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Abstract—We investigate the mixing times of Markov kernels
under Eω-divergence. We demonstrate that the zero-error Eω-
mixing time, for any ω > 1, of irreducible and aperiodic Markov
chains, is bounded, a property that is not shared by the TV-
mixing time. We further obtain upper bounds on the Eω-mixing
times for a broad family of contractive Markov kernels via a
new non-linear strong data processing inequality for the Eω-
divergence. We apply our results to derive new bounds for the
local differential privacy guarantees offered by the sequential
application of a privacy mechanism to data.

I. INTRODUCTION

Let G = (X , E) be a connected graph with the vertex set X
and the edge set E → X ↑X . Consider a discrete-time Markov
chain {Xn}n with states in X with the corresponding one-step
transition probability matrix specified by a Markov kernel K.
Let P0 be the distribution of the initial state X0 and Pn denote
the distribution of Xn, the state at time n, so that Pn = P0Kn,
where Kn represents the n-step transition probability matrix.
It is widely known that if the Markov chain is irreducible
and aperiodic, then Pn converges to the (unique) stationary
distribution Q→, that is, P0Kn approaches Q→ as n tends to
infinity. The rate of such convergence is captured by the mixing

time tKD(ω), which is the smallest n ↓ 1 such that D(Pn↔Q→) ↗
ω for a given divergence measure D. Mixing time has been
extensively studied in the literature under different divergence
measures, such as total variation distance TV [1], Rényi and
KL divergences [2], and ε2-divergence [3]. We refer interested
readers to [1, 4] for a comprehensive exposition of existing
mixing time results. It is customary to fix some value of ω
(for discrete-time chains, a common choice is 1/4), and to
investigate the scaling of the mixing time in terms of properties
of K.

In this paper, we examine the mixing time of Eω-divergence,
denoted by tKω (ω). A formal definition of Eω-divergence is
given in Section II; note that total variation distance corre-
sponds to E1 (see [5] for more properties of Eω-divergence).
Our motivation for studying mixing time under Eω-divergence
is twofold. First, the widely recognized standard for privacy in
machine learning, namely, differential privacy [6], can be ex-
pressed in terms of Eω-divergence. Properties of Eω-divergence
have been successfully used to analyze differentially private
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algorithms in several machine learning settings, see, e.g., [7–
12]. Here, we use this connection to study properties of locally

differentially private mechanisms, viewed as Markov kernels,
through their mixing time1 (see Section VI for more details).
Second, a large family of f -divergences can be represented
by Eω-divergence, see [16, Corollary 3.7]. Thus, by studying
the mixing time under Eω-divergence and bounding tKω (ω), we
can bound the mixing time for a range of f -divergences as a
by-product.

Our framework for characterizing tKω (ω) relies on the theory
of strong data processing inequalities (SDPI), originally de-
veloped by Ahlswede and Gács [17]. The key quantity in this
framework is ϑD(K), the contraction coefficient of a Markov
kernel K under a divergence measure D, which quantifies the
extent to which the data processing inequality for K can be
improved (see Section II for the definition). The connection
between mixing time and SDPI has been already established,
see, e.g., [18, 19]. In particular, a direct application of SDPI
implies that

tKTV(ω) ↗
log(ω)

log(ϑTV(K))
, (1)

where ϑTV(K) is the contraction coefficient of K under total
variation distance.

Our contributions can be summarized as follows:
• We first demonstrate that tKω (ω) < ↘ for any ϖ > 1 and

any aperiodic and irreducible kernels even for ω = 0. This
result, which is in stark contrast with tKTV(ω), serves as
the main motivation for the ensuing technical results. In
particular, we consider ω = 0 for studying tKω .

• In Theorem 2, we derive an upper bound on tKω (0) for any
kernel K satisfying K(y|x) > 0 for all x, y ≃ X , which
we call contractive. We achieve this by combining the
two-point characterization of the contraction coefficient
of K under Eω-divergence, recently proved in [20] with
some functional properties of Eω-divergence. This bound
involves minx↑X Q→(x) which, although strictly positive,
can be arbitrarily small.

• We then develop a framework for the non-linear SDPI
under Eω-divergence and use it to establish a tighter
bound for tKω (0) independent of Q→ (Theorem 4). Such
Non-linear SDPI provids a sharp bound on Eω(PK↔QK),
the Eω-divergence between PK and QK, in terms of

1It is worth noting that mixing time under Rényi divergence has been
instrumental in some recent discoveries in differential privacy applications
in machine learning, see [13–15].



Eω(P↔Q) for any distributions P and Q and contractive
kernels K. As stated earlier, this framework allows us to
obtain bounds on mixing time under a large family of
f -divergences. For instance, we show that our bound on
tKω (0) directly leads to a bound on tKTV(ω) for a certain
choice of ϖ.

• In Section VI, we use the connection between Eω-
divergence and differential privacy to study privacy am-

plification by composition [7] for the local differential pri-
vacy (LDP) setting. In particular, we answer the following
two questions in Theorem 5 and Lemma 3, respectively:
(1) If Ki is an ωi-locally differentially private (ωi-LDP for
short) mechanism for i ≃ [n] := {1, 2, . . . , n}, then what
is the privacy guarantee of their composition K1⇐· · ·⇐Kn?
and (2) If K is (ω, ϱ)-LDP, what is the smallest n such
that Kn is ω↓-LDP for a given ω↓ < ω?

Notation. We use upper-case letters (e.g., X) to denote ran-
dom variables and calligraphic letters to represent their support
sets (e.g., X ). A Markov kernel (or channel) K : X ⇒ P(Z)
is specified by a collection of distributions {K(·|x) ≃ P(Z) :
x ≃ X}. Given such kernel K and P ≃ P(X ), we denote by
PK the output distribution of K when the input is distributed
according to P , given by PK(A) :=

∫
P (dx)K(A|x) for

A ⇑ Z . We define [n] := {1, . . . , n}, (a)+ := max{a, 0},
and a ⇓ b = max{a, b}. Finally, for a ≃ R, we define

ς(a) :=
a⇔ 1

a+ 1
. (2)

II. PRELIMINARIES

A. Eω Divergence

Let X be an arbitrary set. Given any pair of distributions
P,Q ≃ P(X ), we define their Eω-divergence for ϖ ≃ (0,↘)
as

Eω(P↔Q) =

∫

X

(
dP0

dQ
⇔ϖ

)

+

dQ+P↔
(
Supp(Q)c

)
⇔(1⇔ϖ)+,

where P = P0 + P↔ with P0 ↖ Q and P↔ ↙ Q (i.e., the
Lebesgue decomposition of P with respect to Q). When X is
a discrete set, the definition of the Eω-divergence becomes

Eω(P↔Q) =
∑

x↑X

(
P (x)⇔ ϖQ(x)

)
+
⇔ (1⇔ ϖ)+.

Since Eω-divergence satisfies the reciprocity relation (see, e.g.,
[21]), that is,

E1/ω(Q↔P ) =
Eω(P↔Q)

ϖ
for all ϖ ≃ (0,↘),

we focus on the Eω-divergence for ϖ ↓ 1. It is important to
remark that the Eω-divergences with ϖ = 1 coincides with the
total variation distance, i.e., E1(P↔Q) = TV(P,Q).

B. Strong Data Processing Inequalities

The Eω-divergence (as any other f -divergence) satisfies the
data processing inequality [22], i.e., Eω(PK↔QK) ↗ Eω(P↔Q)
for any pair of probability distributions (P,Q), any Markov
kernel K, and any ϖ ↓ 0. The contraction coefficient of a

Markov kernel K under Eω-divergence ϑω(K) is the smallest
number ϑ ↗ 1 such that Eω(PK↔QK) ↗ ϑω(K)Eω(P↔Q) for
any pair of (P,Q). More precisely, we have

ϑω(K) := sup
P,Q:

Eω (P→Q) ↑=0

Eω(PK↔QK)

Eω(P↔Q)
. (3)

Since Eω-divergence reduces to the total variation distance for
ϖ = 1, we denote ϑ1(K) by ϑTV(K). Interestingly, ϑω(K) ↗
ϑTV(K) for all ϖ ↓ 0 and kernels K [23]. It has recently been
shown in [20] that ϑω(K) with ϖ ≃ [1,↘) enjoys a simple
characterization:

ϑω(K) = sup
x,x↓↑X

Eω

(
K(·|x)↔K(·|x↓)

)
. (4)

We say a kernel is contractive if K(y|x) > 0 for all x, y ≃
X . This definition in particular implies that ϑTV(K) < 1, and
thus ϑω(K) < 1 for all ϖ > 0.

C. Properties of Markov Kernels

Consider a discrete-time Markov chain {Xn}n with states
in a finite alphabet X and a one-step transition probability
matrix specified by K, if X0 ∝ P , then Xn ∝ PKn,
where Kn denotes the n-step transition probility. For instance,
K2(x|x↓) =

∑
y↑X K(x|y)K(y|x↓). We say that a Markov

chain is irreducible if for any x, x↓ ≃ X , there exists an
integer n0 such that Kn0(x|x↓) > 0. Furthermore, let T (x) :=
{t ↓ 1 : Kt(x, x) > 0} be the set of times when the chain can
return to starting position x. A Markov chain is considered
aperiodic if the period of all its states x ≃ X , which is defined
as the greatest common divisor of T (x), is equal to one. Recall
that for any aperiodic and irreducible Markov chain, there
exists a unique distribution Q→, typically referred to as the
stationary distribution, such that Q→K = Q→.

D. Mixing Times

Given an irreducible and aperiodic Markov chain with the
associated kernel K, it is widely known that PKn converges
to its stationary distribution Q→. To capture the rate of such
convergence, we measure the distance of PKn from the
stationarity distribution Q→ via Eω-divergence:

dKω (n) := sup
P↑P(X )

Eω

(
PKn↔Q→)

= max
x↑X

Eω

(
Kn(·|x)↔Q→),

where the last equality follows from the joint covexity of
(P,Q) ′⇒ Eω(P↔Q) (similar to any other f -divergences). For
each ω ↓ 0, the Eω-mixing time of a Markov kernel K is
defined as

tKω (ω) := min{n ↓ 1 : dKω (n) ↗ ω}.

III. FINITE MIXING TIME FOR IRREDUCIBLE AND
APERIODIC MARKOV CHAINS

In this section, we aim to prove that tKω (ω) < ↘ for all
ω ↓ 0 provided that ϖ > 1. This rather surprising feature of
Eω-mixing time is in sharp contrast with the known property



of the TV-mixing time (which corresponds to tK1 (ω)), which
asserts that it is infinite for ω = 0.

Recall that Q→Kn = Q→. Thus, we can write

Eω

(
PKn↔Q→) = Eω

(
PKn↔Q→Kn

)

↗ ϑω(K
n)Eω(P↔Q→),

where the inequality follows from the definition of ϑω . Since
Eω(P↔Q→) is always smaller than 1, it follows that

dKω (n) ↗ ϑω(K
n) ↗ ϑω(K)

n.

This in turn implies

tKω (ω) ↗
log(ω)

log
(
ϑω(K)

) ,

recovering the typical behavior of the TV-mixing time in (1).
Note, however, that the previous bound is vacuous for ω = 0.
While the latter behavior is typical for ϖ = 1, the following
theorem shows that tKω (0) is finite for ϖ > 1.

Theorem 1. Let K : X ⇒ P(X ) be a Markov kernel over a

finite alphabet X . If K describes an irreducible and aperiodic

Markov chain, then we have tKω (0) < ↘ for all ϖ ≃ (1,↘).

Given this theorem, it is natural to aim to determine upper
bounds for tKω (0). In the following sections, we develop tools
to address this problem for a broad family of contractive

kernels. We note that if K is contractive, then it describes an
irreducible and aperiodic Markov chain and, from the above
theorem, tKω (0) < ↘.

IV. MIXING TIME THROUGH LINEAR SDPI

In this section, we further examine the connection between
SDPI and mixing times to develop a framework for bounding
tKω (0) for a family of contractive kernels. In particular, we
define the following parametric family of kernels parametrized
by a parameter φ ↓ 0:

Fε :=
{
K : X ⇒ P(X ) : sup

x,x↓↑X ,y↑X
log

K(y|x)
K(y|x↓)

↗ φ
}
.

(5)
First, we show that for K ≃ Fε, it is sufficient to consider

the Eω-mixing time for 1 < ϖ < eε.

Lemma 1. Let X be a finite set and K : X ⇒ P(X ) be

a Markov kernel in Fε. Then, for ϖ ↓ eε, ϑω(K) = 0 and

tKω (0) = 1.

Proof. First, note that since K(y|x) ↗ eεK(y|x↓) for any
x, x↓, y ≃ X , we have Eeε(K(·|x)↔K(·|x↓)) = 0 for any
x, x↓ ≃ X . Thus, in light of the characterization given in (4),
we have ϑeε(K) = 0. It then follows from the monotonicity of
the mapping ϖ ⇒ Eω(P↔Q) [21] that ϑω(K) = 0 for ϖ ↓ eε.

Now, let Q→ be the stationary distribution of K. We can
assert that for all ϖ ↓ eε,

dKω (1) = sup
P↑P(X )

Eω

(
PK↔Q→)

= sup
P↑P(X )

Eω

(
PK↔Q→K

)

↗ ϑω(K) sup
P↑P(X)

Eω

(
P↔Q→)

↗ ϑω(K).

Since ϑω(K) = 0 for ϖ ↓ eε, we conclude that tKω (0) = 1.

Next, we focus on characterizing the Eω-mixing time for
ϖ ≃ (1, eε). The following theorem presents an upper bound
for tKω (0) that depends on Q→ the stationary distribution of K.
Let Q→

min denote minx↑X Q→(x). Notice that Q→(x) > 0 for
all x ≃ X , and thus Q→

min > 0.

Theorem 2. Let X be a finite set and K ≃ Fε with the

stationary distribution Q→
. If (ϖ⇔1)Q→

min ↓ 1, then tKω (0) = 1.
Otherwise, if 1 < ϖ < eε, then

tKω (0) ↗
log[(ϖ ⇔ 1)Q→

min]

log ς(eε)
,

where ς(·) was defined in (2).

The proof of Theorem 2 depends on two results, each of
which might be of independent interest. The first one estab-
lishes an optimal bound on Eω↓(P↔Q) in terms of Eω(P↔Q)
for ϖ↓ ↗ ϖ. The second result states that if Eω↓(P↔Q) is
sufficiently small, then Eω(P↔Q) = 0 for ϖ↓ ↗ ϖ.

Proposition 1. Let X be an arbitrary set. If 1 ↗ ϖ↓ ↗ ϖ, then,

for all P,Q ≃ P(X ),

Eω↓(P↔Q) ↗ 1⇔ ϖ↓ + 1

ϖ + 1

(
1⇔ Eω(P↔Q) ⇓ Eω(Q↔P )

)
.

We remark that this bound is a generalization of [24,
Proposition 4] that states

TV(P,Q) ↗ 1⇔ 1

ϖ

(
1⇔ Eω(P↔Q)

)
.

Combined with the characterization of ϑω(K) given in (4),
Proposition 1 establishes the following result which is a key
component in proving Theorem 2:

ϑω↓(K) ↗ 1⇔ ϖ↓ + 1

ϖ + 1

(
1⇔ ϑω(K)

)
. (6)

It is worth noting that this inequality is tight in general,
meaning it cannot be improved for general kernels K. For
instance, if K is a binary symmetric channel with crossover
probability ↼ ≃ (0, 1/2), then it can be verified that ϑω(K) =
(1⇔ (ϖ + 1)↼)+ and thus ϑω↓(K) = 1⇔ ω↓+1

ω+1

(
1⇔ ϑω(K)

)
for

1 ↗ ϖ↓ ↗ ϖ ↗ 1/↼⇔ 1.
The second component required for the proof of Theorem 2

is the following.

Proposition 2. Let X be a finite set and P,Q ≃ P(X ). If 1 ↗
ϖ↓ ↗ ϖ and Eω↓(P↔Q) ↗ (ϖ⇔ϖ↓)min

x↑X
Q(x), then Eω(P↔Q) =

0.

We can now provide a sketch of the proof of Theorem 2.

Proof of Theorem 2. First note that from (6), we have that

ϑTV(K) ↗ 1⇔ 2

eε + 1

(
1⇔ ϑeε(K)

)
.



Since ϑeε(K) = 0 and Q→Kn = Q→, it follows from the
definition of the contraction coefficient that for all P ≃ P(X ),

TV(PKn, Q→) ↗ ϑTV(K)
n ↗

(
1⇔ 2

eε + 1

)n
.

Take
n =

log[(ϖ ⇔ 1)Q→
min]

log
[
1⇔ 2/(eε + 1)

] .

Then, we have that

TV(PKn, Q→) ↗ (ϖ ⇔ 1)min
x↑X

Q→(x).

By Proposition 2, we conclude that Eω(PKn↔Q→) = 0. Since
P ≃ P(X ) is arbitrary, we have that dKω (n) = 0 and we have
the result.

We must note that the upper bound in Theorem 2 for the Eω-
mixing time of any contractive Markov kernel depends on its
stationary distribution, which can potentially be unknown. This
may restrict the versatility of this theorem. In the following
section, we develop a framework, based on the non-linear

SDPI, that enables us to establish bounds on the Eω-mixing
time of contractive kernels in Fε without relying on their
stationary distributions. Interestingly, the resulting bounds
might even be tighter than Theorem 2.

V. MIXING TIME THROUGH NON-LINEAR SDPI

In this section, we first mathematically formulate a new type
of SDPI for general Markov kernels which is complementary
to the one discussed in Section II-B. We then tightly charac-
terize such SDPI for K ≃ Fε.

Define Fω : [0, 1] ⇒ [0, 1] for any kernel K and any ϖ ↓ 1
as follows:

Fω(K, t) := sup {Eω(PK↔QK) : Eω(P↔Q) ↗ t}. (7)

We write Fω(t) for Fω(K, t) when the Markov kernel K is clear
from the context. We note that this function is closely related
to the “Dobrushin curve” defined in [21] which essentially
corresponds to F1(K, t). As such, we call t ′⇒ Fω(K, t) as the
generalized Dobrushin curve.

Notice that the mapping t ′⇒ Fω(K, t) identifies a better
upper bound for Eω(PK↔QK) in terms of Eω(P↔Q) than the
one obtained by the contraction coefficient. In other words, we
directly have Fω(K, t) ↗ ϑω(K)t. However, this inequality is
strict for most non-trivial kernels. For instance, it is possible
to have Eω(PK↔QK) = 0 for some K ≃ Fε and ϖ > 1, while
Eω(P↔Q) > 0, as delineated by the next lemma.

Lemma 2. Let ϖ ≃ (1, eε], and P and Q be any two distri-

butions such that Eω(P↔Q) ↗ ω↗1
eε↗1 . Then, Eω(PK↔QK) = 0

for any K ≃ Fε. In particular, for all t ↗ ω↗1
eε↗1 , we have

Fω(t) = 0.

figs/comparison2.png

Fig. 1. Comparison of the non-linear SDPI from [7] and ours in
Theorem 3 where P and Q are full-support random distributions on
[k] and K : [k] → P([k]) is given by K(x|x) ↑ eε and K(y|x) ↑ 1
for y ↓= x ↔ [k] and some ε ↗ 0. It is straightforward to see that
K ↔ Fε. Here, we pick ε = 1 and k = 5.

Lemma 2 highlights the potential weakness of linear SDPI,
suggesting Fω(K, t) as a better tool for establishing bounds
on the mixing time. Balle et al. [7] recently established an
example of such non-linear upper bounds:

Eω(PK↔QK) ↗ ϑωt(K)Eω(P↔Q), (8)

where ϖt = 1+ ω↗1
t . Since ϖt > ϖ for t < 1, this upper bound

strictly improves over its linear counterpart. While this result
is indeed remarkable, its formulation may not immediately
lend itself to bounding Fω of the composition of Markov
kernels, which is a crucial tool in the characterization of
Eω-mixing time. Therefore, we seek an alternative non-linear
SDPI that can more effectively address the composition of
Markov kernels. The following theorem presents our non-
linear SDPI which can directly be employed to establish an
upper bound on the Eω-mixing time. This result also solves
a conjecture put forth in [25], demonstrating the tightness of
this non-linear SDPI.

Theorem 3. Let K ≃ Fε, and ϖ ↓ 1 then

Eω (PK↔QK) ↗ 1

1 + eε
((eε ⇔ 1)Eω(P↔Q) + (1⇔ ϖ))+ .

(9)

We remark that the upper bound in this theorem is tight, see
[25, Theorem 2] for an example of P,Q and K for which the
inequality in (9) becomes equality. Figure 1 compares our non-
linear SDPI with that of [7] given in (8) where P and Q are
full-support random distributions on [k] and K : [k] ⇒ P([k])
is given by K(x|x) = eε

eε+k↗1 and K(y|x) = 1
eε+k↗1 for

y ∞= x ≃ [k] and some φ ↓ 0. It is straightforward to see
that K ≃ Fε. While our bound is not consistently superior, it
accurately captures the well-known behavior of Eω-divergence,
reaching zero after a certain threshold ϖ.

Next, we utilize our non-linear SDPI in Theorem 3 to
characterize our bound on the Eω-mixing time.

Theorem 4. Let K ≃ Fε and 1 < ϖ < eε. Then, we have

tKω (0) ↗
log ς(ϖ)

log ς(eε)
,

where ς(·) was defined in (2).

Proof. Using Theorem 3, we have that

Fω(t) ↗
(
tς(eε)⇔ (ϖ ⇔ 1)

2
(1⇔ ς(eε))

)

+

.

Recall that Fω(K1⇐K2, t) ↗ Fω(K1,Fω(K2, t)) for any Markov
kernels K1 and K2. Hence, the generalized Dobrushin curve



for Kn is given by the n-fold composition of Fω , i.e.,

Fω(K
n, t) ↗

(
tς(eε)n ⇔ (ϖ ⇔ 1)

eε + 1

(
1⇔ ς(eε)n

1⇔ ς(eε)

))

+

=

(
tς(eε)n ⇔ (ϖ ⇔ 1) (1⇔ ς(eε)n)

2

)

+

↗
(
ς(eε)n ⇔ (ϖ ⇔ 1) (1⇔ ς(eε)n)

2

)

+

.

The result is obtained by setting the RHS to 0.

Theorem 4 improves upon Theorem 2 in two significant
ways. First of all, the bound in Theorem 4 is independent of the
stationary distribution of the Markov kernel under investiga-
tion. Second, for choices of ϖ > 1

Q↔
min

⇔1, Theorem 4 provides
a strict improvement over its counterpart in Theorem 2.

It is worth noting that Theorem 4, together with Proposi-
tion 1, can be used to determine bounds on the mixing time
under other divergences. For instance, it reduces to the stan-
dard bound on the TV-mixing time given in (1). To see this,
first note that from Proposition 1 we have tKTV(ς(ϖ)) ↗ tKω (0)
for any ϖ > 1. Applying Theorem 4, we therefore obtain
tKTV(ς(ϖ)) ↗ log ϑ(ω)

log ϑ(eε) . Thus, choosing ϖ = ς↗1(ω) yields
tKTV(ω) ↗

log ϖ
log ϑ(eε) . This implies the bound in (1) after noticing

ϑTV(K) ↗ ς(eε) for all K ≃ Fε (see [26, Cor. 11] for a proof).

VI. BY-PRODUCT: PRIVACY AMPLIFICATION BY
COMPOSITION

In this section, we apply the results proved in the previous
section to the differential privacy settings. A well-known result
in the privacy literature is that the post-processing of a privacy
mechanism preserves its privacy guarantees. In many practical
scenarios, it is desirable to precisely quantify how much a
post-processing can in fact amplify privacy.

We focus on the family of locally differentially private
(LDP) mechanisms [27, 28]. A Markov kernel K : X ⇒ P(Z)
is said to be (ω, ϱ)-LDP for ω ↓ 0 and ϱ ≃ [0, 1] if

sup
x,x↓↑X

Eeϑ (K(·|x)↔K(·|x↓) = 0

If K is (ω, 0)-LDP, we say that it is ω-LDP. We categorize
an LDP mechanism as an approximate LDP mechanism when
ϱ > 0, and as a pure LDP mechanism when ϱ = 0. It is
important to note that Fϖ is in fact the set of all ω-LDP
mechanisms.

The connection between SDPI and LDP has recently be-
come (more) clear in [11] which showed: K is (ω, ϱ)-LDP
if and only if ϑeϑ(K) ↗ ϱ. Thus, the privacy amplification
problem naturally fits into the SDPI framework, because post-
processing a privacy mechanism can be viewed as composing
a Markov kernel with the privacy mechanism.

We consider the following two scenarios:
Scenario I: Suppose Ki : X ⇒ P(X ) is ωi-LDP for i ≃

[n]. We want to identify the privacy guarantees of their
composition as a function of ωi’s. In particular, we seek
to determine ω↓ such that K1 ⇐ · · · ⇐ Kn is ω↓-LDP.

Scenario II: Suppose K is an (ω, ϱ)-LDP mechanism. We are
interested in identifying the smallest n such that Kn is a
pure LDP.

The privacy amplification described in Scenario I can be
converted into the following problem related to SDPI: Given
ϖi = eϖi and kernels Ki satisfying ϑωi(Ki) = 0 for i ≃ [n],
what is the ϖ such that ϑω(K1⇐· · ·⇐Kn) = 0? This problem was
investigated in [29] for the special case of n = 2. Specifically,
it was shown that the composition of an ω1-LDP mechanism
with an ω2-LDP mechanism is ω̃-LDP where ω̃ = eϑ1+ϑ2+1

eϑ1+eϑ2 . In
the following theorem, we extend this result by leveraging the
non-linear SDPI proved in Theorem 3.

Theorem 5. Let Ki be ωi-LDP for i ≃ [n]. Then, their

composition is ω↓-LDP where

ω↓ = log

(
1 +

n
j=1 ς (e

ϖj )

1⇔
n

j=1 ς (e
ϖj )


.

We observe that the result in Theorem 5 recovers [29,
Theorem 4.3] when n = 2.

Next, we consider Scenario II. The privacy amplification de-
scribed in this scenario is equivalent to the following problem:
Given a kernel K satisfying ϑeϑ(K) ↗ ϱ, what are the smallest
n and ϖ such that ϑω(Kn) = 0? In the following lemma, we
partially answer this question.

Lemma 3. Any (ω, ϱ)-LDP mechanism K defined over a finite

alphabet can be converted to an ω↓-LDP with ω↓ < ω by

composing K with itself n times with

n = max


log

[
(eϖ

↓ ⇔ 1)Q→
min/2

]

log(ϑTV(K))
,
log(Q→

min/2)

log(ϑTV(K))


,

where Q→
is the stationary distribution of K, and Q→

min =
minx↑X Q→(x).

It is worth noting that similar problems were explored in
[7] and [30]. In [7], the authors demonstrated that composing
an (ω, ϱ)-LDP mechanism K with a log(1+ eϑ↗1

ϱ )-LDP mech-
anism results in a mechanism that is ω-LDP. Additionally, [30,
Theorem 1] offered a method for converting approximate LDP
mechanisms into pure ones. Specifically, given an (ω, ϱ)-LDP
mechanism, they introduced an approach to obtain an 8ω-LDP
mechanism. Therefore, in both cases, privacy is amplified in
terms of ϱ, but not in terms of ω, which makes our result
remarkable as it amplifies privacy in both ω and ϱ.
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