 99 

twice daily (e.g. and pre-dawn and mid-day), often for several weeks or months. Thus, a rich 100 

global database would be particularly useful to comprehend Ψ at diurnal timescales and to 101 

capture seasonal dynamics and fluctuations in soil moisture. It aids in evaluating the water 102 

status and drought responses of vegetation within natural ecosystems. Chamber Ψ can be 103 

monitored to optimize water management practices in agriculture and horticulture (Bittelli, 104 

2010; Levin, 2021; Shackel et al., 2021). Finally, it serves as a reliable reference dataset for 105 

the validation of remote sensing techniques used in monitoring vegetation water status 106 

(Momen 2017, Holtzman 2021).  107 

Records of pre-dawn and mid-day water potential collected with pressure chambers at 108 

weekly (or longer) timescales may be sufficient to link ΨL and ΨX dynamics to variations in 109 

soil water availability within a specific study. However, the time-intensive nature of this 110 

sampling approach usually limits the length of these time series. Furthermore, the time 111 

intervals at which most pressure chamber data are gathered are not sufficiently fine to capture 112 

more rapid sub-diurnal processes, such as stomatal response to changes in vapor pressure 113 

deficit (VPD, Novick et al., 2022) and daily fluctuations in plant water storage (Matheny et al., 114 

2017). Moreover, collecting ΨL and ΨX data involves conducting field work, which presenting 115 

unique inherent challenges.   116 
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The PSInet water potential dataset and community 117 

The PSInet Research Coordination Network (https://psinetrcn.github.io/) is a new 118 

centralized global dataset of plant and soil water potential measurements that will confront the 119 

Ψ information gap and enable the pursuit of previously intractable questions about plant 120 

responses to environmental drivers. PSInet will function as a bridge connecting readily 121 

available information about environmental variables and eco-physiological responses from 122 

other network databases. The latter include continuous flux tower observations of ecosystem-123 

scale carbon and water fluxes (e.g., AmeriFlux and FLUXNET, Novick et al. 2018, Baldocchi 124 

2008), the SAPFLUXNET database of continuous tree water use observations (Poyatos et al., 125 

2012), and the Xylem Functional Traits (XFT) database (Choat et al., 2012), which is the 126 

primary source of information about plant hydraulic traits within the larger TRY plant traits 127 

database (Kattge et al., 2019). While these networks aggregate many important eco-128 

physiological variables and traits, they do not provide the time series of Ψ that are required to 129 

mechanistically link environmental drivers and physiological responses, and to benchmark and 130 

inform modeling and remote-sensing approaches. This is the gap that PSInet will fill, to 131 

accelerate our theoretical and predictive understanding of plant-environment responses, now 132 

and for a warmer future. 133 

We anticipate that the wealth of information and the collaborative ethos of PSInet will 134 

prove instrumental in addressing a spectrum of crucial research questions at plant-to-135 

ecosystem scales. These questions might encompass topics such as understanding how plants 136 

respond to increasing VPD induced by climate change, unraveling the mechanisms underlying 137 

tree mortality and hydraulic failure in drought-affected environments, enhancing strategies to 138 

incorporate plant hydraulics within Earth system models, and pioneering methods to map the 139 

dynamics of Ψ across both spatial and temporal dimensions.  140 

Importantly, PSInet is not just a network of data but a network of people, organized 141 

around coordinated research, training, and community-building activities designed to increase 142 

the availability, integrity, and accessibility of Ψ information to a diverse scientific community. 143 

An overarching goal of PSInet is to create a Community of Practice with greater gender 144 

balance, racial diversity, and geographic diversity than the status quo. We foster a diverse and 145 

Page 6 of 20

http://mc.manuscriptcentral.com/tp

Manuscripts submitted to Tree Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://psinetrcn.github.io/


For Peer Review

   
 

   
 

inclusive network environment with multiple mechanisms to advance the careers of 146 

demographically, geographically, and intellectually diverse cohorts of early career scientists. 147 

Within the scope of PSInet, we will implement multiple mechanisms to support the training of 148 

the next-generation of ecophysiologists, including multiple early career summer workshops 149 

such as Phys-Fest, a forthcoming early career workshop on plant hydraulics, a forthcoming 150 

distributed graduate seminar, and numerous opportunities to participate in virtual and in-151 

person workshops, conference sessions, and seminars (Figure 2). Implicit in all PSInet 152 

Community of Practice activities is an emphasis on elevating the work and careers of scientists 153 

from underrepresented demographics and geographies.  154 

In early 2024, we initiated collection of plant water potential data and invite potential 155 

data contributors to join the effort. As a benefit to contributing data for free and open 156 

dissemination via PSInet, data contributors will receive priority access to the PSInet data for 157 

an embargo period of one year and opportunities to participate in PSInet networking, career 158 

development, and collaborative activities. Up to two contributors associated with each dataset 159 

contributed to the PSInet database will have the opportunity to collaborate on a forthcoming 160 

data paper. More information about the PSInet data submission process is available in Figure 3 161 

and at https://psinetrcn.github.io/submit.html. We are also actively seeking volunteer 162 

participation in the organization and execution of PSInet networking and outreach activities. 163 

Interested participants can indicate their interest by visiting 164 

https://psinetrcn.github.io/join.html. Our initial focus is on collecting plant water potential data 165 

and associated ancillary measurements. In the future, we plan to initiate a separate campaign 166 

to collect and aggregate information on soil water potential from sites that do not necessarily 167 

monitor plant water potential.   168 
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Alternative techniques for measuring Ψ 169 

Over the past three decades, there has been considerable progress in the development 170 

of alternative techniques for monitoring ΨL and ΨX and plant's water status to address the 171 

discontinuous and discrete nature of pressure chamber Ψ measurements (Figure 4). Several 172 

techniques offer promising, automated methods to monitor Ψ on the order of days to months. 173 

These techniques could be broadly classified as (1) direct sensing of water potential such as 174 

psychrometry, and most recently micro-tensiometers and hydrogel nano-reporters, and (2) 175 

indirect measurements such as remote sensing, or geophysical monitoring methods (e.g., 176 

Capacitance such as TDR (time domain reflectometry), FDR (frequency domain 177 

reflectometry), and electrical resistivity. As a network of data and people involved in water 178 

potential, PSInet is well-poised to evaluate Ψ data generated with newer techniques, facilitate 179 

intercomparisons across methodologies, and promote best practices for collecting and 180 

analyzing these data. 181 

These techniques allow estimations and measurements of plant Ψ at timescales that can 182 

capture high frequency or large spatial dynamics, and which complement the scales over 183 

which water and carbon fluxes are often measured and modeled. However, their practical 184 

implementation remains limited due to acknowledged constraints associated with these 185 

methods. Overall, the limitations associated with these techniques challenge our ability to 186 

synthesize and interpret the water potential 'observations'. Factors include: (1) assessing 187 

method selection based on the specific plant tissue under investigation (e.g., ΨL vs ΨX vs root 188 

water potential - ΨR), (2) scaling challenges from individual plants to the ecosystem level, (3) 189 

the essential but often problematic tasks of instrument maintenance under field conditions 190 

(e.g., accessing canopies and the necessity for routine checking due to tree protective 191 

mechanisms), (4) the necessity of species-specific calibration parameters, and (5) potential 192 

biases stemming from the sensitivity of instruments to environmental variables Collectively, 193 

these techniques represent valuable resources for bridging the spatial and temporal gaps 194 

inherent to pressure chamber data, but we urgently need openly accessible databases and 195 

community crafted best practices to overcome these operational difficulties.  196 
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For instance, remote sensing, with its potential for broad spatial coverage, appears as the 197 

second most common technique used to study and provide information about Ψ (Figure 2). 198 

Several relevant approaches exist, including hyperspectral, L-band, thermal, and microwave 199 

measurement. Among these methods, microwave remote sensing, as highlighted by Konings et 200 

al. (2021), shows promise since it can penetrate clouds and is sensitive to vegetation water 201 

content. However, this approach is not currently sufficiently mature to be used for estimation of 202 

Ψ without extensive ground calibration and validation data. Furthermore, a substantial portion of 203 

the current studies on Ψ utilizing remote sensing techniques tends to focus more on evaluating 204 

various methodologies rather than fundamental water potential research. Over the past decades, 205 

alternative techniques like capacitance sensors (TDR, FDR – Matheny et al., 2017), electrical 206 

resistivity (Cardenas et al., 2014), hydrogel nanoreporters (Jain et al., 2021), and even high-207 

resolution stem dendrometry (Drew et al., 2011; Eller et al., 2017) have emerged as suitable 208 

options for long-term, high-resolution studies across various plant types and specific tissues 209 

(particularly for ΨR and ΨX). However, these methods also rely on indirect measurements since 210 

they measure water content and approximate Ψ from this data (much like microwave remote 211 

sensing does). Moreover, these techniques require precise, species-specific calibration 212 

parameters that may impact measurement accuracy and limit generality to other species or 213 

ecosystems.  214 

Stem psychrometry has been proven suitable for monitoring ΨX directly on individual 215 

plants at longer temporal resolutions (Dixon & Tyree, 1984; Guo et al., 2019, Kannenberg et al 216 

2022), but it can present significant limitations, especially concerning the thermocouples in the 217 

sensors. High-precision Peltier-style thermocouples within the stem sensor can become occluded 218 

due to the plant wounding response, with the severity of this response varying significantly 219 

among different species. Moreover, this technique relies on the cooling effect resulting from 220 

water evaporation, which can be sensitive to daily and seasonal temperature and humidity 221 

fluctuations in natural conditions. To mitigate these limitations, careful calibration and frequent 222 

maintenance, as well as strong insulation and shielding to limit temperature gradients, are 223 

imperative. Furthermore, data must be corrected to account for temperature-related errors (Quick 224 

et al. 2018).  225 
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More recently, microtensiometers (Pagay et al., 2014, Pagay 2021; Dainese et al., 2021, 226 

2022; Lakso et al., 2022; Conesa et al., 2023) have emerged as valuable tools for continuously 227 

monitoring plant water potential (Ψ) directly at a finer scale. It stands out that microtensiometers 228 

offer high-resolution measurements of 0.1 bar with measurements every 20 min. However, it is 229 

important to note that, owing to their small-scale nature, both microtensiometers and 230 

psychrometers provide localized measurements that may not be reflective of whole-plant 231 

dynamics. Achieving a comprehensive understanding of plant water potential may need the use 232 

of multiple devices, adding complexity to the study. Additionally, regular maintenance may be 233 

required to ensure the continued accuracy and reliability of microtensiometer measurements due 234 

to cavitation of water in the sensing system (Luo et at, 2022).  235 

We recognize that the challenges discussed are not exclusive to monitoring plant Ψ. For 236 

instance, measurements of soil water potential (Ψs), which dictates water availability to plant 237 

roots, encounter similar hurdles (Khare et al., 2022; Novick et al., 2022; Martínez-Vilalta et al., 238 

2021). Current soil sensors often have limitations, typically providing accuracy only up to -2 239 

MPa (with a few exceptions like the dielectric Decagon MPS-6, now available as TEROS 21 240 

from METER). Additionally, the construction of accurate water retention curves, enabling the 241 

conversion of water content to water potential, can be intricate and demanding.  242 

For these reasons, another important objective of PSInet is to facilitate the creation of 243 

community-developed best practices and protocols for emerging approaches to measuring water 244 

potential along the soil-plant-atmosphere continuum. The diversity of techniques used to 245 

measure Ψ emphasizes the necessity for inter-comparison and integration, aiming to streamline 246 

sensor choices in future studies. This juncture presents an opportune moment for a renewed 247 

emphasis on field data collection and the establishment of new networks, such as PSInet, for 248 

aggregating observations across various sites. Coupled with innovative approaches for 249 

integrating these observations into Earth system models, such initiatives can significantly 250 

advance our understanding of the intricate interplay within the soil-plant-atmosphere continuum.  251 

  252 
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Conclusion 253 

Understanding which species will thrive and which will falter in a warmer and drier 254 

world is a fundamental research challenge informing many applications with societal value, 255 

including agro-ecosystem management and decisions about when and where ecosystems can be 256 

leveraged to mitigate climate change. PSInet is prepared to catalyze progress in areas that have 257 

been impacted by the scarcity of Ψ information. Moreover, our network of data and people will 258 

empower eco-physiological scientists by providing essential data, tools, and a collaborative 259 

community for translational science. We aim to foster connections between research 260 

communities tackling plant responses to climate change, while fostering inclusivity and 261 

providing support to scientists in diverse regions.  262 
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Figure Legends 415 

 416 

Figure 1. Geographic distribution of studies on plant water potential for both natural and 417 
agricultural ecosystems from 1970 to 2023 (including plants, leaves, and xylem, supplementary 418 
table 1) is visualized by color-coding the number of studies in each country. Notably, the United 419 
States stands out with the highest number of studies (1,257), followed by China (794) studies and 420 
Australia and Spain (507 each). There is a pronounced underrepresentation in regions such as 421 
Central and South America, Africa, and Eastern European countries. These areas exhibit a 422 
significant gap in research on Ψ, highlighting the need for more comprehensive global coverage 423 
in the field. 424 

 425 

Figure 2. PSInet project activities and timeline. 426 

 427 

Figure 3. PSInet data flow from submission to publication. The first step is completing the pre-428 
submission survey available on the PSInet website (https://psinetrcn.github.io/submit.html). 429 
Subsequently, the contributor prepares the data for submission, after which PSInet personnel 430 
conduct quality assurance and quality control (QA/QC) checks. Data contributors are then 431 
responsible for final approval and the assignment of a unique data identifier (DOI). The data 432 
becomes accessible initially to the contributors and after to the public.  433 

 434 

Figure 4. Cumulative count of appearances of different direct and indirect methods for 435 
estimating plant water potential in a Scopus search of literature (plant(s) water potential’ OR 436 
‘xylem water potential’ OR ‘leaf water potential’ OR ‘stem water potential’ in title, abstract or 437 
keywords). Note that counts represent individual appearances of each method, not papers (e.g., a 438 
paper can have multiple methods). We found that the pressure chamber method (e.g., Scholander 439 
et al. 1965) is historically the most popular (~87%) followed by remote sensing techniques 440 
including methodological developments and estimations of plant Ψ (~10%). However, in the last 441 
10 years, the popularity of the different methods has been changing. The pressure chamber 442 
method remains the most popular with about 79%, followed by remote sensing (~15%), 443 
geophysical techniques such as Resistivity, TDR, FDR (~2.7%), and psychrometry (2.6%). 444 
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Figure 1. Geographic distribution of studies on plant water potential for both natural and agricultural ecosystems from 1970 to 2023 (including plants, leaves, 
and xylem, supplementary table 1) is visualized by color-coding the number of studies in each country. Notably, the United States stands out with the highest 
number of studies (1,257), followed by China (794) studies and Australia and Spain (507 each). There is a pronounced underrepresentation in regions such as 
Central and South America, Africa, and Eastern European countries. These areas exhibit a significant gap in research on Ψ, highlighting the need for more 
comprehensive global coverage in the field.
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Figure 2. PSInet project activities and timeline.
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Figure 3. PSInet data flow from submission to publication. The first step is completing the pre-submission survey available on the PSInet website 
(https://psinetrcn.github.io/submit.html). Subsequently, the contributor prepares the data for submission, after which PSInet personnel conduct quality assurance and quality 
control (QA/QC) checks. Data contributors are then responsible for final approval and the assignment of a unique data identifier (DOI). The data becomes accessible initially to 
the contributors and after to the public. 
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Figure 4. Cumulative count of appearances of different direct and indirect methods for estimating plant water potential in a Scopus search of literature (plant(s) water 
potential’ OR ‘xylem water potential’ OR ‘leaf water potential’ OR ‘stem water potential’ in title, abstract or keywords). Note that counts represent individual appearances 
of each method, not papers (e.g., a paper can have multiple methods). We found that the pressure chamber method (e.g., Scholander et al. 1965) is historically the most 
popular (~87%) followed by remote sensing techniques including methodological developments and estimations of plant Ψ (~10%). However, in the last 10 years, the 
popularity of the different methods has been changing. The pressure chamber method remains the most popular with about 79%, followed by remote sensing (~15%), 
geophysical techniques such as Resistivity, TDR, FDR (~2.7%), and psychrometry (2.6%).
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