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Abstract—We investigate the mixing times of Markov kernels
under E.-divergence. We demonstrate that the zero-error E.-
mixing time, for any + > 1, of irreducible and aperiodic Markov
chains, is bounded, a property that is not shared by the TV-
mixing time. We further obtain upper bounds on the E.-mixing
times for a broad family of contractive Markov kernels via a
new non-linear strong data processing inequality for the E,-
divergence. We apply our results to derive new bounds for the
local differential privacy guarantees offered by the sequential
application of a privacy mechanism to data.

I. INTRODUCTION

Let G = (X, &) be a connected graph with the vertex set X
and the edge set £ C X x X'. Consider a discrete-time Markov
chain { X, },, with states in X with the corresponding one-step
transition probability matrix specified by a Markov kernel K.
Let P, be the distribution of the initial state X and P,, denote
the distribution of X, the state at time n, so that P, = PyK",
where K™ represents the n-step transition probability matrix.
It is widely known that if the Markov chain is irreducible
and aperiodic, then P,, converges to the (unique) stationary
distribution Q*, that is, PyK™ approaches Q* as n tends to
infinity. The rate of such convergence is captured by the mixing
time t(), which is the smallest n > 1 such that D(P,[|Q*) <
¢ for a given divergence measure D. Mixing time has been
extensively studied in the literature under different divergence
measures, such as total variation distance TV [1], Rényi and
KL divergences [2], and x2-divergence [3]. We refer interested
readers to [1, 4] for a comprehensive exposition of existing
mixing time results. It is customary to fix some value of ¢
(for discrete-time chains, a common choice is 1/4), and to
investigate the scaling of the mixing time in terms of properties
of K.

In this paper, we examine the mixing time of E-divergence,
denoted by ts(e). A formal definition of E-divergence is
given in Section II; note that total variation distance corre-
sponds to E; (see [5] for more properties of E.-divergence).
Our motivation for studying mixing time under E.-divergence
is twofold. First, the widely recognized standard for privacy in
machine learning, namely, differential privacy [6], can be ex-
pressed in terms of E-divergence. Properties of E.-divergence
have been successfully used to analyze differentially private
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algorithms in several machine learning settings, see, e.g., [7—
12]. Here, we use this connection to study properties of locally
differentially private mechanisms, viewed as Markov kernels,
through their mixing time! (see Section VI for more details).
Second, a large family of f-divergences can be represented
by E,-divergence, see [16, Corollary 3.7]. Thus, by studying
the mixing time under E,-divergence and bounding tg(a), we
can bound the mixing time for a range of f-divergences as a
by-product.

Our framework for characterizing ¢¥ (¢) relies on the theory
of strong data processing inequalities (SDPI), originally de-
veloped by Ahlswede and Gacs [17]. The key quantity in this
framework is 7p(K), the contraction coefficient of a Markov
kernel K under a divergence measure D, which quantifies the
extent to which the data processing inequality for K can be
improved (see Section II for the definition). The connection
between mixing time and SDPI has been already established,
see, e.g., [18, 19]. In particular, a direct application of SDPI
implies that

iy (0) < 108 M

= log(nrv(K))’
where 71y (K) is the contraction coefficient of K under total
variation distance.

Our contributions can be summarized as follows:

o We first demonstrate that tX(¢) < oo for any y > 1 and
any aperiodic and irreducible kernels even for ¢ = 0. This
result, which is in stark contrast with t-*FV(e), serves as
the main motivation for the ensuing technical results. In
particular, we consider £ = 0 for studying tf.

o In Theorem 2, we derive an upper bound on tS(O) for any
kernel K satisfying K(y|z) > 0 for all 2,y € X, which
we call contractive. We achieve this by combining the
two-point characterization of the contraction coefficient
of K under E,-divergence, recently proved in [20] with
some functional properties of E,-divergence. This bound
involves min,¢x Q*(x) which, although strictly positive,
can be arbitrarily small.

« We then develop a framework for the non-linear SDPI
under E,-divergence and use it to establish a tighter
bound for t,f (0) independent of Q* (Theorem 4). Such
Non-linear SDPI provids a sharp bound on E, (PK|QK),
the E,-divergence between PK and QK, in terms of

Tt is worth noting that mixing time under Rényi divergence has been
instrumental in some recent discoveries in differential privacy applications
in machine learning, see [13—-15].



E,(P||Q) for any distributions P and @) and contractive
kernels K. As stated earlier, this framework allows us to
obtain bounds on mixing time under a large family of
f-divergences. For instance, we show that our bound on
t,'j(O) directly leads to a bound on tX, () for a certain
choice of .

e In Section VI, we use the connection between E-
divergence and differential privacy to study privacy am-
plification by composition [7] for the local differential pri-
vacy (LDP) setting. In particular, we answer the following
two questions in Theorem 5 and Lemma 3, respectively:
(1) If K; is an ¢;-locally differentially private (e;-LDP for
short) mechanism for ¢ € [n] :== {1,2,...,n}, then what
is the privacy guarantee of their composition K;o- - -0K,,?
and (2) If K is (e, 6)-LDP, what is the smallest n such
that K™ is &’-LDP for a given &’ < &?

Notation. We use upper-case letters (e.g., X) to denote ran-
dom variables and calligraphic letters to represent their support
sets (e.g., X'). A Markov kernel (or channel) K : X — P(2)
is specified by a collection of distributions {K(:|z) € P(Z) :
x € X'}. Given such kernel K and P € P(X), we denote by
PK the output distribution of K when the input is distributed
according to P, given by PK(A) := [ P(dz)K(A|z) for
A C Z. We define [n] = {1,...,n}, (a)+ = max{a,0},
and a V b = max{a, b}. Finally, for a € R, we define
a—1
(o) = —- @)
II. PRELIMINARIES

A. E, Divergence

Let X be an arbitrary set. Given any pair of distributions
P,@Q € P(X), we define their E,-divergence for v € (0, c0)
as

.(Plo) - | (12’;—

where P = Py + P, with Py < @Q and P, | @ (i.e., the
Lebesgue decomposition of P with respect to ). When X is
a discrete set, the definition of the E,-divergence becomes

EL(PIQ) =) (P(z) —7Q()), — (1 =7)s-

zeX

) dQ+Py (Supp(Q)) —(1—7)+,
N

Since E,-divergence satisfies the reciprocity relation (see, e.g.,
[21]), that is,

E,(PIQ)

Ei/(QIIP) = " for all € (0, 00),

we focus on the E,-divergence for v > 1. It is important to
remark that the E,-divergences with v = 1 coincides with the
total variation distance, i.e., E;(P||Q) = TV(P, Q).

B. Strong Data Processing Inequalities

The E-divergence (as any other f-divergence) satisfies the
data processing inequality [22], i.e., E, (PK|QK) < E(P||Q)
for any pair of probability distributions (P, ), any Markov
kernel K, and any v > 0. The contraction coefficient of a

Markov kernel K under E,-divergence 7., (K) is the smallest
number 7 < 1 such that E, (PK||QK) < 7, (K)E,(P]|Q) for
any pair of (P, Q). More precisely, we have
E, (PK]QK)
ny(K) = sup ———° 7, 3)
1 £, (PIQ)

P,Q:
Ey (PIIQ)#0

Since E.,-divergence reduces to the total variation distance for
v = 1, we denote 7;(K) by nrv(K). Interestingly, n,(K) <
nrv(K) for all v > 0 and kernels K [23]. It has recently been
shown in [20] that 7, (K) with v € [1,00) enjoys a simple
characterization:
m(K) = sup E, (K([2)[K(]2")). )
We say a kernel is contractive if K(y|z) > 0 for all z,y €
X. This definition in particular implies that 1y (K) < 1, and
thus 7,(K) < 1 for all v > 0.

C. Properties of Markov Kernels

Consider a discrete-time Markov chain {X,,},, with states
in a finite alphabet X and a one-step transition probability
matrix specified by K, if Xy ~ P, then X,, ~ PK",
where K" denotes the n-step transition probility. For instance,
K (z]z’) = 3, cx K(z|y)K(ylz'). We say that a Markov
chain is irreducible if for any z,2’ € X, there exists an
integer ng such that K™ (z|z’) > 0. Furthermore, let 7 (z) :=
{t > 1:K'(x,z) > 0} be the set of times when the chain can
return to starting position . A Markov chain is considered
aperiodic if the period of all its states x € X, which is defined
as the greatest common divisor of 7 (z), is equal to one. Recall
that for any aperiodic and irreducible Markov chain, there
exists a unique distribution @Q*, typically referred to as the
stationary distribution, such that Q*K = Q*.

D. Mixing Times

Given an irreducible and aperiodic Markov chain with the
associated kernel K, it is widely known that PK™ converges
to its stationary distribution @Q*. To capture the rate of such
convergence, we measure the distance of PK" from the
stationarity distribution @Q* via E.-divergence:

ds(n) = sup E,(PK"||Q¥)
PEP(X)
= max E,(K"(12)|Q"),

where the last equality follows from the joint covexity of
(P,Q) — E,(P||Q) (similar to any other f-divergences). For
each ¢ > 0, the E,-mixing time of a Markov kernel K is
defined as

K — 3 . K
t-(e) =min{n > 1:d7(n) < e}.
III. FINITE MIXING TIME FOR IRREDUCIBLE AND
APERIODIC MARKOV CHAINS

In this section, we aim to prove that tif () < oo for all
€ > 0 provided that v > 1. This rather surprising feature of
E,-mixing time is in sharp contrast with the known property



of the TV-mixing time (which corresponds to #X(g)), which
asserts that it is infinite for € = 0.
Recall that Q*K™ = @Q*. Thus, we can write

E, (PK™|Q%) = E, (PK"|Q"K")
<y (KME, (P]|Q"),

where the inequality follows from the definition of 7,. Since
E, (P||@*) is always smaller than 1, it follows that

d:(n) <y (K™) <y (K)™
This in turn implies

K log(e)
) < 1o (n(K))’

recovering the typical behavior of the TV-mixing time in (1).
Note, however, that the previous bound is vacuous for ¢ = 0.
While the latter behavior is typical for v = 1, the following
theorem shows that ¢5(0) is finite for > 1.

Theorem 1. Let K : X — P(X) be a Markov kernel over a
finite alphabet X. If K describes an irreducible and aperiodic
Markov chain, then we have tﬁ(O) < oo for all v € (1,00).

Given this theorem, it is natural to aim to determine upper
bounds for tff(O). In the following sections, we develop tools
to address this problem for a broad family of contractive
kernels. We note that if K is contractive, then it describes an
irreducible and aperiodic Markov chain and, from the above
theorem, t,}j(O) < 0.

IV. MIXING TIME THROUGH LINEAR SDPI

In this section, we further examine the connection between
SDPI and mixing times to develop a framework for bounding
t,'j(O) for a family of contractive kernels. In particular, we
define the following parametric family of kernels parametrized
by a parameter o > 0:

sup log
z,x' €EX,yeXxX

i) _ o\
K(ylz’) —
(5)
First, we show that for K € F,, it is sufficient to consider
the E,-mixing time for 1 <y < e®.

Lemma 1. Let X be a finite set and K : X — P(X) be
a Markov kernel in F,. Then, for v > e%, n,(K) = 0 and
t5(0) = 1.

Fom{K:ix = P(2)

Proof. First, note that since K(y|z) < e*K(y|z’) for any
x,2',y € X, we have E.o(K(:|2)||K(-]z")) = 0 for any
x,2’ € X. Thus, in light of the characterization given in (4),
we have 7).« (K) = 0. It then follows from the monotonicity of
the mapping v — E,(P||Q) [21] that n,(K) = 0 for v > e”.
Now, let Q* be the stationary distribution of K. We can
assert that for all v > e,
K *
d(1) o E, (PKIIQ")

= sup E,(PK|Q'K)
PEP(X)

Sm(K) Sup E’Y(PHQ*)
PeP(X)

< ny(K).
Since 7,(K) = 0 for v > e®, we conclude that tﬁf(O) =1 =

Next, we focus on characterizing the E,-mixing time for
~v € (1,e%). The following theorem presents an upper bound
for ts(O) that depends on Q* the stationary distribution of K.
Let Q% denote min,cy Q*(z). Notice that Q*(z) > 0 for
all x € X, and thus Q7;, > 0.

Theorem 2. Let X be a finite set and K € F, with the
stationary distribution Q*. If (y—1)Q%,;, > 1, then t,f(()) =1
Otherwise, if 1 < v < e®, then

log ¢(e®)
where ((-) was defined in (2).

The proof of Theorem 2 depends on two results, each of
which might be of independent interest. The first one estab-
lishes an optimal bound on E..(P|Q) in terms of E,(P|Q)
for v/ < . The second result states that if E..(P||Q) is
sufficiently small, then E,(P||Q) = 0 for 7" < ~.

Proposition 1. Let X be an arbitrary set. If 1 < ' < ~, then,
forall P,Q € P(X),

£/ (PIQ) <1- T4 (1- E.(PIQ) VE(@I1P)).

We remark that this bound is a generalization of [24,
Proposition 4] that states

TV(P.Q) < 1- (1= E,(P|Q).

Combined with the characterization of 7., (K) given in (4),
Proposition 1 establishes the following result which is a key
component in proving Theorem 2:

"+ 1
“XE ©)

—1,(K)).
| M ( ))
It is worth noting that this inequality is tight in general,
meaning it cannot be improved for general kernels K. For
instance, if K is a binary symmetric channel with crossover
probability x € (0,1/2), then it can be verified that 7., (K) =
(I1—(y+1)k)+ and thus n(K) =1 — 'fy—rll(l —n4(K)) for
1<+ <~<1/k—1.

The second component required for the proof of Theorem 2
is the following.

Proposition 2. Let X be a finite set and P,Q € P(X). If 1 <

7' <7y and By (P(Q) < (y=7) min Q(x), then E,(P||Q) =
TE

0.

ny(K) <1

We can now provide a sketch of the proof of Theorem 2.

Proof of Theorem 2. First note that from (6), we have that

(1 - Uea(K))~

K)<1-—
mvK) 1=



Since 7« (K) = 0 and Q*K"™ = Q*, it follows from the
definition of the contraction coefficient that for all P € P(X),

* n 2 "
TV(PK™, Q) < nrv(K)" < (1—ea+1) .

Take
log[(’Y B I)Qzlin]

- log [1—2/(e*+1)]

Then, we have that
TV(PK™, Q") < (v — 1) min Q" (x).
zeX

By Proposition 2, we conclude that E,(PK™||Q*) = 0. Since
P € P(X) is arbitrary, we have that dif (n) =0 and we have
the result. u

We must note that the upper bound in Theorem 2 for the E.,-
mixing time of any contractive Markov kernel depends on its
stationary distribution, which can potentially be unknown. This
may restrict the versatility of this theorem. In the following
section, we develop a framework, based on the non-linear
SDPI, that enables us to establish bounds on the E.-mixing
time of contractive kernels in F, without relying on their
stationary distributions. Interestingly, the resulting bounds
might even be tighter than Theorem 2.

V. MIXING TIME THROUGH NON-LINEAR SDPI

In this section, we first mathematically formulate a new type
of SDPI for general Markov kernels which is complementary
to the one discussed in Section II-B. We then tightly charac-
terize such SDPI for K € F,.

Define F., : [0,1] — [0,1] for any kernel K and any v > 1
as follows:

Fy (K, 1) = sup {E,(PK[|QK) : B, (P[|Q) <t} (D)

We write F.,(t) for F., (K, t) when the Markov kernel K is clear
from the context. We note that this function is closely related
to the “Dobrushin curve” defined in [21] which essentially
corresponds to F1(K,¢). As such, we call t — F. (K, ) as the
generalized Dobrushin curve.

Notice that the mapping ¢ — F,(K,t) identifies a better
upper bound for E, (PK|/QK) in terms of E,(P||Q) than the
one obtained by the contraction coefficient. In other words, we
directly have F,(K,t) < n,(K)t. However, this inequality is
strict for most non-trivial kernels. For instance, it is possible
to have E, (PK||QK) = 0 for some K € F, and v > 1, while
E,(P||Q) > 0, as delineated by the next lemma.

Lemma 2. Let v € (1,e%], and P and Q be any two distri-
butions such that E(P||Q) < ;:11. Then, E,(PK||QK) =0

for any K € F,. In particular, for all t < %, we have

F.(t) = 0.

figsycomparison?.png

Fig. 1. Comparison of the non-linear SDPI from [7] and ours in
Theorem 3 where P and () are full-support random distributions on
[k] and K : [k] — P([k]) is given by K(z|z) xx e* and K(y|z) x 1
for y # x € [k] and some o > 0. It is straightforward to see that
K € F,. Here, we pick « =1 and k = 5.

Lemma 2 highlights the potential weakness of linear SDPI,
suggesting F.(K,t) as a better tool for establishing bounds
on the mixing time. Balle et al. [7] recently established an
example of such non-linear upper bounds:

E, (PKIIQK) < 14, (K)E4 (P Q), (®)

where 7, = 14 77_1 Since y; > «y for ¢t < 1, this upper bound
strictly improves over its linear counterpart. While this result
is indeed remarkable, its formulation may not immediately
lend itself to bounding F, of the composition of Markov
kernels, which is a crucial tool in the characterization of
E.-mixing time. Therefore, we seek an alternative non-linear
SDPI that can more effectively address the composition of
Markov kernels. The following theorem presents our non-
linear SDPI which can directly be employed to establish an
upper bound on the E,-mixing time. This result also solves
a conjecture put forth in [25], demonstrating the tightness of
this non-linear SDPI.

Theorem 3. Let K € F,, and v > 1 then

1
(e DEPIQ) + (1),
9

We remark that the upper bound in this theorem is tight, see
[25, Theorem 2] for an example of P, @ and K for which the
inequality in (9) becomes equality. Figure 1 compares our non-
linear SDPI with that of [7] given in (8) where P and () are
full-support random distributions on [k] and K : [k] — P([k])
is given by K(z|z) = 45— and K(y|z) = -5 for
y # x € [k] and some a > 0. It is straightforward to see
that K € F,. While our bound is not consistently superior, it
accurately captures the well-known behavior of E,-divergence,
reaching zero after a certain threshold ~.

Next, we utilize our non-linear SDPI in Theorem 3 to
characterize our bound on the E,-mixing time.

E, (PK|[QK) <

Theorem 4. Let K € F,, and 1 < v < e®. Then, we have

< Jog¢()
~ log((e)
where ((-) was defined in (2).

t5(0)

Proof. Using Theorem 3, we have that
P < (1) - O - ce)
+

Recall that F (K 0Ky, t) < F,(Ky, F(Kg,t)) for any Markov

kernels K; and K. Hence, the generalized Dobrushin curve



for K™ is given by the n-fold composition of F., i.e.,

Fy (K™ 1) < (t“ea)n -2 (1 E <((a>)"))
= (1gtery - O=RERAEE)
< (gtemy - RIS

The result is obtained by setting the RHS to 0. |

Theorem 4 improves upon Theorem 2 in two significant
ways. First of all, the bound in Theorem 4 is independent of the
stationary distribution of the Markov kernel under investiga-
tion. Second, for choices of v > =+— —1, Theorem 4 provides
a strict improvement over its counterpart in Theorem 2.

It is worth noting that Theorem 4, together with Proposi-
tion 1, can be used to determine bounds on the mixing time
under other divergences. For instance, it reduces to the stan-
dard bound on the TV-mixing time given in (1). To see this,
first note that from Proposition 1 we have 4, (¢(7)) < t5(0)
for any v > 1. A%);))lymg Theorem 4, we therefore obtain

R, (C(y) < 11)0&4 (cay- Thus, choosing v = ¢~ Y(e) yields
R, (e) < 10g10gg(2a) This implies the bound in (1) after noticing

nrv(K) < ¢(e®) for all K € F, (see [26, Cor. 11] for a proof).

VI. BY-PRODUCT: PRIVACY AMPLIFICATION BY
COMPOSITION

In this section, we apply the results proved in the previous
section to the differential privacy settings. A well-known result
in the privacy literature is that the post-processing of a privacy
mechanism preserves its privacy guarantees. In many practical
scenarios, it is desirable to precisely quantify how much a
post-processing can in fact amplify privacy.

We focus on the family of locally differentially private
(LDP) mechanisms [27, 28]. A Markov kernel K : X — P(Z2)
is said to be (&,6)-LDP for ¢ > 0 and ¢ € [0,1] if

sup Eee (K(-[)[[K(-|2") =

xz, x’

If K is (¢,0)-LDP, we say that it is e-LDP. We categorize

an LDP mechanism as an approximate LDP mechanism when

0 > 0, and as a pure LDP mechanism when § = 0. It is

important to note that F. is in fact the set of all e-LDP

mechanisms.

The connection between SDPI and LDP has recently be-
come (more) clear in [11] which showed: K is (e, 4)-LDP
if and only if ne-(K) < §. Thus, the privacy amplification
problem naturally fits into the SDPI framework, because post-
processing a privacy mechanism can be viewed as composing
a Markov kernel with the privacy mechanism.

We consider the following two scenarios:

Scenario I: Suppose K; : X — P(X) is ¢;-LDP for i €
[n]. We want to identify the privacy guarantees of their
composition as a function of ¢;’s. In particular, we seek
to determine ¢’ such that Ky o --- o K,, is &’-LDP.

Scenario II: Suppose K is an (e, §)-LDP mechanism. We are
interested in identifying the smallest n such that K™ is a
pure LDP.

The privacy amplification described in Scenario I can be
converted into the following problem related to SDPI: Given
vi = e and kernels K; satisfying 7,,(K;) = 0 for ¢ € [n],
what is the -y such that 7, (K o- - -0K,,) = 0? This problem was
investigated in [29] for the special case of n = 2. Specifically,
it was shown that the composition of an £1-LDP mechanism
with an £9-LDP mechanism is £-LDP where € = e:% In
the following theorem, we extend this result by leveraging the
non-linear SDPI proved in Theorem 3.

Theorem 5. Letr K; be ;-LDP for i € [n]. Then, their
composition is &'-LDP where

o tog (LI C)
S\ Ce) )

We observe that the result in Theorem 5 recovers [29,
Theorem 4.3] when n = 2.

Next, we consider Scenario II. The privacy amplification de-
scribed in this scenario is equivalent to the following problem:
Given a kernel K satisfying 7. (K) < §, what are the smallest
n and 7 such that 7, (K") = 0? In the following lemma, we
partially answer this question.

Lemma 3. Any (e, 6)-LDP mechanism K defined over a finite
alphabet can be converted to an ¢'-LDP with ¢ < € by
composing K with itself n times with

B {log [(e5 = 1)Qpin/2] log( mlm/?)}
n = max ,
log(nrv(K)) " log(nrv(K))
where Q* is the stationary distribution of K, and Q7
mingex Q*(x).

min T

It is worth noting that similar problems were explored in
[7] and [30]. In [7], the authors demonstrated that composing
an (g, 9)-LDP mechanism K with a log(1+ eg(;—*l)—LDP mech-
anism results in a mechanism that is e-LDP. Additionally, [30,
Theorem 1] offered a method for converting approximate LDP
mechanisms into pure ones. Specifically, given an (g, J)-LDP
mechanism, they introduced an approach to obtain an 8¢-LDP
mechanism. Therefore, in both cases, privacy is amplified in
terms of ¢, but not in terms of &, which makes our result
remarkable as it amplifies privacy in both ¢ and ¢.
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