
Libpanda Apps: Managing the Deployment and
Reuse of a Cyber-Physical System

MATTHEW BUNTING‡, MATTHEW W. NICE‡,
ALEX A. RICHARDSON‡,

JONATHAN SPRINKLE‡, AND DANIEL B. WORK‡

Abstract—A method to rapidly deploy test software in a multi-
purpose Cyber-Physical System (CPS) platform is presented in
the form of metadata called an app. Logistics in conducting
an experiment involving a CPS can be challenging and is
often minimally discussed in research results. Generally papers
focus mainly on theory, experimental data, and analysis, but
CPS research often requires careful validation and deployment
efforts. A platform like a self-driving car is also likely to
span various experiment use cases, so software must be cleanly
uninstalled to avoid conflict in subsequent experiments. Managing
a multipurpose yet safety-critical CPS between software changes
can add a tremendous amount of setup time that only experts of
the particular platform may be able to perform. The concept
of experiment apps is presented to reduce experiment setup
time in a CPS. The app structure is built to be domain-specific,
targeting an open-source self driving vehicle ecosystem developed
by Vanderbilt. The effort is done to further democratize the
CPS development ecosystem by reducing the burden of software
integration.

Index Terms—Connected and Automated Vehicles, Package
Management, Field Experiments

I. INTRODUCTION

Conducting an experiment requires a significant amount of
research and planning for careful and valid execution. In the
context of a Cyber-Physical System (CPS), a stricter sense
of experiment validation and verification is often required
to prevent any physical damage, imposing safety concerns.
The development lifecycle of a CPS may represent an aug-
mented traditional software development lifecycle [1]. The
more complicated a system becomes, more effort is required
to prepare the experiment. Reducing development time in a
CPS is common need [2]. Managing the deployment of a
CPS has been done by designing specific software systems
that aid in the adoption [3]. Frameworks have been designed
to manage the deployment of an arbitrary CPS domain with
wireless nodes with the intent to update device firmware [4]

The physical nature of a CPS also can impose time-critical
iteration to the experimental software. This occurs when a set
of experiments is planned within a specific time window due to
logistical constraints. A first experiment may show immediate
findings that steer the direction for software changes in sub-
sequent experiments. This exact scenario occurred in a large
scale test held in 2022 where a large scale experiment could

This work is supported by the National Science Foundation under awards
2111688 and 2135579, the Dwight D. Eisenhower Fellowship program under
Grant No. 693JJ32345023.

‡: Vanderbilt University

Fig. 1. A basic CPS research project development lifecycle. In the context
of a libpanda-enabled vehicle, shown are where libpanda-apps can provide
management benefits.

only be held in a specific daily time window, and the number of
resources could only be pooled together in a week’s time [5].
This resulted in nightly assessments of experiments to discuss
the experiment plan for the following morning. Software had
to be developed and deployed in sub-24 hour time windows.

The work presented here aims to provide a framework called
libpanda-apps to address the implementation, deployment, and
teardown of an experiment by leveraging tools that are already
familiar to CPS researchers. A CPS may be a highly valuable
asset to a researcher that can be used as a platform for many
types of experiments. A basic development approach of an
example reusable CPS platform can be viewed in figure 1,
showing the stages where the concept of libpanda-apps can
provide a benefit. The presented management design solutions
is target towards a specific ecosystem, Vanderbilt’s Connected
Autonomous Vehicle (CAV). Domain-specific development
environments can greatly aid the development process of a
CPS [6]. While the work here is specifically tailored for
a target platform, the ideas may be generalized to other
development domains that have a similar set of experimental
constraints and lifecycle. The concept of libpanda-apps pro-
vides:

• Minimal effort to integrate multiple already-established

40

2024 IEEE Workshop on Design Automation for CPS and IoT (DESTION)

979-8-3503-7594-7/24/$31.00 ©2024 IEEE
DOI 10.1109/DESTION62938.2024.00014

20
24

 IE
EE

 W
or

ks
ho

p
on

 D
es

ig
n

A
ut

om
at

io
n

fo
r C

PS
 a

nd
 Io

T
(D

ES
TI

O
N

) |
 9

79
-8

-3
50

3-
75

94
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
ES

TI
O

N
62

93
8.

20
24

.0
00

14

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 23,2024 at 20:40:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The Vanderbilt self-driving vehicle development ecosystem. Libpanda
acts as a low-level hardware abstraction layer. Can to ros abstracts raw data
signals into ROS topics. Experiment software, called an App, is typically a set
of connected ROS nodes. An experiment may be comprised of any number
of vehicles, running multiple instances of the ecosystem with different apps.

project repositories.
• Mutual exclusion for hardware interfaces.
• Traditional software dependency installs.
• Minimal command interface to configure, install, and tear

down experiments.
• Bluetooth-based interface for network sparse experiment

locations.

II. BACKGROUND

1) Target CPS Platform: Vanderbilt University has devel-
oped a low-cost self-driving vehicle ecosystem that democra-
tizes the sensing and actuation in stock Toyota RAV4s. The
vehicle has many use cases for experiments, typically involv-
ing traffic-influencing experiments held on open freeways. The
nature of conducting traffic experiments results in the vehicle
platform being located away from a laboratory setting and
therefore away from easily-accessible internet. Importantly, a
vehicle requires regular maintenance so experimental software
must be routinely disengaged when finishing an experiment.

The vehicle ecosystem is based on interfacing with the vehi-
cle’s OEM Controller Area Network (CAN) bus and modules.
Using Raspberry Pi 4 running Raspbian, the software library
libpanda abstracts the hardware interfaces into CAN and GPS
data [7]. Libpanda also features open-source hardware called
the mattHAT that interfaces the Raspberry Pi to the CAN bus.
Based on efforts to decode CAN signals [8], a package named
can to ros [9], [10] serves as a middleware abstraction of
specific CAN signals into Robotics Operating System (ROS)
topics. Data can be analyzed quickly using the Python package
Strym [11]. To further democratize the platform for other
researchers or for naturalistic driving data purposes, a frontend
named Privzone [12] provides a bluetooth-based method to
configure privacy settings for data gathering.

The workflow of installing developed experiment software
on Vanderbilt’s self driving vehicle test ecosystem typically
involves a skilled expert in the platform. The developer must
be familiar with navigating the system and be able to perform
the following:

• Network connect to the Raspberry Pi over SSH.
• Uninstall or disable any program that starts on boot that

uses the mattHAT.

• Check all dependent development repositories for in-
stalled version, and checkout the correct version if
needed.

• Clone dependent ROS repositories if missing. Make sure
to follow development environment ontology.

• Transfer experiment-specific software.
• Compile all changed local code.
• Configure startup scripts to invoke experiment software

on boot.
2) Operating System Package Managers: Software updates

through the use of package managers is well established in
various operating systems. The Advanced Package Manager
(Apt) is a widely used package manager in Linux Debian-
based distributions [13]. Apt’s commands allow updating of
multiple packages with very few commands. The required
metadata for each package describes dependencies, and Apt
can automatically resolve and install requirements on the
dependent tree. Specific versions of software packages can
also be selected for installation.

Apt and similar package managers like Python’s Pip are not
deemed to be well suited for managing experiment software
largely due to its intention for completed, releasable code.
Package managers involve a general-use structure for software
that exceeds the domain of experimental software, convoluting
the packaging process in domain-specific applications. Each
time code changes, even in the case of a simple value change,
a new package would need to be compiled. Package managers
also require a particular web host of packages, meaning that a
developer of experiments would need to coordinate a method
to store packages on the internet. Both of these hurdles would
involve experiment developers becoming experts in the area
of package management and distribution, adding time to the
deployment process.

3) Docker: Docker containers provide a structure of emu-
lating a separate environment within an OS and has been a tool
used in reproducible research [14]. Through minimal metadata,
a Dockerfile acts as a minimal script to define dependencies
and perform any setup routines. This can be leveraged for
multiple experiment setups by having separate Dockerfiles for
each experiment. This lends itself well to reproducibilty from
the software aspect of a CPS.

Similar to package managers, Docker is intended for general
use. This can lead to unconstrained implementations when
targeting a specific platform. In the case of the Vanderbilt
vehicle ecosystem, Docker itself is not aware of the domain
constraints. Therefore a manager system would still be re-
quired to ensure proper Docker containers do not violate
platform-specific constraints.

III. DESIGN

A. Auto Updates using Git

The inception of the libpanda-app management system
stems from the needs to update experiment software on a large
scale of Raspberry Pis. The Raspberry Pis were installed in
vehicles as a headless configuration, located near facilities with

41

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 23,2024 at 20:40:19 UTC from IEEE Xplore. Restrictions apply.

a WiFi access point. Due to the scale, updating all Raspberry
Pis manually would have involved operating the Pis with
portable peripherals (monitor/keyboard) or an SSH connection
after ensuring they are powered and booted. This would be a
very time consuming process, potentially logistically impossi-
ble within the experiment timeframe. Code was developed and
hosted under different GitHub repositories so each contributor
could push updates.

To mitigate the large update effort, an automatic update
routine was installed on each Raspberry Pi. Using systemd, the
Pi’s OS would invoke a network status check. If github.com
was available, a script would enter all cloned repositories
and pull and updates. After pulling, the required compilers
would execute like ROS’s catkin make. Each repository’s
information is stored in a CSV formatted file.

Pushing code updates can raise a project management red
flag regarding the ability to compile code. Also a push could
be made in error that changes the intended behavior for the
experiment. To circumvent these issues while still allowing
developer to have unhindered use of github, the CSV file that
stores repository information also stores git hashes of specific
commits to be checked out. The git hashes work on any branch
in a repository, preventing the need to also specify the branch.
This enforces a validation step in the experiment software
release process where the manifest of github hashes had to
be carefully chosen and assembled.

This preliminary effort was effective for a single experiment
type but was not easy to scale out to future experiments. To
mitigate this while still leveraging git’s familiarity and version
tracking, a manager system was designed.

B. App Manager

Apps are managed by a bash script named the libpanda-
app-manager (LPAM). The LPAM is installed as a part of
the installation of libpanda. From the command line, the
LPAM can install external repositories, install apps from
the repositories, start and stop the app, or display status
information. The LPAM provides a concise set of functions
through commandline arguments:

• -d: Show details of all apps
• -g, -r: Install/Remove a github-located app repository

(with optional branch/hash)
• -i -u: Install/Uninstall an app from the repository list
• -s, -k: Start/Kill the installed app
• -p: Update all repositories
The LPAM is dependent on knowing the current state of

all configured repositories and the currently installed app.
This information is recorded and updated by the LPAM as
a manifest file. The manifest is in a YAML format, located in
a libpanda configuration directory.

Adding a repository is done by specifying the github owner
and repository name. The LPAM will perform a clone oper-
ation in a configuration directory. If successful, the optional
branch or hash information is checked to ensure that it exists
in the repository. If not, then the manifest is not updated, the
repository is deleted, and an error is reported. If everything

Fig. 3. The command line interface invoking the LPAM. This example shows
how an app repository was added and the recognized apps that were within
the added repository.

checks out, then the manifest updates the manifest with
repository information along with the app metadata described
in section III-C. Figure 3 shows an example if installing a
repository successfully, printing the configured apps.

The install command will either provide a menu of available
apps to be installed based on a name defined the repository
metadata, or install based on a provided name. An installed
app is expected to start on boot, therefore systemd is leveraged.
The installation will check to see if the app is either a bare
executable or ROS launch file. In the case of a ROS-based
app, the robot upstart ROS package is invoked with the app’s
provided launchfile to generate the systemd configuration.
Similarly, the appropriate uninstall process is chosen based
on the app definition.

Due to the target platform where only a single program can
access the mattHAT at a time, mutual exclusion is enforced.
This means that only one app can be installed at a time.
This is easily handled by the LPAM when installing a new
app. If another app already exists, then the LPAM will check
the manifest and uninstall the old app before installing the
new app. By keeping track of the state of installed apps, the
user does not need to know how to remove the old software
since this step will be automatically handled, greatly reducing
system debugging and reconfiguration time.

C. App Repository Structure

A github repository must have a YAML configuration file
with app metadata, along with directories of scripts corre-
sponding to each app. An example structure may look like
the following:

h t t p s : / / g i t h u b . com/<group>/< r e p o s i t o r y >
|! ! l i b p a n d a ! apps . yaml
|! ! app name 1
| |! ! s t a r t . sh
| |! ! s t o p . sh

42

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 23,2024 at 20:40:19 UTC from IEEE Xplore. Restrictions apply.

| |! ! d e s c r i p t i o n . t x t
|! ! app name 2

|! ! d e s c r i p t i o n . t x t

This structure imposes a minimal set of additional artifacts
to be added to a repository. The YAML file describes a set
of dependencies of each app along with some configuration
parameters. The directory of scripts provides a way to run
commands during installation or starting/stopping an app.

The following libpanda-apps.yaml example has two apps,
pandarecord and joy2veh. The pandarecord app is a basic
utility provided by libpanda and needs minimal configuration.
The joy2veh is an example ROS node that is dependent on an
Apt package, a Pip Python library, and ROS nodes in three
different repositories. The LPAM will invoke an Apt and Pip
install of the dependencies if the app is to be installed.

apps :
! name : joy2veh

p r o p e r t i e s :
d e p e n d e n c i e s :

! a p t : l i b d i a g n o s t i c ! u p d a t e r !dev
! p ip3 : numpy

r o s r e p o s i t o r i e s :
! owner : j m s c s l g r o u p

r epo : c a n t o r o s
b r a n c h o r h a s h : 17 dd12e9

! owner : MatthewNice
r epo : joy2veh
b r a n c h o r h a s h : i n d i g o ! d e v e l

! owner : MatthewNice
r epo : j o y s t i c k d r i v e r s

! name : p a n d a r e c o r d
p r o p e r t i e s :

The ROS repositories are cloned into a catkin workspace
that features other parts of the Vanderbilt ecosystem, including
can to ros. Each specified ROS repository has an optional
branch or hash. If a hash is provided (can to ros in the
example), the code will remain the same on each LPAM
update. This also lends will to experiment reproducibility. If a
branch is provided (joy2veh), then the cloned repository will
always pull updates from the provided branch. If no branch
or hash is provided (joystick drivers), then the repository will
always track the default main branch.

The app metadata can be added to any github repos-
itory. However, note that a repository does not need to
include and source code for the app. An example of this
is the set of default apps shown as an example located
at https://github.com/jmscslgroup/libpanda-default-apps. This
repository only contains app metadata which references other
repositories with functional source code.

D. Auto Updates

libpanda’s auto-update is performed both on boot and on
shutdown. This is done in both stage due to the environment
of running inside a vehicle, where WiFi access is likely to
exist at either the end or start of trip. The update procedure has

Fig. 4. An augmented Privzone showing the state of the installed apps. The
table quickly tells the user that the installed(Enabled) app is pandarecord, and
is not currently running. The dropdown menu is available to select various
apps to be installed, and can be restarted or stopped with a button click. App
repositories can also be added and removed from the interface.

been modified to include updates of apps. The update procure
liaisons app updates through the LPAM with scripted LPAM
calls. This ensures that the manifest maintains integrity.

The LPAM manifest is versioned in order to handle added
features that may impact the ontology of its contents. The
LPAM is built with a version migration framework to aid in
the event that an old system is no longer valid with an updated
LPAM, ensuring the system can be backward compatible.

Automatic updates can be seen as a three step process in
the context of the LPAM. First the libpanda update procedure
updates itself, including any revisions made to the LPAM.
Regardless if libpanda or the LPAM had any changes, the
LPAM is then also invoked to pull any updates from any of the
configured app repositories. This pulls any updates made to the
app configuration YAML in the repository. Lastly, the current
installed app undergoes an uninstall and reinstall, resulting in
pulling any updates from the ROS repository dependencies or
installing additional Apt or Pip dependencies.

E. Web-based Bluetooth Frontend

The LPAM reduces the complexity of installing apps, but
it does not circumvent the issue of managing a CPS in
a network sparse field. By leveraging the existing frontend
Privzone [15], configuration views have been augmented to
include an abstraction the LPAM. Privzone is able to connect
to a Raspberry Pi that has libpanda installed through a over
Bluetooth Low Energy (LE)-based backend service named
Bluezone. By adding more communication protocols, states
of the LPAM are made more readable on Privzone’s frontend.
Figure 4 shows the app interface.

43

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 23,2024 at 20:40:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Four vehicles equipped with libpanda-apps. Two vehicles were
installed with a default pandarecord app for pure data collection and the other
two had installed an experimental control app. The vehicles were staged offsite
away from WiFi. The experiment setup was verified using Privzone, shown
in figure 6

IV. CASE STUDIES

A. App as Development Tool

An experiment idea was proposed to have a single vehicle
get infrastructure-provided information about variable speed
limit information [16]. This project had a short deadline of two
weeks, and had a few components that needed to be developed.
Because libpanda-apps were a part of the ecosystem, more
time was able to be spent on developing, and leading to rapid
iteration.

One of the tasks needed for the system was velocity
controller. Due to the complicated system dynamics, it was
deemed best to tune the controller using the empirically based
Ziegler-Nichols method. The controller was designed using
MATLAB’s Simulink, generating a standalone ROS node.
During tuning, the control designer with code generation tools
located offsite due to scheduling issues. However, personnel
running the vehicle could advise new tuning parameters re-
motely. The control designer was able to push changes to git,
and the vehicle operators could invoke LPAM updates to pull
and install the changes. This structure greatly increased pro-
ductivity and kept focus on the development task of controller
tuning rather that software configuration.

B. Multiple Vehicles, Multiple Apps

A new experiment following the efforts in section IV-A
was to minimally modify the function of the app, but scale
the experiment to include a total of four vehicles. In this
experiment, two vehicles would be controlled while two other
vehicles would be equipped as data-logging vehicles. The
vehicle can be seen in the experiment staging area away from
network access in figure 5.

Reusing software greatly reduces development time in an
iterative change like those required, however changes in
software can make reproducing old results challenging. The
app infrastructure lends itself well to this situation since the
configuration of software packages and corresponding versions
are captures in the repository YAML. Creating a new app for
this experiment meant to duplicate the app metadata in the
YAML with a new name and configure the software packages

Fig. 6. Experiment vehicles being checked using bluezone-connected
libpanda-apps, showing the broadcasted VIN in the bluetooth device search.
All cars were quickly verified to be running with correct software.

to invoke the new code, preventing any functional changes to
the prior experiment’s codebase.

Development of the experimental software was only per-
formed on one vehicle. Auto updates removed the need to
constantly maintain the second control vehicle. Once the
experimental software was deemed valid, the second vehicle
would automatically pull app updates.

The experiment was intended to take place during partic-
ular traffic conditions that can drastically change in a short
timespan, causing scheduling challenges. Verification in the
field was performed to ensure all proper apps versions were
installed on associated vehicles. Bluezone was effective in
this regard by not needing a WiFi network nor needing any
hardware connections with peripherals like a monitor and
keyboard. Figure 6 shows a screenshot of Privzone during soft-
ware verification with the four vehicles appearing as bluetooth
devices. Each vehicle was checked for the current version and
if it was currently running in a short time, preventing any
hurdles that might have compromised experiment timing.

Beyond this experiment, numerous other experiment apps
were installed, exhibiting the easy app transition process. After
a couple months, a demonstration was planned to show recent
research products, and this particular experiment was deemed
to be the best showcase. Since the repository was already
configured, Privzone easily reinstalled the experiment, saving
personnel setup time. This is also serves to demonstrate the
new reproducible aspect of the ecosystem.

V. CONCLUSION

Libpanda-apps have shown to be an invaluable tool that
opens up the possibilities of research within tight logistical
deadlines by greatly reducing the setup time cost. Better
development times of new apps can be achieved by leverage
the update features with multiple code repositories. The auto

44

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 23,2024 at 20:40:19 UTC from IEEE Xplore. Restrictions apply.

updates can also lend itself to software to many platforms.
YAML configurations can be reused in new app creation with
a copy then modify workflow. The app structure also greatly
helps in reproducing past experiments by reducing the burden
to relearn old setup techniques.

A. Future Work

Further efforts will be integrated over time to increase the
efficacy of the system. One improvement is to reduce the
amount of configuration files required to define a project,
including the things like the start and stop scripts. A more
configurable ontology could also be implemented so that the
root directory is not the required location for the app directory.

While mutual exclusion is required in terms of hardware
control, the specific ROS node that controls the vehicle could
be its own separate launch file. Doing so would eliminate the
need for mutual exclusion, and simultaneous apps could be a
possibility.

App arguments could be defined so that Privzone could
send dynamic parameters much like that in a command line.
This could eliminate the need to push code updates when only
changes by value are needed between experiments.

REFERENCES

[1] T. Bures, D. Weyns, B. Schmer, E. Tovar, E. Boden, T. Gabor,
I. Gerostathopoulos, P. Gupta, E. Kang, A. Knauss et al., “Software
engineering for smart cyber-physical systems: Challenges and promising
solutions,” ACM SIGSOFT Software Engineering Notes, vol. 42, no. 2,
pp. 19–24, 2017.

[2] M. Obstbaum, U. Wurstbauer, C. König, T. Wagner, C. Kübler, and
V. Fäßler, From a Graph to a Development Cycle: MBSE as an Approach

to reduce Development Efforts. Deutsche Gesellschaft für Luft-und
Raumfahrt-Lilienthal-Oberth eV, 2017.

[3] H. Yu, H. Qi, and K. Li, “A powerful software-defined cyber-physical
system to expand cps adoption,” Software: Practice and Experience,
vol. 52, no. 4, pp. 904–916, 2022.

[4] M. Szczodrak, Y. Yang, D. Cavalcanti, and L. P. Carloni, “An open
framework to deploy heterogeneous wireless testbeds for cyber-physical
systems,” in 2013 8th IEEE International Symposium on Industrial

Embedded Systems (SIES). IEEE, 2013, pp. 215–224.
[5] M. Nice, M. Bunting, A. Richardon, G. Zachar, J. W. Lee, A. Bayen,

M. L. Delle Monache, B. Seibold, B. Piccoli, J. Sprinkle, and
D. Work, “Enabling mixed autonomy traffic control,” arXiv preprint

arXiv:2310.18776, 2023.
[6] J. El-Khoury, F. Asplund, M. Biehl, F. Loiret, and M. Törngren, “A

roadmap towards integrated cps development environments,” in 1st open

EIT ICT labs workshop on cyber-physical systems engineering, 2013.
[7] M. Bunting, R. Bhadani, and J. Sprinkle, “Libpanda: A high performance

library for vehicle data collection,” in Proceedings of the Workshop on

Data-Driven and Intelligent Cyber-Physical Systems, 2021, pp. 32–40.
[8] M. W. Nice, M. Bunting, G. Zachar, R. Bhadani, P. Ngo, J. Lee,

A. Bayen, D. Work, and J. Sprinkle, “Parameter estimation for decoding
sensor signals,” in 2023 ACM/IEEE 14th International Conference on

Cyber-Physical Systems (ICCPS), 2023.
[9] S. Elmadani, M. Nice, M. Bunting, J. Sprinkle, and R. Bhadani, “From

can to ros: A monitoring and data recording bridge,” in Proceedings of

the Workshop on Data-Driven and Intelligent Cyber-Physical Systems,
2021, pp. 17–21.

[10] M. W. Nice, M. Bunting, J. Sprinkle, and D. Work, “Middleware for a
heterogeneous cav fleet,” in 2023 5th Workshop on Design Automation

for CPS and IoT (DESTION), 2023.
[11] R. Bhadani, M. Bunting, M. Nice, N. M. Tran, S. Elmadani, D. Work,

and J. Sprinkle, “Strym: A python package for real-time can data
logging, analysis and visualization to work with usb-can interface,”
in 2022 2nd Workshop on Data-Driven and Intelligent Cyber-Physical

Systems for Smart Cities Workshop (DI-CPS). IEEE, 2022, pp. 14–23.

[12] M. Bunting, M. W. Nice, D. Work, J. Sprinkle, and R. Golata, “Edge-
based privacy of naturalistic driving data collection,” in 2023 ACM/IEEE

14th International Conference on Cyber-Physical Systems (ICCPS),
2023.

[13] J. G. MacKinnon, “The linux operating system: Debian gvu/linux,” 1999.
[14] C. Boettiger, “An introduction to docker for reproducible research,” ACM

SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.
[15] M. Bunting, M. Nice, D. Work, J. Sprinkle, and R. Golota, “Wip

abstract: Edge-based privacy of naturalistic driving data collection,” in
Proceedings of the ACM/IEEE 14th International Conference on Cyber-

Physical Systems (with CPS-IoT Week 2023), 2023, pp. 256–257.
[16] M. Nice, M. Bunting, G. Gunter, W. Barbour, J. Sprinkle, and D. Work,

“Sailing cavs: Speed-adaptive infrastructure-linked connected and auto-
mated vehicles,” arXiv preprint arXiv:2310.06931, 2023.

45

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on December 23,2024 at 20:40:19 UTC from IEEE Xplore. Restrictions apply.

