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Contact three-manifolds with exactly two simple Reeb orbits

DANIEL CRISTOFARO-GARDINER
UMBERTO HRYNIEWICZ
MICHAEL HUTCHINGS
Hui Liu

It is known that every contact form on a closed three-manifold has at least two simple
Reeb orbits, and a generic contact form has infinitely many. We show that if there are
exactly two simple Reeb orbits, then the contact form is nondegenerate. Combined
with a previous result, this implies that the three-manifold is diffeomorphic to the
three-sphere or a lens space, and the two simple Reeb orbits are the core circles of
a genus-one Heegaard splitting. We also obtain further information about the Reeb
dynamics and the contact structure. For example, the Reeb flow has a disk-like global
surface of section and so its dynamics are described by a pseudorotation, the contact
structure is universally tight, and in the case of the three-sphere the contact volume
and the periods and rotation numbers of the simple Reeb orbits satisfy the same
relations as for an irrational ellipsoid.

37199, 53E50; 53D42

1 Introduction

1.1 Statement of results

Let Y be a closed oriented three-manifold. Recall that a contact formon Y is a 1-form A
on Y such that A AdA > 0. A contact form A has an associated Reeb vector field R
defined by the equations

dA(R,-)=0, A(R)=1.
A Reeb orbit is a periodic orbit of R, ie a map
V:R/TZ—Y, y'(t)=R@y®).

for some 7 > 0, modulo reparametrization of the domain by translations. The number
T is the period, also called the symplectic action, of y. We say that the Reeb orbit y is
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3802 Daniel Cristofaro-Gardiner, Umberto Hryniewicz, Michael Hutchings and Hui Liu

simple if the map y is an embedding. Every Reeb orbit is the k—fold cover of a simple
Reeb orbit for some positive integer k.

The three-dimensional case of the Weinstein conjecture, which was proved in full
generality by Taubes [42], asserts that a contact form on a closed three-manifold has at
least one Reeb orbit; see [28] for a survey. It was further shown in [11] that a contact
form on a closed three-manifold has at least two simple Reeb orbits. This lower bound
is the best possible without further hypotheses:

Example 1.1 Recall that if Y is a compact hypersurface in R* = C? which is “star-
shaped” (transverse to the radial vector field), then the standard Liouville form

2
1
(1-1) A= 52(%‘ dyi — yi dx;)
1=
restricts to a contact form on Y. If Y is the three-dimensional ellipsoid
7|22
b

and if a /b is irrational, then there are exactly two simple Reeb orbits, corresponding

=1

2
9E(a,b) = {ZE(CZ ) ”'f;' n

to the circles in Y where z, = 0 and z; = 0, with periods a and b, respectively.

One can also take quotients of the above irrational ellipsoids by finite cyclic group
actions to obtain contact forms on lens spaces with exactly two simple Reeb orbits.

It is conjectured that, in fact, every contact form on a closed connected three-manifold
has either two or infinitely many simple Reeb orbits. This was proved by Colin,
Dehornoy and Rechtman [8] for contact forms that are nondegenerate (see the definition
below), extending a result of [12]. It was also shown by Irie [35] that, for a C ®°~generic
contact form on a closed three-manifold, there are infinitely many simple Reeb orbits,
and moreover their images are dense in the three-manifold.

The goal of this paper is to give detailed information about the “exceptional” case of
contact forms on a closed three-manifold with exactly two simple Reeb orbits.

To state the first result, let § = Ker(A) denote the contact structure determined by A. This
is a rank-2 vector bundle with a linear symplectic form dA. If y: R/TZ — Y is a Reeb
orbit, then the derivative of the time 7" flow of R restricts to a symplectic linear map

(1-2) Py (§y(0),dA) = (§y(0)- dA),

which we call the linearized return map. We say that y is nondegenerate if 1 is not
an eigenvalue of P, ; this condition is invariant under reparametrization of y. We say

Geometry & Topology, Volume 27 (2023)



Contact three-manifolds with exactly two simple Reeb orbits 3803

that the contact form A is nondegenerate if all Reeb orbits (including nonsimple ones)
are nondegenerate. The set of nondegenerate contact forms is residual in the set of
all contact forms with the C *°~topology. The Reeb orbit y is called hyperbolic if P,
has eigenvalues in R \ {£1}. The Reeb orbit y is called elliptic if the eigenvalues
of P, are of the form e*27i¢ and irrationally elliptic if moreover ¢ is irrational. If
y is irrationally elliptic, then y and all of its covers are nondegenerate, because the

linearized return map for the k—fold cover of y has eigenvalues e =27 /%%

Many results about Reeb dynamics and related questions assume some kind of non-
degeneracy hypothesis or allow only certain kinds of degeneracies. One of the main
points of the present work is that we can derive our results without making any such
assumption.

Theorem 1.2 Let Y be a closed three-manifold, and let A be a contact form on Y
with exactly two simple Reeb orbits. Then A is nondegenerate and, moreover, both
simple Reeb orbits are irrationally elliptic.

Theorem 1.2 might seem surprising in view of known results about critical points of
real-valued functions on finite-dimensional manifolds. For example, on the two-torus
the minimal number of critical points is three, and when there are only three critical
points they cannot all be nondegenerate. We refer the reader to Remark 1.12 for related
discussion.

As a corollary of Theorem 1.2, we obtain the following topological constraint:

Corollary 1.3 Let Y be a closed three-manifold, and let A be a contact form on Y with
exactly two simple Reeb orbits. Then Y is diffeomorphic to a lens space.! Moreover,
the two simple Reeb orbits are the core circles of a genus-one Heegaard splitting of Y .

Proof This was shown in [33, Theorem 1.3 and Section 4.8] under the additional
hypothesis that A is nondegenerate. By Theorem 1.2, this nondegeneracy automatically
holds. =

Remark 1.4 A special case of Theorem 1.2, where Y is a compact convex hypersurface
in R* with the restriction of the standard Liouville form (1-1), was previously shown
by Wang, Hu and Long [45, Theorem 1.4].

IHere and below our convention is that S3 is a lens space, but ST x §2 is not.

Geometry € Topology, Volume 27 (2023)
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We also obtain additional dynamical information. To state the result, recall that the
contact volume of (Y, 1) is defined by

vol(Y, 1) := / AAdA.
Y

Theorem 1.5 Let Y be a lens space and let A be a contact form on Y with exactly two
simple Reeb orbits, y1 and y,. Then:

(a) Let p=|m1(Y)|<o0,let T; € R denote the period of y;, and let ¢; € R denote
the “Seifert rotation number” of y;; see Definition 4.3. Then

vol(Y.A) = pTi Ty = TZ/p1 = T3 /.

(b) A is dynamically convex, and the contact structure & = Ker(A) is universally
tight.?

Example 1.6 For the ellipsoid in Example 1.1, we have 71 = a, T, = b, ¢1 =a/b,
¢2 =b/a, p =1, and vol = ab. Thus Theorem 1.5(a) implies that if ¥ = §3, then the
periods T}, the rotation numbers ¢;, and the contact volume satisfy the same relations as
for an ellipsoid. For Y = §3, under the additional assumptions that A is nondegenerate
and £ is the standard contact structure, it was previously shown by Bourgeois, Cieliebak
and Ekholm [5] and Giirel [19] that “action—index relations” hold, implying that the
periods 7; and rotation numbers ¢; satisfy the same relations as for an ellipsoid. The
equation vol = 71 T3 that we prove in this case answers [4, Question 2].

Remark 1.7 There exist contact forms on S with exactly two simple Reeb orbits
which are not strictly contactomorphic to ellipsoids. One way to see this is to start from
Katok’s construction [37] of Finsler metrics on S? with exactly two closed geodesics,
such that the Liouville measure on the unit tangent bundle is ergodic for the geodesic
flow. Such a geodesic flow can then be lifted to a Reeb flow on the standard contact
3—sphere with the same properties. Another way to see this is by Albers, Geiges and
Zehmisch [1], who showed that the pseudorotations from Fayad and Katok [15] can
be realized as the return map on a disk-like global surface of section for a Reeb flow
on the standard contact 3—sphere with precisely two periodic orbits; see Section 1.3
below. On the other hand, Helmut Hofer has suggested to the authors in private
2Recall that a contact form on a three-manifold ¥ with ¢y (£)] 7, (v) = 0 is called dynamically convex
if CZ(y) > 3 for every contractible Reeb orbit y, where CZ denotes the Conley—Zehnder index (see

Section 2.2) computed with respect to a trivialization which extends over a disc bounded by y. A contact
structure on Y is universally tight if its pullback to the universal cover of Y is tight.

Geometry & Topology, Volume 27 (2023)



Contact three-manifolds with exactly two simple Reeb orbits 3805

correspondence (2021) that perhaps imposing the additional condition that the rotation
numbers of the two Reeb orbits are Diophantine forces the contact form to be strictly
contactomorphic to an ellipsoid; see Fayad and Krikorian [16, Question 6].

Remark 1.8 As shown by Honda [23, Proposition 5.1] (see Cornwell [10, page 17]
for more explanation), each lens space has either one or two universally tight contact
structures up to isotopy, and when there are two they are contactomorphic (and one is
obtained from the other by reversing its orientation). Consequently, in Theorem 1.5(b),
the contact structure is contactomorphic to a “standard” contact structure on the lens
space obtained as in Example 1.1. In particular, universally tight contact structures on
lens spaces are precisely the ones that admit contact forms with exactly two simple
Reeb orbits. Some other results obtaining information about contact structures from
Reeb dynamics can be found in work by Etnyre and Ghrist [14], Hofer, Wysocki and
Zehnder [20; 22], and [24].

Remark 1.9 We also obtain information about the knot types of the simple Reeb
orbits y1 and y». It follows from the Heegaard splitting in Corollary 1.3 that these are
p—unknotted. We further show in Section 5 that their self-linking number is —1 when
p = 1; similar arguments show that, for general p, their rational self-linking number,
as defined by Baker and Etnyre [2], equals —1/ p.

1.2 Outline of the proofs

We now briefly describe the proofs of Theorems 1.2 and 1.5.

A key ingredient in these proofs, as well as in the related papers [11; 12], is the “volume
property” in embedded contact homology, which was proved in [13]. The embedded
contact homology (ECH) of (Y, 1) is the homology of a chain complex which is built out
of Reeb orbits, and whose differential counts (mostly) embedded pseudoholomorphic
curves in R x Y'; see the lecture notes [30] and the review in Section 2. The version
of the volume property that we will use here asserts that if Y is a closed connected
3—manifold with a contact form A, then
fim A _ 2vol(Y, ).
k—o00 k
Here {0y} is a “U-sequence” in ECH, and ¢, is a “spectral invariant” associated to oy,
which is the total symplectic action of a certain finite set of Reeb orbits determined
by oy ; these notions are reviewed in Section 2.

Geometry € Topology, Volume 27 (2023)
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The outline of the proof of Theorem 1.2 is as follows. Let Y1 and y, denote the two
simple Reeb orbits, and let 77 and 75 denote their periods. Simple applications of
the volume property from [11; 12] (just using the k1/2 growth rate of the spectral
invariants and not the exact relation with contact volume) show that the homology
classes [y;] € H1(Y) are torsion, and the ratio 77/ T is irrational. A more precise use
of the volume property then gives the relations

_ 17 o )= N1,
"~ vol(Y, 1)’ Y v2) = vol(Y, 1)’

where ¢; € R is the Seifert rotation number that appears in Theorem 1.5(a), while

(1-3) i

£(y1,y2) € Q is the linking number of 1 and y»; see Definition 4.2. The proof of (1-3)
also depends on a new estimate for the behavior of the ECH index (the grading on the
ECH chain complex) under perturbations of possibly degenerate contact forms, which
is proved in Section 3.

The equations (1-3) imply the relations

T T
(1-4) d1=L0n.y2)p . =Ly
2 1

Since £(y1, y2) is rational and T/ T5 is irrational, it follows that ¢; and ¢, are irrational.
This implies that Y1 and y5 are irrationally elliptic (see Section 4.4), which completes
the proof of Theorem 1.2.

The Heegaard decomposition in Corollary 1.3 implies that £(y1, y2) = 1/ p, and com-
bined with (1-4) this proves Theorem 1.5(a). The proof of Theorem 1.5(b) uses
additional calculations in Section 5 to deduce dynamical convexity and universal
tightness from information about the numbers ¢; .

1.3 Pseudorotations

The contact forms studied here are analogous to “pseudorotations”, defined in various
ways as maps in some class with the minimum number of periodic orbits. For example,
according to Ginzburg and Giirel [18] a Hamiltonian pseudorotation of CP" is defined
to be a Hamiltonian symplectomorphism of CP” with n 4+ 1 fixed points and no
other periodic points; see eg Le Roux and Seyfaddini [39], Shelukhin [41] and Cineli,
Ginzburg and Giirel [7] for generalizations to other symplectic manifolds. More
classically, we consider here pseudorotations of the open or closed disk defined as
area-preserving homeomorphisms with one fixed point and no other periodic points;
see eg Bramham [6] and Fayad and Katok [15].

Geometry & Topology, Volume 27 (2023)
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In fact, there is a direct connection between the contact forms considered here and
pseudorotations of the closed disk. Recall that given a closed three-manifold Y with a
contact form A, a disk-like global surface of section for the Reeb flow is an immersed
disk, with boundary on a Reeb orbit, embedded and transverse to the Reeb flow in the
interior, such that the Reeb flow starting at any point in Y hits the disk both forwards
and backwards in time.

Corollary 1.10 Let Y be a closed three-manifold, and let A be a contact form on Y
with exactly two simple Reeb orbits. Then both orbits bound disk-like global surfaces of
section whose associated return maps define smooth pseudorotations of the open disk.

Proof By Theorem 1.2, Corollary 1.3 and Theorem 1.5, Y is a lens space and A
is nondegenerate and dynamically convex. As explained in Remark 1.9, both orbits
are p—unknotted, with self-linking number —1/p. Hence, the result follows from
[24, Theorem 1.12]. O

Remark 1.11 Conversely, as mentioned above, at least some pseudorotations of the
closed disk can be “suspended” to contact forms on S3 with exactly two simple Reeb
orbits; see Albers, Geiges and Zehmisch [1].

Remark 1.12 It is shown by Collier, Kerman, Reiniger, Turmunkh and Zimmer [9] —
see also Franks [17] — that, for a Hamiltonian pseudorotation of CP !, each fixed point
is strongly nondegenerate, meaning that the linearized return map and its higher powers
are nondegenerate, and moreover the fixed points are irrationally elliptic, similarly to
Theorem 1.2. Tt is an open question whether every pseudorotation of CP” forn > 1 is
strongly nondegenerate, and one can ask analogous questions for pseudorotations of
more general symplectic manifolds.

Remark 1.13  For pseudorotations of D2, in many cases, Joly [36] and Pirnapasov [40]
proved identities related to Theorem 1.5(a).

Remark 1.14 One can arrange in the statement of Corollary 1.10 that the first return
maps on the obtained disk-like global surfaces of section extend smoothly to the
boundary and preserve a smooth 2—form that defines an area form in the interior.
Moreover, one can conjugate such a return map by a homeomorphism to obtain a
pseudorotation of the closed disk which is smooth in the interior.
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2 Preliminaries

In this section we review the material about embedded contact homology that is needed
for the proofs of Theorems 1.2 and 1.5. We include a new, slight extension of the
definition of the ECH index to degenerate contact forms.

Throughout this section fix a closed oriented three-manifold ¥ and a contact form A

on Y, and let £ = Ker(A4) denote the associated contact structure.

2.1 Topological preliminaries

We now recall some topological notions we will need, following the treatment in [27].
These were originally introduced in a slightly different context in [26].

Definition 2.1 An orbit set is a finite set of pairs « = {(«;,m;)} where the «; are
distinct simple Reeb orbits, and the m; are positive integers. We define the homology
class of the orbit set o by

o] =) milai] € Hi(Y).

Definition 2.2 If « = {(«;,m;)} and B = {(B;,n;)} are orbit sets with [«] = [B],
define Hz(Y,a, B) to be the set of 2—chains Z in Y with 0Z =3}, mija; — 3 ; n;B;,
modulo boundaries of 3—chains. The set H»(Y, «, ) is an affine space over H,(Y).

Given orbit sets o and § as above, let Z € H»(Y, o, B), and let 7 be a homotopy class
of symplectic trivialization of the contact structure £ over the Reeb orbits o;; and f;.

Geometry € Topology, Volume 27 (2023)
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Definition 2.3 (see [27, Section 2.5]) Define the relative first Chern class
c(a,B,2)eZ

as follows. Let S be a compact oriented surface with boundary and let f: S — Y
be a smooth map representing the class Z. Let ¥ be a section of f*& which, on
each boundary component, is nonvanishing and constant with respect to . Define
cz(a, B, Z) to be the algebraic count of zeroes of .

Definition 2.4 [27, Section 2.7] An admissible representative of Z € Ha(Y,«, B) is a
smooth map f:S — [—1,1]xY where S is a compact oriented surface with boundary,
the restriction of f to dS consists of positively oriented covers of {1} x «; with total
multiplicity m; and negatively oriented covers of {—1} x 8; with total multiplicity 7,
the composition of f with the projection [—1, 1] x Y — Y represents the class Z, the
restriction of f to the interior of S is an embedding, and f is transverse to {—1, 1} x Y.

Definition 2.5 [27, Section 2.7] If Z,Z’' € Hy(Y, «, ), define the relative intersec-
tion pairing
0.(Z2,ZYeZ

as follows. Let S and S’ be admissible representatives of Z and Z’, respectively, whose
interiors are transverse and do not intersect near the boundary. Define

@D Qc(Z.Z)) =#nt(S) Nint(S) = Y (G &N+ D LG5 ).
i J

Here # denotes the signed count of intersections, while the remaining terms are linking
numbers defined as follows. For € > 0 small, the intersection of S with {1 —¢€} xY
consists of the union over i of a braid ¢ l.+ in a neighborhood of «; (see Section 3.1),
while the intersection of S with {—1 4 €} x Y consists of the union over j of a braid
é‘j_ in a neighborhood of ;. Likewise, S’ determines braids §i+ "and Ej_/ . The notation
{; indicates the linking number in a neighborhood of «; or B; computed using the
trivialization 7; see [27, Section 2.6] for details and sign conventions.

When Z = Z’, we write3

Or(a,B,2) = 0:(Z,2).

3 An alternative equivalent definition of Q¢ («, 8, Z) is given in [30, Section 3.3], which does not include
the linking number terms in (2-1). There the admissible representatives S and S’ are required to satisfy
additional conditions which force these linking number terms to be zero.
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As explained in [27], the relative first Chern class c;(«, 8, Z) and the relative self-
intersection number Q. («, B, Z) depend only on «, B, Z and . Moreover, if we
change Z by adding A € H,(Y), then

(2-2) ce(o, . Z+ A) —co(a, B. Z) = (c1(§). A),
(2-3) O, B, Z+ A)— Q(a, B, Z) = 2] - A.

Remark 2.6 If y is a third orbit set, if 7 is a trivialization of & over the Reeb orbits in
a, B and y, and if W € H,(Y, B, y), then we have the additivity properties

co(@. . Z) +ce(B.y. W) =cela.y. Z+ W),
Q‘E(Oé9 :8’ Z) + Qr(ﬂa 12 W) = Q‘E(ai 12 Z =+ W)

Note also that the definition of ¢; makes sense more generally if the ; and B; are
transverse knots. Likewise the definition of Q. makes sense if the o; and ; are knots
and 7 is an oriented trivialization of their normal bundles.

2.2 The ECH index

Let y: R/TZ — Y be a Reeb orbit and let t be a symplectic trivialization of y*£.
The derivative of the time ¢ Reeb flow from &, (o) to &, (), with respect to 7, is a
2 x 2 symplectic matrix ®(z). The family of symplectic matrices {®(7)};¢[o,7] induces
a family of diffeomorphisms of S! in the universal cover of Diff(S!), which has a
dynamical rotation number, here denoted by 6;(y) € R. We call this real number the
rotation number of y with respect to T and denote it by 6;(y) € R; it depends only on
y and the homotopy class of . When 0;(y) ¢ %Z, the eigenvalues of the linearized

return map (1-2) are e 2710 (")

Definition 2.7 Define the Conley—Zehnder index
(2-4) CZ:(y) = [6: ()] + 16:(¥)] € Z.

Remark 2.8 The above definition agrees with the usual Conley—Zehnder index when
y is nondegenerate. When y is degenerate, it is common to give a different definition
of the Conley—Zehnder index, as the minimum of the Conley—Zehnder indices of
nondegenerate perturbations of y, and this will sometimes differ from our definition
by 1. For our purposes, especially to obtain an estimate as in Proposition 3.1 below
(possibly with a different constant), it does not matter which of these definitions of the
Conley—Zehnder index we use for degenerate Reeb orbits.
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Notation 2.9 If o = {(«;,m;)} is an orbit set and if 7 is a trivialization of & over all
of the Reeb orbits «;, define

(2-5) Czi(@) =) ") CZ(af).
i k=1

Here )/k denotes the kM iterate of y.

Definition 2.10 Let « and S be orbit sets with [@] =[f] € H1(Y),and Z € H(Y, «, B).
Define the ECH index

(2-6) (@, B, Z) = ce(a, B, Z) + Ol B, Z) + CZL (@) —CZL(B) e Z.

The above agrees with the usual definition of the ECH index — see eg [30, Section 3.4] —
when the contact form is nondegenerate. It is explained, for example in [27, Section 2.8],
why I(«, B, Z) depends only on «, 8 and Z, and not on t. Moreover, it follows from
(2-2) and (2-3) that, if we change Z by adding A € H»(Y ), then

(2-7) Ho,B,Z+A)—I(a,B,Z) = (c1(§) + 2PD(I"), A),
where I' = [a] = [B] € H1(Y) and PD denotes the Poincaré dual. By Remark 2.6,
(2-8) I, B, Z)+ 1B,y W)= I1(a,y, Z + W).

2.3 Embedded contact homology

In this subsection assume that the contact form A is nondegenerate. Let I" € H{(Y).
We now review how to define the embedded contact homology ECH. (Y, &, T"). More
details may be found in [30].

Definition 2.11 An ECH generator is an orbit set « = {(c;, m;)} such that m; = 1
whenever «; is hyperbolic.

Definition 2.12 Define ECC4(Y, A, T") to be the vector space* over Z /2 generated
by ECH generators o with [e] = I". This vector space has a relative Z/d—grading,
where d denotes the divisibility of ¢;(£) +2PD(I") € H%(Y;Z); if « and B are two
generators, then their grading difference is /(«, 8, Z) mod d for any Z € H»(Y, «, B).
This makes sense by (2-7) and (2-8).

4t is also possible to use Z coefficients, as explained in [32, Section 9], but this has not been necessary
for the applications of ECH so far.
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Remark 2.13 In the special case where c1(§) € H?(Y;Z) is torsion and I' = 0, the

chain complex ECC4 (Y, A, 0) has a canonical absolute Z—grading defined by
lo)=1(a,9,Z)eZ

for any Z € H,(Y, o, @). This is well defined by (2-7).

Definition 2.14 An almost complex structure J on R x Y is A—compatible if Jds = R,
where s denotes the R coordinate, J is invariant under the R action on R x Y by
translation of s, and J(§) = &, rotating positively with respect to dA.

If J is a generic A—compatible almost complex structure, one defines a differential
d7:ECCx(Y, A, T) > ECCys_1(Y,A,T)

whose coefficient from « to § is a count of “J—holomorphic currents” that represent
classes Z € H,(Y, o, f) with ECH index (e, B, Z) = 1; see [30, Section 3] for details.
It is shown in [31] that 83 = 0. The embedded contact homology ECH4 (Y, A, T, J) is
defined to be the homology of the chain complex (ECC«(Y,A,T"),dy). A theorem of
Taubes [43], tensored with Z /2, asserts that there is a canonical isomorphism

(2-9) ECH. (Y, A,T,J) = HM~*(Y,s¢ + PD(I)) ® Z/2,

where the right-hand side is a version of Seiberg—Witten Floer cohomology as defined
by Kronheimer and Mrowka [38], and s¢ is a spin-c structure on Y determined by §.
In particular, ECH depends only> on the triple (Y, £, T'), and so we can denote it by
ECH«(Y,&,T).

When Y is connected, there is also a well-defined “U-map”
(2-10) U:ECH,(Y,£,T) — ECH,_»(Y,£,T).
This is induced by a chain map
Uj,z: (ECCx(Y,A,T),05) = (ECCx—2(Y,§,1),0y)

which counts J—holomorphic currents with ECH index 2 passing through a generic
basepoint z € R x Y. The assumption that Y is connected implies that the induced map
on homology does not depend on the choice of basepoint z; see [33, Section 2.5] for
details. Taubes showed in [44, Theorem 1.1] that under the isomorphism (2-9), the map
on homology induced by Uy , agrees with a corresponding map on Seiberg—Witten
Floer cohomology. We thus obtain a well-defined U-map (2-10).

Ina sense, ECH does not depend on the contact structure either; see [30, Remark 1.7] for explanation.
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Definition 2.15 A U-sequence for I" is a sequence {0y };x>; Where each oy is a
nonzero homogeneous class in ECH« (Y, &, T'), and Uog 41 = oy for each k > 1.

We will need the following nontriviality result for the U—map, which is proved by
combining Taubes’ isomorphism (2-9) with results from Kronheimer and Mrowka [38]:

Proposition 2.16 [12, Proposition 2.3] If ¢;(£) +2PD(I") € H?(Y; Z) is torsion,
then a U —sequence for I' exists.

2.4 Spectral invariants

If o = {(«j, m;)} is an orbit set, define its symplectic action by
Ax) = Z mi | A.
i i

Note here that |, a,-)‘ agrees with the period of «;, because A(R) = 1.

Assume now that A is nondegenerate. For L € R, define ECCi‘(Y, A, T) to be the
subspace of ECC«(Y,A,T") spanned by ECH generators o with symplectic action
A(a) < L. It follows from the definition of “A—compatible almost complex structure”
that 0y maps ECCE to itself; see [30, Section 1.4]. We define the filtered ECH to be
the homology of this subcomplex, which we denote by ECHf (Y, A, T). The inclusion

of chain complexes induces a map
11 ECHL (Y, 1, T) - ECH.(Y,£,T).

It is shown in [34, Theorem 1.3] that the filtered homology ECHL (Y, A, T) and the
map 77, do not depend on the choice of J. However, unlike the usual ECH, filtered
ECH does depend on the contact form A and not just on the contact structure £.

Definition 2.17 [29] If 0 # 0 € ECH« (Y, &, T), define the spectral invariant
co(Y,A) =inf{L |0 € Im(ir)} € R.

An equivalent definition is that ¢4 (Y, A) is the minimum L such that the class o can

be represented by a cycle in the chain complex (ECC«(Y, A, T"), dy) which is a sum

of ECH generators each having symplectic action < L. In particular, by definition,
¢co (Y, 1) = A(a) for some ECH generator o with [a¢] =T .
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We can change the contact form A, without changing the contact structure £, by
multiplying A by a smooth function f:Y — R>%. As explained in [11, Section 2.5],
it turns out that even when A is degenerate, one can still define ¢, (Y, A) as a limit of
spectral invariants ¢, (Y, f,A) where f,A is nondegenerate and f, — 1 in C°.

These spectral invariants have the following important properties:

Proposition 2.18 Let Y be a closed connected three-manifold, and let A be a (possibly
degenerate) contact form on Y . Then:

(a) If0+# o € ECH«(Y,&, 1), then
coe(Y, 1) = A(x)
for some orbit set o with [a] =T .

(b) If o e ECH«(Y,&,T) and Uo # 0, then
(2_11) CUU(Y’A)SCG(Y’A)'

If there are only finitely many simple Reeb orbits, then the inequality (2-11) is
strict.

(c) Volume property If ¢1(£)+2PD(I") € H%(Y;Z) is torsion, and if {0y Ye>1
is a U —sequence for ', then

fim CocM?

=2vol(Y, A).
koo k vol(¥. 4)

Proof As noted above, part (a) holds by definition when A is nondegenerate, and
in the degenerate case it follows from a compactness argument for Reeb orbits; see
[11, Lemma 3.1(a)].

If A is nondegenerate, then since the chain map Uy ; counts J—holomorphic curves
it decreases symplectic action like the differential, so strict inequality in (2-11) holds.
The not necessarily strict inequality (2-11) in the degenerate case follows by a limiting
argument. The fact that (2-11) is strict for degenerate contact forms with only finitely
many simple Reeb orbits® is proved by a more subtle compactness argument for
holomorphic curves in [11, Lemma 3.1(b)].

Part (c), the most nontrivial part, is a special case of [13, Theorem 1.3]. O
The equality cyg (Y, 1) = ¢o (Y, A) is possible for degenerate contact forms with infinitely many simple

Reeb orbits. This happens, for example, for some classes 0 when Y is an ellipsoid JE (a, b) with a/b
rational.
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3 The ECH index and perturbations

The goal of this section is to prove Proposition 3.1 below, which gives an upper bound
on how much the ECH index can change when one perturbs the contact form. This is
an important ingredient in the proof of Theorems 1.2 and 1.5.

To state the proposition, let A be a contact form on a closed three-manifold Y, and let
An = fuA be a sequence of contact forms with f,, — 1 in C2. In the case of interest,
A will be degenerate, while each of the contact forms A, will be nondegenerate.

Fix an orbit set @ = {(«tj, m;)} for A, and let N be a disjoint union of tubular neighbor-
hoods N; of the simple Reeb orbits ;. Consider a sequence of orbit sets o (#) for A, that
converges to « as currents. In particular this implies that if # is sufficiently large, and if
we write @’ = a(n), then &’ is contained in N, and its intersection with N; is homologous
in N; to m;«;. There is then a unique W, € H,(Y, o', ) that is contained in N.

Likewise fix an orbit set B = {(B;,n;)} for A along with disjoint tubular neighborhoods
of the simple Reeb orbits f;, and consider a sequence of orbit sets B(n) for A, that
converges to B as currents. Then, for k sufficiently large, writing 8’ = B(n), we obtain
a distinguished Wg € Ho(Y, B’, B).

For fixed large n there is now a bijection
Hy(Y,a, B) =~ Ha(Y,d', )
sending Z € H(Y,«, B) to
Z'=Z+Wy—Wp e Hy(Y. . B).

Proposition 3.1 With the notation as above, for fixed orbit sets « and B, if n is
sufficiently large, then

[, B.2)— 1. B.2Z")| < 2(2 m; + an).
i J

Here I(«, B, Z) denotes the ECH index for A, and I(«’, ', Z') denotes the ECH index
for A,.

3.1 Reduction to a local statement

We now reduce Proposition 3.1 to a local statement, Proposition 3.3, below.

Let y be an oriented knot in Y, and let N be a tubular neighborhood of y with an
identification N ~ S! x D2. By a “braid in N with d strands”, we mean an oriented
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knot in N which is positively transverse to the D? fibers and which intersects each
fiber d times.

Definition 3.2 ¢ A weighted braid in N with m strands is a finite set of pairs
¢ = {(¢,m;)} where the {; are disjoint braids in N with d; strands, the m; are
positive integers and ) _; m;d; = m.

e If t is an oriented trivialization of the normal bundle of y, then for i # j there is
a well-defined linking number £ ({;, {;) € Z, as discussed in Section 2.1. Similarly,
for each i there is a well-defined writhe w.(y;) € Z; see [27, Section 2.6]. Define the
writhe of the weighted braid ¢ by

(3-1) we(@) =Y miwe () + Y mimile (G L))

i i#j
Suppose now that y is a simple Reeb orbit for A, and that the normal bundle identification
N ~ S! x D? above is chosen so that the Reeb vector field for A is transverse to the
D? fibers. If A’ = fA with f sufficiently C2 close to 1, then the Reeb vector field for
A in N is also transverse to the D? fibers. Suppose that this is the case.

Let y’ = {(y;., mk)} be an orbit set for A’ which is contained in N. We can regard y’ as a
weighted braid with m strands for some positive integer m. Also note that a trivialization
7 of y*& extends to a trivialization of & over the entire tubular neighborhood N, and thus
canonically induces a homotopy class of trivialization T/ of £ over the Reeb orbits y,’c.
We can now state:

Proposition 3.3 With the notation as above, if A’ is sufficiently C? close to A and if
vy’ is sufficiently close to my as a current, then

m
(3-2) —we(y) = CZL () + Y CZ ()| <2m.
I=1
Proof of Proposition 3.1 assuming Proposition 3.3 By shrinking the tubular neighbor-
hoods, we can assume without loss of generality that the chosen tubular neighborhood
of each orbit o; or B; has an identification with S 1 % D2, in which the Reeb flow of A

is transverse to the D? fibers.

In the orbit set &', each pair (o;, m;) gets replaced by an orbit set &} which represents
a weighted braid with m; strands in the tubular neighborhood of «;. Likewise, each
pair (B;,n;) gets replaced by an orbit set ,BI/ which represents a weighted braid with
n; strands in the tubular neighborhood of ;. Let T be a homotopy class of symplectic
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trivializations of £ over the Reeb orbits o; and ;. As in Proposition 3.3, this canonically

induces a homotopy class of symplectic trivializations t” over the Reeb orbits in the
H / /

orbit sets a; and f8 -

Because 7 and 7’ extend to a trivialization of & over the tubular neighborhoods containing
Wy and Wg, it follows from the definition of the relative first Chern class that

(3-3) C‘E’(a/’ﬂ,’zl) = C‘E(“? IB’Z)

By Proposition 3.3, if n is sufficiently large, then

‘_wr(al{) —CZL(O[;) + Z CZr(alk) <2m;,
(3-4) -
‘—w,(ﬁ;) —CZL(B)) + 3 CZo ()| < 2m;.

I=1
By (2-6), (3-3) and (3-4), to complete the proof of Proposition 3.1 it is enough to show

(3'5) Q‘E’(a/v /3,’ Z/) = Qr(a’ :Bv Z) + Z wt(al{) - Z wr(ﬁ]/)
i J

To prove (3-5), by Remark 2.6 it is enough to show
0@ a0, Wa) = ) wel@)),  Q«(B' B, Wp) =D we(B)).
i J

Since the chosen tubular neighborhoods of the Reeb orbits of «; are disjoint, and the
chosen tubular neighborhoods of the Reeb orbits of ; are disjoint, the above equations
follow from Lemma 3.4. O

Lemma 3.4 Let ¢ ={(¢;,m;)} be a weighted braid with m strands as in Definition 3.2.
Let W be the unique relative homology class in H»(N, ¢, (y, m)). Then

(3-6) Q< (8. (y.m), W) = we(Z).

Here t defines a trivialization of the vertical tangent bundle of N — y which then
induces a trivialization of the normal bundle of each braid ¢;.

Proof We can make an admissible representative S for W —see Definition 2.4 —
whose intersection with {1 —€} x N consists of m; parallel (with respect to 7) copies of
each ¢;, and which shrinks radially towards y as the [—1, 1] coordinate on [—1, 1] x N
goes down to —1. We can make another such admissible representative S’, disjoint
from S, whose intersection with {1 — €} x N is parallel to the first and which likewise
shrinks radially towards y. Then in (2-1), the intersection number term vanishes. The
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first linking number term in (2-1) also vanishes, as it is a sum of linking numbers of
braids in neighborhoods of the ¢;; for each i, the braid from S and the braid from S’,
with respect to 7, are trivial and parallel, and thus have linking number zero. The
second linking number term in (2-1) is a linking number in a neighborhood of y and
equals w({). i

3.2 The structure of the braids

To prove Proposition 3.3, let y be a simple Reeb orbit of A, let N be a tubular neigh-
borhood of y as in Definition 3.2, and let t be a trivialization of y*£. Let 6 denote the
rotation number 6;(y) € R.

Suppose first that 6 is irrational. Then the Reeb orbit y and all of its covers are
nondegenerate. Consequently, when )’ is sufficiently C? close to A, there is a unique
Reeb orbit y,) for A’ close (as a current) to y, and for n large the only possibility for
the orbit set y’ is that it is the singleton set y’ = {(y4,m)}. In this case Proposition 3.3
holds because w;(y’) = 0 and the left-hand side of (3-2) is zero.

The nontrivial case of Proposition 3.3 is when the rotation number 6 is rational. In this
case we need to investigate the braids that can arise in y’. The idea in what follows is
to first analyze the case where the rotation number is an integer, and then reduce the
general case to this one by taking an appropriate cover of a neighborhood of y.

We start with the case where the rotation number is an integer. Here the picture is
simple: each braid has just one strand, and the linking number of any two braids is
given by the rotation number. More precisely:

Lemma 3.5 With the above notation, suppose that the rotation number 6 is an integera.
Let Ay = fnA with f,, — 1 in C2. Then:

(a) For a fixed positive integer d, if {a,} is a sequence where each «,, is a simple
Reeb orbit for A, in N which is a braid with d strands, with o, converging
as currents to dy as n — oo, then d = 1, and in particular the writhe w+ (o)
equals O for n large enough.

(b) Given two sequences of simple Reeb orbits {a, } and {8} as in (a) with o, # By
for each n, if n is sufficiently large, then the linking number £ (ty,, Br) equals a.

This lemma is proved in Section 3.3 below. We now consider the case where the rotation
number is a rational number a /b that is not an integer. Here there is a similarly nice
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picture: each new simple Reeb orbit that can appear can be treated, for our purposes,
like an (a, b) torus braid; see also Remark 3.7. More precisely:

Lemma 3.6 With the above notation, suppose that the rotation number is 6 = a /b,
where a and b are relatively prime integers with b > 1. Let A, = f,A with f,, —> 1
in C2. Then:

(a) For n sufficiently large, there is a unique simple Reeb orbit y for A, that is
close to y as a current.

(b) For a fixed integer d > 1, it {«,} is a sequence where each «,, is a simple Reeb
orbit for A, in N which is a braid with d strands, with a, converging as currents
tody asn — oo, then d = b, the writhe w, () equals a(b — 1), and the linking
number £ (y}, an) equals a.

(¢c) Given two sequences of Reeb orbits {c;, } and {,} as in (b) with oy, # B, for
each n, if n is sufficiently large, then the linking number £ (o, B5) equals ab.

Remark 3.7 In Lemma 3.6(b), we expect that one can further show that if n is
sufficiently large then «y, is an (a, b) torus braid around y;); however, we do not need this.

Proof of Lemma 3.6 assuming Lemma 3.5 Part (a) holds because the Reeb orbit y
is nondegenerate.

To prove part (b), we first note that, by the same argument as for (a), we must have
that d > b, because for 0 < d < b the d'" iterate of y has rotation number da/b ¢ Z.

Now let N denote the b—fold cyclic cover of the tubular neighborhood N, with the
pullback of the contact form A,. There is a unique simple Reeb orbit )% in N whose
projection to N is a b—fold cover of y;. In addition, by lifting the Reeb orbit «;, to a
Reeb trajectory in N and extending it by the Reeb flow if needed, we obtain a simple
Reeb orbit @, in N whose projection to N is a cover of . By Lemma 3.5(a), if n
is sufficiently large, then &, is a braid with one strand in N, hence a,, has at most b
strands. Thus, d = b. By Lemma 3.5(b) we have ZI();;’), dp) =ain ]V, and it follows
that £ (y,, an) = a.

We now compute the writhe w; (o). There are b possibilities for the Reeb orbit &,
in the previous paragraph, which we denote by n; for [ € Z /b, ordered so that the
7,/ b action on N by deck transformations sends 71; to 1;41. The writhe w (o) is a
signed count of crossings of two strands of «,. Each such crossing corresponds to a
crossing of some 7; with some 1, for [ # [’, as well as crossings of 1,4, with 77,4,
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for p=1,...,b—1, obtained from the first crossing by deck transformations. On the
other hand, the linking number of 7; with 7n;, is one half the signed count of crossings
of n; with n;,. Thus we obtain

1 1
mmm=5§ be(n.m) = 360 —Da=a(b—1).
1#l

Here we are using Lemma 3.5(b) to get that £,(1;,n;/) = a when [ #1’.

We now prove (c). Similarly to the previous calculation, each crossing counted by the
linking number £ (o, B,) corresponds to b crossings of some lift of «;, (extended to
a simple Reeb obit) with some lift of 8, (extended to a simple Reeb orbit). Thus the
linking number we want is 1/b times the sum of the linking number of each of the b
extended lifts of o, with each of the b extended lifts of B, which is (1/b)b%a = ab. O

Proof of Proposition 3.3 As explained above, we can assume that 8§ = a /b, where a
and b are relatively prime integers with b > 0. When a /b ¢ Z, the orbit set y’ consists
of the orbit y; from Lemma 3.6(a) with multiplicity mq for some mg > 0, together
with orbits )/,’C for k # 0 with multiplicities my > 0. When a/b € Z the same is true
except that we do not necessarily have a unique y, and we can take mo = 0. Since
each y; for k # 0 is close to a h—fold cover of y, we have

(3-7) mo+b Y my=m.
k40
By (3-1) and Lemmas 3.5 and 3.6, if A’ is sufficiently C? close to A and if y’ is
sufficiently close to my as a current, then
(3-8) w,()/)za(b—l)Zmi—i—MmOka +ab Z mmy.
k#0 k0 0#£k£k'#0
Now we consider Conley—Zehnder indices. By (2-5),

(3-9) CZL () =Y CZoA(p)) + Y D CZa((vp)).
I=1 k#01=1

For a positive integer [ < m, if A’ is sufficiently close to A, then with respect to 7 the
Reeb orbit ()/(’))l has rotation number close to (a¢/b)l, and each Reeb orbit (y]’c)l for
k # 0 has rotation number close to al. Then, by (2-4) and (3-9),

mo 2l mp
‘CZﬁ/(y')—Z%—ZZZaZ §m0+2mk.

=1 k#01=1 k#0
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It follows from this and (3-7) that

(3-10) ‘ng/(y/)—%(m%—i—mo)—a Z(m,%—l—mk) <m.

k#0

Finally, by (2-4),

=m.

> CZe(y!) = L (m* +m)
I=1

Then, by (3-7),

m 2
(3-11) Y CZ:(y) - ‘E’(m%, +mo)—a@mo+1) > my —ab( > mk) <m.
I=1 k0 k0
Combining (3-8), (3-10) and (3-11) gives the desired estimate (3-2). a

3.3 Perturbations of degenerate flows

To conclude the proof of Proposition 3.3 we now prove Lemma 3.5.

As in the statement of the lemma, let y be a simple Reeb orbit of A of period 7', and
let Ay = fuA, where f, — 1in C2. Let ¢' and ¢!, denote the time ¢ flows of the Reeb
vector fields for A and A,, respectively. Let p € y, and let Py, : §, — &, denote the
linearized return map (1-2).

Lemma 3.8 Let {(pn, Tn)}n=1,.. be a sequence in Y x (0, oo) satisfying:

(©1) ¢n"(Pn) = pn— p.

(c2) ¢,,T"/j (pn) # pn for all integers j > 2 and all n.

(c3) T, » T €0, 00).

Then one of the following alternatives holds:

(al) Too=T.

(a2) T = Td for some integer d > 2, and the eigenvalues of P, that are roots of
unity of degree d generate multiplicatively all roots of unity of order d .

Proof This is a special case of a result of Bangert [3, Proposition 1] for C! flows. O

In the situation of Lemma 3.5, more can be said:

Corollary 3.9 Suppose that the eigenvalues of Py, are real and positive. Let {(pn, T)}
be a sequence satisfying conditions (c1), (c2) and (c3) of Lemma 3.8. Then alternative
(a2) does not hold.
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Proof The only root of unity that can be an eigenvalue of P, is I, hence the set of
eigenvalues of P, does not generate multiplicatively the group of roots of unity of
order d when d > 2. O

Proof of Lemma 3.5 Part (a) follows from Corollary 3.9.

To prove part (b), fix a diffeomorphism @ from the tubular neighborhood N of y to
(R/TZ)x C such that y corresponds to (R/ T Z) x {0}, the Reeb vector field R,, of A,
is transverse to the C fibers for n sufficiently large (assume that # is this large below),
and the derivative of ® in the normal direction along y agrees with the trivialization t.
We omit the diffeomorphism ® from the notation below and write points in N using
the coordinates (¢,z) € (R/TZ) x C.

By part (a), by taking n large enough we can assume that «; and 8, have the same
period as y. After reparametrization, the Reeb orbit «;, is given by a map

R/TZ — (R/TZ)xC, t+> (t,an(t)),

where &, : R/ TZ — C. Likewise the Reeb orbit 8, is given by a map /§n R/TZ—C.
We have

(3-12) Ce(@n. Bn) = Wind(@n — Bn).
where the right-hand side denotes the winding number of the loop
Gn—PBn:R/TZ — C*.

We now compute the right-hand side of (3-12). There is a convex neighborhood U of 0
in C such that, if n is sufficiently large (which we assume below), then the following
two conditions hold: First, &, (0), ,én (0) € U. Second, for each ¢t € [0, T] there is a
well-defined map v/ : U — C such that, for z € U, the flow of the Reeb vector field R,
starting at (0, z) first hits {r} x C at the point (, ¥/ (z)). In particular, it follows from
the definition that

(3-13) Gn(1) = V5@ (0).  Bu(t) = v (Bu(0)).
Now consider the derivative of ¥}, which we denote by
Dyl:UxC —C.

By (3-13), we may apply the fundamental theorem of calculus to the function

5 > Yl (5G,(0) + (1 —5) B (0))
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to obtain
A~ 1 A A~
(3-14) &n(t)—ﬁn(t)=/0 D} (56,(0) 4 (1 —5)B(0), G (0) — B (0)) ds.

By the convergence of A,, if n is sufficiently large (which we assume below), then
the amount that Dy (s@,(0) + (1 —s) ,[§n (0), -) rotates any vector as compared to
DL (0,-) can be made arbitrarily small. It follows that the integrand in (3-14), and
hence &, (1) — Bn (7), has positive inner product with Dy (0, &, (0) — Bn (0)). Thus, the
right-hand side of (3-12) differs by less than % from the rotation number (the change
in argument divided by 2m) of the path

(3-15) [0,T]— C*, 1+ DY (0,8,(0) — B (0)).

The rotation number of the linearized Reeb flow along y differs from the rotation
number of any individual vector by less than % Hence, by again applying convergence
of the A, as above, if n is sufficiently large then the rotation number of the path (3-15)
differs by less than % from a. Since the right-hand side of (3-12) is an integer which
differs by less than % from a, it must equal a. |

4 Two simple Reeb orbits implies nondegenerate

We now prove Theorem 1.2. Throughout this section assume that Y is a closed
connected three-manifold and A is a contact form on Y with exactly two simple Reeb
orbits y; and y, of periods T and T3, respectively.

4.1 The homology classes of the Reeb orbits

Lemma 4.1 The classes [y;] € H{(Y) and ¢ (§) € H*(Y ; Z) are torsion.

Proof We use a similar argument to the proof of [12, Theorem 1.7].

Since every oriented three-manifold is spin, we can choose I' € H;(Y) such that
c1(§) +2PD(I") = 0 € H?(Y; Z). By Proposition 2.16, there exists a U—sequence
{ox}>1 for I'. Write cx = cg (Y, A) €R.

By Proposition 2.18(a),
ck =myxT1+my T

for some nonnegative integers m  and m; i, and furthermore

(4-1) my gyl + maxly2l =T € Hi(Y).
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By Proposition 2.18(b), the sequence {c } is strictly increasing. It then follows from
(4-1) that there are infinitely many integral linear combinations of [y;] and [y3] that
have the same value in H1(Y). Thus the kernel of the map

(4-2) 77 - Hi(Y), (mi.mz)— mily1]+malya],

has rank at least 1.

In fact, the kernel of the map (4-2) must have rank at least 2; otherwise ¢z would grow
at least linearly in k, contradicting the sublinear growth in the volume property in

Proposition 2.18(c). Tt follows that [y1] and [y3] are torsion. Since ¢1(§)+2PD(I") =0,
we deduce that ¢ (§) is also torsion. ad

4.2 Computing the ECH index

If m; and m, are nonnegative integers, we use the notation y{" ! )/5" 2 to indicate the
orbit set {(y1,m1), (y2,m2)}, with the element (y;, m;) omitted when m; = 0. Write
a=y] "y, If [] =0, then it follows from Remark 2.13 and Lemma 4.1 that I (&) € Z
is defined. We now give an explicit computation of /(«), following [33, Section 4.7].

Definition 4.2 Define the linking number

E(Vl »Vz)
A €Q,

where /1 and [, are positive integers such that /;[y;] =0 € H{(Y), and on the right-hand

(4-3) Ly, y2) = ——F——

side £ denotes the usual integer-valued linking number of disjoint nullhomologous loops.

Definition 4.3 For i = 1, 2, define the Seifert rotation number ¢; € R as follows. Let
7 be a trivialization of £ over y;. Let 6; ; = 0:(y;) € R denote the rotation number of
y; with respect to . Let /; be a positive integer such that /;[y;] = 0. Define

0-(y/)

(4-4) Qi = 2

€Q,

where Q,(yl.l" ) is shorthand for Qr(yl-l" ,@,7Z) forany Z € Hy(Y, yl.li , @). Note that
Q¢ does not depend on Z by (2-3), and it does not depend on /; either because Q is
quadratic in the relative homology class. Finally, define

(4'5) ¢i = Qi,‘[ + 91’,1’ eR.

The number ¢; does not depend on the choice of trivialization t by the change of
trivialization formulas in [27, Section 2].
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Remark 4.4 When y; is nullhomologous, one can alternatively describe ¢; as follows.
Let X be a Seifert surface spanned by y;. There is a distinguished homotopy class of
trivialization t’ of & over y;, the “Seifert framing”, for which the normal vector to X
has winding number zero around y;. We have Q; » = 0 by [27, Lemma 3.10]. It then
follows that ¢; = 6,/(y;). In the general case when y; is rationally nullhomologous,
one can similarly describe ¢; as the rotation number with respect to a rational framing
of y; determined by a rational Seifert surface.

Lemma 4.5 If mi[y1] +m2[y2] =0€ H(Y), then

(4-6)  1("y3") = dimi + gam3 + 2L(y1, y2)mima + Olmy +m).
Proof Let /; be a positive integer with /;[y;] = 0. Similarly to (4-4), define

li
c-(v:
Ci,r = T(lj./l ) S Q7
i

where ¢, (yili ) is shorthand for ¢ (yl.li ,@,7Z) forany Z € H(Y, yl.li , @). Then ¢; ; does
not depend on Z by (2-2) since ¢ (§) is torsion, and it is independent of the choice

of [; because c; is linear in the relative homology class Z.

It follows from the definition of the ECH index and the facts that ¢; and Q. are linear
and quadratic in the relative homology class (see [33, Section 4.2]) that

2 2 m;
TGP yS2) =Y (micia+m? Qi) +2mimal(yr.y2) + > Y (kO |+ k617,
i=1 i=1k=1

where Q; r and 0;  are as in (4-5). Plugging in the approximation

2 m; 2
DD (Wkbie] +[kbic]) =Y mP6; o+ O(my +m2)
i=1k=1 i=1
then gives (4-6). O

4.3 Using the volume property

Lemma 4.6 The Seifert rotation numbers and linking number are given by

T2 i T»

=L Uy = —2
% =iy (=G

Proof Both sides of the above equations are invariant under scaling the contact form
by a positive constant, so we may assume without loss of generality that vol(Y, 1) = 1.
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By Proposition 2.16 and Lemma 4.1, we can choose a U-sequence {0y }x>; for I' = 0.
Since the U map has degree —2, there is a constant C € Z such that, for each positive
integer k, the class o3 has grading C + 2k. By Proposition 2.18(a), for each positive
integer k there are nonnegative integers m x and my x such that

(4-7) Cor (Y, A) =my x Ty +my i To.
By the volume property of Proposition 2.18(c),
(4-8) 2k = (my x Ty + max T2)* + o(k).

Fix k and write oj = y;n Lk y;n 2% If A/ is a sufficiently C? close nondegenerate per-
turbation of A, then by the same compactness argument that proves Proposition 2.18(a)
there is an orbit set o) close to ay as a current such that /(a; ) = C + 2k (and also
fak/\/ is close to ¢4, (Y, 1), although we do not need this). By Proposition 3.1,

C +2k =I(ag) + O(my g +my ).
Combining this with Lemma 4.5, we get
(4-9) 2k = ¢1Wlik + ¢2m§’k +2L(y1, y2)my gma g + O(my g +my ).
Putting together (4-8) and (4-9),
(@1 —T)m3 4 + (¢2 — T5)m3 4 +2(L(y1, y2) — Ti Ta)my gma i
= 0(myx +may )+ o(k).

Consequently, if the sequence (15 x/m x)k>1 has an accumulation point S € [0, oo,
then the line in the (x, y)—plane of slope S through the origin is in the null space of
the quadratic form

f(x,y) = (o1 —TDX* + (g2 — T3)y* +2(l(y1.y2) — T1 T2)xy.

To complete the proof of the lemma, it now suffices to show that the sequence
(ma x/my k)k>1 has at least three accumulation points, as then the quadratic form
f must vanish identically. We claim that in fact this sequence has infinitely many
accumulation points.

If the sequence has only finitely many accumulation points Sy, ..., Sy, then for every
€ > 0 there exists R > 0 such that every point (m ,m k) is contained in the union of
the disk x2 + y2 < R? and the cones around the lines of slope Sy, ..., S, with angular
width €.
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Since limy_s o cgk /k = 2, and since the points (m g, m, k) are pairwise distinct
by Proposition 2.18(b), by (4-7) it follows that, for large L, the number of points
(my k. my ) contained in the triangle T1x + Ty < L for x > 0 and y > 0 is
approximately %Lz. As aresult, there exists § > 0 such that, for all L sufficiently large,
the fraction of lattice points in the above triangle that are contained in the sequence
(my g, my x)k>1 is at least §. This gives a contradiction if € in the previous paragraph
is chosen sufficiently small. a

4.4 Completing the proof of nondegeneracy

Proof of Theorem 1.2 The ratio 71/ T3 is irrational”’ by [11, Theorem 1.3]. Also,
£(y1, y2) is rational by the definition (4-3). It then follows from Lemma 4.6 that ¢
and ¢ are irrational.

By (4-5), since Q;  is rational, it follows that the rotation number 6; , is irrational.
Then Py, has eigenvalues et27ibir 5o the Reeb orbits y; are irrationally elliptic. As
explained in Section 1.1, it follows that all covers of y; are nondegenerate, so A is
nondegenerate. O

5 Additional dynamical information

To finish up, we now prove Theorem 1.5.

To prepare for the proof, recall that if Y is a closed oriented three-manifold, if £ is
a contact structure on Y with ¢1(§) =0 € H?(Y;Z), and if y is a nullhomologous
transverse knot, then the self-linking number sl(y) € Z is defined to be the difference
between the Seifert framing (see Remark 4.4) and the framing given by a global
trivialization of £. In the notation of Section 4.2,

(5-1) sl(y) = Q«(y) —c(y).
where 7 is any trivialization of £|,.

Now suppose that y above is a simple Reeb orbit. Let ¢(y) € R denote the rotation
number of y with respect to the Seifert framing as in Section 4.2, and let 8(y) € R
denote the rotation number of y with respect to a global trivialization of £. Also, let

CZ(y) =0 +10(v)] € Z

"The proof is simple: if T /T is rational, T1 and T are both integer multiples of a single number, so
Proposition 2.18(b) implies that the spectral invariants associated to a U—sequence grow at least linearly,
contradicting the volume property.
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denote the Conley—Zehnder index of y with respect to a global trivialization. It follows
from (5-1) that

(5-2) ¢(y) = 0(y) +sl(y).

Proof of Theorem 1.5 By Corollary 1.3, y; and y, are the core circles of a genus-one
Heegaard splitting of Y. It follows from this topological description that £(y1, y2) =1/ p.
Part (a) of the theorem then follows from Lemma 4.6.

To prove part (b), suppose first that ¥ = $3. We know from Theorem 1.2 that A
is nondegenerate and there are no hyperbolic Reeb orbits. Then § is tight, because
otherwise [21, Theorem 1.4] would give a hyperbolic Reeb orbit. Moreover, it follows
from [25, Theorem 1.3], combined with [21, Theorem 1.4] and the fact that there are
no Reeb orbits with CZ = 2 (since Reeb orbits with even Conley—Zehnder index have
integer rotation number and thus are hyperbolic), that one of the simple Reeb orbits,
say Y1, satisfies sl(y;) = —1 and CZ(y;) = 3, and is the binding of an open book
decomposition with pages that are disk-like global surfaces of section for the Reeb
flow. The return map on a page preserves an area form with finite total area, and hence
it has a fixed point by Brouwer’s translation theorem. This fixed point corresponds to
the simple Reeb orbit y,, which is transverse to the pages of the open book. Since,
on S3\ y1, the tangent spaces of the pages define a distribution that is isotopic to &
keeping transversality with the Reeb direction, sl(y2) = —1. Since CZ(y1) = 3, we
have 0(y1) € (1, 2), so, by (5-2), ¢1 € (0,1). By Lemma 4.6 as used in (1-4), we have
d1¢2 = 1, so ¢ > 1. By (5-2), again, 0(y2) > 2. It follows that all iterates of y;
and y, have 6 > 1, so A is dynamically convex.

To prove part (b) in the general case, let A denote the pullback of the contact form A
to the universal cover S3 of Y. It follows from the Heegaard decomposition that y;
and y, each have order p in 7r1(Y). Consequently A has exactly two simple Reeb orbits
y1 and y,, which project to y; and y5 as p—fold coverings. By the previous paragraph,
(S3, )~L) is dynamically convex and tight, and it follows that (¥, 1) is dynamically
convex and universally tight. O
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