

New Phytologist

Dynamic regulation of water potential in *Juniperus osteosperma* mediates ecosystem carbon fluxes

Journal:	<i>New Phytologist</i>
Manuscript ID	NPH-MS-2024-46213.R1
Manuscript Type:	Full Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Guo, Jessica; The University of Arizona, Arizona Experiment Station Barnes, Mallory; Indiana University, O'Neill School of Public and Environmental Affairs Smith, William; University of Arizona, School of Natural Resources and the Environment Anderegg, William; University of Utah, School of Biological Sciences; The University of Utah, Wilkes Center for Climate Science and Policy Kannenberg, Steven; Colorado State University, Department of Biology; Colorado State University, Graduate Degree Program in Ecology; West Virginia University, Biology
Key Words:	carbon uptake, dryland ecosystem, hydraulic regulation, juniper woodland, iso/anisohydry, precipitation pulse dynamics, stem water potential
Suggested Handling Editor:	

SCHOLARONE™
Manuscripts

1 Dynamic regulation of water potential in *Juniperus osteosperma* mediates ecosystem carbon 2 fluxes

3 Jessica S. Guo

4 Mallory L. Barnes

5 William K. Smith

6 William R.L. Anderegg

7

Section	Word count	Number
Summary	195	-
Introduction	936	-
Materials and Methods	1822	-
Results	1477	-
Discussion	1923	-
Figures	-	6
Supporting Figures	-	2
Total	6375	-

9 **Summary**

10 • Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic
11 regulation (i.e., iso/anisohydry) changes in response to environmental conditions.
12 However, the environmental controls over iso/anisohydry and the implications of flexible
13 hydraulic regulation for plant productivity remain unknown.

14 • In *Juniperus osteosperma*, a drought-resistant dryland conifer, we collected a 5-month
15 growing season timeseries of *in situ*, high temporal-resolution plant water potential (Ψ)
16 and stand gross primary productivity (GPP). We quantified the stringency of hydraulic
17 regulation associated with environmental covariates and evaluated how predawn water
18 potential contributes to empirically predicting carbon uptake.

19 • *J. osteosperma* showed less stringent hydraulic regulation (more anisohydric) after
20 monsoon precipitation pulses, when soil moisture and atmospheric demand were high,
21 and corresponded with GPP pulses. Predawn water potential matched the timing of GPP
22 fluxes and improved estimates of GPP more strongly than soil and/or atmospheric
23 moisture, notably resolving GPP underestimation prior to vegetation green-up.

24 • Flexible hydraulic regulation appears to allow *J. osteosperma* to prolong soil water
25 extraction and therefore the period of high carbon uptake following monsoon
26 precipitation pulses. Water potential and its dynamic regulation may account for why
27 process-based and empirical models commonly underestimate the magnitude and
28 temporal variability of dryland GPP.

29 Keywords: carbon uptake, dryland ecosystem, hydraulic regulation, juniper woodland,
30 iso/anisohydry, precipitation pulse dynamics, stem water potential

31

32 **Introduction**

33 Along the soil-plant-atmosphere continuum, gradients of water potential (Ψ) drive water
34 transport and govern the tradeoff between obtaining carbon dioxide for photosynthesis and water
35 loss through stomata (Berry *et al.*, 2010). The concept of a ‘plant water use strategy’
36 encompasses the numerous ways plants have evolved to confront this inescapable dilemma,
37 including the prevalent iso/anisohydry spectrum based on the stomatal regulation of Ψ (Jones,
38 1998; Tardieu & Simonneau, 1998). Isohydry describes a conservative stomatal strategy to
39 minimize reductions in Ψ and preserve hydraulic conductivity, while anisohydry is a profligate
40 stomatal strategy that prioritizes carbon gain at the expense of low Ψ . The degree of
41 iso/anisohydry describes plant strategy in response to declining soil moisture absent other
42 limiting factors (Novick *et al.*, 2019) and is generally operationalized as a species-level and
43 theoretical trait. However, recent work has demonstrated that these strategies can be quite
44 variable within a species and may arise from plant-environment interactions (Hochberg *et al.*,
45 2018), including vapor pressure deficit (VPD), which is often decoupled from soil moisture at
46 short timescales (Novick *et al.*, 2016). Within-species shifts in iso/anisohydry have been
47 observed for *Larrea tridentata* (Guo *et al.*, 2020) and *Quercus douglasii* (Feng *et al.*, 2019)
48 during different seasons, in *Quercus suber* in response to competition (Haberstroh *et al.*, 2022),
49 *Acacia aptaneura* as a result of repeated experimental drought (Nolan *et al.*, 2017), and in
50 multiple species between wet and dry years (Wu *et al.*, 2021).

51 The implications of temporally-variable hydraulic strategies on ecosystem carbon (C) fluxes
52 have not been fully elucidated. This knowledge gap may limit accurate modeling of carbon and
53 water cycle dynamics, which in turn restricts our ability to predict and mitigate climate change
54 impacts (Kennedy *et al.*, 2019a; Novick *et al.*, 2022). Particularly in dryland ecosystems,
55 persistent water limitation and episodic precipitation promote tight coupling between carbon and
56 water cycles (Biederman *et al.*, 2016), resulting in added temporal complexity that can be
57 difficult to model (Noy-Meir, 1973; Loik *et al.*, 2004; Ogle & Reynolds, 2004; Feldman *et al.*,
58 2018). Dryland ecosystems are largely responsible for the interannual variability of the global
59 carbon sink (Poulter *et al.*, 2014; Ahlström *et al.*, 2015), yet dynamic global vegetation models
60 have been found to significantly underestimate the interannual variability of C uptake in dryland
61 regions (Biederman *et al.*, 2017; MacBean *et al.*, 2021a). Understanding the temporal dynamics

62 and environmental sensitivity of plant hydraulic strategies may be critical to improving
63 predictive forecasts of the global carbon cycle (Eller *et al.*, 2020; Sabot *et al.*, 2020, 2022).

64 Despite its importance, plant hydraulic stress is often notably absent from large-scale estimates
65 of ecosystem productivity (Smith *et al.*, 2019). Such models commonly combine remotely-
66 sensed indices of vegetation greenness and light use efficiency [LUE; Running *et al.* (2004);
67 Zeng *et al.* (2022)], defined as the slope of the relationship between biomass and cumulative
68 intercepted photosynthetically active radiation (Monteith *et al.*, 1977). Greenness indices can
69 represent the structural capacity for photosynthesis on a seasonal basis (Wang *et al.*, 2022), but
70 do not capture the sub-daily constraints imposed by soil and atmospheric drought, such that
71 productivity seasonality is much weaker in remotely-sensed than tower-based fluxes (Garbulsky
72 *et al.*, 2008; Biedermaier *et al.*, 2017; Smith *et al.*, 2019; Pierrat *et al.*, 2021). Instead, water stress
73 effects are typically incorporated into estimates of LUE using moisture scalars derived from
74 estimates of VPD [e.g., MODIS LUE; Zhao & Running (2010)], remotely sensed vegetation or
75 evaporative indices [e.g., eddy covariance; (EC)-LUE model Yuan *et al.* (2007)], or combined
76 VPD and soil moisture [e.g., CFLUX; King *et al.* (2011)]. However, the range of
77 ecophysiological responses to moisture stress are too complex for a single environmentally-
78 derived indicator or function to adequately represent (Zhang *et al.*, 2015). Plant water potential, a
79 direct metric of plant water stress that integrates soil and atmospheric drivers, may thus provide a
80 key physiological constraint on ecosystem productivity, which could improve our ability to
81 represent drought impacts and quantify interannual variability of C uptake.

82 Pinyon-juniper woodlands are broadly distributed in the southwestern United States and provide
83 a well-studied test system for how hydraulic strategies like iso/anisohydry can modulate
84 productivity and mortality (McDowell *et al.*, 2008). Pinyon mortality following the 2002-2003
85 drought was likely associated with differences in plant hydraulic regulation (Breshears *et al.*,
86 2009; Plaut *et al.*, 2012); juniper survival was largely attributed to a less hydraulically vulnerable
87 xylem and thus a greater ability to withstand low water potentials (McDowell *et al.*, 2008).
88 Although generally considered anisohydric, *Juniperus monosperma* exhibited strong stomatal
89 control and negligible xylem embolism under drought manipulation (Garcia-Forner *et al.*,
90 2016b), thereby challenging the hypothesis that anisohydric species are more prone to hydraulic
91 failure. As the southwestern US megadrought persists (Williams *et al.*, 2022) and induces

92 mortality even among resilient *Juniperus* spp. (Kannenberg *et al.*, 2021), it is imperative to
93 examine how flexible hydraulic strategies interact with plant productivity and survival.

94 In this study, we utilize a five-month time-series of plant Ψ and gross primary productivity
95 (GPP) in a juniper woodland to evaluate the temporal dynamics of hydraulic strategy and
96 incorporate plant water stress into a common GPP framework. Previous work by Guo *et al.*
97 (2020) examined dynamic hydraulic strategy in *Larrea tridentata* but lacked a co-located
98 timeseries of ecosystem carbon fluxes. By contemporaneously measuring plant Ψ and GPP
99 continuously at daily resolution, we can directly investigate the implications of Ψ regulation and
100 hydraulic status for productivity in an iconic southwestern species. We ask:

101 1) Does plant hydraulic regulation vary over time in *J. osteosperma*?
102 2) How are temporal patterns in hydraulic regulation related to GPP over a growing season?
103 3) Can GPP prediction be enhanced by plant water potential?

104 **Materials and Methods**

105 This study was conducted at an early-successional pinyon-juniper woodland (37.5241 N,
106 109.7471 W, 1866 m a.s.l.) in southeastern Utah. Local climate conditions include cold winters
107 and hot, dry summers, with high interannual variability in summer precipitation due to its
108 location at the northern boundary of the North American Monsoon. The locally flat topography
109 is dominated by Utah juniper (*Juniperus osteosperma*, 92% tree basal area) and two-needle
110 pinyon (*Pinus edulis*, 8% tree basal area), with sparse understory comprising big sagebrush
111 (*Artemisia tridentata*), prickly pear cactus (*Opuntia* spp.), and bunchgrasses. Mean growing
112 season leaf area index was 0.4, and the site was chained in the 1960s, resulting in a relatively
113 even-aged and sized population of *J. osteosperma*. See Kannenberg *et al.* (2023) for further site
114 description and processing of eddy covariance variables.

115 *Plant water potential*

116 Stem water potential of seven mature *J. osteosperma* within the tower footprint (< 20 m) was
117 monitored with both automated and manual measurements between May 24 and November 5,
118 2021. Half-hourly water potential was monitored with stem psychrometers (ICT International
119 PSY1) calibrated prior to installation. Two instruments per tree were installed by removing the

120 bark and phloem to expose a flat xylem surface. Psychrometer sensor heads were attached with
 121 self-adhesive silicone tape to maintain a tight seal and wrapped in reflective insulation to
 122 minimize temperature gradients. Because plant wounding responses can fill the sensor chamber,
 123 each psychrometer was uninstalled, cleaned with chloroform, and reinstalled on a new branch
 124 every 4-5 weeks. The day after reinstallation, the xylem water potential was measured manually
 125 with a Scholander-type pressure chamber (PMS 610) by excising a needle cluster with diameter
 126 between 2 and 4 mm and measuring within 2 minutes of collection; psychrometer water
 127 potentials generally matched pressure chamber values (Kannenberg *et al.*, 2023).

128 The half-hourly stem water potential time series were subjected to quality control by visual
 129 assessment and aggregated to daily values. After removing data during the maintenance period
 130 (+ 1 day) and outliers that were > 0.5 MPa from adjacent points, data that met the following
 131 criteria were also discarded: 1) a step change in the magnitude of water potential not attributable
 132 to a precipitation event; 2) loss of diurnal pattern in water potential. On average, data from 10
 133 out of 14 psychrometers were available during a given period. Half-hourly stem water potential
 134 was summarized to predawn (Ψ_{PD} , 2 hours prior to sunrise) and midday (Ψ_{MD} , 2 hours following
 135 solar noon) for each logger. In addition, site-level means of predawn and midday water potential
 136 were calculated and missing values (10 and 8, respectively) were imputed using Kalman
 137 Smoothing via the R package ‘imputeTS’ (Moritz & Bartz-Beielstein, 2017).

138 *Vegetation indices and fAPAR*

139 We adopted a Monteith light use efficiency framework (Monteith, 1972) to estimate plant
 140 productivity. This framework conceptualizes GPP as the product of absorbed photosynthetically
 141 active radiation (APAR) and the efficiency with which light is converted to fixed carbon (LUE).
 142 APAR is represented as a product of photosynthetically active radiation (PAR) and the fraction
 143 of PAR absorbed by plant canopies (fAPAR). The foundational equation from Monteith’s
 144 framework can be expressed as:

145
$$GPP = LUE \cdot PAR \cdot fAPAR \quad (1)$$

146 Many current models for estimating GPP are grounded in this framework or its variations. Here,
 147 we used the near-infrared reflectance of vegetation index (NIRv Badgley *et al.*, 2017, 2019)

148 as a proxy for fAPAR. This choice was informed by the strong correlation between NIRv and
 149 modeled fAPAR across various soil reflectances and its robustness at low vegetation cover
 150 (Badgley *et al.*, 2017; Wang *et al.*, 2022).

151 We calculated NIRv from Moderate Resolution Imaging Spectroradiometer (MODIS) nadir
 152 bidirectional reflectance distribution function adjusted daily reflectance product (MCD43A, 1 d,
 153 500 m, collection 6.1) using the point extraction tool AppEARS. MODIS bands 1 (620-670 nm)
 154 and 2 (841-876 nm) were combined with background soil reflectance of 0.08 to represent NIRv
 155 following Badgley *et al.* (2017). The pixel containing the coordinates of US-CdM was filtered to
 156 include only the highest quality observations (MODIS quality flag = 0). Resulting values were
 157 smoothed using a Savitzky-Golay filter of derivative order 0, filter order 3, and window length 5.

158 *Model description - hydraulic regulation*

159 To specify the hydraulic regulation model, we used the Martinez-Vilalta *et al.* (2014) equation to
 160 relate Ψ_{MD} to Ψ_{PD} :

161
$$\Psi_{MD} = \sigma \cdot \Psi_{PD} + \lambda \quad (2)$$

162 where σ represents the stringency of hydraulic regulation and λ describes the pressure drop when
 163 soil moisture is not limiting. Plant hydraulic regulation can be described as isohydry if $\sigma < 1$,
 164 anisohydry if $\sigma \approx 1$, and extreme anisohydry if $\sigma > 1$ (Martínez-Vilalta *et al.*, 2014).

165 To allow hydraulic regulation and GPP to vary over the growing season, we specified a
 166 hierarchical Bayesian model similar to Guo *et al.* (2020), which estimated σ and λ as linear
 167 functions of environmental drivers. Here, we used maximum daily VPD (D) and volumetric soil
 168 water content at 10 cm (W_{10}), which had the highest correlation with plant Ψ and GPP
 169 (Kannenberg *et al.*, 2023). Furthermore, we implemented the stochastic antecedent model (Ogle
 170 *et al.*, 2015) to quantify the influence of past environmental conditions. The data model for
 171 hydraulic regulation describes the likelihood of each observed Ψ_{MD} , which was normally
 172 distributed for each observation i ($i = 1, 2, \dots, 1425$):

173
$$\Psi_{MDi} \sim \text{Normal}(\hat{\Psi}_{MDi}, \sigma_{\Psi}^2) \quad (3)$$

174 where $\hat{\Psi}_{MDi}$ is the predicted or mean midday water potential and $\sigma_{\hat{\Psi}}^2$ represents the observation
 175 variance. $\hat{\Psi}_{MDi}$ was modeled according to Eqn. 3, where all terms were allowed to vary over
 176 time, either as direct observations (Ψ_{MD}, Ψ_{PD}) or as modeled parameters (σ, λ). The time-varying
 177 estimates of hydraulic regulation, σ and λ were indexed by i and modeled as linear combinations
 178 of two antecedent covariates and their interaction:

$$179 \quad \begin{aligned} \sigma_i &= \beta_0 + \beta_1 \cdot D_i^{ant} + \beta_2 \cdot W_{10i}^{ant} + \beta_3 \cdot D_i^{ant} \cdot W_{10i}^{ant} + E_{\sigma,t(i)} \\ \lambda_i &= \alpha_0 + \alpha_1 \cdot D_i^{ant} + \alpha_2 \cdot W_{10i}^{ant} + \alpha_3 \cdot D_i^{ant} \cdot W_{10i}^{ant} + E_{\lambda,t(i)} \end{aligned} \quad (4)$$

180 The β and α parameters were estimated for all trees. E_{σ} and E_{λ} represent the random effects of
 181 each tree, where $t(i)$ indicates tree t associated with each observation i . D_{max} and W_{10} were
 182 scaled using the 2021 mean and standard deviation so that regression coefficients could be
 183 compared and β_0 and α_0 could be interpreted as σ and λ , respectively, under mean environmental
 184 conditions. Antecedent VPD (D^{ant}) and soil water content (W_{10}^{ant}) were constructed using daily
 185 time series of each scaled environmental variable (Ogle *et al.*, 2015):

$$186 \quad \begin{aligned} D_i^{ant} &= \sum_{p=0}^{T_{lag}} \omega_{D_p} \cdot D_{t(i)-p} \\ W_{10i}^{ant} &= \sum_{p=0}^{T_{lag}} \omega_{W_p} \cdot W_{t(i)-p} \end{aligned} \quad (5)$$

187 where p indicates the time step, T_{lag} represents the total number of past time-steps considered,
 188 ω_{D_p} and ω_{W_p} indicates the weight or relative importance of the p th time step into the past, and
 189 $D_{t(i)-p}$ and $W_{t(i)-p}$ are the observed value of each variable at p time steps ago. Antecedent
 190 covariates are weighted averages of past covariate values, where the weights are stochastically
 191 determined by the data. Here, D^{ant} was constructed using daily values from the current day to 4
 192 days ago ($p = 1, T_{lag} = 5$), while W_{10}^{ant} was constructed using three-day averages of W_{10} from the
 193 current day to 20 days ago ($p = 3, T_{lag} = 7$).

194 To complete this model, a zero-centered hierarchical normal prior was specified for tree random
 195 effects:

196
$$\begin{aligned} E_{\sigma,t} &\sim \text{Normal}(0, \sigma_{\sigma}^2) \\ E_{\lambda,t} &\sim \text{Normal}(0, \sigma_{\lambda}^2) \end{aligned} \quad (6)$$

197 where reparameterization by sweeping was employed to ensure identifiability between the
 198 intercepts (β_0, α_0) and the random effects (Vines *et al.*, 1996).

199 All remaining parameters were given standard priors following Gelman *et al.* (2014). The
 200 regression coefficients were assigned relatively non-informative normal priors centered at zero
 201 with large variance. Antecedent importance weights, vectors of length T_{lag} (Eqn. 5), were given
 202 non-informative Dirichlet priors that assume *a priori* that each past time step has equal
 203 importance, and that constrain weights for each covariate to sum to 1 across all time steps, p . The
 204 standard deviation of tree random effects (σ_{σ} and σ_{λ}) were given relatively non-informative Unif
 205 orm(0,1) priors, while the measurement error precision ($1/\sigma_{\Psi}^2$) was assigned a conjugate,
 206 relatively non-informative Gamma(0.1,0.1) prior.

207 *Model description - GPP*

208 To assess the drivers of daily ecosystem productivity, we developed a two-part model based on
 209 the Monteith (1972) framework. In this model, daily GPP was modeled sequentially, first as a
 210 function of NIRv and incoming PAR. The residuals of this model were considered indicative of
 211 variation in LUE.

212 Typically, LUE is conceptualized as the product of its theoretical maximum (LUE_0) and a
 213 function of environmental stressors that reduce optimal light-use efficiency. Given that LUE_0 is a
 214 theoretical construct assumed to remain constant within our study (e.g., within a season), the
 215 GPP model residuals can be interpreted as 1) impacts of environmental stressors on LUE and 2)
 216 random noise or uncertainty inherent in the data. Thus, while we evaluated GPP model residuals
 217 as functions of water stress indicators, including VPD, soil moisture, and predawn water
 218 potential, we also acknowledge that they include data uncertainty and random noise.

219 The likelihood of observed GPP was normally distributed for each observation j ($j = 1, 2, \dots,$
 220 166):

221
$$GPP_j \sim \text{Normal}(\widehat{GPP}_j, \sigma_{GPP}^2) \quad (7)$$

222 where \widehat{GPP}_j is the predicted or mean daily GPP and the variance σ_{GPP}^2 represents the uncertainty
 223 in observed GPP. \widehat{GPP}_j was modeled as a linear function of NIRv, PAR, and their interaction,
 224 representing the photosynthetic-capacity component of the Monteith (1972) formulation.

225
$$\widehat{GPP}_j = \gamma_0 + \gamma_1 \cdot NIRv_j + \gamma_2 \cdot PAR_j + \gamma_3 \cdot NIRv_j \cdot PAR_j \quad (8)$$

226 All remaining parameters were given standard priors as previously described.

227 To interpret the remaining GPP as LUE, we calculated the residuals of the above model as the
 228 posterior mean of $GPP_j - \widehat{GPP}_j$; residuals were scaled for improved model mixing. The likelihood
 229 of the residual model described scaled resid as normally distributed for observations k ($k = 1, 2,$
 230 $\dots, 166$):

231
$$resid_k \sim \text{Normal}(\widehat{resid}_k, \sigma_{resid}^2) \quad (9)$$

232 where \widehat{resid}_k is the predicted residual between observed and modeled (Eqn. 7, Eqn. 8) GPP, and
 233 the variance σ_{resid}^2 represents the uncertainty in observed resid. \widehat{resid}_k is interpreted as a dynamic
 234 LUE constraint on GPP after vegetation greenness and light interception is accounted for. We
 235 devised three LUE formulations that account for the combined impact of concurrent VPD and
 236 antecedent soil moisture (Eqn. 10), antecedent soil moisture alone (Eqn. 11), and concurrent
 237 predawn water potential (Eqn. 12):

238
$$\widehat{resid}_k = \delta_0 + \delta_1 \cdot D_{maxk} + \delta_2 \cdot W_{10k}^{ant} + \delta_3 \cdot D_{maxk} \cdot W_{10k}^{ant} \quad (10)$$

239
$$\widehat{resid}_k = \eta_0 + \eta_1 \cdot W_{10k}^{ant} \quad (11)$$

240
$$\widehat{resid}_k = \theta_0 + \theta_1 \cdot \overline{\Psi_{PDk}} \quad (12)$$

241 where $\overline{\Psi_{PD}}$ were the gapfilled means of predawn water potential at the site level. Antecedent
 242 weights for W_{10}^{ant} were constructed identically to Eqn. 5, with unique weights determined by the
 243 GPP residuals.

244 *Model implementation and interpretation*

245 The above models were implemented in JAGS 4.3.0 (Plummer, 2003) using R 4.1.1 and 'rjags'
246 4.13 (R Core Team, 2021; Plummer, 2022). For each model, three parallel Markov chain Monte
247 Carlo sequences were initiated with dispersed starting values; initial iterations were run until
248 model convergence, as indicated by the Gelman and Rubin (Gelman & Rubin, 1992) statistic.
249 Models were then run for 150,000 iterations and thinned by 50 to reduce within-chain
250 autocorrelation and storage requirements, yielding a total of 9000 relatively independent
251 posterior samples for each quantity of interest, including the regression coefficients and
252 antecedent weights. Posterior distributions were summarized by their means and 95% highest
253 posterior density credible intervals (henceforth, 95% CIs). Covariate effects were significant if
254 the 95% CI did not overlap zero. To quantify seasonal variation in σ , the posterior samples of the
255 β regression coefficients and antecedent weights were combined with the time-series of scaled
256 D_{max} and W_{10} to produce posterior means and 95% CIs. Model comparison criteria for the three
257 forms of GPP residual models included posterior predictive loss (Gelfand & Ghosh, 1998) and
258 the coefficient of determination (R^2) between observed and predicted values.

259 **Results**260 *Seasonal dynamics of Ψ , GPP, and σ*

261 Predawn (Ψ_{PD}) and midday (Ψ_{MD}) stem water potentials responded dynamically to moisture
262 inputs, particularly during the monsoon period (Fig. 1). Monsoon onset, determined as the day on
263 which on the 10% of the total July, August, and September precipitation was accumulated
264 (Grantz *et al.*, 2007), occurred on 2021-07-23. Prior to monsoon onset, the generally high VPD
265 and low soil moisture yielded relatively consistent mean Ψ_{PD} between -2 and -4 MPa. During the
266 monsoon period, VPD and soil moisture were less extreme than during the more arid mid-
267 summer period, though highly variable as a result of three major pulse-drydown events (Fig. 1).
268 Beginning with the first major pulse event (39 mm on 2021-07-27), mean Ψ_{PD} remained above -
269 2 MPa continuously for 46 days; however, minimum mean Ψ_{PD} was similar in premonsoon and
270 monsoon periods due to rapid decline in Ψ_{PD} following the third major pulse-drydown. Finally,
271 mean Ψ_{PD} stayed above -2 MPa during the fall season, likely due to cooling temperatures and
272 reduced atmospheric demand.

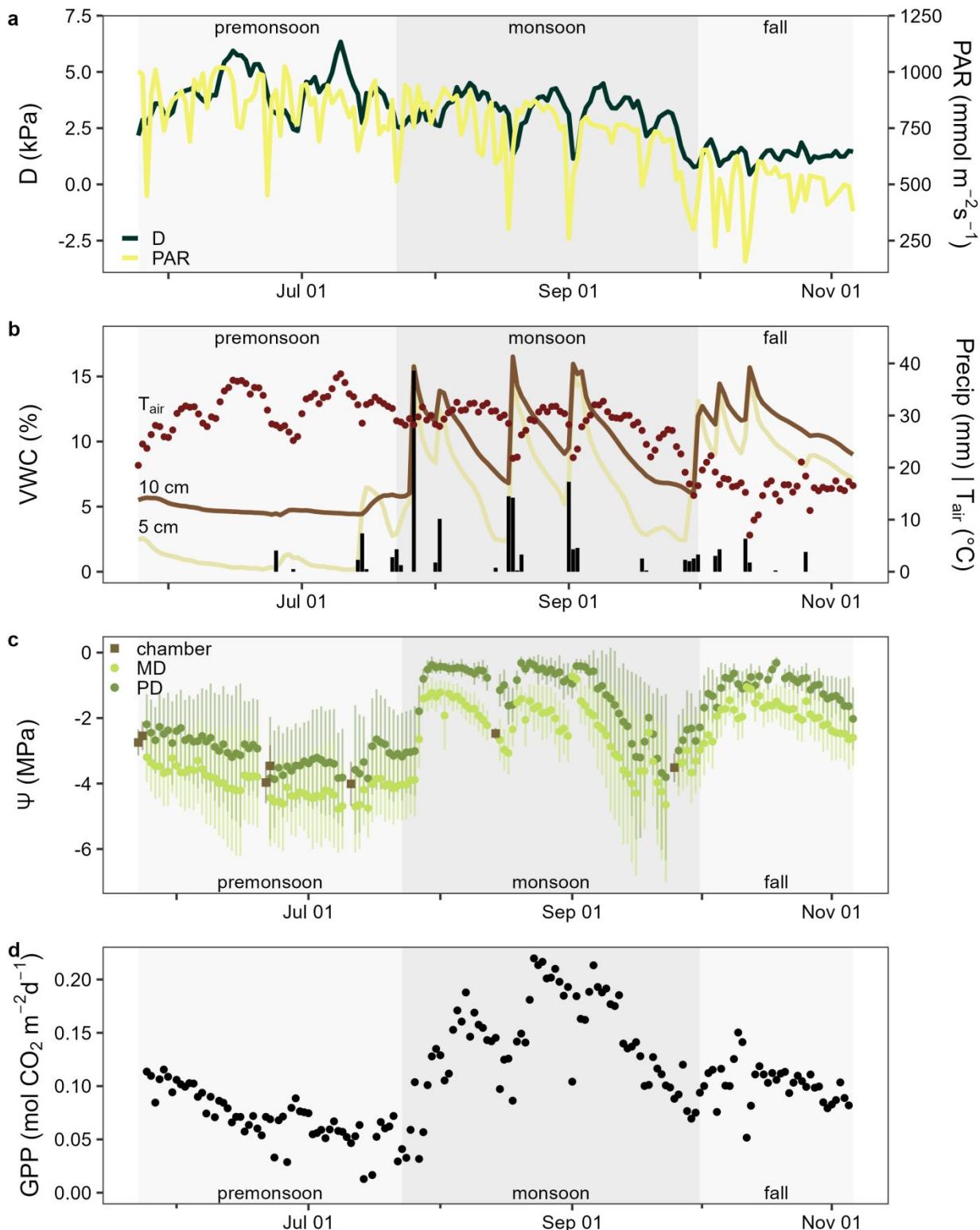


Figure 1: Daily site-level environmental characteristics of a) maximum vapor pressure deficit (D) and photosynthetically active radiation (PAR) b) mean volumetric water content at 5 cm

and 10 cm, total precipitation, and air temperature. Time series of c) chamber and automated daily measurements of mean stem water potential and d) daily total gross primary productivity (GPP). Labeled boxes subdivide the study period into before, during, and after the monsoon season; error bars represent population standard deviation

273 Seasonal GPP dynamics were similarly responsive to precipitation inputs (Fig. 1 b). GPP
 274 declined during the premonsoon period to near-zero levels, while the onset of the monsoon
 275 prompted sharp increases. Interestingly, while the first major pulse event was the largest single-
 276 day total (39 mm on 2021-07-27) that corresponded to almost immediate increases in Ψ_{PD} , GPP
 277 rose only modestly. All three peaks in GPP during the monsoon period lagged the moisture
 278 inputs and lasted more briefly than peaks in Ψ_{PD} (Fig. 1). Fall GPP averaged $0.1 \text{ mol CO}_2 \text{ m}^{-2}$
 279 d^{-1} , about the same as initial GPP during the premonsoon period.

280 The dynamics of hydraulic regulation can be visually estimated by plotting stem Ψ_{MD} and Ψ_{PD}
 281 for each season (Fig. 2). The slope σ appeared similar during the premonsoon and fall periods,
 282 although W and therefore stem Ψ differed substantially between the two seasons. During the
 283 monsoon period, two slopes were detected via segmented regression, with $\sigma > 1$ occurring when
 284 soil moisture was high and $\Psi_{PD} > -0.6 \text{ MPa}$; the same region during the fall season had a
 285 much shallower slope.

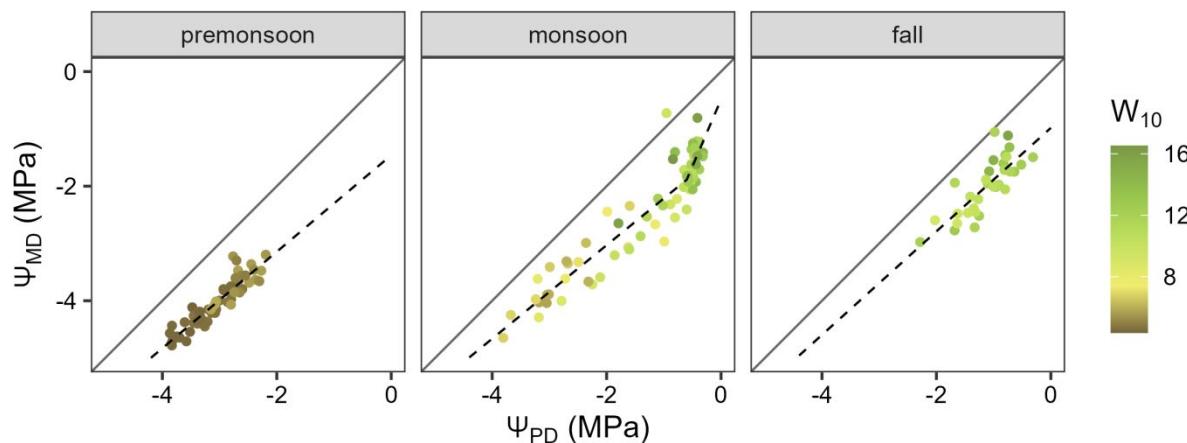


Figure 2: Midday (Ψ_{MD}) vs. predawn (Ψ_{PD}) stem water potential in each of three seasons. Points are colored by the concurrent daily volumetric water content at 10 cm (W_{10}). Solid line

is the 1:1 line. Dashed lines represent linear fits by season, with a segmented regression joined at $\Psi_{PD} = -0.6$ during the monsoon

286 *Environmental drivers and timescales of σ*

287 The hydraulic regulation model (Eqn. 3 - Eqn. 6) fit the data very well (Fig. S1, observed
 288 vs. predicted Ψ_{MD} $R^2 = 0.920$) with low bias (slope of observed vs. predicted = 0.919).

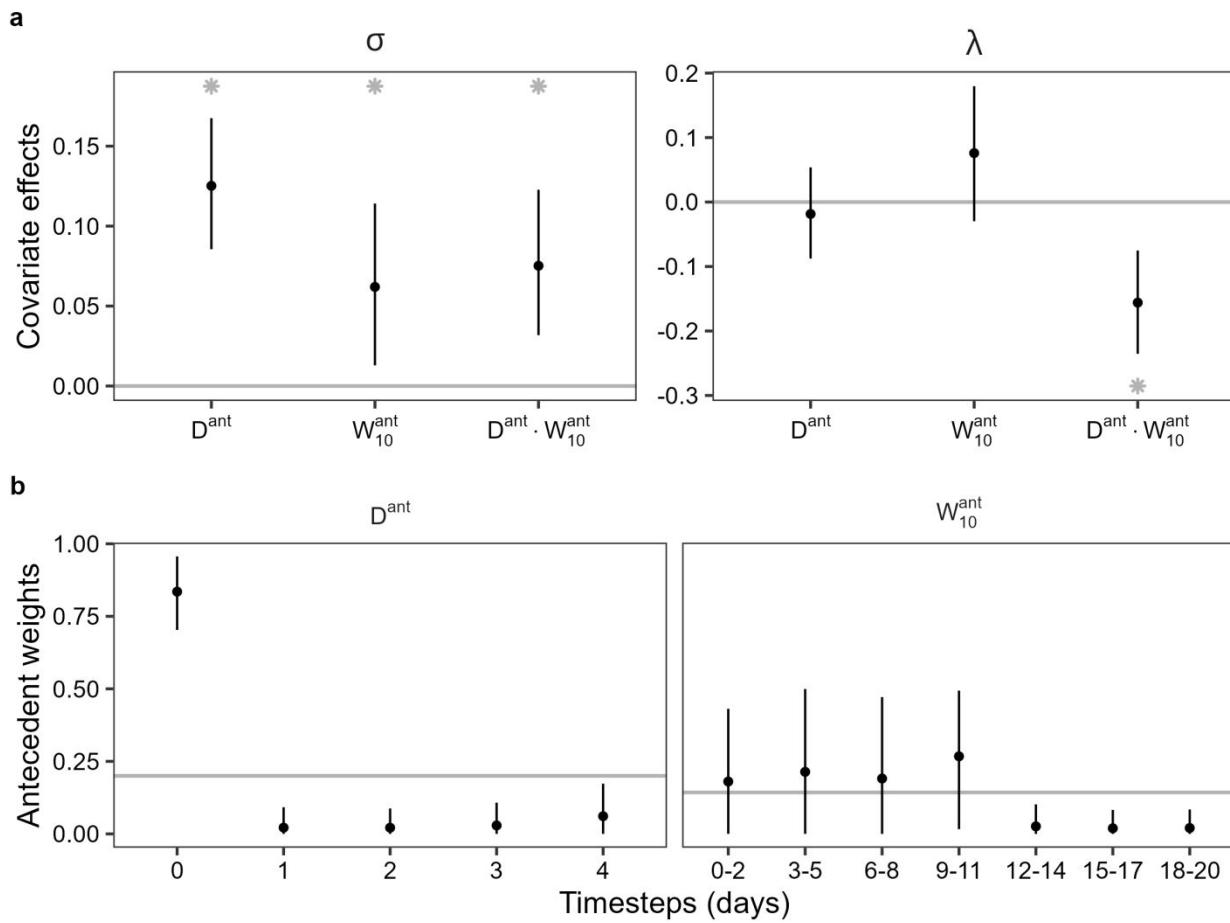


Figure 3: Posterior mean and 95% CI of the a) covariate effects on σ and λ and b) antecedent weights ω associated with covariates D and W_{10} . Gray horizontal lines indicate the prior means, and asterisks indicate significant covariate effects

289 Temporal variation in hydraulic regulation (σ) was strongly positively associated with antecedent
 290 VPD (D^{ant}), antecedent soil water content (W_{10}^{ant}), and their interaction (Fig. 3 a), indicating that

291 *J. osteosperma* became especially anisohydric under dry atmospheric conditions when soils were
 292 wet. While the positive effect of D was primarily driven by the atmospheric dryness on the same
 293 day, soil moisture up to 11 days prior was influential (Fig. 3 b). The pressure drop parameter λ
 294 was negatively associated with the interaction of D^{ant} and W_{10}^{ant} , although the main effects were
 295 not significant (Fig. 3 a).

296 *Temporal patterns in σ and GPP*

297 Although general trends in hydraulic regulation can be inferred from grouping Ψ_{MD} and Ψ_{PD} by
 298 season (e.g., Fig. 2), the hierarchical Bayesian model permitted combining posterior parameter
 299 distributions with environmental covariates to produce daily timeseries of predicted σ (e.g.,
 300 Fig. 4 a), which cannot be determined empirically. During the premonsoon, *J. osteosperma*
 301 shifted between iso- and anisohydry, with σ values near 1. But during the monsoon season, the
 302 three main pulse events heralded peaks in σ that signify extreme anisohydry, with σ values well
 303 above 1, driven by the high VPD and still-wet soils that characterize the post-precipitation
 304 period. Finally, in the fall, *J. osteosperma* returned to isohydry, and σ fell below 1.

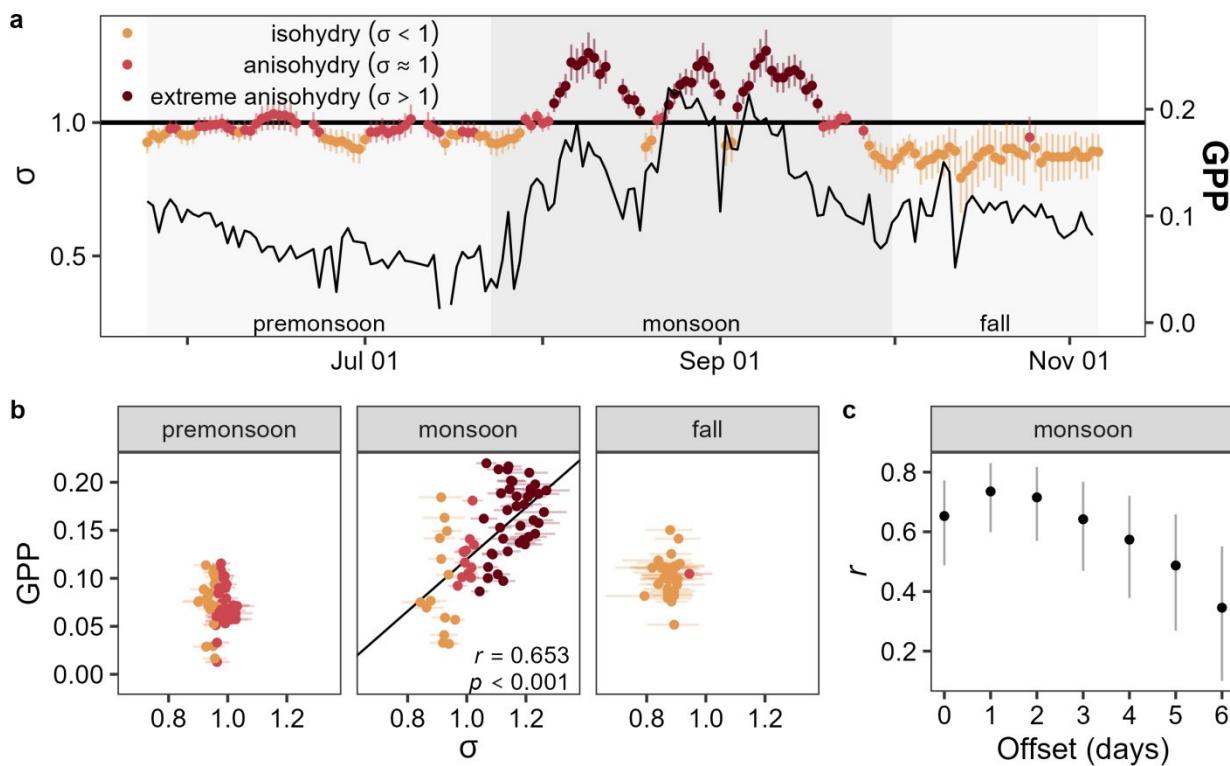


Figure 4: Relationship between predicted σ (posterior mean and 95% CI) and daily GPP shown as a) time series across three seasons, b) bivariate plots for each season, and c) Pearson's correlation coefficient (estimate and 95% confidence interval) during monsoon season across a range of daily offsets where GPP leads σ

305 The trends in daily σ corresponded well to observed time-series of GPP (Fig. 4 a), particularly in
 306 the responsiveness of both σ and GPP to the three main pulse events. Thus, σ and GPP were
 307 positively correlated during the monsoon period ($r = 0.653, p < 0.001$, Fig. 4 b). However, the
 308 peak in GPP appeared to lead the the peak in σ , as the highest Pearson's correlation between
 309 GPP and σ was achieved at a 1-2 day offset between the two timeseries (Fig. 4 c).

310 *Plant water potential relationship to GPP*

311 The initial GPP model (Eqn. 7, Eqn. 8) also fit the data well (Fig. 5 c, observed vs. predicted GP
 312 $P R^2 = 0.733$), although with some degree of bias (slope of observed vs. predicted = 0.732) such
 313 that some high GPP values were underpredicted. Comparing the GPP and NIRv time series
 314 (Fig. 5 a), the first major pulse event elicited a strong GPP response prior to any green up
 315 detected optically by NIRv. Conversely, low, near-zero GPP in mid to late July was not matched
 316 by extreme lows in scaled PAR or NIRv, resulting in overprediction of low GPP values. GPP
 317 was positively associated with NIRv and the interaction between NIRv and PAR (Fig. 5 b),
 318 though PAR alone was not significantly associated with GPP.

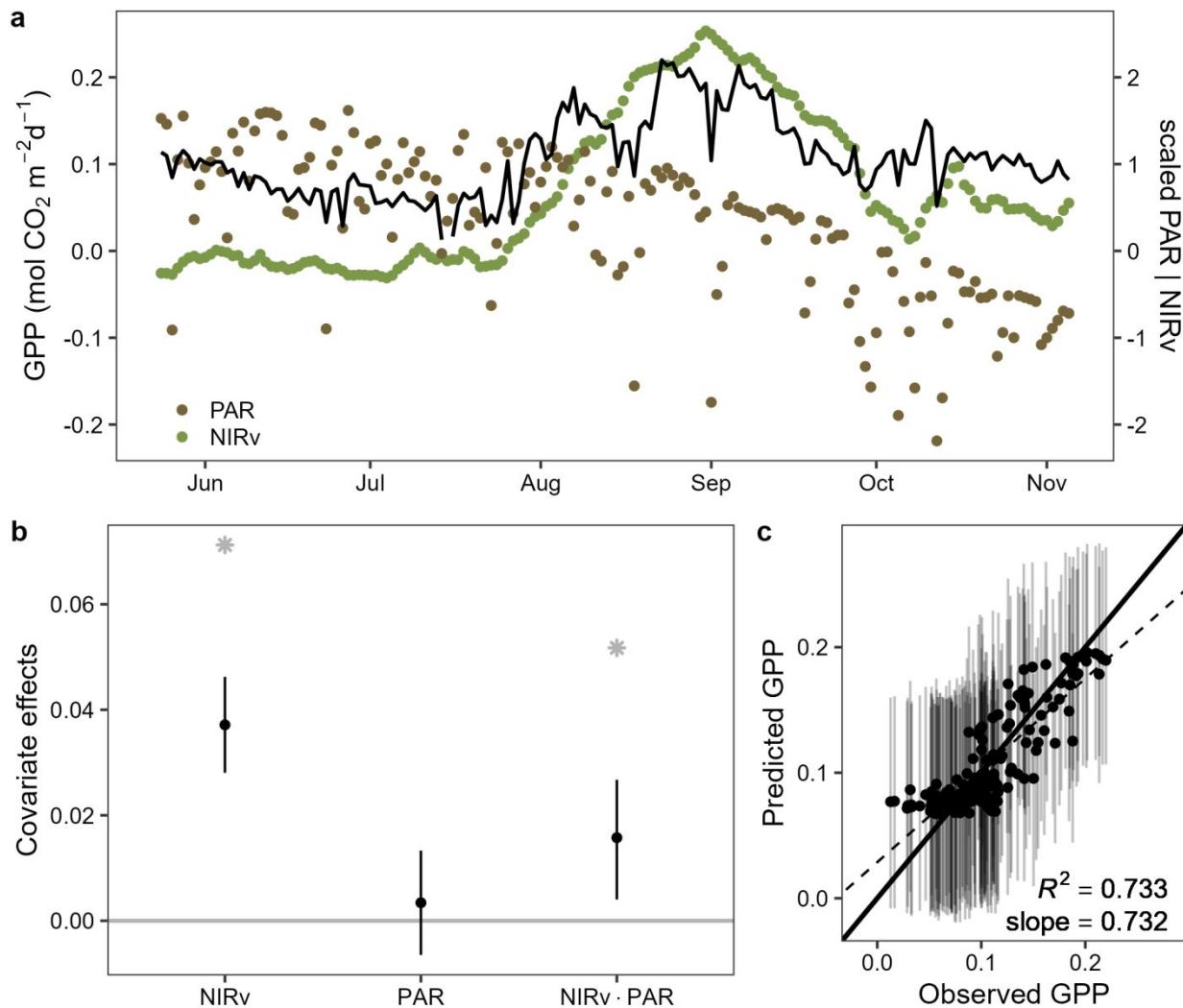


Figure 5: a) Time series of daily total gross primary productivity (GPP) with scaled values of near infrared reflectance of vegetation (NIRv) and photosynthetically active radiation (PAR). Posterior mean and 95% CI of the b) covariate effects and c) predicted versus observed GPP from the first part of the GPP model (Eqn. 7, 8). Gray horizontal lines indicate the prior means, asterisks indicate significant covariate effects, error bars represent the 95% CIs, the solid diagonal is the 1:1 line, and the dashed line represents the line of best fit

319 Residuals from the initial GPP model were interpreted as fluctuations in light use efficiency
 320 (LUE), and model fit was compare among three functional forms: environmental covariates with
 321 D and W_{10}^{ant} (Eqn. 5, Eqn. 10), soil water content with W_{10}^{ant} only (Eqn. 5, Eqn. 11), and predawn
 322 water potential with $\overline{\Psi_{PD}}$ only (Eqn. 12). Of the three models, the $\overline{\Psi_{PD}}$ model had the fewest

323 effective number of parameters (pD), lowest posterior predictive loss (D_{∞}), strongest coefficient
 324 of determination (R^2), and lowest bias (Fig. 6 b,c).

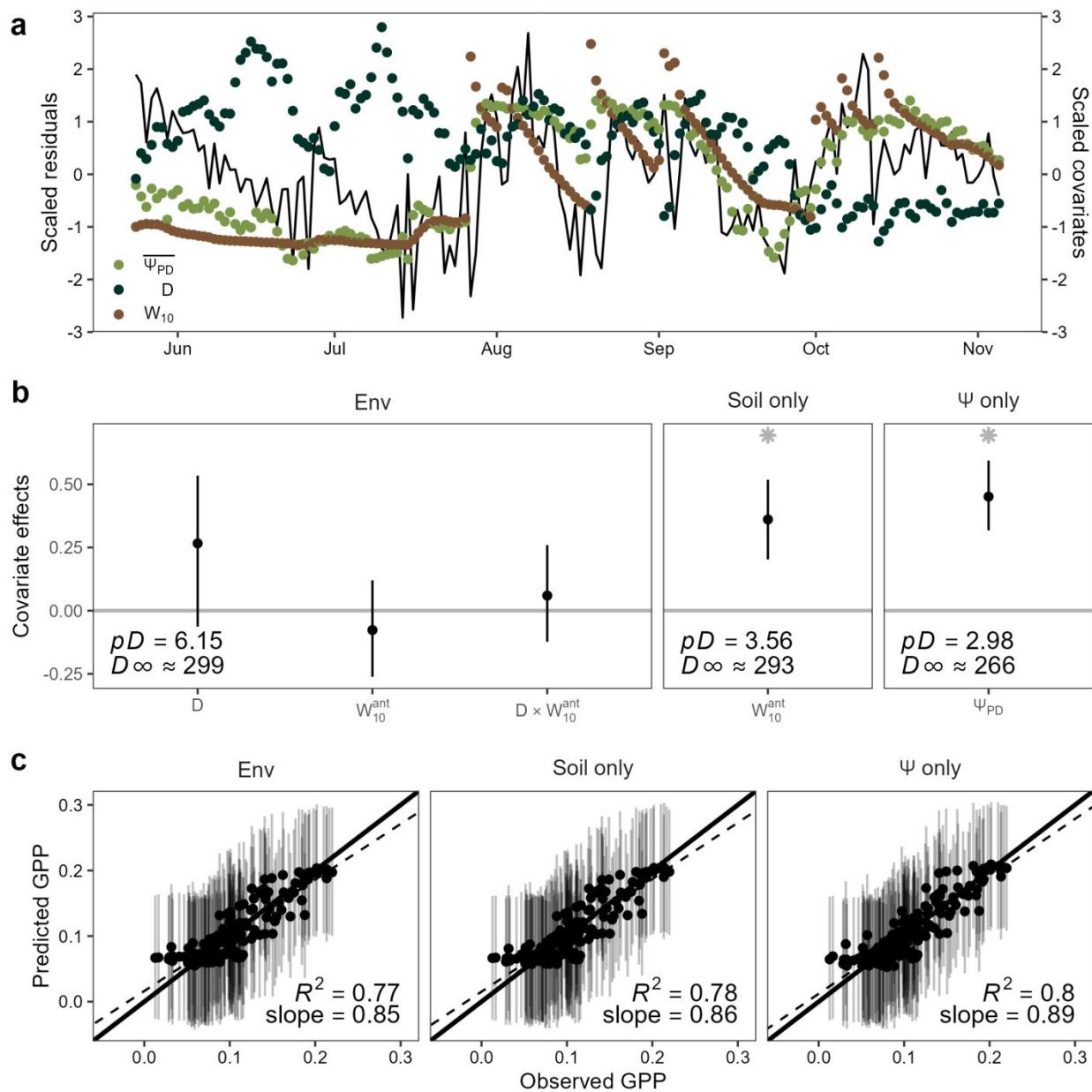


Figure 6: a) Time series of daily residuals from the GPP model with daily maximum vapor pressure deficit (D), volumetric water content at 10 cm (W_{10}^{ant}), and site-averaged predawn water potential ($\bar{\Psi}_{PD}$), all standardized to the same scale. Posterior mean and 95% CI of the b) covariate effects and c) predicted versus observed residuals from each residual model: Env (Eqn. 5 & Eqn. 10), Soil only (Eqn. 5 & Eqn. 11), and Ψ only (Eqn. 12). Gray horizontal lines

indicate the prior means, asterisks indicate significant covariate effects, error bars represent the 95% CIs, the solid diagonal is the 1:1 line, and the dashed line represents the line of best fit

325 Among the LUE models, the $\overline{\Psi_{PD}}$ fit the GPP residuals modestly well (observed vs. predicted res
 326 id $R^2=0.199$) while minimizing posterior predictive loss (Fig. 6 b). Combining the initial GPP
 327 model and the best-performing LUE model using $\overline{\Psi_{PD}}$ improved the overall R^2 from 0.733 to
 328 0.800 and substantially reduced bias from 0.732 to 0.89 (Fig. 5 c, Fig. 6 c).

329 The strong performance of $\overline{\Psi_{PD}}$ for predicting GPP residuals is likely due to their close temporal
 330 coherence (Fig. 6 a), which outperformed models with W_{10}^{ant} alone or in conjunction with D
 331 (Fig. 6 b). The antecedent weights for W_{10}^{ant} (Fig. S2) indicated that GPP residuals lagged soil
 332 moisture by 3-5 days, but the temporally-weighted soil moisture still did not correlate as strongly
 333 with GPP residuals as $\overline{\Psi_{PD}}$ did. Surprisingly, neither D nor W_{10}^{ant} was significantly associated with
 334 the GPP residuals in the environmental covariates model (Fig. 6 b), perhaps because D and PAR
 335 were highly correlated (Fig. 1) and the initial GPP model already accounted for PAR.

336 Discussion

337 In this study, we aimed to improve our understanding of temporal variability in plant hydraulic
 338 regulation and its relationship to ecosystem carbon uptake. We leveraged contemporaneous,
 339 high-resolution water potential and carbon flux data to compare temporal trends in daily plant
 340 water potential, hydraulic behavior, and GPP in a juniper woodland. First, we found that in *J.*
 341 *osteosperma*, hydraulic regulation varied over the growing season. Increasing anisohydricity was
 342 observed following precipitation pulses, associated with high soil moisture and high atmospheric
 343 demand (Fig. 3). Next, we found that GPP and σ were most positively correlated during the
 344 monsoon season, but with different temporal trajectories following precipitation pulses (Fig. 4).
 345 Surprisingly, although both Ψ_{MD} and Ψ_{PD} responded rapidly to precipitation inputs, plants
 346 achieved maximum σ 1-2 days after peak GPP was reached for a given moisture pulse (Fig. 4 c).
 347 Together, these results hint at the intriguing possibility that extreme anisohydry can serve to
 348 maximize soil water extraction and prolong GPP pulses in dryland ecosystems. Finally, predawn
 349 water potential explained more variability in GPP compared to environmental covariates
 350 associated with atmospheric and soil moisture conditions (Fig. 6). As a direct metric of water

351 stress, plant water potential closely matched the timing of GPP variability not accounted for by
352 light availability and vegetation greenness, underscoring water stress as the dominant constraint
353 on intra-annual GPP dynamics in dryland ecosystems.

354 *Temporally-varying hydraulic behavior*

355 *Juniperus* species are considered more anisohydric than co-occurring pinyon pines due to their
356 more cavitation-resistant xylem (Linton *et al.*, 1998), higher hydraulic safety margins (Plaut *et*
357 *al.*, 2012), and lower leaf water potentials (West *et al.*, 2007; Breshears *et al.*, 2009), while their
358 categorization based on stomatal control is less conclusive (Garcia-Forner *et al.*, 2016a). Due to
359 less vulnerable xylem in *Juniperus*, low water potentials alone do not suggest less stringent
360 stomatal control, as they must be interpreted relative to vulnerability curve parameters such as
361 Ψ_{50} , or the xylem pressure at 50% loss of hydraulic conductance. Here, a 166-day time series of
362 Ψ_{PD} and Ψ_{MD} in *J. osteosperma* reveals strong, context-dependent variation in hydraulic
363 regulation, an intermediate timescale that can potentially bridge the gap between short-term
364 stomatal response-based definition of iso/anisohydry (Tardieu & Simonneau, 1998) and
365 definitions that rely on seasonal extremes (Klein, 2014; Martinez-Vilalta *et al.*, 2021). We posit
366 that response-based metrics (Kannenberg *et al.*, 2022) can be used to quantify plant water use
367 strategies without distinguishing between active versus passive regulation, yet can enhance
368 predictive understanding of plant-environment interactions.

369 Dry air in combination with wet soil drove large increases in σ in *J. osteosperma*, attesting to the
370 importance of VPD as a driver of plant responses (Novick *et al.*, 2016; Grossiord *et al.*, 2020).
371 As the same drivers were important for hydraulic regulation in the drought-tolerant desert shrub,
372 *Larrea tridentata* (Guo *et al.*, 2020), transient drops in Ψ_{MD} may be strategic only during the wet
373 periods of otherwise water-limited ecosystems, when the reward of carbon uptake exceeds the
374 risk of embolism. In our study, shifts to extreme anisohydry appeared only as responses to
375 discrete monsoon precipitation pulses, suggesting that flexible hydraulic behavior enables *J.*
376 *osteosperma* to take advantage of soil moisture when available. The responsiveness of hydraulic
377 behavior to soil moisture may explain why, despite similar lateral root densities as pinyon pines
378 (Schwinnning *et al.*, 2020), junipers tend to be more physiologically responsive to moderate
379 moisture inputs (Breshears *et al.*, 1997; West *et al.*, 2007; Guo *et al.*, 2018).

380 The positive relationship between σ and GPP during the monsoon season suggests that
381 temporally-variable hydraulic regulation can maximize carbon uptake during periods of patchy
382 moisture availability. Most interestingly, the timing of σ and GPP indicates that extreme
383 anisohydry intensifies after GPP peaks. After a precipitation pulse when soil moisture is high,
384 GPP may be immediately stimulated, such that relatively high midday water potentials (low σ)
385 are sufficient to drive water transport along the soil-plant-atmosphere continuum. Because soil
386 moisture declines rapidly after precipitation pulses, extreme anisohydry ($\sigma > 1$) may serve to
387 decrease midday water potentials, maintain water transport in drying soils, and possibly confer a
388 competitive advantage over co-occurring understory species (e.g., Barron-Gafford *et al.*, 2021).
389 The propensity of *Juniperus* spp. to extract soil water even at low soil water potentials (West *et*
390 *al.*, 2007) is consistent with extreme anisohydry and prolonged elevation of GPP as soils dry.

391 *Possible mechanisms of temporally-varying hydraulic regulation*

392 The mechanisms underlying temporally-varying hydraulic regulation are not well understood,
393 but coordination with other temporally-varying physiology and growth responses could play a
394 role. First, pressure-volume relationships in *Juniperus monosperma* are plastic depending on leaf
395 hydration (Meinzer *et al.*, 2014), such that as a leaf dehydrates, it experiences more negative
396 turgor loss point and less elastic cell walls. Conceivably, stomatal regulation of leaf water
397 potential could also vary with leaf hydration, which may be especially dynamic in evergreen
398 leaves experiencing pulse-driven precipitation. Accounting for plastic adjustment in turgor loss
399 point, *J. monosperma* would ultimately lose turgor at -8.2 MPa (Meinzer *et al.*, 2014), and
400 indeed 99.1% of our individual Ψ_{MD} observations occurred above this threshold. Temporally-
401 varying leaf-water relations may indicate that osmotic adjustment, cell wall elastic properties,
402 and stomatal regulation could vary in concert to maintain turgor across declining leaf hydration.

403 Hydraulic regulation strategies could also be linked to temporal dynamics of foliar ABA during
404 soil water stress and recovery (Brodribb & McAdam, 2013). In *Callatris rhomboidea*, sustained
405 water stress led to a decline in ABA such that loss of leaf water potential (and thus guard cell
406 turgor) drove stomatal closure, with the corollary of low ABA also enabling rapid recovery of
407 leaf water potential after rewetting (Brodribb & McAdam, 2013). Among *Cupressaceae*,
408 including *Juniperus* and *Callatris*, the use of leaf desiccation to close stomata during prolonged

409 water stress (Brodribb *et al.*, 2014) could explain why *J. osteosperma* experiences temporally-
410 varying hydraulic regulation. The hydraulic risk of extreme anisohydry could also be partially
411 compensated by rapid recovery following rewetting, enabling persistence in seasonally dry
412 ecosystems.

413 Finally, temporally-varying hydraulic regulation may be associated with the timing of
414 belowground dynamics that enable increased conductance, such as fine root and mycorrhizal
415 development (Peek *et al.*, 2006; Lehto & Zwiazek, 2011). In *J. osteosperma*, fine roots grew
416 when soil water was most available and shifted toward deeper layers as the growing season
417 progressed (Peek *et al.*, 2006), and root distributions varied depending on cool-season vs. warm-
418 season precipitation. Rooting dynamics can directly influence plant water potential via
419 rhizosphere conductance, although this is difficult to quantify empirically (Bristow *et al.*, 1984;
420 Sperry *et al.*, 2016). Similarly, mycorrhizal symbionts are known to alter root conductivity
421 (Lehto & Zwiazek, 2011), enhance stomatal conductance (Augé *et al.*, 2015), and increase plant
422 productivity (Mohan *et al.*, 2014), but the temporal dynamics of plant-mycorrhizae relationships
423 under field conditions are poorly understood and merit further investigation (Gehring *et al.*,
424 2017).

425 *Implications for hydraulic modeling*

426 Plant hydraulic schemes are becoming increasingly represented in vegetation and land surface
427 models (Kennedy *et al.*, 2019b; Eller *et al.*, 2020; Sabot *et al.*, 2020). The link we observed
428 between hydraulic strategy and GPP reinforces the value of these approaches for improved
429 predictions of GPP, especially in dryland ecosystems where patchy resource availability leads to
430 widespread underpredictions of both the magnitude and variability of carbon fluxes (Biederman
431 *et al.*, 2017; MacBean *et al.*, 2021b; Barnes *et al.*, 2021). Temporal heterogeneity in plant
432 hydraulic strategy and spatial heterogeneity in topoedaphic characteristics may also interact, as
433 evidenced by high variance in stem Ψ among seven co-located trees (Fig. 1 c), and contribute to
434 model underperformance in dryland ecosystems. However, if transient anisohydry does indeed
435 represent a life history strategy to maximize carbon uptake during pulses of moisture availability,
436 then models will need to allow for vegetation hydraulic strategies to vary over time in order to
437 correctly estimate dryland GPP.

438 One avenue of model development operationalizes the trade-off between carbon gain and
439 hydraulic costs (Sperry *et al.*, 2016; Wolf *et al.*, 2016; Mencuccini *et al.*, 2019), a subset of
440 stomatal optimization models that accounts for the cavitation risk of low plant Ψ (Wang *et al.*,
441 2020). Temporally-variable water use strategies may arise as an emergent property of such
442 models (Kannenberg *et al.*, 2022), but likely only where the hydraulic costs of anisohydry and
443 the forfeited carbon gain of isohydry are simultaneously represented. Alternatively, improving
444 the temporal fidelity of optimization models could involve explicit implementation at multiple
445 timescales (daily, weekly) to represent plant physiological acclimation to a changing
446 environment (Joshi *et al.*, 2022). It remains an open question how best to account for transient
447 hydraulic strategies in modeling frameworks, and further research regarding when, where, and
448 how such strategies arise is necessary to evaluate their role in improving estimation of dryland
449 carbon fluxes.

450 *Importance of plant water potential at large scales*

451 In our study of a single growing season, we found that predawn water potential matches the
452 temporal pattern of LUE even more strongly than antecedent soil moisture, which comports with
453 the critical role of water potential to plant physiology. Importantly, predawn water potential
454 improved GPP model fit even though measurement scales varied greatly, with NIRv derived
455 from a 500 m pixel, GPP from a flux tower, and stand water potential averaged from 7 trees
456 within the tower footprint, suggesting that the theoretical foundation connecting plant hydraulics
457 to ecosystem productivity is robust to significant scale mismatch. Inclusion of predawn water
458 potential rather than VPD and soil moisture improved not only model fit of GPP, but also the
459 significantly reduced model bias (Fig. 6), primarily by accounting for the transition between dry
460 season and first monsoon pulse, wherein high predawn water potentials signal physiological
461 readiness for photosynthesis even though vegetation greenness is still lagging. Overprediction of
462 low premonsoon GPP and underprediction of high monsoon GPP were strongly ameliorated by
463 concomitant shifts in predawn water potential.

464 However, interpreting model residuals as indicative of variations in LUE must be approached
465 with caution, as these residuals also encompass data uncertainty and unaccounted factors. This
466 consideration is particularly important when extrapolating our findings to broader contexts or

467 different temporal scales. Despite these considerations, the substantial improvement of GPP
468 predictions with the inclusion of predawn water potential underscores its promise as a valuable
469 indicator for capturing intra-annual variability of dryland GPP and warrants additional
470 investigation.

471 While continuous timeseries of plant water potential remain rare, new technology and collective
472 efforts are poised to increase accessibility to this key metric. At large scales, promising pathways
473 are being explored to develop remote sensing-based proxies of plant water potential using
474 thermal (Farella *et al.*, 2022) and microwave (Konings *et al.*, 2021) observations. Current
475 initiatives to collect and aggregate soil and plant water potential in conjunction with flux tower
476 measurements, including the Ameriflux ‘Year of Water’ and the PSInet Research Coordination
477 Network database, are anticipated to improve water potential data availability and spur synthesis
478 beyond single-site studies. We believe that an expanded network of water potential
479 measurements co-located at existing flux tower sites is essential to calibrate and evaluate both
480 model and remote sensing approaches for estimating productivity.

481 *Conclusions*

482 Though classically considered anisohydric, *J. osteosperma* exhibited multiple hydraulic
483 regulation strategies within a growing season. Extreme anisohydry was only evident after
484 monsoon precipitation pulses, while soils were rapidly drying yet carbon uptake was high. This
485 suggests that temporally flexible hydraulic regulation allows *J. osteosperma* to avoid extreme
486 Ψ_{MD} and xylem cavitation during seasonal drought and prolong high carbon uptake following
487 episodic precipitation events. Furthermore, plant water potential significantly improved GPP
488 model fit and reduced bias despite significant scale mismatch, heralding the immense potential of
489 using plant water stress to increase the temporal fidelity of ecosystem carbon predictions.

490 **Data availability**

491 Data and code are organized as a research compendium in a public GitHub repository
492 (<https://github.com/jessicaguo/juniper-ecohydraulics>) and archived on Zenodo
493 (<https://doi.org/10.5281/zenodo.10951221>).

494 **Acknowledgements**

495 The instrumentation for the eddy covariance tower was provided by the AmeriFlux Management
496 Project, administered through the US Department of Energy (DOE). We also thank Newton Tran
497 for assistance with the stem psychrometers, and acknowledge the State of Utah School and
498 Institutional Trust Lands Administration for land permissions. JSG acknowledges support from
499 the US National Science Foundation - Division of Integrative Organismal Biology via a
500 Research Coordination Grant (#2243900). MLB and SAK were supported by the US DOE
501 Environmental System Science program grant #DE-SC0022052. SAK was supported by the US
502 Department of Agriculture (USDA) Forest Service Forest Health Protection Evaluation
503 Monitoring program grant #19-05 and the USDA National Institute of Food and Agriculture
504 Sustainable Agricultural Systems program, grant #2021-68012-35898. MLB and WKS were
505 supported by the NASA SMAP Science Team grant #80NSSC20K1805. WKS and JSG were
506 supported by the NASA Carbon Cycle Science grant #80NSSC23K0109. WRLA acknowledges
507 support from the David and Lucille Packard Foundation, US National Science Foundation grants
508 1802880, 2003017 and 2044937, and USDA National Institute of Food and Agriculture,
509 Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and
510 Agro-Ecosystem Management, grant no. 2018-67019-27850.

511 **Author contributions**

512 JSG and SAK conceived of and designed study with input from WRLA. Field data were
513 collected by SAK, processed by SAK and JSG, and analyzed by JSG. Remote sensing data were
514 processed by MLB and analyzed by JSG with input from WKS. JSG prepared the manuscript
515 with input from all co-authors. All authors reviewed the results and approved the final version of
516 the manuscript.

517

518 **References**

519 **Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M,**
520 **Canadell JG, Friedlingstein P, Jain AK, et al. 2015.** The dominant role of semi-arid
521 ecosystems in the trend and variability of the land CO₂ sink. *Science* **348**: 895–899.

522 **Augé RM, Toler HD, Saxton AM. 2015.** Arbuscular mycorrhizal symbiosis alters stomatal
523 conductance of host plants more under drought than under amply watered conditions: a meta-
524 analysis. *Mycorrhiza* **25**: 13–24.

525 **Badgley G, Anderegg LDL, Berry JA, Field CB. 2019.** Terrestrial gross primary production:
526 Using NIRV to scale from site to globe. *Global Change Biology* **25**: 3731–3740.

527 **Badgley G, Field CB, Berry JA. 2017.** Canopy near-infrared reflectance and terrestrial
528 photosynthesis. *Science Advances* **3**: e1602244.

529 **Barnes ML, Farella MM, Scott RL, Moore DJP, Ponce-Campos GE, Biederman JA,**
530 **MacBean N, Litvak ME, Breshears DD. 2021.** Improved dryland carbon flux predictions with
531 explicit consideration of water-carbon coupling. *Communications Earth & Environment* **2**: 1–9.

532 **Barron-Gafford GA, Knowles JF, Sanchez-Cañete EP, Minor RL, Lee E, Sutter L, Tran**
533 **N, Murphy P, Hamerlynck EP, Kumar P, et al. 2021.** Hydraulic redistribution buffers climate
534 variability and regulates grass-tree interactions in a semiarid riparian savanna. *Ecohydrology* **14**:
535 e2271.

536 **Berry JA, Beerling DJ, Franks PJ. 2010.** Stomata: Key players in the earth system, past and
537 present. *Current Opinion in Plant Biology* **13**: 232–239.

538 **Biederman JA, Scott RL, Bell TW, Bowling DR, Dore S, Garatuza-Payan J, Kolb TE,**
539 **Krishnan P, Kroccheck DJ, Litvak ME, et al. 2017.** CO₂ exchange and evapotranspiration
540 across dryland ecosystems of southwestern north america. *Global Change Biology* **23**: 4204–
541 4221.

542 **Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME, Kolb TE, Yepez EA, Oechel**
543 **WC, Blanken PD, Bell TW, et al.** 2016. Terrestrial carbon balance in a drier world: The effects
544 of water availability in southwestern north america. *Global change biology* **22**: 1867–1879.

545 **Breshears DD, Myers OB, Johnson SR, Meyer CW, Martens SN.** 1997. Differential use of
546 spatially heterogeneous soil moisture by two semiarid woody species: *Pinus edulis* and *juniperus*
547 *monosperma*. *The Journal of Ecology* **85**: 289.

548 **Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG,**
549 **Pockman WT.** 2009. Tree die-off in response to global change-type drought: Mortality insights
550 from a decade of plant water potential measurements. *Frontiers in Ecology and the Environment*
551 **7**: 185–189.

552 **Bristow KL, Campbell GS, Calissendorff C.** 1984. The Effects of Texture on the Resistance to
553 Water Movement within the Rhizosphere. *Soil Science Society of America Journal* **48**: 266–270.

554 **Brodribb TJ, McAdam SAM.** 2013. Abscisic acid mediates a divergence in the drought
555 response of two conifers. *Plant Physiology* **162**: 1370–1377.

556 **Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV.** 2014. Conifer species adapt to low-
557 rainfall climates by following one of two divergent pathways. *Proceedings of the National
558 Academy of Sciences* **111**: 14489–14493.

559 **Eller CB, Rowland L, Mencuccini M, Rosas T, Williams K, Harper A, Medlyn BE, Wagner**
560 **Y, Klein T, Teodoro GS, et al.** 2020. Stomatal optimization based on xylem hydraulics (SOX)
561 improves land surface model simulation of vegetation responses to climate. *New Phytologist*
562 **226**: 1622–1637.

563 **Farella MM, Fisher JB, Jiao W, Key KB, Barnes ML.** 2022. Thermal remote sensing for plant
564 ecology from leaf to globe. *Journal of Ecology* **110**: 1996–2014.

565 **Feldman AF, Short Gianotti DJ, Konings AG, McColl KA, Akbar R, Salvucci GD,**
566 **Entekhabi D.** 2018. Moisture pulse-reserve in the soil-plant continuum observed across biomes.
567 *Nature Plants* **4**: 1026–1033.

568 **Feng X, Ackerly DD, Dawson TE, Manzoni S, McLaughlin B, Skelton RP, Vico G, Weitz**
569 **AP, Thompson SE. 2019.** Beyond isohydricity: The role of environmental variability in
570 determining plant drought responses. *Plant, Cell & Environment* **42**: 1104–1111.

571 **Garbulsky MF, Peñuelas J, Papale D, Filella I. 2008.** Remote estimation of carbon dioxide
572 uptake by a mediterranean forest. *Global Change Biology* **14**: 2860–2867.

573 **Garcia-Forner N, Adams HD, Sevanto S, Collins AD, Dickman LT, Hudson PJ, Zeppel MJ,**
574 **Jenkins MW, Powers H, Martínez-Vilalta J, et al. 2016a.** Responses of two semiarid conifer
575 tree species to reduced precipitation and warming reveal new perspectives for stomatal
576 regulation. *Plant, Cell & Environment* **39**: 38–49.

577 **Garcia-Forner N, Sala A, Biel C, SavÁ© R, Martínez-Vilalta J. 2016b.** Individual traits as
578 determinants of time to death under extreme drought in *pinus sylvestris* l. *Tree Physiology* **36**:
579 1196–1209.

580 **Gehring CA, Swaty RL, Deckert RJ. 2017.** Chapter 16 - Mycorrhizas, Drought, and Host-Plant
581 Mortality. In: Johnson NC, Gehring C, Jansa J, eds. Elsevier, 279–298.

582 **Gelfand AE, Ghosh SK. 1998.** Model choice: A minimum posterior predictive loss approach.
583 *Biometrika* **85**: 1–11.

584 **Gelman A, Carlin JB, Stern HS, Rubin DB. 2014.** *Bayesian data analysis*. Boca Raton, FL,
585 USA: Taylor & Francis.

586 **Gelman A, Rubin DB. 1992.** Inference from iterative simulation using multiple sequences.
587 *Statistical Science* **7**: 457–472.

588 **Grantz K, Rajagopalan B, Clark M, Zagona E. 2007.** Seasonal shifts in the north american
589 monsoon. *Journal of Climate* **20**: 1923–1935.

590 **Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS,**
591 **McDowell NG. 2020.** Plant responses to rising vapor pressure deficit. *New Phytologist* **226**:
592 1550–1566.

593 **Guo JS, Hultine KR, Koch GW, Kropf H, Ogle K. 2020.** Temporal shifts in iso/anisohydry
594 revealed from daily observations of plant water potential in a dominant desert shrub. *New*
595 *Phytologist* **225**: 713–726.

596 **Guo JS, Hungate BA, Kolb TE, Koch GW. 2018.** Water source niche overlap increases with
597 site moisture availability in woody perennials. *Plant Ecology* **219**: 719–735.

598 **Haberstroh S, Lobo-do-Vale R, Caldeira MC, Dubbert M, Cuntz M, Werner C. 2022.** Plant
599 invasion modifies isohydricity in mediterranean tree species. *Functional Ecology* **36**: 2384–2398.

600 **Hochberg U, Rockwell FE, Holbrook NM, Cochard H. 2018.** Iso/anisohydry: A
601 plantenvironment interaction rather than a simple hydraulic trait. *Trends in Plant Science* **23**:
602 112–120.

603 **Jones HG. 1998.** Stomatal control of photosynthesis and transpiration. *Journal of Experimental*
604 *Botany* **49**: 387–398.

605 **Joshi J, Stocker BD, Hofhansl F, Zhou S, Dieckmann U, Prentice IC. 2022.** Towards a
606 unified theory of plant photosynthesis and hydraulics. *Nature Plants*: 1–13.

607 **Kannenberg SA, Barnes ML, Bowling DR, Driscoll AW, Guo JS, Anderegg WRL. 2023.**
608 Quantifying the drivers of ecosystem fluxes and water potential across the soil-plant-atmosphere
609 continuum in an arid woodland. *Agricultural and Forest Meteorology* **329**: 109269.

610 **Kannenberg SA, Driscoll AW, Malesky D, Anderegg WRL. 2021.** Rapid and surprising
611 dieback of Utah juniper in the southwestern USA due to acute drought stress. *Forest Ecology*
612 *and Management* **480**: 118639.

613 **Kannenberg SA, Guo JS, Novick KA, Anderegg WRL, Feng X, Kennedy D, Konings AG,**
614 **Martínez-Vilalta J, Matheny AM. 2022.** Opportunities, challenges and pitfalls in
615 characterizing plant water-use strategies. *Functional Ecology* **36**: 24–37.

616 **Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, Lola da Costa AC, Gentile**
617 **P. 2019a.** Implementing Plant Hydraulics in the Community Land Model, Version 5. *Journal of*
618 *Advances in Modeling Earth Systems* **11**: 485–513.

619 **Kennedy D, Swenson S, Oleson KW, Lawrence DM, Fisher R, Lola da Costa AC, Gentine**
620 **P. 2019b.** Implementing Plant Hydraulics in the Community Land Model, Version 5. *Journal of*
621 *Advances in Modeling Earth Systems* **11**: 485–513.

622 **King DA, Turner DP, Ritts WD. 2011.** Parameterization of a diagnostic carbon cycle model for
623 continental scale application. *Remote Sensing of Environment* **115**: 1653–1664.

624 **Klein T. 2014.** The variability of stomatal sensitivity to leaf water potential across tree species
625 indicates a continuum between isohydric and anisohydric behaviours (S Niu, Ed.). *Functional*
626 *Ecology* **28**: 1313–1320.

627 **Konings AG, Saatchi SS, Frankenberg C, Keller M, Leshyk V, Anderegg WRL, Humphrey**
628 **V, Matheny AM, Trugman A, Sack L, et al. 2021.** Detecting forest response to droughts with
629 global observations of vegetation water content. *Global Change Biology* **27**: 6005–6024.

630 **Lehto T, Zwiazek JJ. 2011.** Ectomycorrhizas and water relations of trees: a review. *Mycorrhiza*
631 **21**: 71–90.

632 **Linton MJ, Sperry JS, Williams DG. 1998.** Limits to water transport in *juniperus osteosperma*
633 and *pinus edulis*: Implications for drought tolerance and regulation of transpiration. *Functional*
634 *Ecology* **12**: 906–911.

635 **Loik ME, Breshears DD, Lauenroth WK, Belnap J. 2004.** A multi-scale perspective of water
636 pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. *Oecologia*
637 **141**: 269–281.

638 **MacBean N, Scott RL, Biederma JA, Peylin P, Kolb T, Litvak ME, Krishnan P, Meyers**
639 **TP, Arora VK, Bastrikov V, et al. 2021a.** Dynamic global vegetation models underestimate net
640 **CO₂ flux mean and inter-annual variability in dryland ecosystems.** *Environmental*
641 *Research Letters* **16**: 094023.

642 **MacBean N, Scott RL, Biederma JA, Peylin P, Kolb T, Litvak ME, Krishnan P, Meyers**
643 **TP, Arora VK, Bastrikov V, et al. 2021b.** Dynamic global vegetation models underestimate net
644 **CO₂ flux mean and inter-annual variability in dryland ecosystems.** *Environmental*
645 *Research Letters* **16**: 094023.

646 **Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M.** 2014. A new look at
647 water transport regulation in plants. *New Phytologist* **204**: 105–115.

648 **Martínez-Vilalta J, Santiago LS, Poyatos R, Badiella L, de Cáceres M, Aranda I, Delzon
649 S, Vilagrosa A, Mencuccini M.** 2021. Towards a statistically robust determination of minimum
650 water potential and hydraulic risk in plants. *New Phytologist* **232**: 404–417.

651 **McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J,
652 West A, Williams DG, et al.** 2008. Mechanisms of plant survival and mortality during drought:
653 Why do some plants survive while others succumb to drought? *New Phytologist* **178**: 719–739.

654 **Meinzer FC, Woodruff DR, Marias DE, McCulloh KA, Sevanto S.** 2014. Dynamics of leaf
655 water relations components in co-occurring iso- and anisohydric conifer species. *Plant, Cell &
656 Environment* **37**: 2577–2586.

657 **Mencuccini M, Manzoni S, Christoffersen B.** 2019. Modelling water fluxes in plants: from
658 tissues to biosphere. *New Phytologist* **222**: 1207–1222.

659 **Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K, Hughes E, Khan S,
660 Lang A, Machmuller M, et al.** 2014. Mycorrhizal fungi mediation of terrestrial ecosystem
661 responses to global change: mini-review. *Fungal Ecology* **10**: 3–19.

662 **Monteith JL.** 1972. Solar radiation and productivity in tropical ecosystems. *Journal of Applied
663 Ecology* **9**: 747–766.

664 **Monteith JL, Moss CJ, Cooke GW, Pirie NW, Bell GDH.** 1977. Climate and the efficiency of
665 crop production in britain. *Philosophical Transactions of the Royal Society of London. B,
666 Biological Sciences* **281**: 277–294.

667 **Moritz S, Bartz-Beielstein T.** 2017. imputeTS: Time series missing value imputation in r. *R J.*
668 **9**: 207.

669 **Nolan RH, Tarin T, Santini NS, McAdam SAM, Ruman R, Eamus D.** 2017. Differences in
670 osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric
671 and anisohydric woody angiosperm during drought. *Plant, Cell & Environment* **40**: 3122–3134.

672 **Novick KA, Ficklin DL, Baldocchi D, Davis KJ, Ghezzehei TA, Konings AG, MacBean N,**
673 **Raoult N, Scott RL, Shi Y, et al.** 2022. Confronting the water potential information gap. *Nature*
674 *Geoscience* **15**: 158–164.

675 **Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi A, Papuga SA, Blanken**
676 **PD, Noormets A, Sulman BN, et al.** 2016. The increasing importance of atmospheric demand
677 for ecosystem water and carbon fluxes. *Nature Climate Change* **6**: 1023.

678 **Novick KA, Konings AG, Gentine P.** 2019. Beyond soil water potential: An expanded view on
679 isohydricity including land–atmosphere interactions and phenology. *Plant, Cell & Environment*
680 **42**: 1802–1815.

681 **Noy-Meir I.** 1973. Desert ecosystems: Environment and producers. *Annual Review of Ecology*
682 *and Systematics* **4**: 25–51.

683 **Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, Loik ME,**
684 **Tissue DT.** 2015. Quantifying ecological memory in plant and ecosystem processes. *Ecology*
685 *Letters* **18**: 221–235.

686 **Ogle K, Reynolds JF.** 2004. Plant responses to precipitation in desert ecosystems: Integrating
687 functional types, pulses, thresholds, and delays. *Oecologia* **141**: 282–294.

688 **Peek MS, Leffler AJ, Hipps L, Ivans S, Ryel RJ, Caldwell MM.** 2006. Root turnover and
689 relocation in the soil profile in response to seasonal soil water variation in a natural stand of utah
690 juniper (*juniperus osteosperma*). *Tree Physiology* **26**: 1469–1476.

691 **Pierrat Z, Nehemy MF, Roy A, Magney T, Parazoo NC, Laroque C, Pappas C, Sonnentag**
692 **O, Grossmann K, Bowling DR, et al.** 2021. Tower-based remote sensing reveals mechanisms
693 behind a two-phased spring transition in a mixed-species boreal forest. *Journal of Geophysical*
694 *Research: Biogeosciences* **126**: e2020JG006191.

695 **Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, McDowell NG.** 2012.
696 Hydraulic limits preceding mortality in a piñonjuniper woodland under experimental drought.
697 *Plant, Cell & Environment* **35**: 1601–1617.

698 **Plummer M.** 2003. Proceedings of the 3rd international workshop on distributed statistical
699 computing. In: Vienna, Austria.

700 **Plummer M.** 2022. *Rjags: Bayesian graphical models using MCMC*.

701 **Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG,**
702 **Chevallier F, Liu YY.** 2014. Contribution of semi-arid ecosystems to interannual variability of
703 the global carbon cycle. *Nature* **509**: 600–603.

704 **R Core Team.** 2021. *R: A language and environment for statistical computing*. Vienna, Austria:
705 R Foundation for Statistical Computing.

706 **Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H.** 2004. A
707 continuous satellite-derived measure of global terrestrial primary production. *Bioscience* **54**:
708 547–560.

709 **Sabot MEB, De Kauwe MG, Pitman AJ, Medlyn BE, Ellsworth DS, Martin-StPaul NK,**
710 **Wu J, Choat B, Limousin J-M, Mitchell PJ, et al.** 2022. One stomatal model to rule them all?
711 Toward improved representation of carbon and water exchange in global models. *Journal of*
712 *Advances in Modeling Earth Systems* **14**: e2021MS002761.

713 **Sabot MEB, De Kauwe MG, Pitman AJ, Medlyn BE, Verhoef A, Ukkola AM, Abramowitz**
714 **G.** 2020. Plant profit maximization improves predictions of european forest responses to
715 drought. *New Phytologist* **226**: 1638–1655.

716 **Schwinning S, Litvak ME, Pockman WT, Pangle RE, Fox AM, Huang C-W, McIntire CD.**
717 **2020.** A 3-dimensional model of *Pinus edulis* and *Juniperus monosperma* root distributions in
718 New Mexico: implications for soil water dynamics. *Plant and Soil* **450**: 337–355.

719 **Smith WK, Dannenberg MP, Yan D, Herrmann S, Barnes ML, Barron-Gafford GA,**
720 **Biederman JA, Ferrenberg S, Fox AM, Hudson A, et al.** 2019. Remote sensing of dryland
721 ecosystem structure and function: Progress, challenges, and opportunities. *Remote Sensing of*
722 *Environment* **233**: 111401.

723 **Sperry JS, Wang Y, Wolfe BT, Mackay DS, Anderegg WRL, McDowell NG, Pockman WT.**
724 **2016.** Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. *New*
725 *Phytologist* **212**: 577–589.

726 **Tardieu F, Simonneau T. 1998.** Variability among species of stomatal control under fluctuating
727 soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours.
728 *Journal of Experimental Botany* **49**: 419–432.

729 **Vines S, Gilks W, Wild P. 1996.** Fitting bayesian multiple random effects models. *Statistics and*
730 *Computing* **6**: 337–346.

731 **Wang X, Biederman JA, Knowles JF, Scott RL, Turner AJ, Dannenberg MP, Köhler P,**
732 **Frankenberg C, Litvak ME, Flerchinger GN, et al. 2022.** Satellite solar-induced chlorophyll
733 fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation
734 productivity dynamics. *Remote Sensing of Environment* **270**: 112858.

735 **Wang Y, Sperry JS, Anderegg WRL, Venturas MD, Trugman AT. 2020.** A theoretical and
736 empirical assessment of stomatal optimization modeling. *New Phytologist* **227**: 311–325.

737 **West AG, Hultine KR, Jackson TL, Ehleringer JR. 2007.** Differential summer water use by
738 *pinus edulis* and *juniperus osteosperma* reflects contrasting hydraulic characteristics. *Tree*
739 *Physiology* **27**: 1711–1720.

740 **Williams AP, Cook BI, Smerdon JE. 2022.** Rapid intensification of the emerging southwestern
741 North American megadrought in 20202021. *Nature Climate Change* **12**: 232–234.

742 **Wolf A, Anderegg WRL, Pacala SW. 2016.** Optimal stomatal behavior with competition for
743 water and risk of hydraulic impairment. *Proceedings of the National Academy of Sciences* **113**:
744 E7222–E7230.

745 **Wu G, Guan K, Li Y, Novick KA, Feng X, McDowell NG, Konings AG, Thompson SE,**
746 **Kimball JS, De Kauwe MG. 2021.** Interannual variability of ecosystem iso/anisohydry is
747 regulated by environmental dryness. *New Phytologist* **229**: 2562–2575.

748 **Yuan W, Liu S, Zhou G, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H,**
749 **Goldstein AH, Goulden ML, et al. 2007.** Deriving a light use efficiency model from eddy
750 covariance flux data for predicting daily gross primary production across biomes. *Agricultural*
751 *and Forest Meteorology* **143**: 189–207.

752 **Zeng Y, Hao D, Huete A, Dechant B, Berry J, Chen JM, Joiner J, Frankenberg C, Bond-**
753 **Lamberty B, Ryu Y, et al. 2022.** Optical vegetation indices for monitoring terrestrial
754 ecosystems globally. *Nature Reviews Earth & Environment* **3**: 477–493.

755 **Zhang Y, Song C, Sun G, Band LE, Noormets A, Zhang Q. 2015.** Understanding moisture
756 stress on light use efficiency across terrestrial ecosystems based on global flux and remote-
757 sensing data. *Journal of Geophysical Research: Biogeosciences* **120**: 2053–2066.

758 **Zhao M, Running SW. 2010.** Drought-induced reduction in global terrestrial net primary
759 production from 2000 through 2009. *Science* **329**: 940–943.

760 **Supporting Information**

761 **Fig. S1** Model fit of Ψ_{MD}

762 **Fig. S2** Antecedent weights of soil moisture for two GPP residual models