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9 Summary

10 • Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic 

11 regulation (i.e., iso/anisohydry) changes in response to environmental conditions. 

12 However, the environmental controls over iso/anisohydry and the implications of flexible 

13 hydraulic regulation for plant productivity remain unknown.

14 • In Juniperus osteosperma, a drought-resistant dryland conifer, we collected a 5-month 

15 growing season timeseries of in situ, high temporal-resolution plant water potential ( ) Ψ

16 and stand gross primary productivity (GPP). We quantified the stringency of hydraulic 

17 regulation associated with environmental covariates and evaluated how predawn water 

18 potential contributes to empirically predicting carbon uptake.

19 • J. osteosperma showed less stringent hydraulic regulation (more anisohydric) after 

20 monsoon precipitation pulses, when soil moisture and atmospheric demand were high, 

21 and corresponded with GPP pulses. Predawn water potential matched the timing of GPP 

22 fluxes and improved estimates of GPP more strongly than soil and/or atmospheric 

23 moisture, notably resolving GPP underestimation prior to vegetation green-up.

24 • Flexible hydraulic regulation appears to allow J. osteosperma to prolong soil water 

25 extraction and therefore the period of high carbon uptake following monsoon 

26 precipitation pulses. Water potential and its dynamic regulation may account for why 

27 process-based and empirical models commonly underestimate the magnitude and 

28 temporal variability of dryland GPP.

29 Keywords: carbon uptake, dryland ecosystem, hydraulic regulation, juniper woodland, 

30 iso/anisohydry, precipitation pulse dynamics, stem water potential

31
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32 Introduction

33 Along the soil-plant-atmosphere continuum, gradients of water potential ( ) drive water Ψ

34 transport and govern the tradeoff between obtaining carbon dioxide for photosynthesis and water 

35 loss through stomata (Berry et al., 2010). The concept of a ‘plant water use strategy’ 

36 encompasses the numerous ways plants have evolved to confront this inescapable dilemma, 

37 including the prevalent iso/anisohydry spectrum based on the stomatal regulation of  (Jones, Ψ

38 1998; Tardieu & Simonneau, 1998). Isohydry describes a conservative stomatal strategy to 

39 minimize reductions in  and preserve hydraulic conductivity, while anisohydry is a profligate Ψ

40 stomatal strategy that prioritizes carbon gain at the expense of low . The degree of Ψ

41 iso/anisohydry describes plant strategy in response to declining soil moisture absent other 

42 limiting factors (Novick et al., 2019) and is generally operationalized as a species-level and 

43 theoretical trait. However, recent work has demonstrated that these strategies can be quite 

44 variable within a species and may arise from plant-environment interactions (Hochberg et al., 

45 2018), including vapor pressure deficit (VPD), which is often decoupled from soil moisture at 

46 short timescales (Novick et al., 2016). Within-species shifts in iso/anisohydry have been 

47 observed for Larrea tridentata (Guo et al., 2020) and Quercus douglasii (Feng et al., 2019) 

48 during different seasons, in Quercus suber in response to competition (Haberstroh et al., 2022), 

49 Acacia aptaneura as a result of repeated experimental drought (Nolan et al., 2017), and in 

50 multiple species between wet and dry years (Wu et al., 2021).

51 The implications of temporally-variable hydraulic strategies on ecosystem carbon (C) fluxes 

52 have not been fully elucidated. This knowledge gap may limit accurate modeling of carbon and 

53 water cycle dynamics, which in turn restricts our ability to predict and mitigate climate change 

54 impacts (Kennedy et al., 2019a; Novick et al., 2022). Particularly in dryland ecosystems, 

55 persistent water limitation and episodic precipitation promote tight coupling between carbon and 

56 water cycles (Biederman et al., 2016), resulting in added temporal complexity that can be 

57 difficult to model (Noy-Meir, 1973; Loik et al., 2004; Ogle & Reynolds, 2004; Feldman et al., 

58 2018). Dryland ecosystems are largely responsible for the interannual variability of the global 

59 carbon sink (Poulter et al., 2014; Ahlström et al., 2015), yet dynamic global vegetation models 

60 have been found to significantly underestimate the interannual variability of C uptake in dryland 

61 regions (Biederman et al., 2017; MacBean et al., 2021a). Understanding the temporal dynamics 
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62 and environmental sensitivity of plant hydraulic strategies may be critical to improving 

63 predictive forecasts of the global carbon cycle (Eller et al., 2020; Sabot et al., 2020, 2022).

64 Despite its importance, plant hydraulic stress is often notably absent from large-scale estimates 

65 of ecosystem productivity (Smith et al., 2019). Such models commonly combine remotely-

66 sensed indices of vegetation greenness and light use efficiency [LUE; Running et al. (2004); 

67 Zeng et al. (2022)], defined as the slope of the relationship between biomass and cumulative 

68 intercepted photosynthetically active radiation (Monteith et al., 1977). Greenness indices can 

69 represent the structural capacity for photosynthesis on a seasonal basis (Wang et al., 2022), but 

70 do not capture the sub-daily constraints imposed by soil and atmospheric drought, such that 

71 productivity seasonality is much weaker in remotely-sensed than tower-based fluxes (Garbulsky 

72 et al., 2008; Biederman et al., 2017; Smith et al., 2019; Pierrat et al., 2021). Instead, water stress 

73 effects are typically incorporated into estimates of LUE using moisture scalars derived from 

74 estimates of VPD [e.g., MODIS LUE; Zhao & Running (2010)], remotely sensed vegetation or 

75 evaporative indices [e.g., eddy covariance; (EC)-LUE model Yuan et al. (2007)], or combined 

76 VPD and soil moisture [e.g., CFLUX; King et al. (2011)]. However, the range of 

77 ecophysiological responses to moisture stress are too complex for a single environmentally-

78 derived indicator or function to adequately represent (Zhang et al., 2015). Plant water potential, a 

79 direct metric of plant water stress that integrates soil and atmospheric drivers, may thus provide a 

80 key physiological constraint on ecosystem productivity, which could improve our ability to 

81 represent drought impacts and quantify interannual variability of C uptake.

82 Pinyon-juniper woodlands are broadly distributed in the southwestern United States and provide 

83 a well-studied test system for how hydraulic strategies like iso/anisohydry can modulate 

84 productivity and mortality (McDowell et al., 2008). Pinyon mortality following the 2002-2003 

85 drought was likely associated with differences in plant hydraulic regulation (Breshears et al., 

86 2009; Plaut et al., 2012); juniper survival was largely attributed to a less hydraulically vulnerable 

87 xylem and thus a greater ability to withstand low water potentials (McDowell et al., 2008). 

88 Although generally considered anisohydric, Juniperus monosperma exhibited strong stomatal 

89 control and negligible xylem embolism under drought manipulation (Garcia-Forner et al., 

90 2016b), thereby challenging the hypothesis that anisohydric species are more prone to hydraulic 

91 failure. As the southwestern US megadrought persists (Williams et al., 2022) and induces 
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92 mortality even among resilient Juniperus spp. (Kannenberg et al., 2021), it is imperative to 

93 examine how flexible hydraulic strategies interact with plant productivity and survival.

94 In this study, we utilize a five-month time-series of plant  and gross primary productivity Ψ

95 (GPP) in a juniper woodland to evaluate the temporal dynamics of hydraulic strategy and 

96 incorporate plant water stress into a common GPP framework. Previous work by Guo et al. 

97 (2020) examined dynamic hydraulic strategy in Larrea tridentata but lacked a co-located 

98 timeseries of ecosystem carbon fluxes. By contemporaneously measuring plant  and GPP Ψ

99 continuously at daily resolution, we can directly investigate the implications of  regulation and Ψ

100 hydraulic status for productivity in an iconic southwestern species. We ask:

101 1) Does plant hydraulic regulation vary over time in J. osteosperma?

102 2) How are temporal patterns in hydraulic regulation related to GPP over a growing season?

103 3) Can GPP prediction be enhanced by plant water potential?

104 Materials and Methods

105 This study was conducted at an early-successional pinyon-juniper woodland (37.5241 N, 

106 109.7471 W, 1866 m a.s.l.) in southeastern Utah. Local climate conditions include cold winters 

107 and hot, dry summers, with high interannual variability in summer precipitation due to its 

108 location at the northern boundary of the North American Monsoon. The locally flat topography 

109 is dominated by Utah juniper (Juniperus osteosperma, 92% tree basal area) and two-needle 

110 pinyon (Pinus edulis, 8% tree basal area), with sparse understory comprising big sagebrush 

111 (Artemisia tridentata), prickly pear cactus (Opuntia spp.), and bunchgrasses. Mean growing 

112 season leaf area index was 0.4, and the site was chained in the 1960s, resulting in a relatively 

113 even-aged and sized population of J. osteosperma. See Kannenberg et al. (2023) for further site 

114 description and processing of eddy covariance variables.

115 Plant water potential

116 Stem water potential of seven mature J. osteosperma within the tower footprint (< 20 m) was 

117 monitored with both automated and manual measurements between May 24 and November 5, 

118 2021. Half-hourly water potential was monitored with stem psychrometers (ICT International 

119 PSY1) calibrated prior to installation. Two instruments per tree were installed by removing the 
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120 bark and phloem to expose a flat xylem surface. Psychrometer sensor heads were attached with 

121 self-adhesive silicone tape to maintain a tight seal and wrapped in reflective insulation to 

122 minimize temperature gradients. Because plant wounding responses can fill the sensor chamber, 

123 each psychrometer was uninstalled, cleaned with chloroform, and reinstalled on a new branch 

124 every 4-5 weeks. The day after reinstallation, the xylem water potential was measured manually 

125 with a Scholander-type pressure chamber (PMS 610) by excising a needle cluster with diameter 

126 between 2 and 4 mm and measuring within 2 minutes of collection; psychrometer water 

127 potentials generally matched pressure chamber values (Kannenberg et al., 2023).

128 The half-hourly stem water potential time series were subjected to quality control by visual 

129 assessment and aggregated to daily values. After removing data during the maintenance period 

130 (+ 1 day) and outliers that were > 0.5 MPa from adjacent points, data that met the following 

131 criteria were also discarded: 1) a step change in the magnitude of water potential not attributable 

132 to a precipitation event; 2) loss of diurnal pattern in water potential. On average, data from 10 

133 out of 14 psychrometers were available during a given period. Half-hourly stem water potential 

134 was summarized to predawn ( , 2 hours prior to sunrise) and midday ( , 2 hours following ΨPD ΨMD

135 solar noon) for each logger. In addition, site-level means of predawn and midday water potential 

136 were calculated and missing values (10 and 8, respectively) were imputed using Kalman 

137 Smoothing via the R package ‘imputeTS’ (Moritz & Bartz-Beielstein, 2017).

138 Vegetation indices and fAPAR

139 We adopted a Monteith light use efficiency framework (Monteith, 1972) to estimate plant 

140 productivity. This framework conceptualizes GPP as the product of absorbed photosynthetically 

141 active radiation (APAR) and the efficiency with which light is converted to fixed carbon (LUE). 

142 APAR is represented as a product of photosynthetically active radiation (PAR) and the fraction 

143 of PAR absorbed by plant canopies (fAPAR). The foundational equation from Monteith’s 

144 framework can be expresed as:

145 GPP = LUE ⋅ PAR ⋅ fAPAR  (1)

146 Many current models for estimating GPP are grounded in this framework or its variations. Here, 

147 we used the the near-infrared reflectance of vegetation index (NIRv Badgley et al., 2017, 2019) 
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148 as a proxy for fAPAR. This choice was informed by the strong correlation between NIRv and 

149 modeled fAPAR across various soil reflectances and its robustness at low vegetation cover 

150 (Badgley et al., 2017; Wang et al., 2022).

151 We calcluated NIRv from Moderate Resolution Imaging Spectroradiometer (MODIS) nadir 

152 bidirectional reflectance distribution function adjusted daily reflectance product (MCD43A, 1 d, 

153 500 m, collection 6.1) using the point extraction tool AppEARS. MODIS bands 1 (620-670 nm) 

154 and 2 (841-876 nm) were combined with background soil reflectance of 0.08 to represent NIRv 

155 following Badgley et al. (2017). The pixel containing the coordinates of US-CdM was filtered to 

156 include only the highest quality observations (MODIS quality flag = 0). Resulting values were 

157 smoothed using a Savitzky-Golay filter of derivative order 0, filter order 3, and window length 5.

158 Model description - hydraulic regulation

159 To specify the hydraulic regulation model, we used the Martinez-Vilalta et al. (2014) equation to 

160 relate  to :ΨMD ΨPD

161 ΨMD = σ ⋅ ΨPD + λ  (2)

162 where  represents the stringency of hydraulic regulation and  describes the pressure drop when σ λ

163 soil moisture is not limiting. Plant hydraulic regulation can be described as isohydry if , σ < 1

164 anisohydry if , and extreme anisohydry if  (Martı́nez-Vilalta et al., 2014).σ ≈ 1 σ > 1

165 To allow hydraulic regulation and GPP to vary over the growing season, we specified a 

166 hierarchical Bayesian model similar to Guo et al.(2020), which estimated  and  as linear σ λ

167 functions of environmental drivers. Here, we used maximum daily VPD ( ) and volumetric soil D

168 water content at 10 cm ( ), which had the highest correlation with plant  and GPP W10 Ψ

169 (Kannenberg et al., 2023). Furthermore, we implemented the stochastic antecedent model (Ogle 

170 et al., 2015) to quantify the influence of past environmental conditions. The data model for 

171 hydraulic regulation describes the likelihood of each observed , which was normally ΨMD

172 distributed for each observation  ( ):i i = 1,2,…,1425

173 ΨMDi ∼ Normal(ΨMDi,σ
2
Ψ)  (3)
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174 where  is the predicted or mean midday water potential and  represents the observation ΨMDi σ2
Ψ

175 variance.  was modeled according to Eqn. 3, where all terms were allowed to vary over ΨMDi

176 time, either as direct observations ( , ) or as modeled parameters ( , ). The time-varying ΨMD ΨPD σ λ

177 estimates of hydraulic regulation,  and  were indexed by  and modeled as linear combinations σ λ i

178 of two antecedent covariates and their interaction:

179 σi = β0 + β1 ⋅ Dant
i + β2 ⋅ W10

ant
i + β3 ⋅ Dant

i ⋅ W10
ant
i + Eσ,t(i)

λi = α0 + α1 ⋅ Dant
i + α2 ⋅ W10

ant
i + α3 ⋅ Dant

i ⋅ W10
ant
i + Eλ,t(i)

  (4)

180 The  and  parameters were estimated for all trees.  and  represent the random effects of β α Eσ Eλ
181 each tree, where  indicates tree  associated with each observation .  and  were t(i) t i Dmax W10

182 scaled using the 2021 mean and standard deviation so that regression coefficients could be 

183 compared and  and  could be interpreted as  and , respectively, under mean environmental β0 α0 σ λ

184 conditions. Antecedent VPD ( ) and soil water content ( ) were constructed using daily Dant Want
10

185 time series of each scaled environmental variable (Ogle et al., 2015):

186
Dant

i =
Tlag

∑
p = 0

ωDp ⋅ Dt(i)−p

W10
ant
i =

Tlag

∑
p = 0

ωWp ⋅ Wt(i)−p

  (5)

187 where  indicates the time step,  represents the total number of past time-steps considered, p Tlag

188  and  indicates the weight or relative importance of the th time step into the past, and ωDp ωWp p

189  and  are the observed value of each variable at  time steps ago. Antecedent Dt(i)−p Wt(i)−p p

190 covariates are weighted averages of past covariate values, where the weights are stochastically 

191 determined by the data. Here,  was constructed using daily values from the current day to 4 Dant

192 days ago (  = 1,  = 5), while  was constructed using three-day averages of  from the p Tlag Want
10 W10

193 current day to 20 days ago (  = 3,  = 7).p Tlag

194 To complete this model, a zero-centered hierarchical normal prior was specified for tree random 

195 effects:
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196
Eσ,t ∼ Normal(0,σ2

σ)
Eλ,t ∼ Normal(0,σ2

λ)  (6)

197 where reparameterization by sweeping was employed to ensure identifiability between the 

198 intercepts ( , ) and the random effects (Vines et al., 1996).β0 α0

199 All remaining parameters were given standard priors following Gelman et al. (2014). The 

200 regression coefficients were assigned relatively non-informative normal priors centered at zero 

201 with large variance. Antecedent importance weights, vectors of length  (Eqn. 5), were given Tlag

202 non-informative Dirichlet priors that assume a priori that each past time step has equal 

203 importance, and that constrain weights for each covariate to sum to 1 across all time steps, . The p

204 standard deviation of tree random effects (  and ) were given relatively non-informative σσ σλ Unif

205  priors, while the measurement error precision ( ) was assigned a conjugate, orm(0,1) 1/σ2
Ψ

206 relatively non-informative  prior.Gamma(0.1,0.1)

207 Model description - GPP

208 To assess the drivers of daily ecosystem productivity, we developed a two-part model based on 

209 the Monteith (1972) framework. In this model, daily GPP was modeled sequentially, first as a 

210 function of NIRv and incoming PAR. The residuals of this model were considered indicative of 

211 variation in LUE.

212 Typically, LUE is conceptualized as the product of its theoretical maximum ( ) and a LUE0

213 function of environmental stressors that reduce optimal light-use efficiency. Given that  is a LUE0

214 theoretical construct assumed to remain constant within our study (e.g., within a season), the 

215 GPP model residuals can be interpreted as 1) impacts of environmental stressors on LUE and 2) 

216 random noise or uncertainty inherent in the data. Thus, while we evaluated GPP model residuals 

217 as functions of water stress indicators, including VPD, soil moisture, and predawn water 

218 potential, we also acknowledge that they include data uncertainty and random noise.

219 The likelihood of observed  was normally distributed for for each observation  (GPP j j = 1,2,…,

220 ):166

221 GPPj ∼ Normal(GPPj,σ2
GPP)  (7)

Page 9 of 35

Manuscript submitted to New Phytologist for review



For Peer Review

222 where  is the predicted or mean daily GPP and the variance  represents the uncertainty GPPj σ2
GPP

223 in observed .  was modeled as a linear function of NIRv, PAR, and their interaction, GPP GPPj

224 representing the photosynthetic-capacity component of the Monteith (1972) formulation.

225 GPPj = γ0 + γ1 ⋅ NIRvj + γ2 ⋅ PARj + γ3 ⋅ NIRvj ⋅ PARj  (8)

226 All remaining parameters were given standard priors as previously described.

227 To interpret the remaining GPP as , we calculated the residuals of the above model as the LUE

228 posterior mean of ; residuals were scaled for improved model mixing. The likelihood GPPj−GPPj

229 of the residual model described scaled  as normally distributed for observations  (resid k k = 1,2,

230 ):…,166

231 residk ∼ Normal(residk,σ2
resid)  (9)

232 where  is the predicted residual between observed and modeled (Eqn. 7, Eqn. 8) GPP, and residk

233 the variance  represents the uncertainty in observed .  is interpreted as a dynamic σ2
resid resid residk

234  constraint on GPP after vegetation greenness and light interception is accounted for. We LUE

235 devised three  formulations that account for the combined impact of concurrent VPD and LUE

236 antecedent soil moisture (Eqn. 10), antecedent soil moisture alone (Eqn. 11), and concurrent 

237 predawn water potential (Eqn. 12):

238 residk = δ0 + δ1 ⋅ Dmaxk + δ2 ⋅ W10
ant
k + δ3 ⋅ Dmaxk ⋅ W10

ant
k   (10)

239 residk = η0 + η1 ⋅ W10
ant
k   (11)

240 residk = θ0 + θ1 ⋅ ΨPDk  (12)

241 where  were the gapfilled means of predawn water potential at the site level. Antecedent ΨPD

242 weights for  were constructed identically to Eqn. 5, with unique weights determined by the Want
10

243 GPP residuals.
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244 Model implementation and interpretation

245 The above models were implemented in JAGS 4.3.0 (Plummer, 2003) using R 4.1.1 and ‘rjags’ 

246 4.13 (R Core Team, 2021; Plummer, 2022). For each model, three parallel Markov chain Monte 

247 Carlo sequences were initiated with dispersed starting values; initial iterations were run until 

248 model convergence, as indicated by the Gelman and Rubin (Gelman & Rubin, 1992) statistic. 

249 Models were then run for 150,000 iterations and thinned by 50 to reduce within-chain 

250 autocorrelation and storage requirements, yielding a total of 9000 relatively independent 

251 posterior samples for each quantity of interest, including the regression coefficients and 

252 antecedent weights. Posterior distributions were summarized by their means and 95% highest 

253 posterior density credible intervals (henceforth, 95% CIs). Covariate effects were significant if 

254 the 95% CI did not overlap zero. To quantify seasonal variation in , the posterior samples of the σ

255  regression coefficients and antecedent weights were combined with the time-series of scaled β

256  and  to produce posterior means and 95% CIs. Model comparison criteria for the three Dmax W10

257 forms of GPP residual models included posterior predictive loss (Gelfand & Ghosh, 1998) and 

258 the coefficient of determination ( ) between observed and predicted values.R2

259 Results

260 Seasonal dynamics of , GPP, and Ψ σ

261 Predawn ( ) and midday ( ) stem water potentials responded dynamically to moisture ΨPD ΨMD

262 inputs, particularly during the monsoon period (Fig. 1). Monsoon onset, determined as the day on 

263 which on the 10% of the total July, August, and September precipitation was accumulated 

264 (Grantz et al., 2007), occurred on 2021-07-23. Prior to monsoon onset, the generally high VPD 

265 and low soil moisture yielded relatively consistent mean  between -2 and -4 MPa. During the ΨPD

266 monsoon period, VPD and soil moisture were less extreme than during the more arid mid-

267 summer period, though highly variable as a result of three major pulse-drydown events (Fig. 1). 

268 Beginning with the first major pulse event (39 mm on 2021-07-27), mean  remained above -ΨPD

269 2 MPa continuously for 46 days; however, minimum mean  was similar in premonsoon and ΨPD

270 monsoon periods due to rapid decline in  following the third major pulse-drydown. Finally, ΨPD

271 mean  stayed above -2 MPa during the fall season, likely due to cooling temperatures and ΨPD

272 reduced atmospheric demand.
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Figure 1: Daily site-level environmental characteristics of a) maximum vapor pressure deficit 

(D) and photosynthetically active radiation (PAR) b) mean volumetric water content at 5 cm 
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and 10 cm, total precipitation, and air temperature. Time series of c) chamber and automated 

daily measurements of mean stem water potential and d) daily total gross primary productivity 

(GPP). Labeled boxes subdivide the study period into before, during, and after the monsoon 

season; error bars represent population standard deviation

273 Seasonal GPP dynamics were similarly responsive to precipitation inputs (Fig. 1 b). GPP 

274 declined during the premonsoon period to near-zero levels, while the onset of the monsoon 

275 prompted sharp increases. Interestingly, while the first major pulse event was the largest single-

276 day total (39 mm on 2021-07-27) that corresponded to almost immediate increases in , GPP ΨPD

277 rose only modestly. All three peaks in GPP during the monsoon period lagged the moisture 

278 inputs and lasted more briefly than peaks in  (Fig. 1). Fall GPP averaged ΨPD 0.1 mol CO2 m−2 

279 , about the same as initial GPP during the premonsoon period.d−1

280 The dynamics of hydraulic regulation can be visually estimated by plotting stem  and  ΨMD ΨPD

281 for each season (Fig. 2). The slope  appeared similar during the premonsoon and fall periods, σ

282 although W and therefore stem  differed substantially between the two seasons. During the Ψ

283 monsoon period, two slopes were detected via segmented regression, with  occurring when σ > 1

284 soil moisture was high and and  MPa; the same region during the fall season had a ΨPD > −0.6

285 much shallower slope.

Figure 2: Midday ( ) vs. predawn ( ) stem water potential in each of three seasons. ΨMD ΨPD

Points are colored by the concurrent daily volumetric water content at 10 cm ( ). Solid line W10
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is the 1:1 line. Dashed lines represent linear fits by season, with a segmented regression joined 

at  during the monsoonΨPD = −0.6

286 Environmental drivers and timescales of σ

287 The hydraulic regulation model (Eqn. 3 - Eqn. 6) fit the data very well (Fig. S1, observed 

288 vs. predicted  = 0.920) with low bias (slope of observed vs. predicted = 0.919).ΨMD R2

Figure 3: Posterior mean and 95% CI of the a) covariate effects on  and  and b) antecedent σ λ

weights  associated with covariates $\D$ and $\W_{10}$. Gray horizontal lines indicate the ω

prior means, and asterisks indicate significant covariate effects

289 Temporal variation in hydraulic regulation ( ) was strongly positively associated with antecedent σ

290 VPD ( ), antecedent soil water content ( ), and their interaction (Fig. 3 a), indicating that Dant Want
10
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291 J. osteosperma became especially anisohydric under dry atmospheric conditions when soils were 

292 wet. While the positive effect of  was primarily driven by the atmospheric dryness on the same D

293 day, soil moisture up to 11 days prior was influential (Fig. 3 b). The pressure drop parameter  λ

294 was negatively associated with the interaction of  and , although the main effects were Dant Want
10

295 not significant (Fig. 3 a).

296 Temporal patterns in  and GPPσ

297 Although general trends in hydraulic regulation can be inferred from grouping  and  by ΨMD ΨPD

298 season (e.g., Fig. 2), the hierarchical Bayesian model permitted combining posterior parameter 

299 distributions with environmental covariates to produce daily timeseries of predicted  (e.g., σ

300 Fig. 4 a), which cannot be determined empirically. During the premonsoon, J. osteosperma 

301 shifted between iso- and anisohydry, with  values near 1. But during the monsoon season, the σ

302 three main pulse events heralded peaks in  that signify extreme anisohydry, with  values well σ σ

303 above 1, driven by the high VPD and still-wet soils that characterize the post-precipitation 

304 period. Finally, in the fall, J. osteosperma returned to isohydry, and  fell below 1.σ
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Figure 4: Relationship between predicted  (posterior mean and 95% CI) and daily GPP shown σ

as a) time series across three seasons, b) bivariate plots for each season, and c) Pearson’s 

correlation coefficient (estimate and 95% confidence interval) during monsoon season across a 

range of daily offsets where GPP leads σ

305 The trends in daily  corresponded well to observed time-series of GPP (Fig. 4 a), particularly in σ

306 the responsiveness of both  and GPP to the three main pulse events. Thus,  and GPP were σ σ

307 positively correlated during the monsoon period ( , Fig. 4 b). However, the r = 0.653,p < 0.001

308 peak in GPP appeared to lead the the peak in , as the highest Pearson’s correlation between σ

309 GPP and  was achieved at a 1-2 day offset between the two timeseries (Fig. 4 c).σ

310 Plant water potential relationship to GPP

311 The initial GPP model (Eqn. 7, Eqn. 8) also fit the data well (Fig. 5 c, observed vs. predicted GP

312  = 0.733), although with some degree of bias (slope of observed vs. predicted = 0.732) such P R2

313 that some high GPP values were underpredicted. Comparing the GPP and NIRv time series 

314 (Fig. 5 a), the first major pulse event elicited a strong GPP response prior to any green up 

315 detected optically by NIRv. Conversely, low, near-zero GPP in mid to late July was not matched 

316 by extreme lows in scaled PAR or NIRv, resulting in overprediction of low GPP values. GPP 

317 was positively associated with NIRv and the interaction between NIRv and PAR (Fig. 5 b), 

318 though PAR alone was not significantly associated with GPP.
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Figure 5: a) Time series of daily total gross primary productivity (GPP) with scaled values of 

near infrared reflectance of vegetation (NIRv) and photosynthetically active radiation (PAR). 

Posterior mean and 95% CI of the b) covariate effects and c) predicted versus observed GPP 

from the first part of the GPP model (Eqn. 7, 8). Gray horizontal lines indicate the prior means, 

asterisks indicate significant covariate effects, error bars represent the 95% CIs, the solid 

diagonal is the 1:1 line, and the dashed line represents the line of best fit

319 Residuals from the initial GPP model were interpreted as fluctuations in light use efficiency 

320 (LUE), and model fit was compare among three functional forms: environmental covariates with 

321  and  (Eqn. 5, Eqn. 10), soil water content with  only (Eqn. 5, Eqn. 11), and predawn D Want
10 Want

10

322 water potential with  only (Eqn. 12). Of the three models, the  model had the fewest ΨPD ΨPD
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323 effective number of parameters ( ), lowest posterior predictive loss ( ), strongest coefficient pD D∞

324 of determination ( ), and lowest bias (Fig. 6 b,c).R2

Figure 6: a) Time series of daily residuals from the GPP model with daily maximum vapor 

pressure deficit ( ), volumetric water content at 10 cm ( ), and site-averaged predawn D W10

water potential ( ), all standardized to the same scale. Posterior mean and 95% CI of the b) ΨPD

covariate effects and c) predicted versus observed residuals from each residual model: Env 

(Eqn. 5 & Eqn. 10), Soil only (Eqn. 5 & Eqn. 11), and  only (Eqn. 12). Gray horizontal lines Ψ
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indicate the prior means, asterisks indicate significant covariate effects, error bars represent the 

95% CIs, the solid diagonal is the 1:1 line, and the dashed line represents the line of best fit

325 Among the LUE models, the  fit the GPP residuals modestly well (observed vs. predicted ΨPD res

326  = 0.199) while minimizing posterior predictive loss (Fig. 6 b). Combining the initial GPP id R2

327 model and the best-performing LUE model using  improved the overall  from 0.733 to ΨPD R2

328 0.800 and substantially reduced bias from 0.732 to 0.89 (Fig. 5 c, Fig. 6 c).

329 The strong performance of  for predicting GPP residuals is likely due to their close temporal ΨPD

330 coherence (Fig. 6 a), which outperformed models with  alone or in conjunction with  Want
10 D

331 (Fig. 6 b). The antecedent weights for  (Fig. S2) indicated that GPP residuals lagged soil Want
10

332 moisture by 3-5 days, but the temporally-weighted soil moisture still did not correlate as strongly 

333 with GPP residuals as  did. Surprisingly, neither D nor  was significantly associated with ΨPD Want
10

334 the GPP residuals in the environmental covariates model (Fig. 6 b), perhaps because D and PAR 

335 were highly correlated (Fig. 1) and the initial GPP model already accounted for PAR.

336 Discussion

337 In this study, we aimed to improve our understanding of temporal variability in plant hydraulic 

338 regulation and its relationship to ecosystem carbon uptake. We leveraged contemporaneous, 

339 high-resolution water potential and carbon flux data to compare temporal trends in daily plant 

340 water potential, hydraulic behavior, and GPP in a juniper woodland. First, we found that in J. 

341 osteosperma, hydraulic regulation varied over the growing season. Increasing anisohydricity was 

342 observed following precipitation pulses, associated with high soil moisture and high atmospheric 

343 demand (Fig. 3). Next, we found that GPP and  were most positively correlated during the σ

344 monsoon season, but with different temporal trajectories following precipitation pulses (Fig. 4). 

345 Surprisingly, although both  and  responded rapidly to precipitation inputs, plants ΨMD ΨPD

346 achieved maximum  1-2 days after peak GPP was reached for a given moisture pulse (Fig. 4 c). σ

347 Together, these results hint at the intriguing possibility that extreme anisohydry can serve to 

348 maximize soil water extraction and prolong GPP pulses in dryland ecosystems. Finally, predawn 

349 water potential explained more variability in GPP compared to environmental covariates 

350 associated with atmospheric and soil moisture conditions (Fig. 6). As a direct metric of water 
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351 stress, plant water potential closely matched the timing of GPP variability not accounted for by 

352 light availability and vegetation greenness, underscoring water stress as the dominant constraint 

353 on intra-annual GPP dynamics in dryland ecosystems.

354 Temporally-varying hydraulic behavior

355 Juniperus species are considered more anisohydric than co-occurring pinyon pines due to their 

356 more cavitation-resistant xylem (Linton et al., 1998), higher hydraulic safety margins (Plaut et 

357 al., 2012), and lower leaf water potentials (West et al., 2007; Breshears et al., 2009), while their 

358 categorization based on stomatal control is less conclusive (Garcia-Forner et al., 2016a). Due to 

359 less vulnerable xylem in Juniperus, low water potentials alone do not suggest less stringent 

360 stomatal control, as they must be interpreted relative to vulnerability curve parameters such as 

361 , or the xylem pressure at 50% loss of hydraulic conductance. Here, a 166-day time series of Ψ50

362  and  in J. osteosperma reveals strong, context-dependent variation in hydraulic ΨPD ΨMD

363 regulation, an intermediate timescale that can potentially bridge the gap between short-term 

364 stomatal response-based definition of iso/anisohydry (Tardieu & Simonneau, 1998) and 

365 definitions that rely on seasonal extremes (Klein, 2014; Martı́nez-Vilalta et al., 2021). We posit 

366 that response-based metrics (Kannenberg et al., 2022) can be used to quantify plant water use 

367 strategies without distinguishing between active versus passive regulation, yet can enhance 

368 predictive understanding of plant-environment interactions.

369 Dry air in combination with wet soil drove large increases in  in J. osteosperma, attesting to the σ

370 importance of VPD as a driver of plant responses (Novick et al., 2016; Grossiord et al., 2020). 

371 As the same drivers were important for hydraulic regulation in the drought-tolerant desert shrub, 

372 Larrea tridentata (Guo et al., 2020), transient drops in  may be strategic only during the wet ΨMD

373 periods of otherwise water-limited ecosystems, when the reward of carbon uptake exceeds the 

374 risk of embolism. In our study, shifts to extreme anisohydry appeared only as responses to 

375 discrete monsoon precipitation pulses, suggesting that flexible hydraulic behavior enables J. 

376 osteosperma to take advantage of soil moisture when available. The responsiveness of hydraulic 

377 behavior to soil moisture may explain why, despite similar lateral root densities as pinyon pines 

378 (Schwinning et al., 2020), junipers tend to be more physiologically responsive to moderate 

379 moisture inputs (Breshears et al., 1997; West et al., 2007; Guo et al., 2018).
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380 The positive relationship between  and GPP during the monsoon season suggests that σ

381 temporally-variable hydraulic regulation can maximize carbon uptake during periods of patchy 

382 moisture availability. Most interestingly, the timing of  and GPP indicates that extreme σ

383 anisohydry intensifies after GPP peaks. After a precipitation pulse when soil moisture is high, 

384 GPP may be immediately stimulated, such that relatively high midday water potentials (low ) σ

385 are sufficient to drive water transport along the soil-plant-atmosphere continuum. Because soil 

386 moisture declines rapidly after precipitation pulses, extreme anisohydry (  > 1) may serve to σ

387 decrease midday water potentials, maintain water transport in drying soils, and possibly confer a 

388 competitive advantage over co-occurring understory species (e.g., Barron-Gafford et al., 2021). 

389 The propensity of Juniperus spp. to extract soil water even at low soil water potentials (West et 

390 al., 2007) is consistent with extreme anisohydry and prolonged elevation of GPP as soils dry.

391 Possible mechanisms of temporally-varying hydraulic regulation

392 The mechanisms underlying temporally-varying hydraulic regulation are not well understood, 

393 but coordination with other temporally-varying physiology and growth responses could play a 

394 role. First, pressure-volume relationships in Juniperus monosperma are plastic depending on leaf 

395 hydration (Meinzer et al., 2014), such that as a leaf dehydrates, it experiences more negative 

396 turgor loss point and less elastic cell walls. Conceivably, stomatal regulation of leaf water 

397 potential could also vary with leaf hydration, which may be especially dynamic in evergreen 

398 leaves experiencing pulse-driven precipitation. Accounting for plastic adjustment in turgor loss 

399 point, J. monosperma would ultimately lose turgor at -8.2 MPa (Meinzer et al., 2014), and 

400 indeed 99.1% of our individual  observations occurred above this threshold. Temporally-ΨMD

401 varying leaf-water relations may indicate that osmotic adjustment, cell wall elastic properties, 

402 and stomatal regulation could vary in concert to maintain turgor across declining leaf hydration.

403 Hydraulic regulation strategies could also be linked to temporal dynamics of foliar ABA during 

404 soil water stress and recovery (Brodribb & McAdam, 2013). In Callatris rhomboidea, sustained 

405 water stress led to a decline in ABA such that loss of leaf water potential (and thus guard cell 

406 turgor) drove stomatal closure, with the corollary of low ABA also enabling rapid recovery of 

407 leaf water potential after rewatering (Brodribb & McAdam, 2013). Among Cupressaceae, 

408 including Juniperus and Callatris, the use of leaf desiccation to close stomata during prolonged 
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409 water stress (Brodribb et al., 2014) could explain why J. osteosperma experiences temporally-

410 varying hydraulic regulation. The hydraulic risk of extreme anisohydry could also be partially 

411 compensated by rapid recovery following rewetting, enabling persistence in seasonally dry 

412 ecosystems.

413 Finally, temporally-varying hydraulic regulation may be associated with the timing of 

414 belowground dynamics that enable increased conductance, such as fine root and mycorrhizal 

415 development (Peek et al., 2006; Lehto & Zwiazek, 2011). In J. osteosperma, fine roots grew 

416 when soil water was most available and shifted toward deeper layers as the growing season 

417 progressed (Peek et al., 2006), and root distributions varied depending on cool-season vs. warm-

418 season precipitation. Rooting dynamics can directly influence plant water potential via 

419 rhizosphere conductance, although this is difficult to quantify empirically (Bristow et al., 1984; 

420 Sperry et al., 2016). Similarly, mycorrhizal symbionts are known to alter root conductivity 

421 (Lehto & Zwiazek, 2011), enhance stomatal conductance (Augé et al., 2015), and increase plant 

422 productivity (Mohan et al., 2014), but the temporal dynamics of plant-mycorrhizae relationships 

423 under field conditions are poorly understood and merit further investigation (Gehring et al., 

424 2017).

425 Implications for hydraulic modeling

426 Plant hydraulic schemes are becoming increasingly represented in vegetation and land surface 

427 models (Kennedy et al., 2019b; Eller et al., 2020; Sabot et al., 2020). The link we observed 

428 between hydraulic strategy and GPP reinforces the value of these approaches for improved 

429 predictions of GPP, especially in dryland ecosystems where patchy resource availability leads to 

430 widespread underpredictions of both the magnitude and variability of carbon fluxes (Biederman 

431 et al., 2017; MacBean et al., 2021b; Barnes et al., 2021). Temporal heterogeneity in plant 

432 hydraulic strategy and spatial heterogeneity in topoedaphic characteristics may also interact, as 

433 evidenced by high variance in stem  among seven co-located trees (Fig. 1 c), and contribute to Ψ

434 model underperformance in dryland ecosystems. However, if transient anisohydry does indeed 

435 represent a life history strategy to maximize carbon uptake during pulses of moisture availability, 

436 then models will need to allow for vegetation hydraulic strategies to vary over time in order to 

437 correctly estimate dryland GPP.

Page 22 of 35

Manuscript submitted to New Phytologist for review



For Peer Review

438 One avenue of model development operationalizes the trade-off between carbon gain and 

439 hydraulic costs (Sperry et al., 2016; Wolf et al., 2016; Mencuccini et al., 2019), a subset of 

440 stomatal optimization models that accounts for the cavitation risk of low plant  (Wang et al., Ψ

441 2020). Temporally-variable water use strategies may arise as an emergent property of such 

442 models (Kannenberg et al., 2022), but likely only where the hydraulic costs of anisohydry and 

443 the forfeited carbon gain of isohydry are simultaneously represented. Alternatively, improving 

444 the temporal fidelity of optimization models could involve explicit implementation at multiple 

445 timescales (daily, weekly) to represent plant physiological acclimation to a changing 

446 environment (Joshi et al., 2022). It remains an open question how best to account for transient 

447 hydraulic strategies in modeling frameworks, and further research regarding when, where, and 

448 how such strategies arise is necessary to evaluate their role in improving estimation of dryland 

449 carbon fluxes.

450 Importance of plant water potential at large scales

451 In our study of a single growing season, we found that predawn water potential matches the 

452 temporal pattern of LUE even more strongly than antecedent soil moisture, which comports with 

453 the critical role of water potential to plant physiology. Importantly, predawn water potential 

454 improved GPP model fit even though measurement scales varied greatly, with NIRv derived 

455 from a 500 m pixel, GPP from a flux tower, and stand water potential averaged from 7 trees 

456 within the tower footprint, suggesting that the theoretical foundation connecting plant hydraulics 

457 to ecosystem productivity is robust to significant scale mismatch. Inclusion of predawn water 

458 potential rather than VPD and soil moisture improved not only model fit of GPP, but also the 

459 significantly reduced model bias (Fig. 6), primarily by accounting for the transition between dry 

460 season and first monsoon pulse, wherein high predawn water potentials signal physiological 

461 readiness for photosynthesis even though vegetation greenness is still lagging. Overprediction of 

462 low premonsoon GPP and underprediction of high monsoon GPP were strongly ameliorated by 

463 concomitant shifts in predawn water potential.

464 However, interpreting model residuals as indicative of variations in LUE must be approached 

465 with caution, as these residuals also encompass data uncertainty and unaccounted factors. This 

466 consideration is particularly important when extrapolating our findings to broader contexts or 
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467 different temporal scales. Despite these considerations, the substantial improvement of GPP 

468 predictions with the inclusion of predawn water potential underscores its promise as a valuable 

469 indicator for capturing intra-annual variability of dryland GPP and warrants additional 

470 investigation.

471 While continuous timeseries of plant water potential remain rare, new technology and collective 

472 efforts are poised to increase accessibility to this key metric. At large scales, promising pathways 

473 are being explored to develop remote sensing-based proxies of plant water potential using 

474 thermal (Farella et al., 2022) and microwave (Konings et al., 2021) observations. Current 

475 initiatives to collect and aggregate soil and plant water potential in conjunction with flux tower 

476 measurements, including the Ameriflux ‘Year of Water’ and the PSInet Research Coordination 

477 Network database, are anticipated to improve water potential data availability and spur synthesis 

478 beyond single-site studies. We believe that an expanded network of water potential 

479 measurements co-located at existing flux tower sites is essential to calibrate and evaluate both 

480 model and remote sensing approaches for estimating productivity.

481 Conclusions

482 Though classically considered anisohydric, J. osteosperma exhibited multiple hydraulic 

483 regulation strategies within a growing season. Extreme anisohydry was only evident after 

484 monsoon precipitation pulses, while soils were rapidly drying yet carbon uptake was high. This 

485 suggests that temporally flexible hydraulic regulation allows J. osteosperma to avoid extreme 

486  and xylem cavitation during seasonal drought and prolong high carbon uptake following ΨMD

487 episodic precipitation events. Furthermore, plant water potential significantly improved GPP 

488 model fit and reduced bias despite significant scale mismatch, heralding the immense potential of 

489 using plant water stress to increase the temporal fidelity of ecosystem carbon predictions.

490 Data availability

491 Data and code are organized as a research compendium in a public GitHub repository 

492 (https://github.com/jessicaguo/juniper-ecohydraulics) and archived on Zenodo 

493 (https://doi.org/10.5281/zenodo.10951221).
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