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Abstract—This paper presents a novel strategy to train
keypoint detection models for robotics applications. Our goal is
to develop methods that can robustly detect and track natural
features on robotic manipulators. Such features can be used
for vision-based control and pose estimation purposes, when
placing artificial markers (e.g. ArUco) on the robot’s body is
not possible or practical in runtime. Prior methods require
accurate camera calibration and robot kinematic models in
order to label training images for the keypoint locations. In this
paper, we remove these dependencies by utilizing inpainting
methods: In the training phase, we attach ArUco markers
along the robot’s body and then label the keypoint locations
as the center of those markers. We, then, use an inpainting
method to reconstruct the parts of the robot occluded by the
ArUco markers. As such, the markers are artificially removed
from the training images, and labeled data is obtained to train
markerless keypoint detection algorithms without the need for
camera calibration or robot models. Using this approach, we
trained a model for realtime keypoint detection and used the
inferred keypoints as control features for an adaptive visual
servoing scheme. We obtained successful control results with
this fully model-free control strategy, utilizing natural robot
features in the runtime and not requiring camera calibration
or robot models in any stage of this process.

I. INTRODUCTION

Robustly detecting natural features (keypoints) on a robot’s
body has many useful applications, from system calibration
[1], [2], to robot pose estimation [3], [4] and vision-based
control [5]-[7]. Training models to detect such keypoints,
however, requires tedious manual image labeling processes
that are prone to errors: the location of each natural keypoint
on the robot needs to be marked precisely on thousands of
robot images. This manual labeling process can be avoided
if a calibrated camera, the robot’s kinematic model, and its
encoder readings are available during the data collection
phase: the 3D locations of each keypoint can be calcu-
lated via forward kinematics using the robot model and
the encoder readings, and these locations can be projected
on the camera’s image plane using camera intrinsic and
extrinsic parameters. In the literature, such a strategy is
utilized for training a camera calibration algorithm, the
DREAM framework, presented in [8]. In our prior work [9],
we have created a similar data collection pipeline: using a
calibrated camera and the robot model, we calculated the
2D projections of a robot’s joint locations, and used them
for training keypoints in image space for vision-based robot
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Fig. 1: The proposed method of utilizing the inpainting
framework to generate visual features identifies keypoints
on a robot’s body in different configurations. a original
image with ArUco, b image reconstructed with inpainting,
¢ keypoints predicted on an arbitrary configuration using
keypoint detector, d trajectory created by detected keypoints
on different configuration of the arm in motion.

control. Even though the labeled training data collected with
our pipeline proved to be useful to achieve robust keypoint
detection models [9], the data collection process require very
accurate camera calibration (both intrisics and extrinsics) and
precise robot kinematic models. Any small error in either of
these aspects can cause erroneous labeling of the images,
and consequently, inaccurate keypoint detection models.

In this paper, we provide a keypoint training strategy that
does not require camera calibration or robot models. In a
nutshell, in the training phase, we put ArUco markers on
the robot body to mark the locations of keypoints. However,
we artificially remove these markers from the images using
an inpainting algorithm (LaMa [10]) before feeding them
to the keypoint training algorithm. As such, we know the
exact locations of the keypoints thanks to the markers, but
the keypoint detection model is trained with robot images
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“without markers” since they are artificially removed. We
demonstrate that the resulting model is capable of robustly
detecting keypoints on a robot in runtime. To demonstrate
their utility, we further utilize these keypoints in an adaptive
visual servoing algorithm to control the robot’s configuration,
and obtained successful results.

We would like to emphasize the practicality of our ap-
proach. The algorithm requires a set of images of the robot
without markers and another set with markers. It is capable
of training a model for realtime detection of natural features
of the robot without requiring any manual labeling, camera
calibration, robot model or encoder information. Coupled
with an adaptive visual servoing algorithm, a truly model-
free workflow is achieved for controlling the robot using
natural visual cues. To the best of our knowledge, this
whole strategy is novel in removing all the above mentioned
constraints altogether.

We would also like to provide the scope and limitations
of the work. We focus on detecting keypoints on a robot
for planar motions. We will focus on detecting keypoints for
out of plane motions in our future work. We use a uniform
background for the robot in our experiments, and did not
study the robustness of the algorithm to lighting conditions,
different backgrounds, and occlusions. Nevertheless, we be-
lieve that this paper provides a unique strategy that can be
expanded to more general conditions with our future work
directions.

II. RELATED WORK

Keypoint detection models are popular and frequently used
to solve human pose estimation problem in the computer
vision field. These kinds of algorithms efficiently pinpoint
key human body parts such as hands, shoulders, eyes and
nose in an image. There is a wealth of datasets annotated with
body part keypoints for this purpose, including MPII Human
Pose [11], COCO test-dev [12], and Densepose-COCO [13].
Additionally, frameworks like OpenPose [14] and DeepPose
[15] offer specialized deep learning architectures for training
pose detection models from keypoints. However, the existing
literature lacks comprehensive datasets for keypoint detection
on robotic manipulators. In [8], the authors create datasets of
three rigid robotic manipulators (Panda, KUKA and Baxter)
in simulation. These datasets are then used in a deep learning
framework (also known as DREAM) to detect keypoints
on real robots. The primary motivation for this work is to
calibrate the camera extrinsics by predicting keypoints on
physical robot’s body. This framework does a phenomenal
job in providing a one-shot calibration tool and can detect
keypoints for many different static robot poses. However, the
keypoint detection is not robust enough to detect keypoints
continuously, which is a requirement for various applications,
e.g., vision-based control and online pose detection. This
unreliability of continuous detection of keypoints in a real-
time setting is attributed to the fact that these algorithms are
trained in simulated datasets, due to the lack of labeled real
robot datasets in the literature.

In [16], a deep learning model is used to detect optimal
keypoints on a robot’s body again using a simulated dataset.
Even though this work is further generalized and is applica-
ble to various range of robots, it too suffers from the sim-
to-real gap. Also in this paper the keypoints are detected
optimally for each configuration, and does not guarantee
detection in the same part of the robot in every pose or same
number of keypoints. This is problematic to use in control
applications as we calculate the control error between the
previous and the current positions of the same keypoints in
different configurations in image space.

To overcome the lack of labelled real robot data for train-
ing keypoint detection algorithms, we developed an auto-
labeled data collection pipeline [9]. However, this approach
requires accurate camera calibration and robot models, limit-
ing the practicality of the approach. Moreover, it is unfeasible
to utilize that approach with soft or underactuated robots,
where accurate robot models are often very challenging to
obtain. While in this work we only focus on rigid robots
and argue the practicality of not needing a robot model or
camera calibration but simply a set of images of the robot,
we believe that the presented approach is a milestone towards
enabling the training of keypoint detection models for soft
robots in the future.

III. METHODOLOGY

The main focus of this paper is to develop a practical
approach to train algorithms for detecting keypoints on the
robot’s body. For this purpose we utilize a state-of-the-
art inpainting algorithm. The training of this algorithm is
described in Section III-A.1. This algorithm is utilized to
artificially remove ArUco markers from the training images
of the keypoint detection model as explained in Section III-
A.2. We then formed a dataset as described in Section III-
A.3. The overall data collection pipeline can be described by
the flowchart depicted in Fig. 2. We, then, trained a keypoint
detection model as explained in Section III-B.

A. Data Collection Pipeline:

We create an automated pipeline, where we capture several
images of the robot arm in arbitrary configurations with
Aruco markers on designated spots and compute the keypoint
location for each configuration using the steps described in
the following subsections.

1) Training Phase of Inpainting Algorithm: In this sec-
tion, we train a deep learning network for inpainting. In-
painting [17], in the context of computer vision and image
processing, refers to the process of reconstructing lost or
corrupted parts of an image. It is popular in the fields of dig-
ital image restoration and video editing. We considered two
state-of-the-art inpainting methods: Generative Adversarial
Networks (GANs) of CoModGAN [18] and LaMa [10].
CoModGAN [18] employs the co-modulation method to
bring the strong generative capability of unconditional gener-
ators to image-to-image translation problems like inpainting.
LaMa [10] relies on Fast Fourier Convolution, which works
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Fig. 2: Overall data collection pipeline. Green blocks denote the LaMa models, gray blocks denote the data (images), blue
blocks denote the actions, and orange blocks denote the outputs of the pipeline.

Fig. 3: These three figures depict the input for LaMa prediction and the reconstructed image as an output

well with complex structures and can scale to higher reso-
lutions than the images used during training. We eventually
chose to use LaMa for the following reasons. LaMa [10]
surpasses the majority of baseline models, including state-
of-the-art solutions like Deepfill v2 [19], EdgeConnect [20],
HiFill [21], MADF [22] and CoModGAN [18], according to
evaluations using the Learned Perceptual Image Patch simi-
larity (LPIPS) and Frechet Inception Distance (FID) metrics.
These metrics were applied to assess performance across
various test mask generation strategies, such as narrow, wide,
and segmentation masks. It is robust to image resolution and
highly customizable via well-documented configuration files
and provides great flexibility for inpainting variable data.
In their GitHub repository, LaMa [10] provides several
pretrained models, but as they were not trained with robot
images, they do not produce accurate enough results for
our use case. To increase accuracy, we fine tune the best
pretrained model named as ‘big-lama’, in the repository by

further training it with robot images. For that purpose, we
collect a significant number of images of the manipulator
with no markers attached to it. We preprocess the collected
images following the instructions in [10]. An important
aspect of preprocessing the data is to crop it to a suitable
size. For our purpose, we cropped the images to 480 x 480.
During training run time, by default, LaMa crops the images
further to a size of 256 x 256, which can be customized by
changing specific parameters inside the LaMa repository. We
changed it to 480 x 480 for our datasets. For further details
on data preprocrocessing, refer to our data collection page
at https://github.com/JaniC-WPI/KPDataGenerator. We train
the customized model for 80 epochs of batch size 30.

2) Reconstruction of Images using LaMa: We collect an-
other set of images of the manipulator with ArUco markers,
placed in close proximity to the visible locations of some of
the joints as shown in the first image of Fig. 3. We would
like to emphasize that, in our proposed method, the user has

3088

Authorized licensed use limited to: Gordon Library WPI. Downloaded on December 23,2024 at 21:18:46 UTC from IEEE Xplore. Restrictions apply.



the flexibility to place the markers anywhere according to
their individual purposes. Once the markers are placed in
the desired locations on the manipulator and the images are
collected, we automatically detect the marker locations in
each image and create a binary mask around the markers.
The RGB images and their corresponding masks are then
inpainted by the newly trained LaMa model, with refinement
enabled to improve the inpainting quality as described in
[23]. Fig. 3 shows an example where the first image is
the original image with the markers, the second image is
where the markers are masked and the third image is the
prediction of the LaMa trained model, which removes the
ArUco markers using the inpainting method. The centers of
the ArUco markers in the original images are our identified
keypoint locations.

3) Dataset Generation: We save the center coordinates of
the ArUco markers on all the images collected in Section
III-A.2 in JSON files as keypoints annotations, together
with the corresponding reconstructed images. Along with
the keypoints, we also compute a bounding box with each
keypoint as the center and save those in the same JSON
file. The ‘keypoints’ field in the JSON file is of the format
[z, y, v], where v is the visibility of the keypoint and z
and y are the pixel coordinates of the keypoint in image
space. The ‘bboxes’ (bounding boxes) field has the format
[z — (bb_size/2), y — (bb_size/2), x + (bb_size/2), y +
(bb_size/2)], where bb_size is the size of each side of the
bounding box and x and y are the pixel coordinates of the
keypoints as mentioned above. In our case, we set bb_size
to 40 for the Franka Emika Panda arm. This constitutes
the training dataset for our customized keypoint detector
network described in Section III-B. We have 4 keypoints for
our Panda robot along with their corresponding bounding
boxes. Please refer to Fig. 4 for the corresponding image
with labels on keypoints for the following sample JSON
file, created from the data collected with the Panda arm
using the above pipeline. Here, ‘id’ refers to the specific
number of image in the dataset, ‘image_rgb’ is the name of
the corresponding image. ‘bboxes’ are the list of bounding
boxes as computed above for each keypoint and ‘keypoints’
are the list of keypoints for each joint:

{
"id": 4136,
"image_rgb":
"bboxes": [
[252.99999999999994, 294.49999999999994,
292.99999999999994, 334.49999999999994],
[269.9344179320318, 237.2853940708605,
309.9344179320318, 277.2853940708605],
[368.12763532763523, 171.1216524216524,
408.12763532763523, 211.1216524216524],
[450.60434782608684, 176.3014492753623,
490.60434782608684, 216.3014492753623]1,
"keypoints": [
[[272.99999999999994,
[[289.9344179320318,
[[388.12763532763523,
[[470.60434782608684,

"004136.jpg",

314.49999999999994,
257.2853940708605, 1

191.1216524216524, 1

196.3014492753623, 1

111,
]

1]
1,
11,
11

We obtain 4 keypoints using the above process as depicted
in Fig. 4.

Fig. 4: Sample image from the dataset collection pipeline
labeled with the keypoints, bounding boxes and respective
keypoint names.

B. Network Architecture and Keypoint Prediction:

We use Pytorch vision library’s [24]  key-
pointrcnn_resnet50_fpn  to  train  our dataset. The
keypointrcnn_resnet50_fpn, which is pretrained to detect 17
keypoints in human body, is an extension of the Mask-
RCNN [25] deep learning model and is state of the art
for keypoint detection for human body pose estimation.
We customized this model for the datasets that we created
with 4 keypoints for the Panda robot. We label each
keypoint/bounding box from 1 to 4, (1 being base_kp and 4
being ee_kp in Fig. 4) in the custom Pytorch Dataset class
that we created for our data. The keypointrcnn_resnet50_fpn
uses the backbone of Resnet50 with pre-trained weights
of IMAGENETI1K_V2 from the COCO Dataset [12]. We
implemented data augmentation on our training dataset to
enhance its diversity. We refined our model on our dataset
employing Stochastic Gradient Descent, setting the learning
rate at 0.0001 and the momentum at 0.9. Additionally,
we incorporated a weight decay of 0.0005 to mitigate
overfitting. We used a batch size of 4 images per batch and
ran the training for 30 epochs. The evaluation and prediction
process of keypoints are exactly the same as our prior work

[9].
IV. EXPERIMENTS AND RESULTS

In this section, we analyze the accuracy of the identi-
fication of keypoints on the Franka Emika Panda robot.
We also perform control experiments using an adaptive
visual servoing scheme as described in [26]. We demonstrate
the noiseless and robust visual features created using our
proposed method of keypoints generation, which are used to
control a robotic manipulator.

A. Feature Detection Accuracy:

We take images of 20 different configurations with the
Panda arm, covering most of its planar workspace. The
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Fig. 5: The images with ArUco markers are the ground truth and the red dot on the corresponding image is the keypoint
predicted by the Keypoint RCNN model trained with data generated using our present method.

Fig. 6: Keypoint detection in continuous robot motion.

images are taken with and without markers for the same
configurations. The images with the markers hold the ground
truth of the keypoints’ positions. We then run the images
with the keypointrcnn-resnet-50fpn model to predict the
keypoints on the robot’s markerless body. We obtained 100%
detection rate for detecting the features with less than 10
pixel accuracy, and 98.75% for less than 5 pixel accuracy.
The average accuracy of detecting the keypoints is 2.19
pixels. The qualitative analysis of the feature accuracy is
shown in Fig 5. Fig. 6 depicts the continuous detection of
keypoints while the robot is in motion.

B. Transient Response

In order to assess the utility of our proposed approach,
we conducted 20 vision-based control experiments by uti-
lizing the trained keypoint detection model in real time. We
used exactly the same reference configurations and adaptive
visual servoing scheme as described in our prior work [9]
(which requires camera calibration, robot model, and encoder
readings to train the keypoint detection model) so that we
can compare the control performance. We tuned the control
gains for the system to the lowest rise time and also made
sure the overshoot remained within 5%. We used an Intel
RealSense D435i camera. Table I depicts that the visual fea-

Prior work This paper

Target 1

Target 2

Fig. 7: Trajectory comparison between proposed and existing
method’s keypoints. The noiseless quality of the trajectories
testify that the proposed method is almost equally robust as
the prior method.

tures generated with our current method perform as reliably
and efficiently as the prior keypoints based method. Fig. 8
shows the error norm and the individual feature error plot for
the experiment depicted in Target 1 of Fig. 7. Please note
that while the reference configurations are the same between
the two experiments, the feature locations are different, since
our prior work is trained to detect the joint centers, while the
current work detects the locations where the markers were
placed in the training phase.

C. Repeatability:

We conducted a repeatability test for our proposed method
by performing a control experiment five times using the same
initial and reference positions. The outcomes are detailed
in Table II. A review of the results indicates only slight
variations in the rise time, settling time, and overshoot values
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TABLE I: Performance Comparison Summary

[ [[ Prior Method [[ Proposed algorithm |

System
Rise time (s) 6.16 = 2.10 5.85+2.9
System
Settling time (s) 11.29 +£2.42 8.31+2.9
End effector
Rise time (s) 5.37 £ 1.66 5.435 4+ 2.65
End effector
Settling time (s) 10.05 £ 3.48 7.724+3.1
Overshoot (%) 2.942.73 3.43 + 3.28

across the five experiments.

V. CONCLUSION AND FUTURE WORK

In this paper, we successfully generated a model that
detects purely natural features on the robot’s body by lever-
aging an inpainting method. We used ArUco markers to
designate locations on the robot’s body for identifying key-
points or features, and then artificially removed the markers
using a deep learning inpainting framework. By doing so, we
completely eliminated the need of camera calibration as well
as any prior knowledge of the kinematic model of the robot.
We created and open sourced the data collection pipeline
using our proposed method to build large datasets for differ-
ent robotic manipulators. We trained Keypoint RCNN deep
learning models using these datasets. We were able to control
the robot in its 2D configuration space by utilizing the key-
points inferred from the Keypoint RCNN models. Using our
method, we collected a dataset for the Franka Emika Panda
robot. We obtained highly accurate keypoint detection results
in realtime. The keypoints generated using our proposed
method were used as natural features in the image space to
control the robot using an adaptive visual servoing scheme.
We compared the performance of our proposed method with
our prior work and we can conclusively claim that the
keypoints generated using the proposed method is equally
as robust and reliable as our prior method of keypoints

TABLE II: Summary of Repeatability Tests

l [[ Proposed algorithm ]

System Rise time (s) 6.82 £ 0.11
System Settling time (s) 9.12 £ 0.23
End effector Rise time (s) 6.82 +0.11
End effector Settling time (s) 9.0 £0.1
Overshoot (%) 1.096 £ 0.27

generation. Additionally, to collect data using our pipeline,
users have the freedom to place the markers according to
their convenience, depending on the purpose at hand. In this
paper, we have only showcased results of tracking keypoints
for planar motion of the robotic arm. In the future, we aim to
create data to control the manipulators moving out of plane.
We further plan to investigate the robustness of the pipeline
with cluttered background. We also aim to expand this work
in identifying natural features on the body of continuum and
non-rigid manipulators.
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