

PSInet: A new global water potential network

Journal:	<i>Tree Physiology</i>
Manuscript ID	TP-2024-077
Manuscript Type:	Editorial
Date Submitted by the Author:	23-Feb-2024
Complete List of Authors:	<p>RESTREPO ACEVEDO, ANA MARIA; Indiana University Bloomington School of Public and Environmental Affairs</p> <p>Guo, Jessica S.; Arizona Experiment Station</p> <p>Kannenberg, Steven A.; West Virginia University, Department of Biology</p> <p>Diaz, Renata; Arizona Experiment Station</p> <p>Konings, Alexandra G; Stanford University, Department of Earth System Science</p> <p>Lowman, Lauren E. L. ; Wake Forest University</p> <p>Beverly, Daniel; Indiana University Bloomington School of Public and Environmental Affairs</p> <p>Benson, Michael; Indiana University Bloomington, O'Neill School of Public and Environmental Affairs</p> <p>Johnson, Dan ; University of Georgia, Warnell School of Forestry and Natural Resources</p> <p>Koch, George; Northern Arizona University, Center for Ecosystem Science and Society</p> <p>Martinez-Vilalta, Jordi; CREAF; Universitat Autònoma de Barcelona</p> <p>Poyatos, Rafael; CREAF, CREAF; Universitat Autònoma de Barcelona, Biologia Animal, Biologia Vegetal i Ecologia</p> <p>Schenk, H.; California State University Fullerton, Department of Biological Science</p> <p>Anderegg, William; UNIVERSITY OF UTAH, School of Biological Sciences</p> <p>Matheny, Ashley; The University of Texas at Austin John A and Katherine G Jackson School of Geosciences, Department of Geological Sciences, Jackson School of Geosciences</p> <p>McCulloh, Katherine; University of Wisconsin-Madison, Botany</p> <p>Nippert, Jesse B; University of Wisconsin-Madison</p> <p>Oliveira, Rafael; University of Campinas Institute of Biology, Department of Plant Biology</p> <p>Novick, Kimberly; Indiana University Bloomington, School of Public and Environmental Affairs</p>

SCHOLARONE™
Manuscripts

1 PSInet: A new global water potential network

2 Ana Maria Restrepo Acevedo¹, Jessica S. Guo², Steven A. Kannenberg³, Michael C. Benson¹,
3 Renata Diaz², Dan Johnson⁴, George Koch⁵, Alexandra G Konings⁶, Lauren E. L. Lowman⁷,
4 Jordi Martínez-Vilalta^{8,9}, Rafael Poyatos^{8,9}, H. Jochen Schenk¹⁰, Daniel Beverly¹, William R. L.
5 Anderegg¹¹, Ashley M. Matheny¹², Katherine McCulloh¹³, Jesse B. Nippert¹⁴, Rafael S.
6 Oliveira¹⁵, Kimberly Novick¹

7 ¹O'Neill School of public & environmental affairs, Indiana University Bloomington. 702 N
8 Walnut Grove St. Bloomington, Indiana, USA, 47405.

9 ²Arizona Experiment Station, University of Arizona. 1140 E. South Campus Dr. Tucson,
10 Arizona, USA, 85721.

11 ³Department of Biology, West Virginia University. Morgantown, West Virginia, USA, 26506.

12 ⁴Warnell School of Forestry and Natural Resources, University of Georgia. Athens, Georgia,
13 USA, 30602

14 ⁵Center for Ecosystem Science and Society & Department of Biological Sciences, Northern
15 Arizona University, Flagstaff, Arizona, USA, 86011

16 ⁶Department of Earth System Science, Stanford University, Stanford, California, USA, 94305

17 ⁷Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA,
18 27101

19 ⁸CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.

20 ⁹Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia,
21 Spain

22 ¹⁰Department of Biological Science, California State University, Fullerton. Fullerton, California,
23 USA 92831

24 ¹¹School of Biological Sciences and Wilkes Center for Climate Science and Policy, University of
25 Utah, Salt Lake City, Utah, USA, 84112.

1
2
3 26 ¹²Department of Earth and Planetary Sciences, Jackson School of Geological Sciences,
4
5 27 University of Texas at Austin, Austin, Texas, USA, 78705.
6
7 28 ¹³Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA, 53706.
8
9 29 ¹⁴Division of Biology, Kansas State University, Manhattan, Kansas, USA, 66506
10
11 30 ¹⁵Department of Plant Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
12
13 31 **Author for correspondence:** Ana Maria Restrepo Acevedo, anarest@iu.edu, phone 512-696-
14
15 32 8622. Address: 3330 E Foothill Blvd, Unit 212, Pasadena, California, 91107.
16
17
18 33 **Abstract:**
19
20
21 34 Given the pressing challenges posed by climate change, it is crucial to develop a deeper
22
23 35 understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and
24
25 36 the vital services they offer. Soil and plant water potential play a pivotal role in governing the
26
27 37 dynamics of water within ecosystems and exert direct control over plant function and mortality
28
29 38 risk during periods of ecological stress. However, existing observations of water potential suffer
30
31 39 from significant limitations, including their sporadic and discontinuous nature, inconsistent
32
33 40 representation of relevant spatio-temporal scales, and numerous methodological challenges.
34
35 41 These limitations hinder the comprehensive and synthetic research needed to enhance our
36
37 42 conceptual understanding and predictive models of plant function and survival under limited
38
39 43 moisture availability. In this article, we present PSInet, a novel collaborative network of
40
41 44 researchers and data, designed to bridge the current critical information gap in water potential
42
43 45 data. The primary objectives of PSInet are: (1) Establishing the first openly accessible global
44
45 46 database for time series of plant and soil water potential measurements, while providing
46
47 47 important linkages with other relevant observation networks. (2) Fostering an inclusive and
48
49 48 diverse collaborative environment for all scientists studying water potential in various stages of
50
51 49 their careers. (3) Standardizing methodologies, processing, and interpretation of water potential
52
53 50 data through the engagement of a global community of scientists, facilitated by the dissemination
54
55 51 of standardized protocols, best practices, and early career training opportunities. (4) Facilitating
56
57 52 the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our
58
59 53 understanding of plants' physiological responses to various environmental stressors. The PSInet
60
61 initiative is integral to meeting the fundamental research challenge of discerning which plant

1
2
3 55 species will thrive and which will be vulnerable in a world undergoing rapid warming and
4 56 increasing aridification.
5
6

7 57 **Key words:**
8
9

10 58 Water potential, plant hydraulics, database, plants, drought, network.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 **59 Water potential data are crucial for understanding plant responses to changing**
4 **60 environmental conditions.**
5
6

7 Ecosystem function is strongly controlled by water potential (Ψ) gradients from soil to plants and
8 to the atmosphere. In many ways, Ψ can be imagined as the “blood pressure” of the ecosystem;
9 in the same way that blood pressure is a key measure of human health, Ψ is a key indicator of
10 plant performance. Gradients in Ψ – within the soil, between plant roots and leaves, and between
11 leaves and the atmosphere - are the energetic basis for ecosystem water fluxes. Leaf water
12 potential (Ψ_L) directly controls stomatal conductance and photosynthesis (Jarvis, 1976; Sperry,
13 2000) and is coupled with branch and stem water potential (Ψ_X), which determine the risk of
14 drought-driven hydraulic failure (Choat et al., 2012). Moisture stress can cause detrimental
15 declines in plant Ψ_L and Ψ_X , which can in turn induce stomatal closure, cause reductions in
16 photosynthesis and growth, propagate embolism through the xylem network, and limit water
17 transport. Consequently, Ψ is a first order control on how much carbon ecosystems remove from
18 the atmosphere, how much water they move to the atmosphere in the process, and the likelihood
19 that plants survive droughts. Over the past decade, there has been a surge of interest in
20 uncovering the relationships between Ψ and physiological traits (Kannenberg et al., 2021; Flo et
21 al. 2021; Li et al., 2020; McCulloh et al., 2019; Martínez-Vilalta et al., 2017), incorporating
22 plant hydraulics into predictive models (Kennedy et al., 2019; Mirfenderesgi et al., 2019; Sperry
23 et al., 2017, Li et al., 2020), and advancing diverse remote-sensing approaches for detecting Ψ
24 (Momen et al., 2017; Konings et al., 2019, 2021).
25
26

27 However, while our understanding of plant Ψ is theory-rich, it is currently data-poor and
28 there exist significant challenges in its study. Despite the abundance of time series data collected
29 in some regions, accessibility remains a considerable hurdle due to the absence of a centralized
30 database. Additionally, published Ψ studies tend to be biased towards ecosystems within North
31 America (United States and Canada) and Europe (Figure 1), which together comprise
32 approximately 47% of studies conducted globally even though these regions represent only 24%
33 of the global land area. A major challenge in studying Ψ lies in the absence of a centralized
34 repository that could facilitate the synthesis of essential knowledge and bridge prominent gaps in
35 our comprehension of plants' physiological responses to diverse environmental stressors. The
36 absence of a unified information source, coupled with geographical biases, plays a pivotal role in
37
38

1
2
3 89 conspicuously underrepresenting critical ecosystems globally. Furthermore, this deficiency in Ψ
4 90 data deprives the scientific community of indispensable insights necessary for a holistic
5 91 comprehension of Earth's interlinked systems and their responses to environmental dynamics.
6
7
8
9 92 **Plant water potential measurements: Status and future needs.**

10
11
12 93 The predominant approach for assessing plant Ψ_L and Ψ_X currently involves manual
13 94 measurements using a Scholander-style "pressure chamber" (Scholander, 1965). These
14 95 measurements provide estimates of plant Ψ_L and Ψ_X under specific conditions at a specific
15 96 moment in time. However, for a more comprehensive understanding of a plant's water stress, it
16 97 is essential to collect data multiple times during the day (typically at least pre-dawn and
17 98 midday) and at intervals spanning weeks or longer, to capture gradients in key environmental
18 99 drivers. While pressure chamber data is temporally discrete, these data are usually collected
19 100 twice daily (e.g. and pre-dawn and mid-day), often for several weeks or months. Thus, a rich
20 101 global database would be particularly useful to comprehend Ψ at diurnal timescales and to
21 102 capture seasonal dynamics and fluctuations in soil moisture. It aids in evaluating the water
22 103 status and drought responses of vegetation within natural ecosystems. Chamber Ψ can be
23 104 monitored to optimize water management practices in agriculture and horticulture (Bittelli,
24 105 2010; Levin, 2021; Shackel et al., 2021). Finally, it serves as a reliable reference dataset for
25 106 the validation of remote sensing techniques used in monitoring vegetation water status
26 107 (Momen 2017, Holtzman 2021).

27
28
29 108 Records of pre-dawn and mid-day water potential collected with pressure chambers at
30 109 weekly (or longer) timescales may be sufficient to link Ψ_L and Ψ_X dynamics to variations in
31 110 soil water availability within a specific study. However, the time-intensive nature of this
32 111 sampling approach usually limits the length of these time series. Furthermore, the time
33 112 intervals at which most pressure chamber data are gathered are not sufficiently fine to capture
34 113 more rapid sub-diurnal processes, such as stomatal response to changes in vapor pressure
35 114 deficit (VPD, Novick et al., 2022) and daily fluctuations in plant water storage (Matheny et al.,
36 115 2017). Moreover, collecting Ψ_L and Ψ_X data involves conducting field work, which presenting
37 116 unique inherent challenges.

117 The PSInet water potential dataset and community

118 The PSInet Research Coordination Network (<https://psinetrn.github.io/>) is a new
119 centralized global dataset of plant and soil water potential measurements that will confront the
120 Ψ information gap and enable the pursuit of previously intractable questions about plant
121 responses to environmental drivers. PSInet will function as a bridge connecting readily
122 available information about environmental variables and eco-physiological responses from
123 other network databases. The latter include continuous flux tower observations of ecosystem-
124 scale carbon and water fluxes (e.g., AmeriFlux and FLUXNET, Novick et al. 2018, Baldocchi
125 2008), the SAPFLUXNET database of continuous tree water use observations (Poyatos et al.,
126 2012), and the Xylem Functional Traits (XFT) database (Choat et al., 2012), which is the
127 primary source of information about plant hydraulic traits within the larger TRY plant traits
128 database (Kattge et al., 2019). While these networks aggregate many important eco-
129 physiological variables and traits, they do not provide the time series of Ψ that are required to
130 mechanistically link environmental drivers and physiological responses, and to benchmark and
131 inform modeling and remote-sensing approaches. This is the gap that PSInet will fill, to
132 accelerate our theoretical and predictive understanding of plant-environment responses, now
133 and for a warmer future.

134 We anticipate that the wealth of information and the collaborative ethos of PSInet will
135 prove instrumental in addressing a spectrum of crucial research questions at plant-to-
136 ecosystem scales. These questions might encompass topics such as understanding how plants
137 respond to increasing VPD induced by climate change, unraveling the mechanisms underlying
138 tree mortality and hydraulic failure in drought-affected environments, enhancing strategies to
139 incorporate plant hydraulics within Earth system models, and pioneering methods to map the
140 dynamics of Ψ across both spatial and temporal dimensions.

141 Importantly, PSInet is not just a network of data but a network of people, organized
142 around coordinated research, training, and community-building activities designed to increase
143 the availability, integrity, and accessibility of Ψ information to a diverse scientific community.
144 An overarching goal of PSInet is to create a Community of Practice with greater gender
145 balance, racial diversity, and geographic diversity than the status quo. We foster a diverse and

1
2
3 146 inclusive network environment with multiple mechanisms to advance the careers of
4 147 demographically, geographically, and intellectually diverse cohorts of early career scientists.
5 148 Within the scope of PSInet, we will implement multiple mechanisms to support the training of
6 149 the next-generation of ecophysiologists, including multiple early career summer workshops
7 150 such as [Phys-Fest](#), a forthcoming early career workshop on plant hydraulics, a forthcoming
8 151 distributed graduate seminar, and numerous opportunities to participate in virtual and in-
9 152 person workshops, conference sessions, and seminars (Figure 2). Implicit in all PSInet
10 153 Community of Practice activities is an emphasis on elevating the work and careers of scientists
11 154 from underrepresented demographics and geographies.
12
13
14
15
16
17
18
19

20 155 In early 2024, we initiated collection of plant water potential data and invite potential
21 156 data contributors to join the effort. As a benefit to contributing data for free and open
22 157 dissemination via PSInet, data contributors will receive priority access to the PSInet data for
23 158 an embargo period of one year and opportunities to participate in PSInet networking, career
24 159 development, and collaborative activities. Up to two contributors associated with each dataset
25 160 contributed to the PSInet database will have the opportunity to collaborate on a forthcoming
26 161 data paper. More information about the PSInet data submission process is available in Figure 3
27 162 and at <https://psinetrn.github.io/submit.html>. We are also actively seeking volunteer
28 163 participation in the organization and execution of PSInet networking and outreach activities.
29 164 Interested participants can indicate their interest by visiting
30 165 <https://psinetrn.github.io/join.html>. Our initial focus is on collecting plant water potential data
31 166 and associated ancillary measurements. In the future, we plan to initiate a separate campaign
32 167 to collect and aggregate information on soil water potential from sites that do not necessarily
33 168 monitor plant water potential.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 169 **Alternative techniques for measuring Ψ**
4
5

6 170 Over the past three decades, there has been considerable progress in the development
7 of alternative techniques for monitoring Ψ_L and Ψ_X and plant's water status to address the
8 discontinuous and discrete nature of pressure chamber Ψ measurements (Figure 4). Several
9 techniques offer promising, automated methods to monitor Ψ on the order of days to months.
10 171 These techniques could be broadly classified as (1) direct sensing of water potential such as
11 psychrometry, and most recently micro-tensiometers and hydrogel nano-reporters, and (2)
12 indirect measurements such as remote sensing, or geophysical monitoring methods (e.g.,
13 172 Capacitance such as TDR (time domain reflectometry), FDR (frequency domain
14 reflectometry), and electrical resistivity. As a network of data and people involved in water
15 potential, PSInet is well-poised to evaluate Ψ data generated with newer techniques, facilitate
16 intercomparisons across methodologies, and promote best practices for collecting and
17 analyzing these data.
18

19 182 These techniques allow estimations and measurements of plant Ψ at timescales that can
20 capture high frequency or large spatial dynamics, and which complement the scales over
21 which water and carbon fluxes are often measured and modeled. However, their practical
22 implementation remains limited due to acknowledged constraints associated with these
23 methods. Overall, the limitations associated with these techniques challenge our ability to
24 synthesize and interpret the water potential 'observations'. Factors include: (1) assessing
25 method selection based on the specific plant tissue under investigation (e.g., Ψ_L vs Ψ_X vs root
26 water potential - Ψ_R), (2) scaling challenges from individual plants to the ecosystem level, (3)
27 the essential but often problematic tasks of instrument maintenance under field conditions
28 (e.g., accessing canopies and the necessity for routine checking due to tree protective
29 mechanisms), (4) the necessity of species-specific calibration parameters, and (5) potential
30 biases stemming from the sensitivity of instruments to environmental variables. Collectively,
31 these techniques represent valuable resources for bridging the spatial and temporal gaps
32 inherent to pressure chamber data, but we urgently need openly accessible databases and
33 community crafted best practices to overcome these operational difficulties.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 197 For instance, remote sensing, with its potential for broad spatial coverage, appears as the
4 second most common technique used to study and provide information about Ψ (Figure 2).
5 198 Several relevant approaches exist, including hyperspectral, L-band, thermal, and microwave
6 measurement. Among these methods, microwave remote sensing, as highlighted by Konings et
7 al. (2021), shows promise since it can penetrate clouds and is sensitive to vegetation water
8 content. However, this approach is not currently sufficiently mature to be used for estimation of
9 Ψ without extensive ground calibration and validation data. Furthermore, a substantial portion of
10 the current studies on Ψ utilizing remote sensing techniques tends to focus more on evaluating
11 various methodologies rather than fundamental water potential research. Over the past decades,
12 alternative techniques like capacitance sensors (TDR, FDR – Matheny et al., 2017), electrical
13 resistivity (Cardenas et al., 2014), hydrogel nanoreporters (Jain et al., 2021), and even high-
14 resolution stem dendrometry (Drew et al., 2011; Eller et al., 2017) have emerged as suitable
15 options for long-term, high-resolution studies across various plant types and specific tissues
16 (particularly for Ψ_R and Ψ_X). However, these methods also rely on indirect measurements since
17 they measure water content and approximate Ψ from this data (much like microwave remote
18 sensing does). Moreover, these techniques require precise, species-specific calibration
19 parameters that may impact measurement accuracy and limit generality to other species or
20 ecosystems.
21
22

23 215 Stem psychrometry has been proven suitable for monitoring Ψ_X directly on individual
24 plants at longer temporal resolutions (Dixon & Tyree, 1984; Guo et al., 2019, Kannenberg et al
25 2022), but it can present significant limitations, especially concerning the thermocouples in the
26 sensors. High-precision Peltier-style thermocouples within the stem sensor can become occluded
27 due to the plant wounding response, with the severity of this response varying significantly
28 among different species. Moreover, this technique relies on the cooling effect resulting from
29 water evaporation, which can be sensitive to daily and seasonal temperature and humidity
30 fluctuations in natural conditions. To mitigate these limitations, careful calibration and frequent
31 maintenance, as well as strong insulation and shielding to limit temperature gradients, are
32 imperative. Furthermore, data must be corrected to account for temperature-related errors (Quick
33 et al. 2018).
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 226 More recently, microtensiometers (Pagay et al., 2014, Pagay 2021; Dainese et al., 2021,
4 227 2022; Lakso et al., 2022; Conesa et al., 2023) have emerged as valuable tools for continuously
5 228 monitoring plant water potential (Ψ) directly at a finer scale. It stands out that microtensiometers
6 229 offer high-resolution measurements of 0.1 bar with measurements every 20 min. However, it is
7 230 important to note that, owing to their small-scale nature, both microtensiometers and
8 231 psychrometers provide localized measurements that may not be reflective of whole-plant
9 232 dynamics. Achieving a comprehensive understanding of plant water potential may need the use
10 233 of multiple devices, adding complexity to the study. Additionally, regular maintenance may be
11 234 required to ensure the continued accuracy and reliability of microtensiometer measurements due
12 235 to cavitation of water in the sensing system (Luo et al., 2022).
13
14

15 236 We recognize that the challenges discussed are not exclusive to monitoring plant Ψ . For
16 237 instance, measurements of soil water potential (Ψ_s), which dictates water availability to plant
17 238 roots, encounter similar hurdles (Khare et al., 2022; Novick et al., 2022; Martínez-Vilalta et al.,
18 239 2021). Current soil sensors often have limitations, typically providing accuracy only up to -2
19 240 MPa (with a few exceptions like the dielectric Decagon MPS-6, now available as TEROS 21
20 241 from METER). Additionally, the construction of accurate water retention curves, enabling the
21 242 conversion of water content to water potential, can be intricate and demanding.
22
23

24 243 For these reasons, another important objective of PSInet is to facilitate the creation of
25 244 community-developed best practices and protocols for emerging approaches to measuring water
26 245 potential along the soil-plant-atmosphere continuum. The diversity of techniques used to
27 246 measure Ψ emphasizes the necessity for inter-comparison and integration, aiming to streamline
28 247 sensor choices in future studies. This juncture presents an opportune moment for a renewed
29 248 emphasis on field data collection and the establishment of new networks, such as PSInet, for
30 249 aggregating observations across various sites. Coupled with innovative approaches for
31 250 integrating these observations into Earth system models, such initiatives can significantly
32 251 advance our understanding of the intricate interplay within the soil-plant-atmosphere continuum.
33
34 252
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

253 Conclusion

254 Understanding which species will thrive and which will falter in a warmer and drier
255 world is a fundamental research challenge informing many applications with societal value,
256 including agro-ecosystem management and decisions about when and where ecosystems can be
257 leveraged to mitigate climate change. PSInet is prepared to catalyze progress in areas that have
258 been impacted by the scarcity of Ψ information. Moreover, our network of data and people will
259 empower eco-physiological scientists by providing essential data, tools, and a collaborative
260 community for translational science. We aim to foster connections between research
261 communities tackling plant responses to climate change, while fostering inclusivity and
262 providing support to scientists in diverse regions.

263

264 Data and Materials Availability

265 The data that support the findings of this study were derived from the resources available
266 in the public domain: [<https://www.scopus.com/>].

267

268 Conflict of Interest

269 All authors declare that they have no conflicts of interest to report.

270

271 Funding

272 The authors recognize support from the National Science Foundation – Division of
273 Integrative Organismal Biology via a Research Coordination Grant (#2243900). K. Novick
274 acknowledges additional support from the US (United States) Department of Energy via the
275 Environmental System Science Program (grant number DE-SC0021980). D. Beverly
276 acknowledges support from the USDA (United States Department of Agriculture) – National
277 Institute of Food and Agriculture (NIFA, grant number 2023-67012-40083).

278 **References**

279 Baldocchi, D. (2008). 'Breathing' of the terrestrial biosphere: lessons learned from a global
280 network of carbon dioxide flux measurement systems. *Australian Journal of Botany*, 56(1), 1-26.
281 <https://doi.org/10.1071/BT07151>

282 Bittelli, M. (2010). Measuring Soil Water Potential for Water Management in Agriculture: A
283 Review. *Sustainability*, 2(5), 1226-1251. <https://doi.org/10.3390/su2051226>

284 Cardenas, M. B., & Kanarek, M. R. (2014). Soil moisture variation and dynamics across a
285 wildfire burn boundary in a loblolly pine (*Pinus taeda*) forest. *Journal of Hydrology*, 519, 490–
286 502. <https://doi.org/10.1016/j.jhydrol.2014.07.016>

287 Choat, B., Jansen, S., Brodribb, T. *et al.* (2012). Global convergence in the vulnerability of
288 forests to drought. *Nature* 491, 752–755. <https://doi.org/10.1038/nature11688>

289 Conesa, M. R., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2023). Assessment of trunk
290 microtensiometer as a novel biosensor to continuously monitor plant water status in nectarine
291 trees. *Frontiers in Plant Science*, 14.

292 Dainese, R., Lopes, B. d. C. F. L., Fourcaud, T., & Tarantino, A. (2021). Evaluation of
293 instruments for monitoring the soil–plant continuum. *Geomechanics for Energy and the*
294 *Environment*, 100256.

295 Dainese, R., de CFL Lopes, B., Tedeschi, G., Lamarque, L. J., Delzon, S., Fourcaud, T., &
296 Tarantino, A. (2022). Cross-validation of the high-capacity tensiometer and thermocouple
297 psychrometer for continuous monitoring of xylem water potential in saplings. *Journal of*
298 *Experimental Botany*, 73, 400-412.

299 Dixon, M. A., & Tyree, M. T. (1984). A new stem hygrometer, corrected for temperature
300 gradients and calibrated against the pressure bomb. *Plant, Cell and Environment*, 7, 693-697

301 Drew, D. M., Richards, A. E., Geoffrey M. Downes, Garry D. Cook, Patrick Baker, The
302 development of seasonal tree water deficit in *Callitris intratropica*, *Tree Physiology*, Volume 31,
303 Issue 9, September 2011, Pages 953–964, <https://doi.org/10.1093/treephys/tpr031>.

304 Eller, C. B., Barros, F. de V., Bittencourt, P. R. L., Rowland, L., Mencuccini, M., & Oliveira, R.
305 S. (2017). Xylem hydraulic safety and construction costs determine tropical tree growth. *Plant,*
306 *Cell & Environment*. Advance online publication. <https://doi.org/10.1111/pce.13106>

307 Flo, V., Martínez-Vilalta, J., Mencuccini, M., Granda, V., Anderegg, W. R. L., & Poyatos, R.
308 (2021). Climate and functional traits jointly mediate tree water-use strategies. *New Phytologist*.
309 Advance online publication. <https://doi.org/10.1111/nph.17404>

1
2
3 310 Guo, J. S., Hultine, K. R., Koch, G. W., Kropp, H., & Ogle, K. (2019). Temporal shifts in
4 iso/anisohydry revealed from daily observations of plant water potential in a dominant desert
5 shrub. *New Phytologist*, 225(2), 675-687. <https://doi.org/10.1111/nph.16196>
6
7 313 Jain, P., Liu, W., Zhu, S., Chang, C. Y. Y., Melkonian, J., Rockwell, F. E., Pauli, D., Sun, Y.,
8 Zipfel, W. R., Holbrook, N. M., Riha, S. J., Gore, M. A., & Stroock, A. D. (2021). A minimally
9 disruptive method for measuring water potential in planta using hydrogel nanoreporters.
10 *Proceedings of the National Academy of Sciences of the United States of America (PNAS)*,
11 118(23), e2008276118. <https://doi.org/10.1073/pnas.2008276118>
12
13 317
14
15 318 Jarvis, P. G. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal
16 Conductance Found in Canopies in the Field. *Philosophical Transactions of the Royal Society of*
17 *London. Series B, Biological Sciences*, 273(927), 593–610. <http://www.jstor.org/stable/2417554>
18
19 321 Holtzman, N. M., Anderegg, L. D. L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C.,
20 Cosh, M. H., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., &
21 Konings, A. G. (2021). L-band vegetation optical depth as an indicator of plant water potential in
22 a temperate deciduous forest stand. *Biogeosciences*, 18, 739-753. <https://doi.org/10.5194/bg-18-739-2021>
23
24 326 Kannenberg, S. A., Barnes, M. L., Bowling, D. R., Driscoll, A. W., Guo, J. S., & Anderegg, W.
25 R. L. (2022). Quantifying the drivers of ecosystem fluxes and water potential across the soil-
26 plant-atmosphere continuum in an arid woodland. *Agricultural and Forest Meteorology*. Advance
27 online publication. <https://doi.org/10.1016/j.agrformet.2022.109269>
28
29 330 Kannenberg, S. A., Guo, J. S., Novick, K. A., Anderegg, W. R. L., Feng, X., Kennedy, D.,
30 Konings, A. G., Martínez-Vilalta, J., & Matheny, A. M. (2021). Opportunities, challenges and
31 pitfalls in characterizing plant water-use strategies. *Functional Ecology*, 35(12), 2752-2765.
32 <https://doi.org/10.1111/1365-2435.13945>
33
34 334 Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., ... & Wirth, C. (2019).
35 TRY plant trait database – enhanced coverage and free access. *Global Change Biology*, 26(1),
36 119-188. <https://doi.org/10.1111/gcb.14904>
37
38 337 Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., da Costa, A. C. L., &
39 Gentine, P. (2019). Implementing Plant Hydraulics in the Community Land Model, Version 5.
40 *Journal of Advances in Modeling Earth Systems*, 11(1), 485-498.
41 <https://doi.org/10.1029/2018MS001500>
42
43 341 Khare, D., Selzner, T., Leitner, D., Vanderborght, J., Vereecken, H., & Schnepf, A. (2022). Root
44 System Scale Models Significantly Overestimate Root Water Uptake at Drying Soil Conditions.
45 *Frontiers in Plant Science*, 13, Article 798741. <https://doi.org/10.3389/fpls.2022.798741>
46
47 344 Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W. R. L.,
48 Humphrey, V., Matheny, A. M., Trugman, A., and others. (2021). Detecting forest response to
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 346 droughts with global observations of vegetation water content. *Global Change Biology*. Advance
4 347 online publication. <https://doi.org/10.1111/gcb.15872>

5
6 348 Konings, A. G., Rao, K., & Steele-Dunne, S. C. (2019). Macro to micro: microwave remote
7 349 sensing of plant water content for physiology and ecology. *New Phytologist*. Advance online
8 350 publication. <https://doi.org/10.1111/nph.15808>

9
10 351 Lakso, A. N., Santiago, M., & Stroock, A. D. (2022). Monitoring stem water potential with an
11 352 embedded microtensiometer to inform irrigation scheduling in fruit crops. *Horticulturae*, 8, 1207.

12
13 353 Levin, A., & Nackley, L. (2021). Principles and Practices of Plant-based Irrigation Management.
14 354 *HortTechnology*, 31(6), 650–660. <https://doi.org/10.21273/HORTTECH04862-21>

15
16 355 Li, L., Yang, Z.-L., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., Barlage, M.,
17 356 Yan, B., McDowell, N. G., & Leung, L. R. (2020). Representation of Plant Hydraulics in the
18 357 Noah-MP Land Surface Model: Model Development and Multiscale Evaluation. *Journal of
19 358 Advances in Modeling Earth Systems*, 13(2), e2020MS002214.
20 359 <https://doi.org/10.1029/2020MS002214>

21
22 360 Luo, S., Lu, N., Zhang, C., & Likos, W. (2022). Soil water potential: A historical perspective and
23 361 recent breakthroughs. *Vadose Zone Journal*, 21, e20203

24
25 362 Martínez-Vilalta, J., Santiago, L. S., Poyatos, R., Badiella, L., de Cáceres, M., Aranda, I.,
26 363 Delzon, S., Vilagrosa, A., & Mencuccini, M. (2021). Towards a statistically robust determination
27 364 of minimum water potential and hydraulic risk in plants. *New Phytologist*. Advance online
28 365 publication. <https://doi.org/10.1111/nph.17571>

29
30 366 Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour
31 367 and hydraulic transport under drought: deconstructing the iso/anisohydric concept. *Plant, Cell &
32 368 Environment*, 40(6), 962-976. <https://doi.org/10.1111/pce.12846>

33
34 369 Matheny, A. M., et al. (2017). "The calibration and use of capacitance sensors to monitor stem
35 370 water content in trees." *Journal of Visual Experiments* (130): e57062.

36
37 371 McCulloh, K. A., Domec, J. C., Johnson, D. M., Smith, D. D., & Meinzer, F. C. (2019). A
38 372 dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole
39 373 plants. *Plant, Cell & Environment*, 42(10), 2789-2807. <https://doi.org/10.1111/pce.13607>

40
41 374 Mirmenderesgi, G., Bohrer, G., Matheny, A. M., Fatichi, S., Prata de Moraes Frasson, R., &
42 375 Schäfer, K. V. R. (2016). Tree level hydrodynamic approach for resolving aboveground water
43 376 storage and stomatal conductance and modeling the effects of tree hydraulic strategy. *Journal of
44 377 Geophysical Research: Biogeosciences*, 121(6), 1709-1725.
45 378 <https://doi.org/10.1002/2016JG003467>

46
47 379 Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell, N. G., &
48 380 Konings, A. G. (2017). Interacting Effects of Leaf Water Potential and Biomass on Vegetation

49
50
51
52
53
54
55
56
57
58
59
60

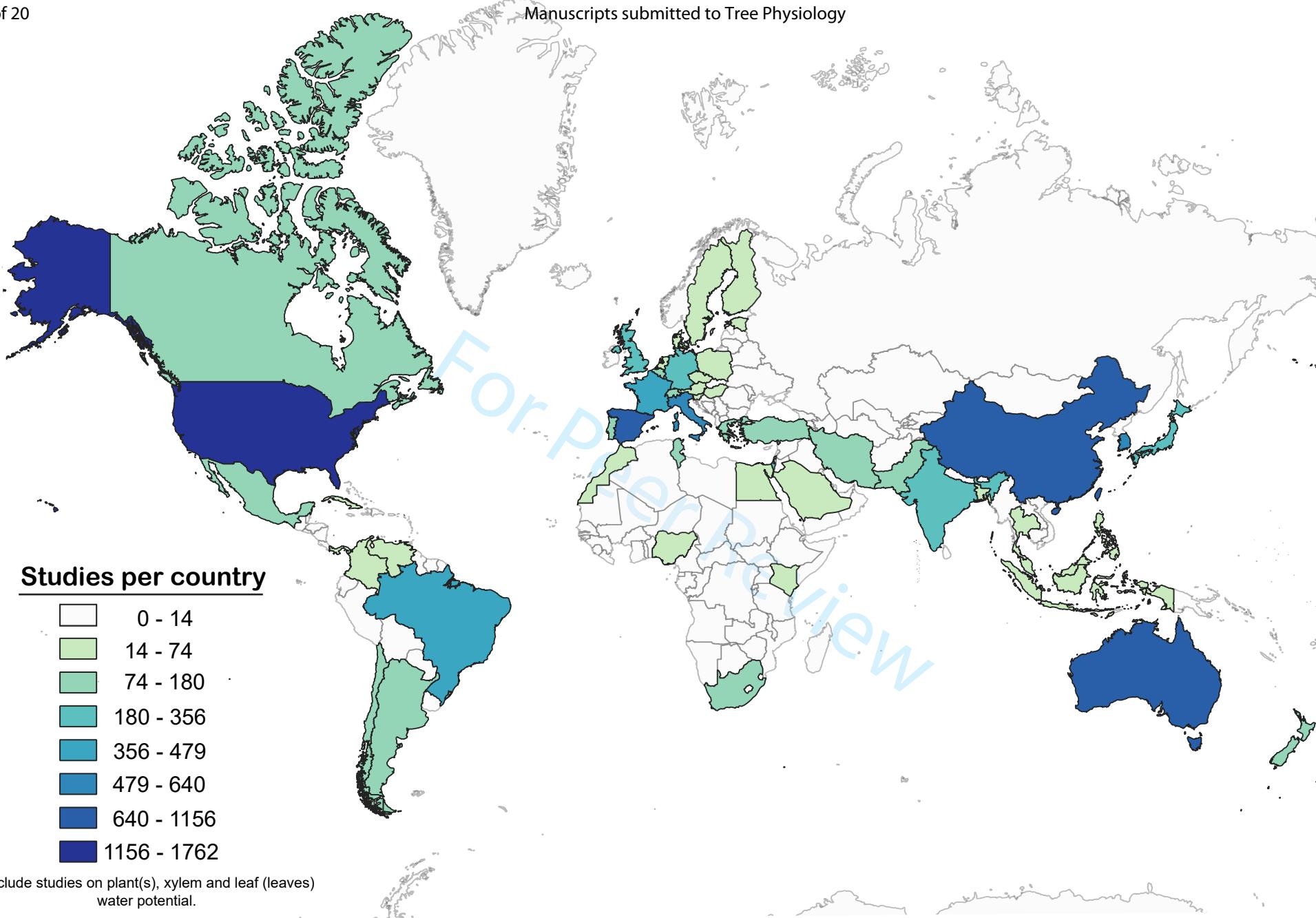
1
2
3 381 Optical Depth. *Journal of Geophysical Research: Biogeosciences*, 122(11), 3066–3081.
4 382 <https://doi.org/10.1002/2017JG004145>
5
6 383 Novick, K. A., Ficklin, D. L., Baldocchi, D., et al. (2022). Confronting the water potential
7 384 information gap. *Nature Geoscience*, 15, 158–164. <https://doi.org/10.1038/s41561-022-00909-2>
8
9 385 Novick, K. A., Biederman, J. A., Desai, A. R., Litvak, M. E., Moore, D. J. P., Scott, R. L., &
10 386 Torn, M. S. (2018). The AmeriFlux network: A coalition of the willing. *Agricultural and Forest
11 Meteorology*. <https://doi.org/10.1016/j.agrformet.2017.10.009>
12
13 387
14 388 Pagay, V. (2021). Dynamic aspects of plant water potential revealed by a microtensiometer.
15 389 *Irrigation Science*. <https://doi.org/10.1007/s00271-021-00758-8>
16
17 390 Pagay, V., Santiago, M., Sessoms, D. A., Huber, E. J., Vincent, O., Pharkya, A., Corso, T. N.,
18 391 Lakso, A. N., & Stroock, A. D. (2014). A microtensiometer capable of measuring water
19 392 potentials below –10 MPa. *Lab on a Chip*, 14(15), 2806–2817.
20 393 <https://doi.org/10.1039/C4LC00342J>
21
22
23 394 Poyatos, R., Granda, V., Flo, V., Adams, M. A., Adorján, B., Aguadé, D., ... Martínez-Vilalta, J.
24 395 (2012). Global transpiration data from sap flow measurements: the SAPFLUXNET database.
25 396 *Earth System Science Data*, 13(6), 2607-2021. <https://doi.org/10.5194/essd-13-2607-2021>
26
27 397 Quick, D. D., Espino, S., Morua, M. G., & Schenk, H. J. (2018). Effects of thermal gradients in
28 398 sapwood on stem psychrometry. *Acta Horticulturae*, 1197, 23-29.
29
30 399 Scholander, P. F., Bradstreet, E. D., Hemmingsen, E. A., & Hammel, H. T. (1965). Sap Pressure
31 400 in Vascular Plants: Negative hydrostatic pressure can be measured in plants. *Science*, 148(3668),
32 401 339-346. <https://doi.org/10.1126/science.148.3668.339>
33
34 402 Shackel, K., Moriana, A., Marino, G., Corell, M., Pérez-López, D. P., Martin-Palomo, M. J.,
35 403 Caruso, T., Marra, F. P., Agüero Alcaras, L. M., Milliron, L., Rosecrance, R., Fulton, A., &
36 404 Searles, P. (2021). Establishing a Reference Baseline for Midday Stem Water Potential in Olive
37 405 and Its Use for Plant-Based Irrigation Management. *Frontiers in Plant Science*, 12.
38 406 <https://doi.org/10.3389/fpls.2021.791711>
39
40 407 Sperry, J. S. (2000). Hydraulic constraints on plant gas exchange. *Agricultural and Forest
41 Meteorology*, 104(1), 13-23. [https://doi.org/10.1016/S0168-1923\(00\)00144-1](https://doi.org/10.1016/S0168-1923(00)00144-1)
42
43 408
44 409 Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay, D. S., Wang, Y., &
45 410 Love, D. M. (2017). Predicting stomatal responses to the environment from the optimization of
46 411 photosynthetic gain and hydraulic cost. *Plant, Cell & Environment*, 40(5), 816–830.
47 412 <https://doi.org/10.1111/pce.12852>
48
49 413
50 414

415 **Figure Legends**

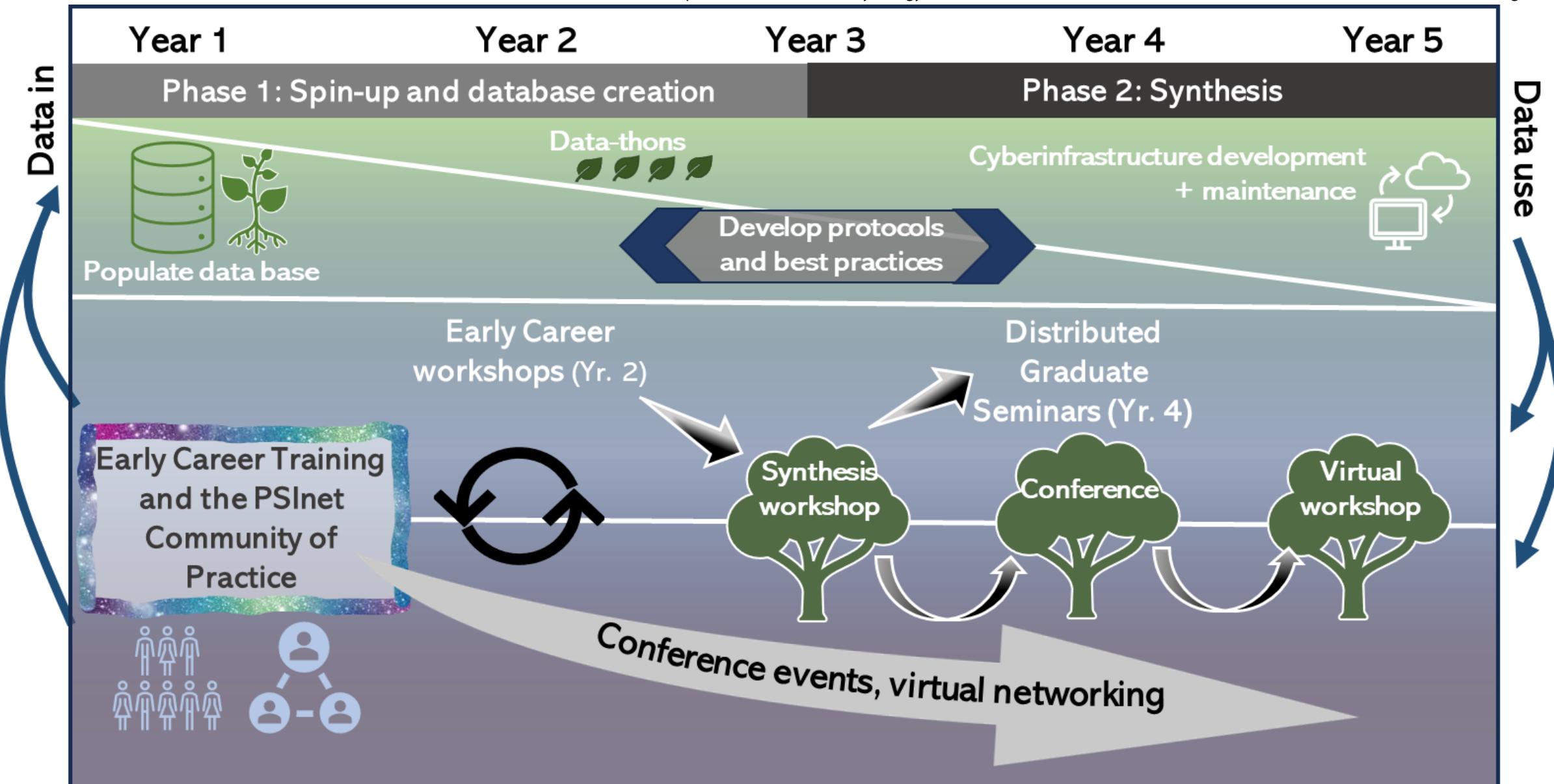
416

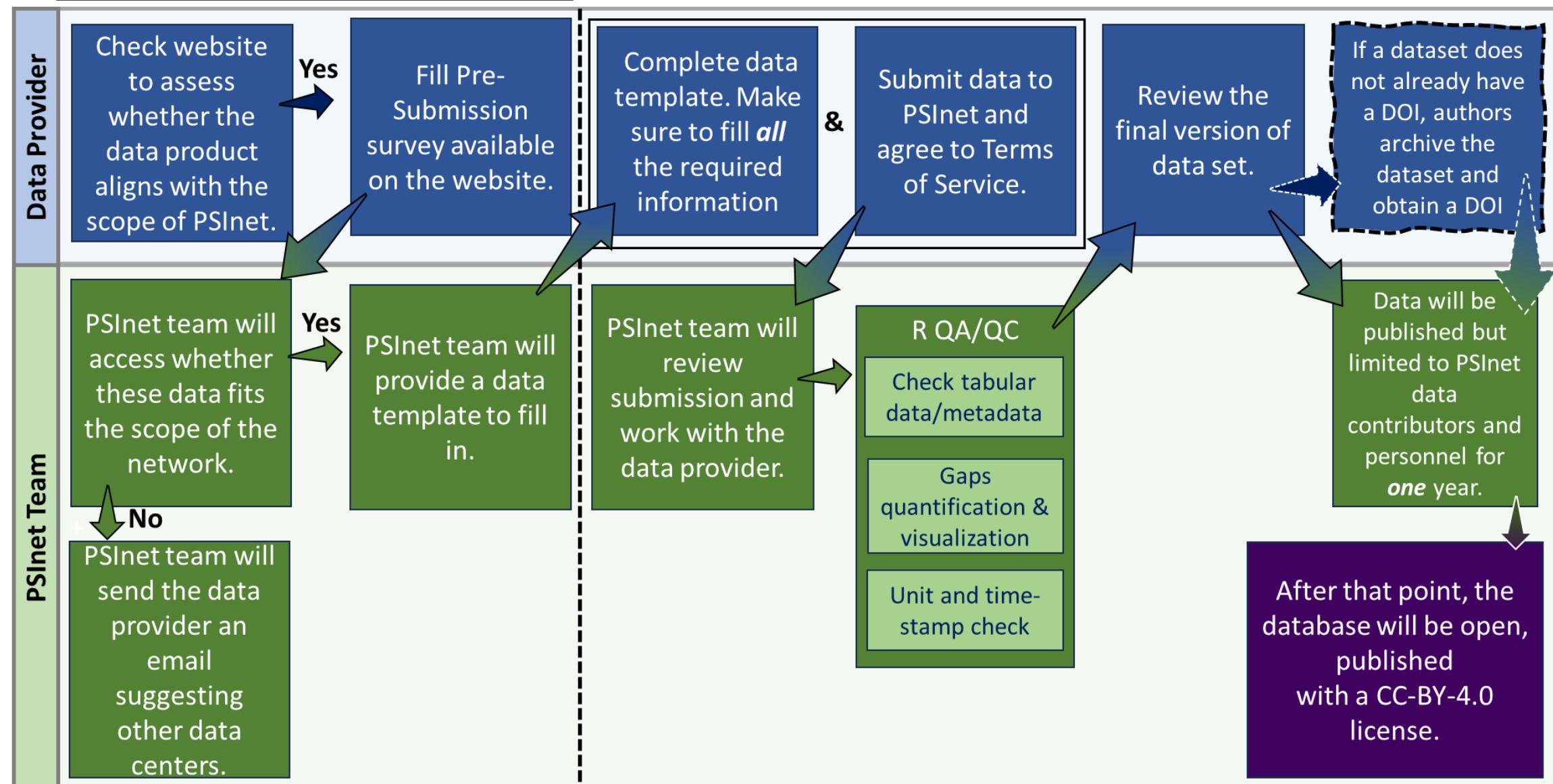
417 **Figure 1.** Geographic distribution of studies on plant water potential for both natural and
418 agricultural ecosystems from 1970 to 2023 (including plants, leaves, and xylem, supplementary
419 table 1) is visualized by color-coding the number of studies in each country. Notably, the United
420 States stands out with the highest number of studies (1,257), followed by China (794) studies and
421 Australia and Spain (507 each). There is a pronounced underrepresentation in regions such as
422 Central and South America, Africa, and Eastern European countries. These areas exhibit a
423 significant gap in research on Ψ , highlighting the need for more comprehensive global coverage
424 in the field.

425

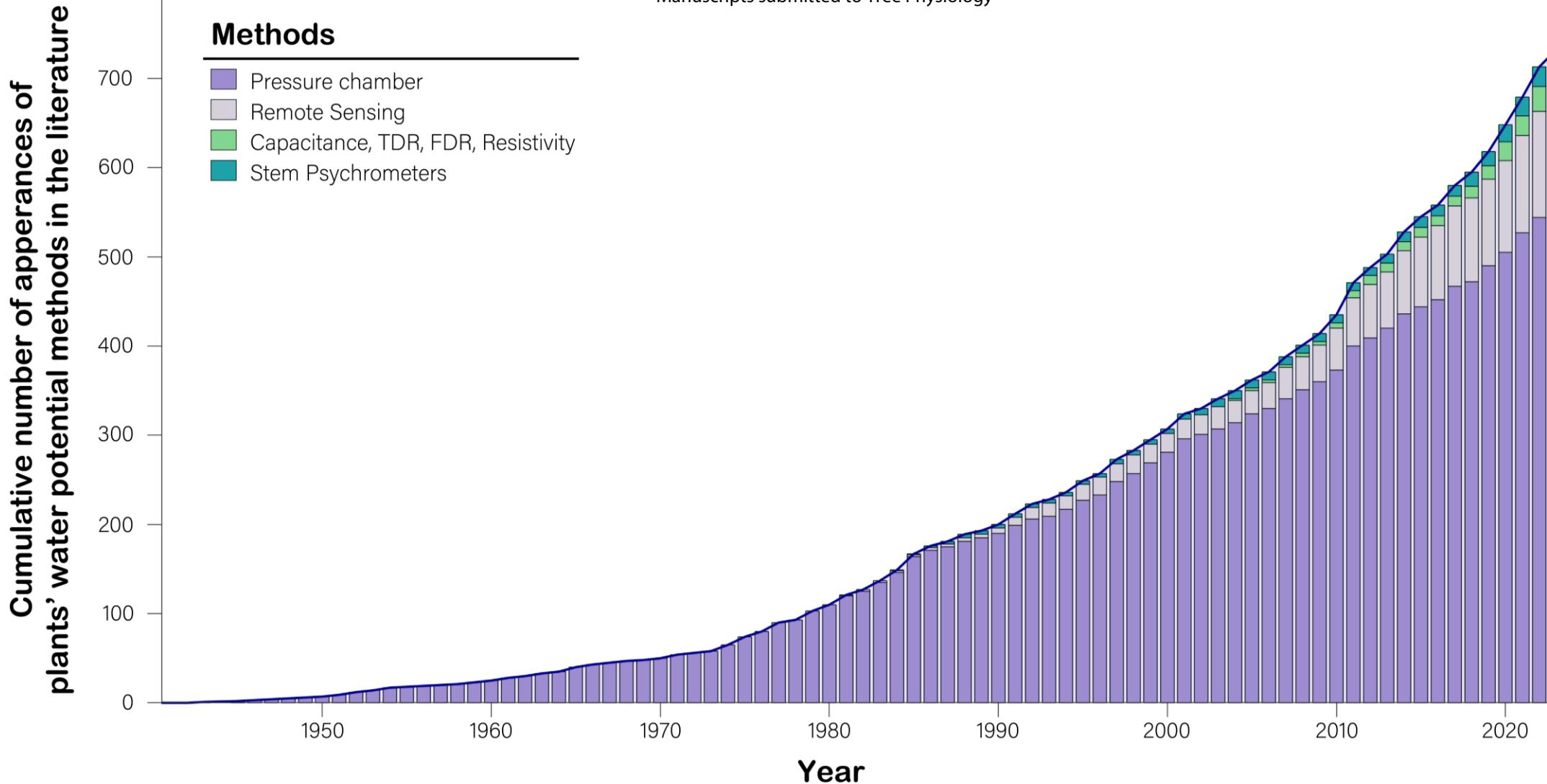

426 **Figure 2.** PSInet project activities and timeline.

427


428 **Figure 3.** PSInet data flow from submission to publication. The first step is completing the pre-
429 submission survey available on the PSInet website (<https://psinetrn.github.io/submit.html>).
430 Subsequently, the contributor prepares the data for submission, after which PSInet personnel
431 conduct quality assurance and quality control (QA/QC) checks. Data contributors are then
432 responsible for final approval and the assignment of a unique data identifier (DOI). The data
433 becomes accessible initially to the contributors and after to the public.


434

435 **Figure 4.** Cumulative count of appearances of different direct and indirect methods for
436 estimating plant water potential in a Scopus search of literature (plant(s) water potential' OR
437 'xylem water potential' OR 'leaf water potential' OR 'stem water potential' in title, abstract or
438 keywords). Note that counts represent individual appearances of each method, not papers (e.g., a
439 paper can have multiple methods). We found that the pressure chamber method (e.g., Scholander
440 et al. 1965) is historically the most popular (~87%) followed by remote sensing techniques
441 including methodological developments and estimations of plant Ψ (~10%). However, in the last
442 10 years, the popularity of the different methods has been changing. The pressure chamber
443 method remains the most popular with about 79%, followed by remote sensing (~15%),
444 geophysical techniques such as Resistivity, TDR, FDR (~2.7%), and psychrometry (2.6%).


Figure 1. Geographic distribution of studies on plant water potential for both natural and agricultural ecosystems from 1970 to 2023 (including plants, leaves, and xylem, supplementary table 1) is visualized by color-coding the number of studies in each country. Notably, the United States stands out with the highest number of studies (1,257), followed by China (794) studies and Australia and Spain (507 each). There is a pronounced underrepresentation in regions such as Central and South America, Africa, and Eastern European countries. These areas exhibit a significant gap in research on Ψ , highlighting the need for more comprehensive global coverage in the field.

Before Submission**Data Submission and availability**

Figure 3. PSInet data flow from submission to publication. The first step is completing the pre-submission survey available on the PSInet website

(<https://psinetcn.github.io/submit.html>). Subsequently, the contributor prepares the data for submission, after which PSInet personnel conduct quality assurance and quality control (QA/QC) checks. Data contributors are then responsible for final approval and the assignment of a unique data identifier (DOI). The data becomes accessible initially to the contributors and after to the public.

Figure 4. Cumulative count of appearances of different direct and indirect methods for estimating plant water potential in a Scopus search of literature (plant(s) water potential' OR 'xylem water potential' OR 'leaf water potential' OR 'stem water potential' in title, abstract or keywords). Note that counts represent individual appearances of each method, not papers (e.g., a paper can have multiple methods). We found that the pressure chamber method (e.g., Scholander et al. 1965) is historically the most popular (~87%) followed by remote sensing techniques including methodological developments and estimations of plant Ψ (~10%). However, in the last 10 years, the popularity of the different methods has been changing. The pressure chamber method remains the most popular with about 79%, followed by remote sensing (~15%), geophysical techniques such as Resistivity, TDR, FDR (~2.7%), and psychrometry (2.6%).