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Proof of the simplicity conjecture

By DANIEL CRISTOFARO-GARDINER, VINCENT HUMILIERE,
and SOBHAN SEYFADDINI

Abstract

In the 1970s, Fathi, having proven that the group of compactly sup-
ported volume-preserving homeomorphisms of the n-ball is simple for n > 3,
asked if the same statement holds in dimension two. We show that the
group of compactly supported area-preserving homeomorphisms of the two-
disc is not simple. This settles what is known as the “simplicity conjecture”
in the affirmative. In fact, we prove the a priori stronger statement that
this group is not perfect.

Our general strategy is partially inspired by suggestions of Fathi and the
approach of Oh towards the simplicity question. In particular, we show that
infinite twist maps, studied by Oh, are not finite energy homeomorphisms,
which resolves the “infinite twist conjecture” in the affirmative; these twist
maps are now the first examples of Hamiltonian homeomorphisms that can
be said to have infinite energy. Another consequence of our work is that var-
ious forms of fragmentation for volume-preserving homeomorphisms that
hold for higher dimensional balls fail in dimension two.

A central role in our arguments is played by spectral invariants defined
via periodic Floer homology. We establish many new properties of these
invariants that are of independent interest. For example, we prove that
these spectral invariants extend continuously to area-preserving homeo-
morphisms of the disc, and we also verify for certain smooth twist maps
a conjecture of Hutchings concerning recovering the Calabi invariant from
the asymptotics of these invariants.
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1. Introduction

Let (S,w) be a surface equipped with an area form. An area-preserving
homeomorphism is a homeomorphism that preserves the measure induced by w.
Let Homeo.(D,w) denote the group of area-preserving homeomorphisms of
the two-disc that are the identity near the boundary. Recall that a group is
stmple if it does not have a non-trivial proper normal subgroup. The following
fundamental question was raised in the 1970s:

QUESTION 1.1. Is the group Homeo.(D,w) simple?
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Indeed, the algebraic structure of the group of volume-preserving homeo-
morphisms has been well understood in dimension at least three since the
work of Fathi [Fat80a] from the 70s; but, the case of surfaces, and in particular
Question 1.1, has long remained mysterious.

Question 1.1 has been the subject of wide interest. For example, it is
highlighted in the plenary ICM address of Ghys [Ghy07a, §2.2]; it appears on
McDuff and Salamon’s list of open problems [MS17, §14.7]; it has been one
of the main motivations behind the development of CY-symplectic topology,
which we will further discuss in Appendix B; for other examples, see [Ban78],
[Fat80a], [Ghy07b], [Bou08], [LR10a], [LR10b], [EPP12]. It has generally been
believed since the early 2000s that the group Homeo.(D,w) is not simple:
McDuff and Salamon refer to this as the simplicity conjecture. Our main
theorem resolves this conjecture in the affirmative.

THEOREM 1.2. The group Homeo.(D,w) is not simple.

In fact, we can obtain an a priori stronger result. Recall that a group G
is called perfect if its commutator subgroup [G, G| satisfies [G,G] = G. The
commutator subgroup [G, G| is a normal subgroup of G. Thus, every non-
abelian simple group is perfect. However, in the case of certain transformation
groups, such as Homeo.(ID,w), a general argument due to Epstein and Higman
[Eps70], [High4] implies that perfectness and simplicity are equivalent; see
Proposition 2.1. Hence, we obtain the following corollary.

COROLLARY 1.3. The group Homeo.(D,w) is not perfect.

We remark that in higher dimensions, the analogue of Theorem 1.2 con-
trasts our main result: by [Fat80a], the group Homeo. (D", Vol) of compactly
supported volume-preserving homeomorphisms of the n-ball is simple for n > 3.
It also seems that the structure of Homeo.(D,w) is radically different from
that of the group Diff.(ID,w) of compactly supported area-preserving diffeo-
morphisms, as we will review below.

Spectral invariants defined via “Periodic Floer homology” (PFH) play an
essential role in our arguments. These “PFH spectral invariants,” which were
defined by Hutchings, have not been much studied and much of the paper
is devoted to establishing some of their foundational properties. These prop-
erties are of independent interest, and we refer the reader to Section 3.3 for
their precise statements. As far as we know, the present work represents the
first applications of these invariants. Since our paper first appeared, further
interesting applications have occurred in [CGHS23], [EH21], [CGPZ21].

Background. To place Theorem 1.2 in its appropriate context, and to sum-
marize what is known about some related transformation groups, we begin by
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reviewing the long and interesting history surrounding the question of simplic-
ity for various subgroups of homeomorphism groups of manifolds. Our focus
will be on compactly supported homeomorphisms/diffeomorphisms of mani-
folds without boundary in the component of the identity.!

In the 1930s, in the “Scottish Book,” Ulam asked if the identity component
of the group of homeomorphisms of the n-dimensional sphere is simple. In
1947, Ulam and von Neumann announced in an abstract [UvN47] a solution
to the question in the Scottish Book in the case n = 2. In the 50s, 60s, and
70s, there was a flurry of activity on this question and related ones. First, the
works of Anderson [And58], Fisher [Fis60], Chernavski, Edwards and Kirby
[EKT1] led to the proof of simplicity of the identity component in the group of
compactly supported homeomorphisms of any manifold. These developments
led Smale to ask if the identity component in the group of compactly supported
diffeomorphisms of any manifold is simple [Eps70]. This question was answered
affirmatively by Epstein [Eps70], Herman [Her73], Mather [Mat74a], [Mat74b],
[Mat75], and Thurston [Thu74].2

The connected component of the identity in volume-preserving, and sym-
plectic, diffeomorphisms admits a homomorphism, called flur, to a certain
abelian group. Hence, these groups are not simple when this homomorphism
is non-trivial. Thurston proved, however, that the kernel of flux is simple in
the volume-preserving setting for any manifold of dimension at least three; see
[Ban97, Ch. 5]. In the symplectic setting, Banyaga [Ban78] then proved that
this group is simple when the symplectic manifold is closed; otherwise, it is not
simple as it admits a non-trivial homomorphism, called Calabi, and Banyaga
showed that the kernel of Calabi is always simple. We will recall the definition
of Calabi in the case of the disc in Section 3.1.

The simplicity of the identity component in compactly supported volume-
preserving homeomorphisms is well understood in dimensions greater than two,
thanks to the article [Fat80a], in which Fathi shows that, in all dimensions,
the group admits a homomorphism, called “mass-flow”; moreover, the kernel
of mass-flow is simple in dimensions greater than two. On simply connected
manifolds, the mass-flow homomorphism is trivial, and so the group is indeed
simple in dimensions greater than two.

!The simplicity question is interesting only for compactly supported maps in the identity
component, because this is a normal subgroup of the larger group. The group Homeo. (D, w)
coincides with its identity component.

2More precisely, Epstein, Herman and Thurston settled the question in the case of smooth
diffeomorphisms, while Mather resolved the case of C" diffeomorphisms for » < oo and
r # dim(M) + 1. The case of r = dim(M) + 1 remains open.
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Thus, the following rather simple picture emerges from the above cases of
the simplicity question. In the non-conservative setting, the connected compo-
nent of the identity is simple. In the conservative setting, there always exists a
natural homomorphism (flux, Calabi, mass-flow) that obstructs the simplicity
of the group. However, the kernel of the homomorphism is always simple.

Despite the clear picture above, established by the end of the 70s, the case
of area-preserving homeomorphisms of surfaces has remained unsettled — the
simplicity question has remained open for the disc and more generally for the
kernel of the mass-flow homomorphism® — underscoring the importance of
answering Question 1.1. In fact, the case of area-preserving homeomorphisms
of the disc does seem drastically different. For example, the natural homomor-
phisms flux, Calabi, and mass-flow mentioned above that obstruct simplicity
are all continuous with respect to a natural topology on the group; however, we
will show in Corollary 2.2 that there cannot exist a continuous homomorphism
out of Homeo.(D,w) with a proper non-trivial kernel, when Homeo.(ID,w) is
equipped with the C°-topology; we will review the C%-topology in Section 2.2.

“Lots” of normal subgroups and the failure of fragmentation. Le Roux
[LR10a] has previously studied the simplicity question for Homeo.(D,w), and
it is valuable to combine his conclusions with our Theorem 1.2.

Inspired by Fathi’s proof of simplicity in higher-dimensions, Le Roux con-
structs a family P,, for 0 < p < 1, of “quantitative fragmentation properties”
for Homeo.(ID,w). He then establishes the following alternative: if any one of
these fragmentation properties holds, then Homeo,(ID,w) is simple; otherwise,
there is a huge number of proper normal subgroups, constructed in terms of
“fragmentation norms.” Thus, in view of our Theorem 1.2, fragmentation fails
in a very strong way in dimension two and we have not just one proper normal
subgroup but “lots” of them; for example, combining Le Roux’s work [LR10a,
Cor. 7.1] with our Theorem 1.2 yields the following.

COROLLARY 1.4. Every compact* subset of Homeo.(ID,w) is contained in
a proper normal subgroup.

As Le Roux explains [LR10a, §7], this is “radically” different from the sit-
uation for the group Diff .(D, w) of compactly supported area-preserving diffeo-
morphisms of the disc with its usual topology. We refer the reader to [LR10a]
for the definition of P,, noting as well that in [EPP12, §5.1] it was previously
shown that P, does not hold for 1/2 < p <1.

3We review the mass-flow homomorphism and discuss more about the simplicity question
for its kernel in Appendix B.
4As above, we are working in the C°-topology.
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Finite energy homeomorphisms and infinite twists. Our proof of Theo-
rem 1.2 is partially inspired by suggestions of Fathi and the approach of Oh
towards the simplicity question. It exploits the interplay between the C°-
topology and the celebrated Hofer metric, which is a bi-invariant distance on
the group Diff.(D?,w) of area-preserving diffeomorphisms. Recall that any el-
ement of our group Homeo.(D?,w) is a C°-limit of a sequence in Diff.(D?, w).
We call an element of Homeo.(D?,w) a finite energy homeomorphism if it is
the CY-limit of a sequence of diffeomorphisms whose Hofer norm is uniformly
bounded (see Definition 3.1). We prove that finite energy homeomorphisms
form a proper normal subgroup of Homeo,(D?,w), implying Theorem 1.2.

The most difficult task consists in proving properness. We prove it by
showing that the so-called “infinite twist maps” (see Section 3.2) are not fi-
nite energy homeomorphisms. This resolves in particular what McDuff and
Salamon refer to as the Infinite Twist Conjecture, which is Problem 43 on
their list of open problems (see [MS17, §14.7]); see Corollary 3.5 for the precise
statement of our result.

Organization of the paper. We now explain the organization of the paper.
In Section 2, we review some of the necessary background from symplectic
geometry, especially the case of surfaces. Section 3 then proves the Simplicity
Conjecture, assuming some new facts about the PFH spectral invariants whose
proofs we defer to the next section. The next part of the paper is devoted
to proving the needed material about PFH spectral invariants. This starts
in Section 4, where we review the construction of periodic Floer homology
and the associated spectral invariants and we prove some of the properties of
PFH spectral invariants, such as Hofer continuity. The next section proves
the key fact that these PFH spectral invariants are C° continuous for surface
diffeomorphisms. The next section is about computations: we explain some
relevant computations of PFH, leading to a proof of a kind of Weyl law for
positive monotone twist maps.

As a kind of roadmap for the reader who is interested in the Simplicity
Conjecture, but not a Floer homology specialist, we want to emphasize that if
one is willing to take the needed properties of the PFH spectral invariants on
faith, the proof can entirely be understood after reading Sections 2 and 3.
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2. Preliminaries about the symplectic geometry of surfaces

Here we collect some basic facts, and fix notation, concerning two-dimen-
sional symplectic geometry and diffeomorphism groups.

2.1. Symplectic form on the disc and sphere. Let S* := {(z,y,z) € R3 :
22+ 9?2 +22 =1} CR3 and D := {(z,y) € R? : 22 + y? < 1}. We equip
the sphere S? with the symplectic form w := ﬁd& A dz, where (0,z) are
cylindrical coordinates on R?. Note that with this form, S? has area 1. Let
St = {(z,y,2) € S* : z > 0} be the northern hemisphere in S?. In certain
sections of the paper, we will need to identify the disc D with S*. To do this,
we will take the embedding ¢ : D — S? given by the formula

(1) ur,0) = (0,1 —7%),

where (r,6) denotes the standard polar coordinates on R?. We will equip the
disc with the area form given by the pullback of w under ¢; explicitly, this is
given by the formula irdr A df. We will denote this form by w as well. Note
that this gives the disc a total area of %

Any area form on S? or D is equivalent to the above differential forms, up
to multiplication by a constant.



188 D. CRISTOFARO-GARDINER, V. HUMILIERE, and S. SEYFADDINI

2.2. The C° topology. Here we fix our conventions and notation concern-
ing the C° topology.

Denote by Homeo(S?) the group of homeomorphisms of the sphere and
by Homeo.(ID) the group of homeomorphisms of the disc whose support is
contained in the interior of D. Let d be a Riemannian distance on S2. The C°
distance between two maps ¢, : S> — S?, is defined by

deo(, %) = maxd(¢(z), ().

We will say that a sequence of maps ¢; : S — S? converges uniformly, or
CP-converges, to ¢, if dco(¢s, @) — 0 as i — oo. As is well known, the notion
of CY-convergence does not depend on the choice of the Riemannian metric.
The topology induced by dco on Homeo(S?) is referred to as the C° topology.

The C° topology on Homeo.(D) is defined analogously as the topology
induced by the distance

deo(¢, ) = maxd((z), (2)).
2.3. Hamiltonian diffeomorphisms. Let
Diff (S?,w) := {0 € Diff(S?) : 0*w = w}

denote the group of area-preserving, in other words symplectic, diffeomor-
phisms of the sphere. Let C°°(S! xS?) denote the set of smooth time-dependent
Hamiltonians on S2. A smooth Hamiltonian H € C*°(S! x S?) gives rise to
a time-dependent vector field X7, called the Hamiltonian vector field, defined
via the equation

CU(XH“ ) = dHt

The Hamiltonian flow of H, denoted by ¢, is by definition the flow of Xp.
A Hamiltonian diffeomorphism is a diffeomorphism that arises as the time-one
map of a Hamiltonian flow. It is easy to verify that every Hamiltonian diffeo-
morphism of S? is area-preserving. And, as is well known, every area-preserving
diffeomorphism of the sphere is in fact a Hamiltonian diffeomorphism. As for
the disc, as mentioned in the introduction, every 6 € Diff .(D, w) is Hamilton-
ian, in the sense that one can find H € C2°(S! x D) such that 6§ = p};, where
the notation is as in the sphere case. Here, C2°(S! x D) denotes the set of
Hamiltonians on ) whose support is compactly contained in the interior of
S' x D.

Note that Diff(S?,w) C Homeog(S?,w) and Diff.(D,w) C Homeo,(D,w).
It is well known that Diff(S?, w) and Diff.(ID,w) are dense, with respect to the
C° topology, in Homeog(S?, w) and Homeo, (DD, w), respectively.

2.4. The action functional and its spectrum. Spectral invariants take val-
ues in the “action spectrum.” We now explain what this spectrum is.
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Denote by € := {z : S! — S?} the space of all loops in S2. By a capping
of a loop z: S' — S?, we mean a map

uw:D? — S?,

such that u|gp2 = 2. We say two cappings u,u’ for a loop z are equivalent if
u,u’ are homotopic rel z. Henceforth, we will only consider cappings up to this
equivalence relation. Note that given a capping u of a loop z, all other cappings
of z are of the form u#A, where A € m(S?) and # denotes the operation of
connected sum. A capped loop is a pair (z,u), where z is a loop and u is a
capping for z. We will denote by € the space of all capped loops in the sphere.
Let H € C*(S'xS?) denote a smooth Hamiltonian in S?. Recall that Ay :
Q — R, the action functional associated to the Hamiltonian H, is defined by

1
(2) A (z,u) :/0 H(t, z(t))dt —|—/D2 uw.

Note that Ay (z, u#A) = Ay (z,u) + w(A) for every A € m(S?).

The set of critical points of Ag, denoted by Crit(Ag), consists of capped
loops (z,u) € Q such that z is a 1-periodic orbit of the Hamiltonian flow ;.
We will often refer to such (z,u) as a capped 1-periodic orbit of ¢%;,. Given an
integer k, we may also define a capped k-periodic orbit of H as a pair (z,u),
where z is a k-periodic orbit of H and w is a capping of the loop ¢ — z(kt). The
action of a capped k-periodic orbit (z,u) is then defined by the same formula
as (2) except that the first integral should be taken between 0 and k.

The action spectrum of H, denoted by Spec(H), is the set of critical
values of Ag; it has Lebesgue measure zero. It turns out that the action
spectrum Spec(H ) is independent of H in the following sense: If H' is another
Hamiltonian such that ¢}, = ¢k, then there exists a constant C' € R such
that

Spec(H) = Spec(H') + C,

where Spec(H') + C'is the set obtained from Spec(H’) by adding the value C
to every element of Spec(H'). Schwarz [Sch00, Lemma 3.3] proves this in the
case where w vanishes on my(M), and the proof generalizes readily to general
symplectic manifolds. Moreover, it follows from the proof of [Sch00, Lemma
3.3] that if H, H' are supported in the northern hemisphere S* C S?, then the
above constant C is zero and hence

(3) Spec(H) = Spec(H').

The PFH spectral invariants will take values in a more general set, which
we call the higher order action spectrum. To define it, let H, G be two Hamil-
tonians. The composition of H and G is the Hamiltonian H#G(t,x) =
H(t,z) + G(t, (¢%) ' (z)). This is defined so that ¢, sa = O o P see,
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for example, [HZ94, §5.1, Prop. 1]. Denote by H k the k-times composition of
H with itself. For any d > 0, we now define the order d spectrum of H by

Specy(H) := Uk, 4.y kj=d Spec(H*) 4 - -- 4 Spec(H" ).

Note that Spec,(H) may equivalently be described as follows: For every value
a € Specy(H), there exist capped periodic orbits (z1,u1), ..., (2k, ux) of H the
sum of whose periods is d and such that

a= ZAH<ZZ', u;).

We can use the above to define the action spectrum for compactly sup-
ported disc maps. Recall from Section 2.1 our convention to identify the north-
ern hemisphere of S? with the disc; we will use this to define the action spec-
trum in the case of the disc.

More precisely, if H, H' are supported in the northern hemisphere S+ CS?
and generate the same time-1 map ¢, we in fact have Specy(H) = Specy(H')
for all d > 0. Indeed, as an immediate consequence of equation (3) we have
Spec(H") = Spec(H'*) for all k € N, and so it follows from the definition that
Specy(H) = Spec,(H') for all d > 0. Hence, if ¢ € Diff g+ (S?,w), then we can
define the action spectra of ¢ without any ambiguity by setting

(4) Spec,(¢) = Specy(H),
where H is any Hamiltonian in C°(S* x ST) such that ¢ = ¢},

2.5. Equivalence of perfectness and simplicity. The goal of this section
is to show that in the case of Homeo.(D,w), perfectness and simplicity are
equivalent. This is completely independent from the rest of the paper, and not
needed to prove the simplicity conjecture itself — it is only used to establish
the corollary that the group is not perfect.

PROPOSITION 2.1. Any non-trivial normal subgroup H of Homeo.(D,w)
contains the commutator subgroup of Homeo.(D,w). Hence, Homeo.(D,w) is
perfect if and only if it is simple.

As promised in the introduction, we prove in the next corollary that
Homeo.(D,w) admits no non-trivial continuous homomorphisms. This fact
seems to be well known to the experts, however, we do not know of a pub-
lished reference for it.

COROLLARY 2.2. The group Homeo.(D,w) admits no non-trivial homo-
morphism that is continuous with respect to the CO topology.

Proof. Let H be a non-trivial normal subgroup of Homeo, (D, w). We will
show that H is dense with respect to the C° topology; this proves the corollary
because the kernel of a continuous homomorphism is closed.
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By Proposition 2.1, we know that H contains the commutator subgroup of
Diff.(D,w). Consequently, H contains the kernel of the Calabi homomorphism
as the commutator subgroup of Diff.(D,w) coincides with the kernel of the
Calabi invariant [Ban78|. (For the interested reader, we review the Calabi
homomorphism in Section 3.)

We claim that the kernel of the Calabi invariant is dense in Diff (D, w);
hence, it is dense in Homeo.(D,w). Indeed, take any ¢ € Diff.(D,w) and let a
denote Cal(1)). Pick Hamiltonians H,, such that

e H, is supported in a disc of diameter %;
o |y Hy=—a — thus, Cal(gp}qn) = —a.
0
Then, Cal(pl, o) =0 and ¢} o < 4. O

The proof of Proposition 2.1 relies on a general argument, due to Epstein
[Eps70] and Higman [High4], which essentially shows that perfectness implies
simplicity for transformation groups satisfying certain assumptions. We will
present a version of this argument, which we learned in [Fat80a], in our context.

Proof of Proposition 2.1. Pick h € H such that h # Id. We can find a
closed topological disc — that is, a set that is homeomorphic to a standard
Euclidean disc D’ C D such that h(D') "D’ = (). Denote by Homeo,(ID/,w) the
subset of Homeo.(D,w) consisting of area-preserving homeomorphisms whose
supports are contained in the interior of /. We will first prove the following
lemma.

LEMMA 2.3. The commutator subgroup of Homeo, (D', w) is contained in H.

Proof. We must show that for any f,¢g € Homeo.(D,w), the commutator
[f,g] == fgftg~! is an element of H.

First, observe that for any f € Homeo.(ID',w), we have
(5) [f,rle H
for any r € H. Indeed, by normality, frf~' € H and hence frf~lr—1 € H.
Next, one can easily check that for any f, g € Homeo. (D', w),
(6) [f:9llg: hfR™Y = flg, [F R
Note that g and hfh~! are, respectively, supported in I’ and h(ID’), which are
disjoint. Thus, [g, hfh~!] = Id. Hence, identity (6) yields

(9] = flo. [f T R]1F

Now, (5) implies that [g, [f~!, h]] € H which, by normality of H, implies that
flg,[f~%, h]]1f~' € H. This gives us the conclusion of the lemma. O

We continue with the proof of Proposition 2.1. Fix a small € > 0, and let
& be the set consisting of all g € Homeo. (D, w) whose supports are contained in
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some topological disc of area €. It is a well-known fact that the set £ generates
the group Homeo,(ID,w). This is usually referred to as the fragmentation prop-
erty, and it was proven by Fathi; see Theorems 6.6, A.6.2, and A.6.5 in [Fat80a].

We claim that [f,g] € H for any f,g € £. Indeed, assuming ¢ is small
enough, we can find a topological disc U that contains the supports of f and
g and whose area is less than the area of D). There exists r € Homeo, (D, w)
such that 7(U) C D'. As a consequence, rfr—1 rgr=1
and hence, by Lemma 2.3, [rfr~!,rgr=1] € H. Since H is a normal subgroup
of Homeo.(D, w), and [rfr=t rgr='] = r[f, gJr~!, we conclude that [f,g] € H.

Now, the set £ generates Homeo.(D,w) and [f,g] € H for any f,g € £.
Hence, the quotient group Homeo.(ID,w)/H is abelian. Thus, H contains the
commutator subgroup of Homeo.(D, w). O

are both supported in D’

3. The proof of the Simplicity Conjecture

We now give the proof of Theorem 1.2, assuming some facts that we will
prove later in the paper. More precisely, this section will explain how to prove
Theorem 1.2 given various new properties about “PFH spectral invariants”
that we then prove.

3.1. A proper normal subgroup of Homeo.(D,w). To prove Theorem 1.2,
we will define below a normal subgroup of Homeo.(D,w) that is a variation
on the construction of Oh-Miiller [OM07]. We will show that this normal
subgroup is proper.

The energy, or the Hofer norm, of a Hamiltonian H € C°(S! x D) is
defined by the quantity

1
[H|(1,00) = / (maXH(t, -) — min H (¢, )) dt.
0

zeD zeD
Definition 3.1. An element ¢ € Homeo.(D,w) is a finite-energy homeo-
morphism if there exists a sequence of smooth Hamiltonians H; € C°(S! x D)
such that the sequence |H;||(1 ) is bounded; i.e., there exists C' € R such
that ||Hjl[(1,00) < C, and the Hamiltonian diffeomorphisms ¢}, converge uni-
formly to ¢. We will denote the set of all finite-energy homeomorphisms by
FHomeo, (D, w).

Theorem 1.2 will follow from the following result, where we show that

THEOREM 3.2. The set FHomeo.(D,w) is a proper normal subgroup of
Homeo (D, w).

We first show that FHomeo.(D,w) is a normal subgroup. The properness
will be proved in Section 3.4.

Proof that FHomeo.(D,w) is a normal subgroup. Consider smooth Hamil-
tonians H, G € C°(S! x D). As was partly mentioned in Section 2.4, it is well
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known (and proved, for example, in [HZ94, §5.1, Prop. 1]) that the Hamilto-
nians

(1) H#G(t,z) = H(t,x) + G(t, (p) " (x), H(t,x):=—H(t, (),

generate the Hamiltonian flows ¢t ¢l and (¢k;)~! respectively. Furthermore,
given ¢ € Diff (D, w), the Hamiltonian H (¢, (x)) generates the flow 1% 9.

We now show that FHomeo. is closed under conjugation. Take ¢ €
FHomeo.(D,w), and let H; and C' be as in Definition 3.1. Let ¢ € Homeo. (D, w),
and take a sequence v; € Diff (D, w) that converges uniformly to . Consider
the Hamiltonians K;(¢t,x) := H;(t,v;(z)). The corresponding Hamiltonian
diffeomorphisms are the conjugations ;" 19011*12-% that converge uniformly to
"Ly, Furthermore,

1Kl (1,00) = 1 Hill(1,00) < C,

where the inequality follows from the definition of FHomeo.(D,w).

We will next check that FHomeo, is a group. Take ¢,v € FHomeo,,
and let H;, G; € C(S! x D) be two sequences of Hamiltonians such that
9011’11-’ cp(l;i converge uniformly to ¢, ¢, respectively, and || H;|(1 o), |Gill(1,00) < C
for some constant C. Then, the sequence goﬁzl o go};i converges uniformly to

¢! o1p. Moreover, by the above formulas, we have ‘/7;13 o @bi = wlﬁ_#G_.
Since ”ﬁi#Gi”(l,oo) < Hill(1,00) + 1Gill (1,00) < 2C, this proves that dp Loy e
FHomeo,., which completes the proof that FHomeo, is a group. U

Remark 3.3. In defining FHomeo.(D,w) as above, we were inspired by
the article of Oh and Miller [OMO7], who defined a normal subgroup of
Homeo.(D,w), denoted by Hameo, (DD, w), which is usually referred as the group
of hameomorphisms; see Appendix B for its definition. It has been conjectured
that Hameo. (DD, w) is a proper normal subgroup of Homeo.(D,w); see, for ex-
ample, [OMO07, Question 4.3].

It can easily be verified that Hameo.(D,w) C FHomeo.(D,w). Hence, it
follows from the above theorem that Hameo. (D, w) is a proper normal subgroup
of Homeo, (D, w).

In the next section, we will see explicit examples of ¢ that we will show
are in Homeo,(D,w) \ FHomeo.(D, w).

3.2. The Calabi invariant and the infinite twist. The hard part of The-
orem 3.2 is to show properness. Here we describe the key example of an
area-preserving homeomorphism that is not in FHomeo. (D, w).

We first summarize some background that will motivate what follows.
As mentioned above, for smooth, area-preserving compactly supported two-
disc diffeomorphisms, non-simplicity is known, via the Calabi invariant. More
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precisely, the Calabi invariant of 6 € Diff .(D,w) is defined as follows. Pick
any Hamiltonian H € C2°(S! x D) such that 6 = ¢k, Then,

caoy- [ [

It is well known that the above integral does not depend on the choice of H
and so Cal(#) is well defined; it is also known that Cal : Diff.(D,w) — R is
a non-trivial group homomorphism, i.e., Cal(#;02) = Cal(#;) + Cal(62). For
further details on the Calabi homomorphism, see [Cal70], [MS17].

We will need to know the value of the Calabi invariant for the following
class of area-preserving diffeomorphisms. Let f : [0,1] — R be a smooth
function vanishing near 1, and define ¢; € Diff.(D,w) by ¢;(0) := 0 and
¢5(r,0) := (r,0 + 2w f(r)). If the function f is taken to be (positive/negative)
monotone, then the map ¢y is referred to as a (positive/negative) monotone
tunst. Since we will be working exclusively with positive monotone twists, we
will assume monotone twists are all positive, unless otherwise stated.

Now suppose that w = %rdr A df. A simple computation (see our con-
ventions in Section 2) shows that ¢; is the time-1 map of the flow of the
Hamiltonian defined by

1
(8) Fr,0) = / sf(s)ds.

From this we compute

(9) Cal(¢y) :/01 /Tl sf(s)ds rdr.

We can now introduce the element that will not be in FHomeo, (D, w). Let
f :(0,1] — R be a smooth function that vanishes near 1, is decreasing, and
satisfies hH(l) f(r) = oo. Define ¢y € Homeo.(D,w) by ¢(0) := 0 and
r—

(10) of(r,0) = (r,0 + 21 f(r)).

It is not difficult to see that ¢ is indeed an element of Homeo.(ID,w) that is
in fact smooth away from the origin. We will refer to ¢, as an infinite twist.

We use infinite twists ¢y to prove Theorem 3.2 by proving the following
result.

THEOREM 3.4. If

(11) /01 /Tl sf(s)ds rdr = oo,

then ¢¢ ¢ FHomeo.(D,w).
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Since, as stated in Remark 3.3, Hameo.(D,w) C FHomeo.(D,w), we ob-
tain the following corollary from Theorem 3.4, which resolves the Infinite Twist
conjecture® mentioned in the introduction.

COROLLARY 3.5 (“Infinite Twist Conjecture”). Any infinite twist ¢ sat-
isfying (11) is not in Hameo.(D, w).

Infinite twists can be defined on any symplectic manifold, and we discuss
them further in Appendix B in the context of future open questions.

3.3. Spectral invariants from periodic Floer homology. To prove Theo-
rem 3.4, we use the theory of periodic Floer homology (PFH), discussed in
Section 4. PFH is a version of Floer homology for area-preserving diffeomor-
phisms that was introduced by Hutchings [Hut02], [HS05]. As with ordinary

Floer homology, PFH can be used to define “spectral invariants.”

More pre-
cisely, in the present context these spectral invariants take the form of a se-
quence of functions ¢4 : Diff.(D,w) — R, where d € N, which we call PFH
spectral invariants and which satisfy various useful properties. We give the
definition of ¢4 in Section 4.3; see, in particular, Remark 4.6.

The definition of PFH spectral invariants is due to Michael Hutchings
[Hut17], but very few properties have been established about these. We will
prove in Theorem 4.5 that the PFH spectral invariants satisfy the following

properties:

(1) Normalization: ¢4(Id) = 0.

(2) Monotonicity: Suppose that H < G where H,G € C°(S! x D). Then,
ca(ly) < ca(pg) for all d € N.

(3) Hofer Continuity: |cq(pf;) — caleg)| < dIH — G| 1,00)-

(4) Spectrality: cq(pl;) € Specy(H) for any H € C2°(S! x D), where Spec,;(H)
is the order d spectrum of H defined in Section 2.4.

A key property, which allows us to use the PFH spectral invariants for
studying homeomorphisms (as opposed to diffeomorphisms), is the following
theorem, which we prove in Section 5 via the methods of continuous symplectic
topology.

THEOREM 3.6. The spectral invariant cq : Diff((D,w) — R is continu-
ous with respect to the C° topology on Diff.(D,w). Furthermore, it evtends
continuously to Homeo.(D, w).

®The actual formulation in [MS17] of the Infinite Twist conjecture is slightly different than
this, because it does not include the condition (11). However, without this condition, one
can produce infinite twists that lie in Hameo.(D,w). The authors of [MS17] have confirmed
in private communication with us that imposing condition (11) is consistent with what they
intended.
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Another key property is the following, which was originally conjectured in
greater generality by Hutchings [Hut17].

THEOREM 3.7. The PFH spectral invariants cq : Diff (D, w) — R satisfy
the Calabi property

. calp)
(12) dlggo 7 = Cal(yp)

if  is a monotone twist map of the disc.

Property (12) can be thought of as a kind of analogue of the “Volume
Property” for ECH spectral invariants proved in [CGHR15]. Our proof of
Theorem 3.7, presented in Section 6, deduces it from computations of PFH for
certain twists maps of S?; this is a topic of interest beyond the Simplicity Con-
jecture; for example, we used these computations in [CGHS23]. We mention
for the interested reader that some newer proofs of Theorem 3.7, proving more
general statements via different methods, can be found in [CGPZ21], [EH21].

3.4. Proofs of the theorems. We now give the proofs of Theorems 3.2, 3.4
and 1.2, assuming the results about PFH spectral invariants stated above.

Proof. Theorem 1.2 is an immediately consequence of Theorem 3.2, and
Theorem 3.2 is an immediate consequence of Theorem 3.4, since we already
proved in Section 3.1 that FHomeo.(D,w) is a (non-trivial) normal subgroup.
Thus, it remains to prove Theorem 3.4.

We start for the benefit of the reader with an outline of how we do
this. Theorem 3.6 allows one to define the PFH spectral invariants for any
¥ € Homeo.(D,w). We will show, by using the Hofer Continuity property,
that if ¢ is a finite-energy homeomorphism, then the sequence of PFH spectral
invariants {cq()}aen grows at most linearly. On the other hand, in the case
of an infinite twist ¢y, satisfying the condition in equation (11), the sequence
{ca(¢f)}aen has super-linear growth, as a consequence of the Calabi prop-
erty (12). From this we can conclude that ¢ ¢ FHomeo(D,w), as desired.

The details are as follows. We begin with the following lemma, which tells
us that for a finite-energy homeomorphism v, the sequence of PFH spectral
invariants {cq(v)}4en grows at most linearly.

LEMMA 3.8. Let 1 € FHomeo.(D,w) be a finite-energy homeomorphism.
Then, there exists a constant C, depending on 1, such that
ca(y)

i <CVdeN

Proof. By definition, ¥ being a finite-energy homeomorphism implies that
there exist smooth Hamiltonians H; € C°(S! x D) such that the sequence
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| Hil|(1,00) is bounded, i.e., there exists C' € R such that ||H;||,.) < C, and
the Hamiltonian diffeomorphisms gp}qi converge uniformly to .
The Hofer continuity property and the fact that ¢4(Id) = 0 imply that

calen,) < dl|Hill(1,00) < dC

for each d € N.
On the other hand, by Theorem 3.6, c4(v) = lim; cd(go}{i). We con-
clude from the above inequality that c¢4(¢) < dC for each d € N. O

We now turn our attention to showing that the PFH spectral invariants of
an infinite twist ¢, which satisfies equation (11), violate the inequality from
the above lemma. We will need the following.

LEMMA 3.9. Let ¢; be an infinite twist satisfying (11), as described in
Section 3.2. Then there ewists a sequence of smooth monotone twists ¢y, €
Diff.(D,w) satisfying the following properties:

(1) the sequence ¢y, converges in the C° topology to of;
(2) there exist Hamiltonians F;, compactly supported in the interior of the disc

D, such that gp};i = ¢y, and F; < Fiiq;

(3) lim Cal(¢y,) = oo.

1—00

Proof. Recall that f is a decreasing function of r that vanishes near 1
and satisfies lirr(l) f(r) = oo. It is not difficult to see that we can pick smooth
r—

functions f; : [0,1] — R satisfying the following properties:

(1) fi=fon[},1];

(2) fi < fit1:

Let us check that the monotone twists ¢y, satisfy the requirements of the
lemma. To see that they converge to ¢, observe that ¢; and ¢y, coincide
outside the disc of radius % Hence, qu?lqﬁ #, converges uniformly to Id because
it is supported in the disc of radius % Next, note that by formula (8), ¢y,
is the time-1 map of the Hamiltonian flow of Fj(r,6) = frl sfi(s)ds. Clearly,
F; < Fiq1 because f; < fiy1. Finally, by formula (9) we have

Cal(¢y,) = /01 /rl sfi(s)ds rdr > /11 /rl sfi(s)ds rdr = /; /Tl sf(s)ds rdr.

Recall that f has been picked such that fol f: sf(s)ds rdr = oo; see equa-
tion (11). We conclude that lim Cal(¢y,) = oo. O
1—r 00

We will now use Lemma 3.9 to complete the proof of Theorem 3.4.
By the Monotonicity property, we have c4(¢y,) < ca(¢y,,,) for each d € N,
Since ¢y, converges in C° topology to ¢ +, we conclude from Theorem 3.6 that
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ca(¢y) = limjo0 ca(¢y,). Combining the previous two lines we obtain the
following inequality:
ca(9yf,) < ca(¢y) Vd,i€N.
Cd(quZ)

Now the Calabi property of Theorem 3.7 tells us that limg oo —;% =
Cal(¢ys,). Combining this with the previous inequality we get Cal(¢y,) <

limg_seo Cd(ff ) for all i. Hence, by the third item in Lemma 3.9,
lim L(qbf) = o0,
d—o0 d
and so by Lemma 3.8, ¢ is not in FHomeo.(ID, w). O

Remark 3.10. The proof outlined above does not use the full force of

Theorem 3.7; it only uses the fact that limg_,o cd((f) > Cal(p).

4. Periodic Floer Homology and
basic properties of the PFH spectral invariants

The remainder of the paper is devoted to proving the promised properties
of the PFH spectral invariants required to prove Theorem 3.4 and therefore
Theorem 1.2.

In this section, we recall the definition of Periodic Floer Homology (PFH),
due to Hutchings [Hut02], [HS05], and the construction of the spectral invari-
ants that arise from this theory, also due to Hutchings [Hut17]. We will then
prove that PFH spectral invariants satisfy the Monotonicity, Hofer Continuity,
and Spectrality properties that we mentioned in the previous section. The
spectral invariants appearing in Section 3.3 are defined by identifying area-
preserving maps of the disc, Diff.(D,w), with area-preserving maps of the
sphere, which are supported in the northern hemisphere S*, and using the
PFH of S?. Thus, the three aforementioned properties will follow from related
properties about PFH spectral invariants on S?; see Theorem 4.5 below.

4.1. Preliminaries on J-holomorphic curves and stable Hamiltonian struc-
tures. A stable Hamiltonian structure (SHS) on a closed three-manifold Y is
a pair (a, ), consisting of a 1-form « and a closed two-form €2, such that

(1) a AQis a volume form on Y;
(2) ker(Q2) C ker(da).

Observe that the first condition implies that €2 is non-vanishing, and as a
consequence, the second condition is equivalent to da = g2, where g : Y — R
is a smooth function.

A stable Hamiltonian structure determines a plane field ¢ := ker(a)) and
a Reeb vector field R on Y given by

R € ker(Q2), a(R) = 1.
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Closed integral curves of R are called Reeb orbits; we regard Reeb orbits as
equivalent if they are equivalent as currents.

Stable Hamiltonian structures were introduced in [BEHT03], [CMO05] as
a setting in which one can obtain general Gromov-type compactness results,
such as the SF'T compactness theorem, for pseudo-holomorphic curves in Rx Y.
Here are two examples of stable Hamiltonian structures that are relevant to
our story.

Ezxample 4.1. A contact form on Y is a 1-form A such that A A dA is a
volume form. The pair (o, Q) := (A, d\) gives a stable Hamiltonian structure
with g = 1. The plane field £ is the associated contact structure, and the Reeb
vector field as defined above gives the usual Reeb vector field of a contact form.

The contact symplectization of Y is

X =R xY,,
which has a standard symplectic form, defined by
(13) I'=d(e’N),
where s denotes the coordinate on R.

Ezample 4.2. Let (S,wg) be a closed surface, and denote by ¢ a smooth
area-preserving diffeomorphism of S. Define the mapping torus

S x 10, 1]
Let r be the coordinate on [0,1]. Now, Y, carries a stable Hamiltonian struc-
ture (o, ) := (dr,w,), where w,, is the canonical closed two form on Y,, induced

Y, =

by wg. Note that the plane field £ is given by the vertical tangent space of
the fibration 7 : Y, — S' and the Reeb vector field is given by R = 0,. Here,
g = 0. Observe that the Reeb orbits here are in correspondence with the
periodic orbits of ¢.

We define the symplectization of Y, by

X =R xY,,
which has a standard symplectic form, defined by
(14) I'=ds Adr+ w,g,
where s denotes the coordinate on R.

We say an almost complex structure J on X =R x Y is admissible, for a
given SHS («, ), if the following conditions are satisfied:

(1) J is invariant under translation in the R-direction of R x Y
(2) JOs = R, where s denotes the coordinate on the R-factor of R x Y;
(3) J¢ =&, where £ := ker(a), and Q(v, Jv) > 0 for all nonzero v € &.
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We will denote by J(«, Q) the set of almost complex structures that are ad-
missible for (a, ). The space J(a, §2) equipped with the C* topology is path
connected, and even contractible. When the SHS is clear from context, we will
call J admissible without specifying which SHS we are referring to.

Define a J-holomorphic map to be a smooth map u : (X,5) — (X, J),
satisfying the equation

(15) duoj=Jodu,

where (X, j) is a closed Riemann surface (possibly disconnected), minus a finite
number of punctures. A J-holomorphic map u : (X, j) — (X, J) is called some-
where injective if there exists a point z € ¥ such that u=!(u(z)) = {z} and
du : T,% — T,;)X is injective. An equivalence class of J-holomorphic maps
under the relation of biholomorphisms of the domain will be called a J-holo-
morphic curve. In this paper, we will only consider J-holomorphic curves that
are asymptotic to nondegenerate Reeb orbits at their punctures, and this will
be our standing assumption for the remainder of the paper; see [Wen16] for the
precise definition of asymptotic in this context. Such a J-holomorphic curve
has the property that it is determined by its image if it is somewhere injective
[Wen16]. We will call a J-holomorphic curve irreducible when its domain is
connected. As is common in the literature on ECH, we will sometimes have to
consider J-holomorphic maps up to equivalence of currents, and we call such
an equivalence class a J-holomorphic current; more precisely, a J-holomorphic
current is a finite set {(Cj,m;)}, where the C; are distinct irreducible some-
where injective J-holomorphic curves and the m; are positive integers. We will
call a J-holomorphic current irreducible when it consists of just one ordered
pair (Cy, m;).

In the lemma below we state a standard property of J-holomorphic curves
that plays a key role in our arguments. For a proof see, for example, the
argument in [Wenl6, Lemma 9.9)].

LEMMA 4.3. Suppose J € J(a, Q) where (o, ) is a stable Hamiltonian
structure on Y. If C is a J-holomorphic curve in R X Y, then ) is pointwise
non-negative on C. Furthermore, ) vanishes at a point on C only if C is
tangent to the span of Js and R.

4.2. PFH spectral invariants. Periodic Floer homology (PFH) is a version
of Floer homology, defined by Hutchings [Hut02], [HS05], for area-preserving
maps of surfaces. The construction of PFH is closely related to the better-
known embedded contact homology (ECH) and, in fact, predates the construc-
tion of ECH. We now review what we need to know about the definition of PFH.
For further details on PFH, we refer the reader to [Hut02], [HS05], and for more
about the motivation underlying the definitions, we refer the reader to [Hut14].
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Let (S,wg) be a closed® surface with an area form, and let ¢ be a nonde-
generate smooth area-preserving diffeomorphism. Non-degeneracy is defined
as follows: A periodic point p of ¢, with period k, is said to be non-degenerate
if the derivative of ©* at the point p does not have 1 as an eigenvalue. We say
@ is d-nondegenerate if all of its periodic points of period at most d are nonde-
generate; if ¢ is d-nondegenerate for all d, then we say it is non-degenerate. A
C*°-generic area-preserving diffeomorphism is nondegenerate. To define spec-
tral invariants, we will need a “twisted” version of PFH, and we now provide
the details of its construction.

Remark 4.4. If we were to carry out the construction outlined below,
nearly verbatim, for a contact SHS (A, d)), rather than the SHS (dr,w,), then
we would obtain the (twisted) embedded contact homology ECH; see [Hut14],
[HS06] for further details.

4.2.1. Definition of twisted PFH. Assume now and below for simplicity
that S = S? and that ¢ is nondegenerate. (For other surfaces, a similar story
holds, but we will not need this.) The twisted periodic Floer homology PFH
is the homology of a chain complex PFC. To define the twisted PFH chain
complex, we begin by defining certain finite sets o = {(«a;, m;)}, called orbit
sets. Specifically, we require that each «; is an embedded Reeb orbit, the «;
are distinct, and the m; are positive. An orbit set is called a PFH generator
if m; = 1 whenever «; is hyperbolic.” An orbit set o has an associated class
[a] € H1(Yy;Z); in the case S = S?, H1(Y,;Z) is canonically identified with Z,
and we call the image of [a] under this identification the degree of a.

Choose a reference cycle g in Y, such that 7|, : 70 — S is an orientation-
preserving diffeomorphism, and fix a trivialization 7y of £ over . We can now
define the PFH chain complex P/’Fﬁ(go, d). A generator of 151?“6(% d), called a
twisted PFH generator, is a pair («, Z), where « is a PFH generator of degree d,
and Z is a relative homology class in Hy(Y,, o, dyg). Here, Hao(Y,, o, ) is
defined to be the set of equivalence classes of 2-chains Z in Y|, satisfying 07 =
> > m;o; — > n;ifB;. The original idea behind the definition of a twisted PFH
generator is that we will want to study pseudoholomorphic curves C' asymptotic
to PFH generators «, and then the relative homology class Z allows us to keep
track of the homology class of C: We say that a J-holomorphic current C' in
X =R x Y, is a current from (o, 2) to (8,Z2') if C is asymptotic to o as

SPFH can still be defined if S is not closed, but we will not need this here.
"Being hyperbolic means that the eigenvalues at the corresponding periodic point of ¢ are
real. Otherwise, the orbit is called elliptic.
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s — 400, asymptotic to S as s — —o0, and satisfies
Z =101+ 2";

we refer the reader to [HS05, p. 307] for the precise definition of asymptotic in
this context. An important motivation for us is that the introduction of the
relative homology class Z allows us to define an action, see Section 4.2.2.

The chain complex I%(gp, d) is freely generated over® Zsy by twisted PFH
generators. The Zy vector space P/’IE‘E(QD, d) has a canonical Z-grading I given
by

m;
(16) I(a,2) = CT,To(Z)"‘QT,To(Z)"‘ZZCZT(af)-
i k=1

Here, 7 is (a homotopy class) of a trivialization of the plane field £ over all Reeb
orbits, ¢;(Z) denotes the relative first Chern class of € over Z, Q,(Z) denotes
the “relative self-intersection,” and C'Z,(7*) denotes the Conley-Zehnder index
of the k' iterate of 7; all of these quantities are computed using the trivializa-
tion 7, and we refer the reader to [Hut02, §2] or [Hut14, §3] for their definition.
Note that the above index depends on the choice of the reference cycle v9 and
the trivialization 79 of £ over g, though it can be shown that it does not de-
pend on the choice of trivialization 7 over Reeb orbits. If C is a J-holomorphic
current from (o, Z) to (3, Z'), then we call the quantity I(a, Z) — I(3,Z’) the
ECH index of C. o

We now define the differential on PFC(y, d). Suppose now that I(a, Z) —
I(8,Z") =1, and let J € J(dr,w,). We define

MJ((O[,Z), (ﬁle))

to be the moduli space of J-holomorphic currents €' in X = R x Y,, modulo
translation in the R direction, that are asymptotic to o as s — +00, asymptotic
to B as s — —oo, and satisfy

Z =101+ 2";

we refer the reader to [HS05, p. 307] for the precise definition of asymptotic in
this context. For generic J € J(dr,w,), the above moduli space is a compact
O-dimensional manifold [Hut02, Th. 1.8], and we define the differential by the
rule

<8(a7 Z)v (Bv ZI)) = #MJ((a7 Z)? (57 ZI));
where # denotes mod 2 cardinality. Although the chain complex 151\7‘6@07 d)

is infinite dimensional, the differential is well defined for the following reason:
for a fixed (o, Z), the set of all (3, Z’) such that I(8,Z") = I(«, Z) — 1 is finite

8We could also define PFH over Z, but we do not need this here.
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because ¢ is non-degenerate, and so there are only finitely many Reeb orbit
sets of degree d, and hence only finitely many pairs (3, Z’) in any fixed grading.
It is known that 9% = 0 by [HT07], [HT09], and so the homology ﬁﬁ(gp, d) is
well defined. Lee and Taubes [LT12] proved that the homology of this chain
complex does not depend on the choice of J; in fact, they show that for the
case S = S?, it depends only on d.

For future motivation, we note that the Lee-Taubes invariance results
discussed here come from an isomorphism of PFH and a version of the Seiberg-
Witten Floer theory from [KMO07].

Importantly, for the applications to this paper, in computing ﬁﬁﬁ(gp, d),
we can relax the assumption that ¢ is nondegenerate to requiring only that ¢
is d-nondegenerate.

By a direct computation in the case where ¢ is an irrational rotation of
the sphere, i.e., p(z,0) = (2,0 + «) with « being irrational, we obtain

Zo if ¥ =d mod 2,

17 PFH, (p,d) =
(17) (9. d) {0 otherwise.

Here is a brief outline of the computation leading to the above identity. The
Reeb vector field in Y, has two simple Reeb orbits v, ,y_ corresponding to the
north and the south poles. Both of these orbits are elliptic and so the orbit
sets of f/’lz‘a(cp, d) consist entirely of elliptic Reeb orbits. This implies that the
difference in index between any two generators of P/’IE‘E(QO, d) chain complex is
an even integer; see [Hut02, Prop. 1.6.d]. Thus, the PFH differential vanishes.
Now, the above identity follows from the fact that for each index k, satisfying
k = d mod 2, there exists a unique generator of index k in 1:/’156(4,0, d).

4.2.2. Definition of the spectral invariants. The vector space P/’I:“E(go,d)
carries a filtration, called the action filtration,” induced by

Ao, Z) = /Z%.

We define I%L (p,d) to be the Z/2 vector space spanned by generators («, Z)
with A(a, Z) < L.

By Lemma 4.3, w, is pointwise non-negative along any J-holomorphic
curve C, and so fC wy, = 0. This implies that the differential does not increase
the action filtration, i.e.,

(PFC (¢,d)) € PFC (,d).

9The relation between the quantity A(c, Z) and the Hamiltonian action functional dis-
cussed in Section 2.4 will be clarified in Lemma 4.10.
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—~—T,
Hence, it makes sense to define PFH (¢, d) to be the homology of the subcom-
——L
plex PFC (¢, d).
We are now in position to define the PFH spectral invariants. There is an
inclusion induced map

T —~
(18) PFH (p,d) — PFH(p, d).

If0+#o0 € ﬁﬁ‘l((p, d) is any nonzero class, then we define the PFH spectral
tnvariant

co ()

to be the infimum, over L, such that ¢ is in the image of the inclusion induced
map (18) above. The number ¢, () is finite, because, as explained above, there
are only finitely many pairs (o, Z) € lgﬁ(/)(ap, d) of a fixed grading. We remark
that ¢,(¢) is given by the action of some («, Z). Indeed, this can be deduced
from the following two observations:

(1) If L < L' are such that there exists no (o, Z) with L < A(a,Z) < L/,
—~—L ———L
then the two vector spaces PFC (¢,d) and PFC (¢, d) coincide and so

/

—~—1L e ——L —
PFH (¢,d) — PFH(p,d) and PFH (p,d) — PFH(p,d) have the same
image.
—~ L
(2) The set of action values {A(a, Z) : (o, Z) € PFC (¢, d)} forms a discrete
subset of R. This is a consequence of the fact that, as stated above, there
are only finitely many Reeb orbit sets of degree d.

In Remark 4.8 below we show that c,(¢) does not depend on the choice
of the admissible almost complex structure J. Note, however, that it does
depend on the choice of the reference cycle vq.

4.3. Initial properties of PFH spectral invariants. Let p_ = (0,0, —1) € S%.
We set

S:={pe Diff(S2,w) cp(p-) =p-, —% <rot(p,p_) < %}7

where rot(y, p_) denotes the rotation number of ¢ at p_; see [KH95] for the
definition of rotation number. We remark that our choice of the constant i is

,%) would be suitable for us; we just need

to slightly enlarge the class of diffeomorphisms arising from Diff.(D?, w), so as

arbitrary; any other constant in (0

to facilitate computations.

Recall from the previous section that the spectral invariant ¢, depends on
the choice of reference cycle v € Y,,. For ¢ € §, there is a unique embedded
Reeb orbit through pﬂd we set this to be the reference cycle ~g.

The grading on PFH depends on the choice of trivialization 7y over ~p;
our convention in this paper is that we always choose 7y such that the rotation
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number 6 of the linearized Reeb!? flow along - with respect to 7y satisfies
—i << %. This determines 79 uniquely.

We will want to single out some particular spectral invariants for ¢ € S
and show that they have various convenient properties; we will use these to
define the spectral invariants for ¢ € Diff (D, w).

Having set the above conventions, we do this as follows. Suppose that
¢ € S is non-degenerate. According to equation (17), for every pair (d, k) with
k = d mod 2, we have a distinguished nonzero class o4 with degree d and
grading k, and so we can define

Cd,k(@) = ng,k (QO)
Lastly, we also define!!
ca() = cq,-d(p)-

We will see in the proof of Theorem 4.5 that the ¢4 () for nondegenerate
¢ determine cq(y) for all ¢ by continuity.

To prepare for what is coming, we identify a class of Hamiltonians H with
the key property, among others, that S = {¢}, : H € H}. We define

M= {H e C®(S' x§?): ply(p-) =p_, H(t,p-) =0, Vt €[0,1],
— 1 <rot({ely},p-) < 1},

where rot({¢!;},p-) is the rotation number of the isotopy {¢% }iep,1] at p—.
Observe that S = {p}; : H € H}.

The theorem below, which is the main result of this section, establishes
some of the key properties of the PFH spectral invariants and furthermore
allows us to extend the definition of these invariants to all, possibly degenerate,
¢ € 8. In the statement below, ||-[|(1 ) denotes the energy, or the Hofer norm,
on C*(S! x S?), which is defined as follows:

zeS? z€eS?

1
[ Hl(1,00) = / (maxH(t,x) — min H (¢, x)) dt.
0

THEOREM 4.5. The PFH spectral invariants cq (@) admit a unique ex-
tension to all ¢ € S satisfying the following properties:

OFollowing [Hut14, §3.2], we define the rotation number 6 as follows: Let {t;};cr denote
the 1-parameter group of diffeomorphisms of Y, given by the flow of the Reeb vector field.
Then, Dy : T 0)Ye — Tyo(1)Y, induces a symplectic linear map ¢ : €,(0) — &0 (¢), Which
using the trivialization 7o we regard as a symplectic linear transformation of R?. We define
6 to be the rotation number of the isotopy {¢:}icio,1]-

' Alternatively, one may define cq(ip) :=ca,x () for any —d<k<d satisfying k=d mod 2.
These alternative definitions are all suitable for our purposes in this article.
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(1) Monotonicity: Suppose that H < G, where H,G € H. Then,

car(p) < car(el)-

(2) Hofer Continuity: For any H,G € H, we have

lcan(pi) = car(en) < dIH = Gll1,00)-

(3) Spectrality: cqr(pt;) € Specy(H) for any H € H.
(4) Normalization: ¢4 _q(Id) = 0.

Remark 4.6. To define the PFH spectral invariant ¢4, for ¢ € Diff.(D, w),
we use equation (1) to identify Diff.(D,w) with area-preserving diffeomor-
phisms of the sphere that are supported in the interior of the northern hemi-
sphere ST.

We similarly define ¢4 : Diff.(D,w) — R, which was introduced in Sec-
tion 3.3. It follows from Theorem 4.5 that c¢; : Diff.(D,w) — R satisfies
properties (1)—(4) in Section 3.3.

The rest of this section is dedicated to the proof of the above theorem. The
proof requires certain preliminaries. First, it will be convenient to explicitly
identify Y, with S x S2. To do so, pick H € H such that ¢ = 1.2 We define

St x §% = Y,
(t,z) = ((Pl) (@), ),

where ¢ denotes the variable on S'. For future reference, note that this identifies
the Reeb vector field on Y, with the vector field

(19)

on S' x S%. The 2-form w, pulls back under this map to the form
w+dH Adt,

where w is the area form on S?.

The Reeb orbit 79 maps under (19) to the preimage of p_ under the map
S! x §? — S?; we will continue to denote it by 7. Moreover, the trivialization
7o from above agrees (up to homotopy) under this identification with the triv-
ialization over 7g given by pulling back a fixed frame of T},_ S? under the map
S x §% — S%.

12We remark that the choice of H € H such that ¢ = @} is unique up to homotopy of
Hamiltonian isotopies rel endpoints. This fact, which is not used in our arguments, may be
deduced from properties of the rotation number.
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The map (19) allows us to identify R x S' x §? with the symplectization
X via

R xS' x§? — X,
(s:t.2) = (s, (0f) (), 1)
The symplectic form I' on X then pulls back to

(21) wg =dsNdt +w+dH Ndt.

Let H, G be two Hamiltonians in . As mentioned earlier, ﬁl/{(cp}{, d) is
isomorphic to ﬁl/{(@é, d). The proof of this uses Seiberg-Witten theory and
is carried out in [LT12, Cor. 6.1]. This isomorphism is canonical with a choice
of reference cycle in Ha(S' x S?,79,70); we say more about this in Remark 4.9
below. We take this reference cycle to be the constant cycle!'® over vy. In this
case, we will see below that the canonical isomorphism

(22) PFH(p};,d) — PFH(pk, d),

preserves the Z-grading.

As is generally the case with related invariants, one might expect this
isomorphism to be induced by a chain map counting certain ECH index zero
J-holomorphic curves. In fact, it is not currently known how to define the map
(22) this way; the construction uses Seiberg-Witten theory. Nevertheless, the
map in (22) does satisfy a “holomorphic curve” axiom that was proven by Chen
[Che21] using variants of Taubes’ “Seiberg-Witten to Gromov” arguments in
[Tau96]. A similar “holomorphic curve” axiom was proven in the context of
embedded contact homology by Hutchings-Taubes.

To state what we will need to know about this holomorphic curve axiom
in our context, given Hamiltonians H, G € H, define

K=G+8(s) (H-G)

for s € R, where 5 : R — [0, 1] is some non-decreasing function that is 0 for s
sufficiently negative, 1 for s sufficiently positive, and satisfies 1+ 3'(s)-(H — Q)
> 0. We can think of K as above as a function on R x S! x S2. Now consider
the form

wx =ds ANdt +w + d(Kdt).

This is a symplectic form on R x S' x S2. Observe that, for s > 0, the form
wyx agrees with the symplectization form wg, and for s < 0, it agrees with

13This is the projection vo x I — .



208 D. CRISTOFARO-GARDINER, V. HUMILIERE, and S. SEYFADDINI

the symplectization form wg. Let Jx be any wyx-compatible!® almost com-
plex structure that agrees with a generic (dt,wy) admissible almost complex
structure J for s > 0 and with a generic (dt,wg) admissible almost complex
structure J_ for s < 0.

Then, the holomorphic curve axiom implies that (22) is induced by a
(non-canonical) chain map

(23) Uy 6 PRC(pl.d, J1) — PRC(gl,d, J_),

with the property that if (¥, gq(a,Z),(8,Z')) # 0, then there is an ECH
index 0 Jx-holomorphic building C from « to § such that

(24) Z'+[C)=2Z,

as elements of Ha(S! x S?,,dv); we say more about this in Remark 4.9
below. Here, by a Jx-holomorphic building from « to 3, we mean a sequence
of J;-holomorphic curves

(Co,...,Ci,...,Cy),

such that the negative asymptotics of C; agree with the positive asymptotics of
Cit1, the curve (Y is asymptotic to o at 400, and the curve C}, is asymptotic
to 8 at —oo; we refer the reader to [Hut14, §5.3] for more details. We remark
for future reference that the C; are called levels, and each J; is either! Jy, Ji
or J_. The condition that the ECH index of the building is zero means that
the sum of the ECH indices of the levels add up to zero. In particular, this
index condition, together with (24), implies the earlier claim that the map (22)
preserves the Z-grading by additivity of ¢, and @), since the trivializations over
~o required to define the grading on ]E/’I:“(](cpllq) and ?ﬁE(QOIG) are the same.

We will want to assume that Jx is compatible with the fibration R x S! x
S? — R x S! in the following sense: Let V be the vertical tangent bundle of
this fibration, and denote by H the wx-orthogonal complement of V; observe
that H is spanned by the vector fields Js and 0; + X . Then, we will want Jy
to preserve V and H. Given any admissible J4 on the ends, we can achieve
this as follows. On the horizontal tangent bundle H, we always demand that
Jx sends 05 to 0y + Xx. On the vertical tangent bundle, we observe that
wx|v = w and, in particular, wy|y is independent of s. We can then connect
J4|v to J_|y through a path of w-tamed almost complex structures on V.

We can now prove Theorem 4.5. We break the proof up into two parts,
namely we first prove all of the properties except for Spectrality, and then we
prove Spectrality.

!4Recall that an almost complex structure J is compatible with a symplectic form w if
g(u,v) := w(u, Jv) defines a Riemannian metric.
More can be said, but we will not need this additional information
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Proof of Theorem 4.5: Monotonicity, Hofer continuity, and normalization.
We begin by first supposing that the monotonicity and Hofer continuity prop-
erties hold when goé, go}{ are nondegenerate and explain how this implies the
rest of the theorem. To that end, let H € H, not necessarily nondegenerate,
and take a sequence H; € H that C? converges to H and such that @}{i is
nondegenerate. Then, we define

car(el) = Zlggo Cd,k(‘PllLIi)'

This limit exists thanks to the inequality |cqx(¢p,) — cd’k(gp}{j)\ < d||H; —
Hj|(1,00)- Moreover, the same inequality implies that the limit value does not
depend on the choice of the sequence H; and so cd’k(go}{) is well defined for all
H € H. Thus, we obtain a well-defined mapping

Cd.k - S —> R

It can be seen that ¢4 continues to satisfy the monotonicity and Hofer con-
tinuity properties for degenerate golc, (p}{. Moreover, note that, by the Hofer
continuity property, the mapping cq1 : & — R is uniquely determined by its
restriction to the set of all non-degenerate ¢ € S.

To prove that ¢4 _4(Id) = 0, it is sufficient to show that c4_4(¢) = 0
in the case where ¢ is a positive irrational rotation of the sphere; that is,
©(z,0) = (2,0 + «) with « being a small and positive irrational number. As in
the explanation for equation (17), the chain complex 151\76(90, d) has a unique
generator in indices k such that kK = d mod 2 and it is zero for other indices.
The unique generator of index —d is of the form («, Z), where oo = {(70,d)}
and Z is the trivial class in Ha(Y,,, dyo,d0). The action A(a, Z) is zero. This
proves that ¢ _4(p) =0 = cg _q(1d).1

For the rest of the proof, we will suppose that cpjlq, goé are nondegenerate.
We will now prove the monotonicity and Hofer continuity properties. Let
J+,J— be any generic admissible almost complex structures for ¢}, and goé
respectively, and let (a1, Z1) + -+ + (@m, Zm) be a cycle in ﬁ?ﬁ(@}{,d, Ji)
representing ogq j, with

Coq i (90}{) = A(al, Zl) =z .A(Oém, Zm).

Fix an almost complex structure Jx that is compatible with the fibration and
agrees with J for s sufficiently positive and J_ for s sufficiently negative. Let
(8, Z") be a generator in P%(goé, d) that has maximal action among generators
that appear with a non-zero coefficient in

Uy me (a1, Z1) + -+ (m, Zm)) -

10With a similar argument one can prove that cqx(Id) = 0 for every —d < k < d with
k =d mod 2.
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Then, by the aforementioned holomorphic curve axiom there is a Jx-
holomorphic building from some (o, Z;) to (8, Z"). For the rest of the proof, we
will write («, Z;) = (o, Z) and will denote the Jx-holomorphic building by C.

For the arguments below, which only involve energy and index arguments,
we can assume that C' consists of a single Jx-holomorphic level — in other
words, is an actual Jx-holomorphic curve, rather than a building — so to
simplify the notation, we assume this.

For the remainder of the proof we will need the following lemma.

LEMMA 4.7. The following identity holds:
Ale, Z) — A8, Z') = / w+dK A dt + K'ds A dt.
C

Furthermore, we have

/w+dK/\dt>O
C

In the above statement, K’ denotes 2 a— and, for the rest of this section,
dK denotes the derivatives in the S? directions.

Proof of Lemma 4.7. We will begin by proving that
(25) Ale, Z) — A8, Z') = / w+ d(Kdt),
C

which establishes the first item because w+ d(Kdt) = w+dK Adt + K'ds A dt.
Note that we can write

Ale, Z) = / w+d(Hdt), A(B,Z) = / w+ d(Gdb).
z z'
Hence, equation (25) will follow if we show that

/w—/w—/Z/w and/ (Kdt):/Zd(Hdt)—/Z,d(Gdt).

The first identity holds because all of these integrals are determined by the
homology classes, and we have [C] = Z — Z'. The second identity follows from
the following chain of identities:

/C d(Kdt) = / Kdt — / Kdt
/ Hat — / Gdt

= /Z d(Hdt) — / ~d(Ga),

where the first equality holds by Stokes’ theorem, the second follows from the
definition of K, and the third is a consequence of Stokes’ theorem combined
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with the fact that H, G both belong to H and so vanish on 7. This completes
the proof of the first item in the lemma.

Now, we will show that [,(w 4 dK Adt) > 0 by showing that the form
w+dK Adt is pointwise non-negative along C'. Indeed, at any point p € X, we
can write any vector as v + h, where v € V and h € H are vertical and
horizontal tangent vectors as described in the paragraph before the proof
of Theorem 4.5. Since C is Jx-holomorphic, it is sufficient to show that
(w+dK Ndt)(v+ h, Jxv+ Jxh) > 0. We will show that

(26) (wH+dK Adt)(v+h, Jxv+ Jxh) = wx (v, Jxv),

which proves the inequality because Jx is wx-tame. Now, to simplify our
notation €2 will denote w + dK A dt for the rest of the proof. Expanding the
left-hand side of the above equation we get

Q(U + h, JJxv+ JXh) = Q(U, Jxv) + Q(h, JX}L) + Q(U, th) + Q(h, JXv).

We will now show that Q(v, Jxv) = wx (v, Jxv) and Q(h, Jxh) = Q(v, Jxh) =
Q(h, Jxv) = 0, which clearly implies equation (26). To see this, note that v
and Jxwv are in the kernel of ds A dt, hence

Q(U7 JXU) = WX(Uv JX,U)v

Qv, Jxh) =wx(v,Jxh) =0, Q(h,Jxv) =wx(h, Jxv)=0.

It remains to show that Q(h, Jxh) = 0, that is, Q|g = 0. This follows from the
fact that H is spanned by {Js,0; + Xk} and 0y is in the kernel of . Indeed,
a 2-form on a 2-dimensional vector space with non-trivial kernel is identically
Z€ro. ([

Note that cqr(¢}) = Ala, Z) and cqr(ps) < A(B, Z'). Hence,
(27) car(ph) — carles) = Ala, 2) — A(B, Z").

As a consequence of this inequality, Monotonicity would follow from proving
that if H > G, then A(a, Z) — A(B,Z") > 0. By the above lemma we have

(28) Ale, Z) — AB, 7)) > /C K'ds A dt.

If H> G, then K’ > 0. Moreover, ds A dt is pointwise non-negative on C.
Indeed, continuing with the notation as above,

ds A dt(v + h, Jxv + Jxh) = ds A dt(h, Jxh),

since v and Jxv are in the kernel of ds A dt; on the other hand, we saw in the
proof of the previous lemma that Qg = 0, so

(1+B'(H —G)) ds Adt(h, Jxh) = wx (h, Jxh) > 0.
Hence | oK 'ds A\ dt > 0, which proves Monotonicity.
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As for Hofer Continuity, it is sufficient to show that
(29) ‘/ K'ds/\dt‘ <d||H - G| (1,00)-
C

Indeed, this inequality combined with inequalities (27) and (28) implies that
car(el) —car(ey) < d|H —G||(1,00). Similarly, by switching the role of H and
G, one gets cqr(ey) — car(pd) < d|H — G||(1,00), which then implies Hofer
Continuity.

It remains to prove inequality (29). Since as above ds A dt is pointwise
non-negative on C, we have

/ K'ds/\dt’ =
c

Note that because H, G both vanish at the point p_, for all ¢, z, we have

/5’(3)(H—G)ds/\dt‘ g/ﬁ’(s)yH—GusAdt.
C C

|H(t,z) — G(t, x)| < max (Ht — Gy) — Héizn (H: — Gt) .

Hence, we get

/ K'ds A dt' < / B (s) (max(Ht — Gt) —min(H; — Gt)) ds A dt.
C C S2 S2

We can evaluate the second integral by projecting C' to the (s,t) plane; this
projection has degree d, and since fj;o B' = 1, the second integral evaluates to

d[H = G|l(1,00)-
This completes the proof of Hofer Continuity. O

Remark 4.8. In the special case where H = (G, but the two J; are different,
the Monotonicity argument above, applied first to H > G and next to G > H,
gives that the spectral invariant does not depend on J.

Remark 4.9. On the Seiberg-Witten side, the twisted theory corresponds
to a version of the Floer homology where, instead of taking the quotient of
solutions by the full gauge group G = C°°(M, S!), one only takes the quotient
by the subgroup G° C G of gauge transformations in the connected component
of the identity. This has an H!(Y) action, induced by the action via gauge
transformations, which corresponds to the Ha(Y') action on twisted PFH given
by adding a homology class.

As mentioned above, it was remarked by Taubes [Taul0O, §1] that the
twisted invariant on the PFH/ECH side depends on a choice of reference cycle,
and there is an isomorphism between the invariants for different choices of
reference cycles that is canonical only up to a choice of element of Ho(Y, p, p'),
where p, p/ are two reference cycles. Implicit in this assertion is that after a
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choice of reference cycle R, the isomorphism (23) satisfies a holomorphic curve
axiom for buildings C satisfying

(30) Z+R=1[0]+7".

This is the best way to think about (24); this corresponds to the case where
our reference cycle is constant over p.

For more about the connection between the twisted theory and the rel-
evant Seiberg-Witten Floer homology, we refer the reader to [Taul0, §§1, 2],
where Taubes is writing about twisted ECH; we have adapted what is written
there to the PFH context, as suggested by [LT12, Cor. 6.1].

It remains to prove Spectrality. As stated in Section 4.2.2, the spectral
invariant cqx(p};) is the action of a twisted PFH generator («, Z) of degree d.
Spectrality, hence Theorem 4.5, is then a consequence of the following lemma.

LEMMA 4.10. Let (o, Z) be a twisted PFH generator of degree d for ¢ =
oL with H € H. Then, A(a, Z) belongs to Specy(H), as defined in Section 2.4.

Before giving the proof, we describe a construction that will be used in
the proof and also later in the paper.

4.3.1. The class Z,. Let a be an orbit set. We will construct a specific
relative homology class Z, € Ha(Y,, o, %), for ¢ = pl; with H € H, as follows.
A key input in the construction of this class is a certain map u, : D? — S?
that we will also want to refer to later in the paper.

We first construct Z, in the case d = 1. Let g € Fix(y), and suppose that
« is the Reeb orbit in the mapping cylinder corresponding to g. The relative
cycle Z, will be of the form Z, = Zy+ Z1 + Z>. We begin by choosing a path
nin $? x {0} C Y1 such that On = (q,0) — (p—,0). We parametrize this curve
with a variable = € [0,1]. We define Zj to be the chain induced by the map

(0,1 — Yo, (1) = (n(=),1).

Its boundary is given by 0Zy = o — vy + (1,0) — (¢(n),0). Next we define Z;
to be the chain induced by the map

[0’ 1]2 - Ytp}{? (tax) = (@3{(77(55))»0)-

Then, 0Z1 = (¢(n),0) — (1,0) — (¢%(q),0). Finally, we define Z5 to be the
chain induced by a map (uq, 0), where u,, : D? — S? is such that u,|yp2 is the
Hamiltonian orbit ¢ +— ¢ (q). There is some ambiguity in the choice of uq
here, but to resolve this we select u,, according to the following rules:

(i) If & = ~p, the Reeb orbit corresponding to p_, then we take u, to be the
constant disc with image p_.
(ii) If o # 0, then we take u, such that its image does not contain p_.
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Then Z5 does not depend on the choice of u, satisfying the above two condi-
tions, and we now define Z,, := Zy 4+ Z1 + Z3. The key point of the definition
is that 0Z, = a — 7p.

Next we consider the case where « is an orbit set of degree m consisting of
only one periodic orbit. Let g be a periodic point, of (not necessarily minimal)
period m € N, and suppose that « is the Reeb orbit in the mapping cylinder
corresponding to ¢q. Then, ¢ is a fixed point of ¢%. Consider the mapping
torus Yym. There is a map ¢ : Yym — lelH , pulling back Wyt 1O wem, given
[%, %] onto Y, via the map (z,t) — (o5 (),
m-t— k). Now repeat the construction from above to produce a relative cycle
Z' in Y m and define Z, to be the pushforward of Z’ under the map ¢

Finally, let a = {(a;, m;)}, where the a; are simple closed Reeb orbits.

So, each (a;,m;) corresponds to a (not necessarily simple) orbit of a periodic

by mapping each interval S? x

point g; of cp}{. By using the construction in the previous paragraph, we can
associate a relative cycle to each («y;, m;); the sum, over i, of all of these cycles
gives a relative cycle from « to dyg, where d is the sum of the periods of the
periodic points g;.

4.3.2. Proof of Spectrality.

Proof of Lemma 4.10. As in the proof of the Monotonicity and Hofer con-
tinuity properties above, we may assume that ¢ is nondegenerate. Note that
it is sufficient to prove that A(a, Z,) € Specy(H ), where Z, is the class con-
structed in Section 4.3.1, since any other Z € H(Y,, o, 70) is of the form
Zo + k[S?] where k € Z and so A(«a, Z) = A(a, Zy) + k.

To prove this, it suffices by the definition of Spec,; to prove this in the
d = 1 case, since an m-periodic point of ¢ is a fixed point of ¢ and this
is generated by H™. So, assume this, and let Zy, Z1, Zo and u, be as in the
definition of Z, in Section 4.3.1. We have on wy = 0. As for Z;, we have

/21 W = //[071]2 w0k (n(x)), Ouly (n(z)))

_ / /[0 1]2w(XHt(gofq(n(x)))y3359031(77(1?)»

//[01]2dHt 205 (1] //01]28 Hy(y (n(z)))

=/ Hy(0%(q)) — Hy(¢' (p-))dt = /Ht ©h(q
0

Finally, f22 Wy = sz urw. Hence, fZa w, € Spec(H), and so the lemma is
proved. ([l
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Remark 4.11. We note for future reference that as ¢’} can be viewed as the
time 1-map of the Hamiltonian Fi(x) = mH,(x), we have by the above argu-
ment that for any periodic point ¢ of period m, corresponding to an orbit set «,

(31) [ o= [ s [T et

5. C° continuity

Here we prove Theorem 3.6, using Theorem 4.5 from Section 4.

The central objects of Theorem 3.6 are the maps cg : Diff.(D? w) —
R. Remember from Section 4.3 and Remark 4.6 that these maps are defined
from the spectral invariants c; : S — R, by identifying Diff.(D?,w) with the
group Diff g1 (S?,w) consisting of symplectic diffeomorphisms of S?, which are
supported in the interior of the northern hemisphere S*. In the present section,
we directly work in the group Diff g+ (S?, w).

More generally, given an open subset U C S, we will denote by Diff;; (S?, w)
the set of all Hamiltonian diffeomorphisms compactly supported in an open
subset U.

Our proof is inspired by the proof of the C°-continuity of barcodes (hence,
of spectral invariants) arising from Hamiltonian Floer theory presented in
[LRSV21]. However, our case is complicated by the fact that we are work-
ing with periodic points while [LRSV21] only deals with fixed points. Other
existing proofs of C%-continuity of spectral invariants make use'” of the prod-
uct structure on Hamiltonian Floer homology. It might be possible to define a
“quantum product” on PFH (see [HS05]), however at the time of the writing
of this article, such structures do not exist.

Let d be a positive integer. As in [LRSV21], we treat separately the
CO-continuity of cq at the identity and elsewhere. Theorem 3.6 will be a
consequence of the following two propositions.

PROPOSITION 5.1. The map cq : Diffg1 (S?,w) — R is continuous at 1d
with respect to the C°-topology on Diff g+ (S?, w).

PROPOSITION 5.2. Every n € Homeog+ (S?,w) with n # Id admits a C°-
neighborhood V such that the restriction of ¢g to VN Diff g+ (S?, w) is uniformly
continuous with respect to the C°-distance.

This last proposition readily implies that any n € Homeog+ (S?,w) \ {Id}
admits a C%-neighborhood V to which ¢4 extends continuously. In particular, it

"The product is usually used to deduce continuity everywhere from continuity at Id.
Without a product, we need another argument to prove continuity in the complement of the
identity.
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extends continuously at 1. Since this holds for any such homeomorphism 7, this
shows together with Proposition 5.1 that ¢g extends to a map Homeog+ (S?, w)
— R continuous with respect to C%-topology, hence Theorem 3.6.

Proposition 5.2 can be rephrased as follows. Any homeomorphism 1 €
Homeog+ (S%,w), n # Id, admits a neighborhood V in Homeog+ (S?,w) such
that for all € > 0, there exists § > 0 satisfying

(32) Vﬁﬁ,w eEVn DiffSJr (827("})7 if dCO (¢7w) < 57 then ’cd(é) - Cd(@’ <e.

The Hofer norm. Our proofs will make intensive use of the Hofer norm
for Hamiltonian diffeomorphisms. We now recall its definition and basic prop-
erties. We refer the reader to [Pol01] and the references therein for a general
introduction to the material presented here.

We have seen earlier in the paper the definition of the Hofer norm of a
Hamiltonian on the sphere and the disc. On a general symplectic manifold,
the Hofer norm of a compactly supported Hamiltonian diffeomorphism ¢ is
defined as

6]l = {1 ] (1,00}

where the infimum runs over all compactly supported Hamiltonians H whose
time-1 map is ¢. It satisfies a triangle inequality

I ol <ol + Il

for all Hamiltonian diffeomorphisms ¢, v, it is conjugation invariant and, more-
over, we have ||¢~!|| = ||¢|| for all Hamiltonian diffeomorphisms ¢.

The displacement energy of a subset A of the ambient symplectic manifold
is by definition the quantity

e(A) == inf{[|¢]] : $(A) N A = 0}.

On a surface, it is known that for a disjoint union of closed discs, with each disc
having area a, and whose union covers less than half the area of the surface,
the displacement energy is a.

Important note. We will use the Hofer norm on the symplectic manifold
S?\ {p_}. Thus, all the Hamiltonians considered in this section will be com-
pactly supported in the complement of the south pole p_; in particular, they
belong to H.

Note that the second item of Theorem 4.5 can be reformulated as

(33) lca(¥) —ca(@)| < d- [~ o g

for all Hamiltonian diffeomorphisms ¢, € Difsz\{pi}(SQ,w).
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5.1. Continuity at the identity. We first prove Proposition 5.1. The case
d = 1 can be proved with the same proof as [Sey13a], using the so-called e-shift
technique. We will generalize this idea to make the proof work for all d > 1.
Let us start our proof with a lemma.

LEMMA 5.3. Let d > 1, and let F' be a time-independent Hamiltonian,
compactly supported in S*\{p_}. Let f = ¢} be the time-one map it generates.
Assume that the next two conditions are satisfied:

(a) for all k € {1,...,d}, the k-periodic points of f are precisely the critical

points of F;

(b) none of the critical points of F are in the closure of S*.
Then, there exists § > 0 such that cq(¢p o f) = cq(f) for any ¢ € Diff g+ (S?,w)
with dco(¢,1d) < 6.

Postponing the proof of this lemma, we now explain how it implies Propo-
sition 5.1.

Proof of Proposition 5.1. Let € > 0. Let F be a function on S? satisfying
the assumptions of Lemma 5.3, and assume furthermore that

. €
max F —min FF < —.

2d
For instance a C?-small function supported in the complement of p_ all of
whose critical points are in the southern hemisphere is appropriate. Then let
0 be as provided by Lemma 5.3.
Let ¢ € Diff g1 (S, w) be such that dco(¢, Id) <§. Then, we have cq(¢o f) =
cq(f). Using inequality (33) twice and the fact that c¢4(Id) = 0, we obtain

lca(9)] < [ea(¢ o )l +d[|fI| = lea(f) — ca(Id)[ + dl[ £ < 2d [| £
Now, by definition of the Hofer norm, [|f|| < max F' — min F'. Thus we get

ca(¢) <e.
This show the C%-continuity of ¢4 at Id. O

We will now prove the lemma.

Proof of Lemma 5.3. Let F be as in the statement of the lemma and f =
qﬁ}?. We want to prove that cy(f) remains unchanged when we C°-perturb f
with a Hamiltonian diffeomorphism supported in the northern hemisphere. To
obtain this, we will first prove that the entire spectrum remains unchanged
under such perturbations.

Let k € {1,...,d}; we begin by showing that the set of k-periodic points is
unchanged by these perturbations. By assumption, there exists ¢ > 0 such that

d(fk(x),a:) >c

for all z in the closure of ST. Now note that the diffeomorphism (¢ f)]’C con-
verges to f* uniformly when ¢ tends uniformly to Id. Thus, there exists § > 0
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such for deo(¢,1d) < 4, the inequality d((¢f)*(z),x) > 0 holds for all z in the
closure of S*. In other words, ¢ o f has no k-periodic points in the closure
of ST. Since ¢ coincides with the identity outside ST, this implies that ¢ o f
and f have the same k-periodic points, which are in turn the critical points
of F'. For the rest of the proof, we pick § such that the above holds for all
ke {1,...,d}, and ¢ such that dco(¢,1d) < 6.

We next show that the actions of these k-periodic points, i.e., the critical
points of F', agree when computed with respect to f and ¢ o f.

To compute these actions, let H be a Hamiltonian supported in S such
that ¢}, = ¢. By (7), the isotopy ¢¢h (whose time one map is ¢ o f) is
generated by the Hamiltonian H#F (¢,z) = H(t,z) + F((¢%) 1 ().

Let y be a critical point of F. Then, ¢4 (y) =y for all ¢ € [0, 1], and since
y ¢ ST, we also have ¢!, (y) =y for all ¢ € [0,1]. Thus y remains fixed along
the whole isotopy. A capping of such an orbit is a trivial capping to which is
attached ¢[S?] for some ¢ € Z. Also note that since H is supported in ST,

H#F(t, 0% (y) = H(t,y) + F(y) = F(y).

Applying formula (2) we obtain

1
A (y, O1%]) = /0 H#F(t, gyl (4))dt + CArea(S?).
=Fy) +/4
== AF(?/? E[S2])

This shows that Spec(H#F) = Spec(F'). A similar argument shows that
Spec((H#F)*)=Spec(F*) forall ke {1,...,d}, thus Spec,( H#F)=Spec,(F).
By (4), we have proved

(34) Specy(¢ o f) = Specy(f)

for all ¢ € Diff g+ (S?,w) such that dco(¢,1d) < 6.

There remains the step of deducing c4(¢ o f) = cq(f) from this equality
of spectrums.

Given ¢ € Diff g+ (S?, w) such that dco(¢,1d) < J, one can construct, using
the Alexander isotopy, a Hamiltonian isotopy (‘P?{)te[o,l] in Diff g+ (S%,w), such
that deo(pi,Id) < 6 for all s € [0,1] and ¢} = ¢; we refer the reader to
[Sey13a, Lemma 3.2] for the details.

Equation (34) then implies Specy(¢3 o f) = Specy(f) for all s € [0, 1].
Now, by Theorem 4.5 the function s — c4(¢} o f) is continuous and takes its
values in the measure 0 subset Spec,(f) C R. As a consequence, it is constant.
This shows c4(¢ o f) = ¢4(f) and concludes our proof. O



PROOF OF THE SIMPLICITY CONJECTURE 219

5.2. Continuity away from the identity. We now turn our attention to
Proposition 5.2. We want to prove (32), i.e., that any 7 € Homeog+ (S?,w),
n # Id, admits an open neighborhood V such that for all € > 0, there exists
d > 0 satisfying

(35) Vf € VNDiffgs (S}, w) Vg € Diffg4 (S, w),
if doo(g,1d) < § then |cq(gf) — ca(f)] < e.

Our proof will follow from three lemmas, which we now introduce.

To state the first, let us introduce some terminology. We will say that a
diffeomorphism f d-displaces a subset U if the subsets U, f(U),..., f4(U) are
pairwise disjoint. Our first lemma states that for g supported in an open subset
d-displaced by f, an even stronger version of (35) holds. It is adapted from
[Ush10, Lemma 3.2], which can be regarded as the analogue for the d = 1 case.

LEMMA 5.4. Let f € Diffg+(S%,w), and let B be an open topological disc
whose closure is included in S*\ {p_} and that is d-displaced by f. Then, for
all ¢ € Diff g(S%,w), we have cq(do f) = ca(f).

We will prove this lemma in Section 5.3. To apply it, we need there to exist
an appropriate open disc B. The next lemma is the key ingredient for this.

LEMMA 5.5. Let n € Homeo.(D,w) with n # Id. Then, there exists x € D
such that x,n(x),n*(x),...,n%(x) are pairwise distinct points.

In particular, by the lemma, there exists an open topological disc B whose
closure is d-displaced by 7.

If we then let V be the C? open neighborhood of 7 given by the set of all f €
Homeog+ (S?,w) that d-displace the closure of the disc B, then by Lemma 5.4,
we have cq(¢o f)=cq(f) for all ¢ € Diff g(S?,w) and f € VNDiff g+ (S?,w). Now
it turns out that every map g that is sufficiently C° close to Id is close in Hofer
distance to an element in Diff g(S?, w). This is the content of the next lemma.

LEMMA 5.6. Let B be an open topological disc whose closure is included
in S*\{p_}. For alle > 0, there exists § > 0 such that for all g € Diff g+ (S?, w)
with dco(g,1d) < 8, there is ¢ € Diff g(S?,w) such that |¢~1g|| < e.

We will prove Lemma 5.6 at the end of Section 5.3. Assuming this, we
can achieve the proof of (35) and hence of Proposition 5.2, as we now explain.

Proof of Proposition 5.2. Let ¢ > 0, and let § > 0 be as provided by
Lemma 5.6. Also let f € VNDiffg+ (S?,w). Then, for all g satisfying dco(g,Id)
< 4, there exists ¢ € Diffg(S?,w) such that ||[¢~1g| < e. Thus, using
Lemma 5.4, Hofer continuity (33) and the conjugation invariance of the Hofer
norm, we have

lca(gf) = ca(f)l = lealgf) — ca(ef) < dllfro™ gfll = dllo™ gl| < de.
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Since € is arbitrary, this concludes the proof of (35) and of Proposition 5.2,
modulo the proofs of Lemmas 5.4, 5.5 and 5.6. O

5.3. Proofs of Lemmas 5.4, 5.5 and 5.6. We now provide the proofs of the
lemmas stated in the preceding section. We start with the simplest one.

Proof of Lemma 5.5. Let n € Homeo.(D,w) with n # Id, and let d be
a positive integer. It is known (see [CK94]) that for any positive integer N,
nN # Id. Thus, there exists a point z € D such that n%(z) # z. For such a
point, z,n(x),n*(z),...,n%(z) are pairwise distinct. Indeed, otherwise, there
would be integers 0 < k < ¢ < d such that n*(z) = n’(x), and we would get
n'~F(z) = z, in contradiction with n?(x) # x since d! is evenly divided by
(—k. O

We now turn our attention to Lemma 5.4.

Proof of Lemma 5.4. Let F be a Hamiltonian supported in S* with cp};
= f, and let G be a Hamiltonian supported in B with cpé = ¢. We will prove
that for all s € [0,1], Specy (@& f) = Specy(f). This implies, as in the proof of
Lemma 5.3, that the map s — c4(¢f f) is constant, hence the lemma.

Let s € [0,1]. We will first verify that the diffeomorphism ¢, f admits the
same k-periodic points as f for all k € {1,...,d}.

For all £ € {1,...,d}, we have BN fY(B) = 0 and BN f~4(B) = 0. Tt
follows that & (f(B)) = f4(B) for all £ € {—d, ..., d}, hence

(@& H*(FB) = f*Y4B) Vke{l,...,d}, YLe{0,...,d}.

Since f~¢(B) N f*4(B) = () for such k, ¢, this implies & f has no k-periodic
points with 1 < k < d in (Ji_, f~(B).

We now fix k € {1,...,d}. Ifx ¢ i, f~4(B), then (¢& 0 f)F(z) = f*(z).
As a consequence, the k-periodic points of ¢g, o f are exactly those of f.

We will now prove that the corresponding action values coincide as well.
For that purpose, it is convenient to use an isotopy generating the (g o f )k
obtained by concatenation of isotopies rather than composition. Namely, the
map (% o f)* is the time-1 map of the isotopy 1!, which at time t € [%, @'—kl]
for £ € {0,...,2k — 1} is given by

Wt = ‘P%(thie) o (pg o f)g if ¢ is even,
w0 fo (g0 fF if s odd.

Here, p : [0,1] — [0, 1] is a non-decreasing smooth function which is equal to
0 near 0 and equal to 1 near 1. The role of the time-reparametrization p is
simply to make the isotopy smooth at the gluing times.
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This isotopy is generated by the Hamiltonian K given by the formula

K 2kp' (2kt — ) Fyopt—0) () if ¢ is even,
€Tr) =
! s/ (2kt — 0)Glyponi_py(x)  if £is odd
for £ € {0,...,2k — 1} and ¢ € [, S1].
We will compute the spectrum of ¢f, o f with the help of this particular
Hamiltonian. The action of a capped 1-periodic orbit (z,u) of K, with z =

ot (), is given by

1 2k—1 @'Tl .
AK(z,u):/Dzuw—l—/O K0 (x))dt:/D2uw+ g/e Ky (2) dt
k=1, ‘
= [t X (/0 Fil@h o (¢ 0 () de

1 .
+ / Gl o fo (gl o fYi(a) dt) ,
0

after suitable change of variable. Since we showed above that ¢¢, o f has no
k-periodic points in f~1(B), we know that f o (¢g o f)7(x) does not belong
to B, hence to the support of G. It follows that the integrand for the third
integral above has to vanish and the integrand for the second integral above
can be simplified, so that we get

k=1 .
Axtz = [ wos 3 [ Fido fi) i
D2 =070
We see that this action does not depend on s. As a consequence, we get that
Specy(péf) = Specy(f) for all s € [0, 1]. O

The proof of Lemma 5.6 remains. Its proof will consist of two steps. First,
by Lemma 5.7 below, a diffeomorphism that is sufficiently C°-close to identity
can be appropriately fragmented into maps supported in balls of small area.
Second, we observe that moving these maps with small support into B can be
achieved with small Hofer norm; this is the content of Lemma 5.8 below.

Before starting the proof of Lemma 5.6, let us state the first of these two
lemmas.

LEMMA 5.7 ([LRSV21, Lemma 47]). Let wy denote the standard area form
on R?. Let m be a positive integer and p a positive real number. For i =
1,...,m, denote by U; the open rectangle (0,1) X (%, #) Then, there exists
d > 0, such that for every g € Diff.((0,1) x (0,1),wq) with dco(g,1d) < 4, there
exist g1 € Diff (U1, wo), . .., gm € Diffc(Up,,wp) and 6 € Diff.((0,1) x (0, 1),wo)
supported in a disjoint union of topological discs whose total area is less than p,
such that g=g¢10---0¢gm00.
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We can now give the promised proof.

Proof of Lemma 5.6. Let € > 0. We pick an integer N satisfying ﬁ <

area(B), m a positive multiple of N such that 2% <eand p=1

o

Let & be as provided by Lemma 5.7, and let g € Diffg (S?,w) be such
that dco(g,Id) < §. The map g admits a fragmentation into the form g =
g1 0---0gmof, with all the g; supported in pairwise disjoint topological discs

U; of area ﬁ and 0 supported in a disjoint union of discs of total area less than
1
%.
has area %, while Lemma 5.7 is stated on (0,1) x (0,1) which has area 1.)

m

(Here, the factor % comes from the fact that the northern hemisphere S™

o
For j =1,..., N, denote by f; the composition f; := Hi]io gj+in. Also
write fy41 := 6, so that noting that the g; commute, we have the following
formula:

N+1
g=11 5
j=1
2
Each f; for j = 1,...,N is supported in V; = Uz‘]io Uj+in whose area is

ﬁ < area(B). Note that Vj is a disjoint union of discs, each of area ﬁ
By assumption, the support of fyi;1 = 6, which we denote by Vi1, is also
included in a disjoint union of discs of total area smaller than ﬁ

Let us now state our second lemma, whose proof we postpone to the end

of this section.

LEMMA 5.8. Let a € (0, %), let By,...,B, C ST be pairwise disjoint open
topological discs each of area smaller than a, and let B C ST be a topological
disc with area(B) > ka. Then, there erxists a Hamiltonian diffeomorphism
h € Diffga\ 1, 1(S? w) that maps B1U---U By, into B and satisfies ||h| < 2a.

In our situation, this lemma implies that for any j = 1,...,N + 1,
there exists a Hamiltonian diffeomorphism h; € DiﬁSQ\{p_}(S2,W), such that
hs(V;) € B and |l < &.

Consider the diffeomorphism

N+1

¢ = thofjohjfl.

J=1

By construction, ¢ is supported in B. We will show that ||¢~'g|| < e, which
will achieve the proof of Lemma 5.6.

To prove that ||¢~1g| < ¢, let us introduce g = f1 o0 fa0---0 fi and
oK = (hloflohl_l)o(hgofgohgl)o---o(hkofkohlzl) fork=1,...,N+1.
In particular, gnyy+1 = g and ¢n+1 = ¢. Then, for all k =1,..., N, we have

Grir © Gra1 = hisr 0 (fily 0 hirty © fug1) © (fiy © (0 © Gk) © frs1)-



PROOF OF THE SIMPLICITY CONJECTURE 223

Thus, by the triangle inequality and the conjugation invariance,

1 - , 1. 2 1 -
19341 © Gl < Mweall + Ry |+ lldy o gull < -+ lo% o grll-

Hence, by induction, [|¢; 'og;|| < 2, and so |¢~tog|| <28t < ¢, as wished. O

— m?

The last remaining proof is now the following.

Proof of Lemma 5.8. Let U := By U ---U Bg. Since U has smaller area
than B, there exists a Hamiltonian diffeomorphism ¢ € Diffg+(S?,w) such
that ¥ (U) C B. The Hofer norm of ) may not be small, but we will replace 9
with an appropriate commutator of ¢ whose Hofer norm will be controlled.

Since the displacement energy of U is smaller than a < %, there exists a
Hamiltonian diffeomorphism ¢ € DiﬁSQ\{p_}(SQ, w) such that 4(U)NU = () and
1l < a.

Since /(U) has area smaller than %, there exists y € Diﬁ‘SZ\{pi}(SQ,W)
that fixes U and such that x(¢(U)) N ST = @), which in particular implies that
x(U(U))Nsupp(¢p) = 0. Then, ¢ = yolox~! satisfies the following properties:

i) /(U)NU =0,

(i) ]| <a,

(iii) ¢(U) Nsupp(v) = 0.
To prove Property (i), start from £(U) N U = () and compose with x, to get
x o l(U) N x(U) = 0. Since U = x 1 (U), we obtain xyolox HU)NU = 0,
hence Property (i). Property (ii) follows from the conjugation invariance of the
Hofer norm. Property (iii) is a consequence of Property (i), since y fixes U.

Now, set h := 1 ol~toyp~tof'. By Property (iii), #/~Loyp~tol/(U)=U.
Thus, h(U) = (U) C B. Moreover,

IRl <l o 7 o ™M + 1] = 2]1€']| < 2a.

This concludes our proof. O

6. The periodic Floer homology of a monotone twist

In this section we explain how to compute PFH for certain twist maps;
more precisely, we give a combinatorial model of the PFH chain complex for
such maps. As we explain, this leads to a combinatorial formula for computing
PFH spectral invariants. We then use this formula to deduce Theorem 3.7. As
mentioned above, the formula has also had further applications; see [CGHS23]

6.1. Perturbations of rotation invariant Hamiltonian flows. Throughout
this section, we consider Hamiltonian flows on (S?,w = ﬁd@ A dz) for an

autonomous Hamiltonian

H = Sh(z),



224 D. CRISTOFARO-GARDINER, V. HUMILIERE, and S. SEYFADDINI

where h is some function of z. We have
(36) Xy = 2wh (2)0.
Hence,

0k (0,2) = (0 + 21k (2), 2)
We further restrict A to satisfy

h' > 0,h" > 0,h(—1) = 0.

Furthermore, we demand that h'(—1), /(1) are irrational numbers satis-
fying h'(—1) < = and [A'(1)] —h'(1) < =, where € is a small positive number
and [-] denotes the ceiling function. Let D denote the set of Hamiltonians H
that satisfy all of these conditions, and observe that D C H, where H was
defined in Section 4.3. As a consequence of Theorem 4.5, we have well-defined
PFH spectral invariants cg k(o) for all H € D.

The periodic orbits of ¢}, are then as follows:

(1) There are elliptic orbits p; and p_, corresponding to the north and south
poles, respectively.

(2) For each p/q in lowest terms such that A’ = p/q is rational, there is a circle
of periodic orbits, all of which have period gq.

These circles of periodic orbits are familiar from Morse-Bott theory, and are

sometimes referred to as “Morse-Bott circles.” There is also a standard gp}q-
admissible'® almost complex structure Jyq respecting this symmetry; its action
on ¢ = T(S? x {pt}) = TS? is given by the standard almost complex structure
on S2.

As is familiar in this context (see [HS05, §3.1]), we can perform a C2-small
perturbation of H, to split such a circle corresponding to the locus where
h' = p/q into two periodic orbits, one elliptic and one hyperbolic, such that the
elliptic one e, 4 has slightly negative monodromy angle, and the eigenvalues for
the hyperbolic one h,, are positive. Furthermore, the C?-small perturbation
can be taken to be supported in an arbitrarily small neighborhood of the circle
where A’ = p/q. More precisely, given a (p}{ such as above, we can find a
perturbation of ¢}, satisfying the properties listed in the definition below.

Definition 6.1. Consider ¢}, as above, and fix any positive d and ¢ > 0.
We call an area-preserving diffeomorphism g of S? a nice perturbation of i
if it satisfies the following properties:

18This means that the almost complex structure is compatible with the standard SHS on
the mapping torus for ¢};.
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(1) The only periodic orbits of ¢g that are of degree at most d are p4,p_, and
the orbits e, , and hy 4 from above such that ¢ < d. Furthermore, all of
these orbits are non-degenerate.

(2) The eigenvalues of the linearized return map for e, , are within ¢ of 1.

(3) @08, 2) = (0, 2) as long as z is not within € of a value such that /' = p/q
where ¢ < d.

(4) ¢o is chosen so that “Double Rounding” cannot occur for generic J close
to Jstq. See Section 6.2 for the definition of Double Rounding.

Observe that, for a given nice perturbation g, we can pick a time-
dependent Hamiltonian H such that cpllq = o and H = H as long as z is
not within e of a value such that A’ = p/q with ¢ < d.

6.2. The combinatorial model. We now aim to describe the promised com-
binatorial model of PFH for the Hamiltonians described in the previous section.
For the remainder of this section, fix d € N and ¢};, where H € D.

To begin, define a concave lattice path to be a piecewise linear, continuous
path P, in the xy-plane, such that P starts and ends on integer lattice points,
its starting point is on the y-axis, the nonsmooth points of P are also at integer
lattice points, and P is concave, in the sense that it always lies above any of the
tangent lines at its smooth points. Moreover, every edge of P has slope between
zero and [h/(1)]. We say a concave lattice path is labeled if each of its edges
is labeled by either e or h, and an edge whose slope is either zero or [h/(1)] is
labeled e. Below, we will establish a bijection between labeled concave lattice
paths as defined in the previous paragraph and PFH generators (a, Z).

Let o« = {(a,m;)} be an orbit set of degree d for a nice perturbation ¢
of go}{. First of all, recall that the simple Reeb orbits for Y,,,, with degree no
more than d are

(1) the Reeb orbits 4 corresponding to py;

(2) for each z such that h'(z) = p/q in lowest terms, where ¢ < d, there are
Reeb orbits of degree ¢ corresponding to the periodic orbits e, , and hp 4,
which we will also denote by e, ; and hp 4.

We will now associate to the PFH generator o = {(a4,m;)} a labeled
concave lattice path P, whose starting point we require to be (0,0). If (y—,m_)
€ a, we set v_ = m_(1,0) and label it by e. If (y4,m4) € a, we set vy =
m4(1,[R/(1)]) and label it by e. Next, consider the orbits in « corresponding
to z = zp 4 such that h'(z) = p/q; note that there are at most two such entries
in a: one corresponding to e/,
entries, we associate the labeled vector vy, 4 = my, 4(q, p), where my, 4 is the sum
of multiplicities of e, /, and h,,/,; the vector is labeled h if (h,/4,1) € a, and e
otherwise. (For motivation, note that by the conditions on the twisted PFH

and another corresponding to hy,/,. To these
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Figure 1. The lattice path P,z for a = {(hy3,1), (€3, 1),
(hass, 1), (ea3,1), (€2,2)}, Z = Zo — 3[S?], and P, z for o =
{(7-+3), (e2/0, 1) Uy, 1), (v, )}, 2/ = Zo + 4[] (assuming
[R'(1)] = 4).

chain complex, an m; corresponding to a hyperbolic orbit must equal 1.) To
build P, from all of the data in ¢, we simply concatenate the vectors v_, v, 4, v+
into a concave lattice path. Note that there is a unique way to do this: the

path must begin with v_, it must end with vy, and the vectors v,,, must be

p/q
concatenated in increasing order with respect to the ratios p/q.

Now, given a twisted PFH generator (a, Z) for ﬁf‘é, we define a mapping
(Oé, Z ) — Pa’ 7,

which associates a labeled concave lattice path P, z to (a,Z). More specifi-
cally, when Z = Z,, where Z, is the class defined in Section 4.3.1, we define
P, z. to be the labeled concave lattice path P,. Since Ha(Y,) = Z, generated
by the class of S? x {pt}, for any other (o, Z), we have Z = Z,+y[S?]. We then
define P, z to be P, shifted by the vector (0,y). We leave to the reader to check
that the mapping defined here is a bijection between generators («, Z) € PFC
of degree d and labeled concave lattice paths with horizontal displacement d;
for simplicity, we sometimes call the horizontal displacement the degree of the
lattice path. Figure 1 shows two examples of such concave lattice paths.
We now state some of the key properties of the above bijection

(Oé,Z) — Pa,Z-

Action: Define the action A(P,, z) as follows. We first define the actions
of the edges of P, 7z by the following formulae:
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where v_, v, and v, 4 are as above. We then define the action of P, . to be

(37) A(Poz) =y + A(vy) + Z A(vp,g);

Up,q

where y is such that P, 7 begins at (0,y).

We claim that by picking the nice perturbation ¢g to be sufficiently close
to ¢l we can arrange for A(a, Z) to be as close to A(P,, z) as we wish. To
show this it is sufficient to prove it when « is a simple Reeb orbit and Z = Z,,
where Z, is the relative class from Section 4.3.1. We have to consider the
following three cases:

o If « = ~_, then A(a,Z,) = 0, by equation (31), which coincides with
A(1,0).

o If @« = 74, then A(a, Z,) = @, by equation (31), which coincides with
A(1,[W(1)]). Note that in equation (31), the term [, uw is zero.

e The remaining case is when o = e, 4 or hy4; here, it is sufficient to show
that the action of the Reeb orbits at 2,4, for the unperturbed diffeomor-
phism ¢}, is exactly the quantity % (p(1 — 2p4) + qh(zp4)). This follows
from equation (31): the term [, ufw is exactly 1p(1 — 2z,4) and the term

foq Hy (% (q))dt is exactly %qh(zp,q).

Index: Next, we associate an index to a concave lattice path P that begins
at a point (0,y), on the y-axis, and has degree d.

First, we form (possibly empty) regions Ry, where R_ is the closed region
bounded by the x-axis, the y-axis, and the part of P below the z-axis, while
R, is the closed region bounded by the z-axis, the line z = d, and the part
of P above the z-axis. Let j; denote the number of lattice points in the
region R, not including lattice points on P, and let j_ denote the number of
lattice points in the region R_, not including the lattice points on the z-axis;
see Figure 2 below. We now define

(38) J(P) = j(P) = j-(P).

This definition of j is such that if one shifts P vertically by 1, then j(P)
increases by d + 1

Given a path P, 7, associated to a PFH generator («, Z), we define its
index by

(39) I(Pa,Z) = 2j(Pa,Z) —d—|—h,

where h denotes the number of edges in P, z labeled by h. See Figure 2 for
an example of a computation of this combinatorial index. It will turn out that
I(P,,z) coincides with the PFH index of I(c, Z) as defined in equation (16).
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A P

_0
¢

Figure 2. The lattice points included in the count of j(P) are
circled. On this example, j.(P) =6, j_(P)=5,d =6, h =1,
thus j(P) =1 and I(P) = —3.

Corner rounding and the differential: Lastly, we define a combinatorial
process that corresponds to the PFH differential. Let P be a concave lattice
path of degree d that begins on the y-axis; note that for the moment we do not
suppose that Pg is labeled. Then, if we attach vertical rays to the beginning
and end of Pg, in the positive y direction, we obtain a closed convex subset Rg
of the plane; see Figure 3. For any given corner of Pg, where we include the
initial and final endpoints of Pg as corners, we can define a corner rounding
operation by removing this corner, taking the convex hull of the remaining
integer lattice points in Rg, and taking the lower boundary of this region,
namely the part of the boundary that does not consist of vertical lines. Note
that the newly obtained path is of degree d.

Figure 3. The region Rg.

Now suppose that P, and Pg are two labeled concave lattice paths. We
say that P, is obtained from Py by rounding a corner and locally losing one h if
P, is obtained from Pg by a corner rounding such that the following conditions
are satisfied; see the examples in Figure 4:

(i) Let k denote the number of edges in Pg, with an endpoint at the rounded
corner, which are labeled h. We require that £k > 0; so k=1 or k = 2.
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(ii) Of the new edges in P,, created by the corner rounding operation, exactly
k — 1 are labelled h.

(iii) The edges in P, that coincide with an edge of P, or are contained in an
edge of Pg, keep the same labels as in Pg.

Figure 4. Some examples for the “rounding corner and locally

losing one h” operation. The path Pj is in black, the new edges
in P, are in grey. The rounded corner is circled. We only label
the relevant edges.

Similarly, we can give the promised definition of the “Double Rounding,”
which has already been introduced in Section 6.1. Namely, if Pg 7 has three
consecutive edges, all labeled by h, we say that P, z is obtained from Pg 7/ by
double rounding if we remove both interior lattice points for these three edges,
take the convex hull of the remaining lattice points (in the region formed by
adding vertical lines, as above), and label all new edges by e.

The notions introduced above and the proposition below give a complete
combinatorial interpretation of the twisted PFH chain complex:

PROPOSITION 6.2. Fix d > 0, and let @y be a nice perturbation of go}{,
where H € D. Then, for generic pg-admissible almost complex structure J
close to Jgq, the bijection

(Oé, Z) — Poc,Z

between the set of PFH generators of degree d and the set of concave lattice
paths of degree d has the following properties:



230 D. CRISTOFARO-GARDINER, V. HUMILIERE, and S. SEYFADDINI

(1) Ale, Z) ~ A(Pa.z);
(2) I(e, Z) = I(Pa.z);
(3) (0(v, 2),(8,2")) # 0 if and only if P, 7z is obtained from Pg 7z by rounding

a corner and locally losing one h.

Here, by A(a, Z) ~ A(Py,z), we mean that by choosing our nice pertur-
bation @ sufficiently close to 4,0}{, we can arrange for A(a, Z) to be as close
to A(Py,z) as we wish.

Proof. We have already proven the first of the three listed properties in
the above proposition. The other two properties follow from adapting the
arguments in [HS06], [HS05] to our setting, so for brevity we will not provide
the details. For the interested reader, we have provided an outline’ of the
necessary modifications in Appendix A. O

6.3. Computation of the spectral invariants. With the combinatorial model
behind us, we now explain how to compute some relevant PFH spectral invari-
ants via Theorem 6.3 below. This will be used in our proof of Theorem 3.7.

We will need to introduce some notation and conventions before stat-
ing, and proving, the main result of this section. Throughout this section,
we fix ¢ to be a (smooth) positive monotone twist map of the disc. Recall
from Remark 4.6 that we define PFH spectral invariants for maps of the disc
by identifying Diff.(ID,w) with maps of the sphere supported in the northern
hemisphere St C S?, where the sphere S? is equipped with the symplectic form
w = ﬁd@ Adz.

Every monotone twist map of the disc ¢ can be written as the time—1 map
of the flow of an autonomous Hamiltonian

1
H = ih(Z),
where h : S? — R is a function of z satisfying
' >0,h" >0,h(-1) =0,k (-1) =0.

This will be our standing assumption throughout this section. For the main
result of this section, Theorem 6.3, we will need to impose the additional
assumption that

(40) K'(1) € N,

The reason for imposing the above assumption is that in our combinatorial
model, Proposition 6.2, h'(1) is assumed to be sufficiently close to [h'(1)].

9For a very interested reader, an extremely detailed exposition can be found in [CGHS20,

§5).
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Observe that every Hamiltonian H as above can be C°° approximated by the
Hamiltonians considered in Section 6.1.

Although ¢ is degenerate, we can still define the notion of a concave lattice
path for ¢ as any lattice path obtained from a starting point (0, y), with y € Z,
and a finite sequence of consecutive edges vy, 4,, © = 0, ..., ¢, such that

® Uy 0, = My, ¢ (i, i) With ¢;, p; coprime;
e the slopes p;/q; are in increasing order;
e we have 0 < po/qo and pg/qe is at most h/(1).

If po = 0, as in Section 6.2 we will define v_ = m_(1,0) = vpy 4. If
pe/qe = R (1), we will define vy = my (1,1 (1)) = vy, 4. We also let z,4 be
such that h'(zp4) = p/q.

We can also define the action of such a path just as in Section 6.2: We
first define

h(1 m
(1) Ay =0, Aw) =m0 Awy0) = "1~ 2) +ah(z00).
We then define the action of a concave lattice path P to be
(42) A(P) =y+ Alvy) + > Alvpg)-

Up,q

The definition of j(P) from Section 6.2 (see equation (38)) is still valid
here. With this in mind, we have the following:

THEOREM 6.3. Let ¢ € Diff.(D,w) be a monotone twist satisfying the
assumption (40). Then, for all integers d > 0 and k = d mod 2,

(43) cak(p) = max{A(P): 2j(P) —d = k},

where the max is over all concave lattice paths P for ¢ of horizontal displace-
ment d.

We remark that there exist similar formulas for ECH capacities of concave
[CCGFT14, Th. 1.2.1] and convex [CG19, Cor. A.12] toric domains; see also
[Hut11] for earlier related results.

Proof. We can take a C°° small perturbation of ¢ to a d-nondegenerate
Hamiltonian diffeomorphism g, which itself is a nice perturbation of some cp}{,
where H € D as in Section 6.1.

Since ¢g () is the limit of cqx(p0), as we take smaller and smaller per-
turbations, to prove (43) it suffices to show that an analogous formula holds for
ca k(o). We will achieve this by proving that the spectral invariant cq (o)
is carried by the element o of the PFH chain complex for ¢q given by

o= Z(Q,Z),
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where the sum is over all twisted PFH generators («, Z) where « consists of only
elliptic orbits, is of degree d and I(«, Z) = k. Equivalently, the corresponding
concave lattice path P, 7 has edges that are all labeled e, and it has degree d
and index k. Note that here, since « consists of only elliptic orbits, I(«, Z) =
2j(Pa,z) — d. To see why the above sum defining o is finite, note that since ¢
is non-degenerate, there are only finitely many twisted PFH generators (o, Z)
with degree d and index k.

We first claim that o is in the kernel of the PFH differential. Indeed,
by Proposition 6.2, the differential is the mod 2 sum over every (f,Z’) such
that P, 7z can be obtained from Pg 7/ by rounding a corner and locally losing
one h. Fix one such Pg 7. It has exactly one edge labelled h, and so there
are exactly two concave paths, say P, z and P&’ 7, which are obtained from
Pg 7 by rounding a corner and locally losing one h. The two paths P, 7 and
P 5 are different because, for example, when you round the two corners for
anﬁedge, one rounding contains one of the corners, and the other contains the
other corner. Now, («, Z) and (&, Z) both contribute to o and thus, (8, Z')
appears exactly twice in the differential of ¢; hence, its mod 2 contribution to
the differential is zero. Consequently, we see that o is in the kernel of the PFH
differential.

Now, by Proposition 6.2, no concave path with all edges labeled e is ever
in the image of the differential, because the concave path corresponding to
the negative end of a holomorphic curve counted by the differential has more
edges labeled h than the concave path corresponding to the positive end, and
in particular has at least one edge labeled h. So, [o] # 0 in homology. In fact,
o must carry the spectral invariant for similar reasons. Specifically, if there is
some other chain complex element ¢’ homologous to o, then o + ¢’ must be
in the image of the differential. Nothing in the image of the differential has
a path with all edges labeled by e, so ¢/ must contain all possible paths of
degree d and index k with all edges labeled by e, and so its action must be at
least as much as o. This shows that cqx(¢o) is given by the action of o, which
completes the proof. O

COROLLARY 6.4. Under the assumptions of Theorem 6.3,20 we have
ca k() < carr2(¥)
for any (d, k).

Proof. If o is the identity, then the corollary holds by direct computation,
as in our proof of the Normalization property in Theorem 4.5. Otherwise, if we

20For more general ¢, (46) can still be established, by using the PFH “U-map,” but we
will not need this in the present work.
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take an action maximizing path of index k, with all edges labeled e as above,
we can always round a corner, and then the grading increases by 2, and the
action does not decrease. O

6.4. Proof of Theorem 3.7. We now prove Theorem 3.7, which establishes
the Calabi property for monotone twist maps of the disc that were introduced
in Section 3.2.

Theorem 3.7 will follow from the theorem below for the invariants cq,
which was originally conjectured in greater generality by Hutchings [Hut17].

THEOREM 6.5. Let (kg), d =1,2,... be a sequence of integers, with kg =
d mod 2 for any d. Then, for any positive monotone twist v, we have

(44) Cal(p) = lim (Cd”“jl((p) - Q(dzk i d)) :

A first observation, concerning equation (44), which is also due to Hutch-
ings, is that it suffices to establish (44) for a single such sequence (d, kg) with
d=1,2,... ranging over the positive integers. Indeed, for d-nondegenerate ¢,

there is an automorphism of the twisted PFH chain complex given by
(o, Z) = (a, Z +[S%)),

where [S?] denotes the class of the sphere. By [Hut02, Prop. 1.6], this increases
the grading by 2d + 2. It also increases the action by 1. So, we have

(45) Cdkv2d+2(p) = car(p) +1

for all . Now, the right-hand side of equation (44) is invariant under increasing
the numerator of the first fraction by one, and increasing the numerator of the
second fraction by 2d + 2. Moreover, by Corollary 6.4 we obtain

(46) car(p) < car (),

when k' > k, with k = k' = d mod 2 and ¢ a positive monotone twist. Thus,
given an arbitrary sequence kg, we can assume by the above analysis that kg
is within 2d + 2 of k4, and ‘Cd,icd — ¢4 k,| < 1; the limit on the right-hand side
of (44) is then the same for ¢q 4, and Cajiy

We now give a proof of Theorem 6.5. It is sufficient to prove Theorem 6.5
for monotone twists ¢, which can be written as ¢}, with the Hamiltonian H
satisfying (40). This is because the left- and right-hand sides of equation 44,
i.e., the Calabi invariant and the PFH spectral invariants, are (Lipschitz) con-
tinuous with respect to the Hofer norm and, moreover, every monotone twist
can be approximated, in the Hofer norm, by monotone twists satisfying (40).
Hence, we will suppose for the rest of this section that our monotone twists ¢
satisfy (40). This allows us to apply Theorem 6.3.
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Our proof relies on a version of the isoperimetric inequality for non-
standard norms, which we now recall; the idea of using this inequality comes
from Hutchings’ proof in [Hut11, §8] of the “Volume Property” for ECH spec-
tral invariants for certain toric contact forms.

Let © C R? be a convex compact connected subset. Using the standard
Euclidean inner product, the dual norm associated to €, denoted || - ||, is
defined for any v € R? by

(47) |lv]|§ = max{v-w:w € 0N}.

Let A C R? be an oriented, piecewise smooth curve and denote by £o(A) its
length measured with respect to || - ||g. When A is closed, its length remains
unchanged under translation of ).

For our proof, we will suppose that €2 is the region bounded by the graph
of h, the horizontal line through (1, h(1)), and the vertical line through (-1, 0).
Denote by Q the region obtained by rotating {2 clockwise by ninety degrees;
see Figure 5. We orient the boundary 9 counterclockwise with respect to any
point in its interior.

Figure 5. The convex subsets €2, Q.

Proof of Theorem 6.5. Let P be a concave lattice path of horizontal dis-
placement d for ¢. Complete the path P to a closed, convex polygon by adding
a vertical edge at the beginning of P and a horizontal edge at the end; orient
this polygon counterclockwise, relative to any point in its interior; and, rotate
it clockwise by ninety degrees. Call the resulting path A; see Figure 6. We will
need the following lemma.

LEMMA 6.6. The following identities hold:
(1) €a(9) = 2(2h(1) — 1), where I := [ h(z)dz;
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Figure 6. The path P and the closed path A.

(2) la(A) = dh(1)+2y+2V —2A(P), where V denotes the vertical displacement
of the path P.

Proof of Lemma 6.6. According to the Isoperimetric Theorem [BM94], for
any simple closed curve I', we have

(48) (3() > 4A(Q)A(T),

where A(Q2) and A(T") denote the Euclidean areas of © and the region bounded
by I, respectively. Moreover, equality holds when I' is a scaling of a ninety
degree clockwise rotation of 9€2; see [Hutll, Example 8.3]. The first item
follows immediately from the equality case of the theorem applied to I' = o0
because A(T") = A(Q2) = 2h(1) — I. Alternatively, item (1) could be obtained
via direct computation.

We now prove the second item. The length of the polygon A is given by
the sum > .ca |le]ls, where the sum is taken over the edge vectors e of A. It
follows from the method of Lagrange multipliers that

lelle = e - pe

for some point p. € 92, where e points in the direction of the outward normal
cone at p.. Hence, we can write

(49) lo(A)=> e-pe=Y e (p.—m),
ecA ecA

where the second equality holds, for any m € R?, because A is closed. We will
calculate fq(A) using the choice m = (1,0).

Let e denote one of the edges of A corresponding to a vector v,, =
Mmyp.q(q,p) in P. Now, we have e = my 4(p, —¢q), since we are taking a ninety
degree clockwise rotation; moreover, p. — m = (zp 4 — 1, h(2p4)). Thus,

e (pe —m) =mypq(p,—q) - (2pq — 1, h(2p,q))
= Mp,q (P(2p,g — 1) — qh(zp,q))
= —2A(vp,q),

where the final equation follows from (41).
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If e is an edge of A corresponding to either of the vectors v = v_ =
m—(1,0) or v =vy =m4(1,[h'(1)]), then a similar computation to the above
yields e - (pe — m) = —2A(v). Summing over all of the edges e of A, corre-
sponding to vectors in P, we obtain the quantity

(50) 2 — 2A(P).

The remaining two edges of A are the vectors e; = (0,d) and e = (—V,0)
for which we have

€1 (pe1 - m) = (O’d) : (_1vh(1)) = dh(l)v

(51) €2 - (pez - m) = (_V’O) ' (_270) =2V.

We obtain from equations (49), (50), and (51) that o(A) = dh(1) + 2y +
2V — 2A(P). O

Step 1: Calabi gives the lower bound. Here, we will prove the lower bound
needed for establishing equation (44). In other words, we will show that for
any sequence (kq), we have

Caky(p) 1 kg )
d 2d>+d/°

To prove the above, fix ¢ > 0. We will show that for all sufficiently large
positive integers d, there exists a sequence of concave lattice paths {F; 4}, such

that
A(Psd) 1 kd >
() — ) <e,
Cal(y) ( d s +d)|S°

(52) Cal(y) < liminf (

d—o0

(53)

where kg = 2j(P.4) — d denotes the combinatorial index of P. 4. By Theo-
rem 6.3, we have A(P:4) < cqx,(p) and, by the argument we explained in
Section 6.4 (see the discussion after Theorem 6.5), proving (52) for one se-
quence kg with d ranging across all sufficiently large positive integers proves
it for all such sequences, and so we conclude (52) from the above, since ¢ was
arbitrary.

We now turn to the description of the concave paths P 4. Let P be a
concave path approximating the graph of h such that it begins at (—1,0),
ends on the line x = 1, is piecewise linear, and its vertices are rationals with
numerator an even integer and denominator d. Let A be the convex polygon
obtained as follows: Add a vertical edge at the beginning of P and a horizontal
edge at the end of it; orient this polygon counterclockwise, relative to any point
in its interior; and, rotate it clockwise by ninety degrees. The convex polygon
A approximates o). More precisely, given €, we pick, for all sufficiently large
positive integers d, paths P, subject to the conditions above, and such that

(A) P is within ¢ of the graph of h;



PROOF OF THE SIMPLICITY CONJECTURE 237

(B) [la(A) — Lo (0$)| < e, which by Lemma 6.6 is equivalent to
[la(A) — 2(2h(1) — I)| < g
(C) the area of the region under the path P, and above the z-axis, is within
e of I.
Let P, 4,A; q be the images of P, A, respectively, under the mapping

d
(z,y) = Sz +1y).
The path P. 4 is a concave lattice path of degree d. Recall that Cal(p) = 11.

We will prove the two inequalities below, which will imply equation (53):

‘A(Pa7d)_l‘<3s
d 21 S 4
(54)
1 kd I e
— . <,‘
2d2+d 4 4

@. By Lemma 6.6, and using the fact that

We first examine the term
lo(Azq) = 3o (A), we obtain

-A(Pa,d) :dh(l) + 2V — EQ(Ae,d)

d 2d
_h(1) V. fo(d)
“2 Td T
|4 € h(1)

By item (A) above, the term 3 is within § of =~*. By item (B) above,
the term £ (A) is within € of 2(2h(1) — I), hence the first inequality in (54).

As for the second inequality, we know that, up to an error of O(d), the
index kg is twice the area between the x-axis and the path P; 4. Because F; 4
is a scaling of P by a factor of ¢, item (C) above implies

> 42 d?
—5 e+ 0d) Shi— 1< 5e+0(d),

which for sufficiently large d yields the second inequality in (54). O

Step 2: Calabi gives the upper bound. We now complete the proof of The-
orem 6.5. We emphasize again, for the convenience of the reader, that as
mentioned in Remark 3.10, we do not actually need this step of the proof for
the proof of our main result Theorem 1.2.

To complete the proof, we need to show that

. car(p) 1k )
1(p) >1 ( : - = .
To do this, we will show that
. AP) 1 k )
(9> s (AF) 1
(56) Cal(y) msup (=5 = 5wy

for all degree d concave lattice paths P of combinatorial index k.
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Let P be a concave lattice path of degree d and combinatorial index k. Let
E be a real number with £ > h(1) and E > %, and let Qp be the compact
convex subset of R? bounded by the graph of h, the vertical segments {—1} x
[0, E] and {1} x [h(1), E], and the horizontal segment [0, d] x { E'}. For example,
with the notation of Lemma 6.6, we have 0 = ;). Inequality (56) will follow
from letting E tend to oo after applying the isoperimetric inequality (48) to
the domain Qg and to the following curve Ag.

To define A, consider the region delimited by our lattice path P, the
vertical segments {0} x [y, y + 2] and {d} x [y+V,y+ %], and the horizontal
segment [0, d] x {y+%£}. Our curve Ag is the boundary of this region, rotated
clockwise by ninety degrees; see Figure 7.

—1T 10 I Y

Figure 7. The convex subset Qg and the path Ag.

The isoperimetric inequality (48) gives
(57) (%, (Ap) > 4A(2p)A(Ap).
The area factors are easily computed. We have
AQE)=2E -1, A(Ag)=3id°E —a(P),

where a(P) denote the area of the region between P, the horizontal segment
[0,d] x {y} and the vertical segment {d} x [y,y + V] (in grey on Figure 7).
Moreover, a computation similar to that of item (2) in Lemma 6.6, gives

lo,(Ag) = 2dE + 2y — 2A(P).
Thus, (57) gives
(2dE + 2y — 2A(P))? > 4(2E — I)(3d*E — a(P)).
After simplification, we obtain

—2dEA(P) + A(P)? + 2dEy — 2y A(P) + y* > —2a(P)E — 1d®EI + Ia(P).
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Dividing by 2d?E and letting E go to +oo then yields:
11 > A(P)  a(P)+ dy.
4 d d?

Now 2a(P) + 2dy corresponds to k up to an error O(d). Thus, for all sequence

of paths P; of degree d and index kg,

(A(Pd>_1 ka )
d 2d2+d/’

1
ZI > lim sup

d—o0

from which (56) follows.

Appendix A. More about combinatorial PFH and ECH

The purpose of this appendix is to give an outline of the argument from
[HS06], [HS05], adapted to our setting, that was promised in Proposition 6.2.

Preliminaries: Comparison with previous results. We first review the se-
tups in [HS06], [HS05], [Chol6] to clarify for the reader the ways in which
our setting differs from the settings for previously known results. The papers
[HS06], [Cho16] consider a number of manifolds, including the case of St x §2,
which is the one relevant to us here, and they give a combinatorial model very
much analogous to the one in Proposition 6.2. However, they are about toric
contact forms and they give a combinatorial presentation for the corresponding
ECH, while what we need for the proposition is about PFH. The paper [HS05]
is about PFH and gives a combinatorial model for the chain complex that is
analogous to the one in Proposition 6.2; however, it is only for Dehn twists,
while we are interested in monotone twist maps of S?. However, as we will see
below, none of these differences are serious for the arguments.

Outline of the proof of Proposition 6.2.

Step 1: Computation of the index. We first sketch how to prove the sec-
ond item in Proposition 6.2, which gives a combinatorial interpretation of the
ECH index I. We assume here, and throughout this appendix, that we have
trivialized the mapping torus via (19).

Given an orbit set a, we first define a relative homology class Z/, € Ho(S?x
St a, dy_) as follows. Write o = {(v_,m_)} U{ (s, m;)}s U{ (74, m+)}, where
each (a;,m;) is either an (hy, 4, 1) or an (ep, /g, Myp,/q,). We define 7, :=
m_Z" +myZ\ + >, miZ,,, where
o 7' € Ho(S? x S',y_,~_) is the trivial class;

o 7' € Hy(S* x S',v4,~_) is represented by the map

Sy 10,1 x [0,¢] — $? x Sl? (s,t) — (Rt(h’(l)] (n(s)), 1),

where 7 is a meridian from the South pole p_ to the North pole py, and
R;,. denotes the rotation on S? by the angle 27tx;
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o for o = ep 4 or hy g, the relative class Z),, € Ho(S? x St ay,qy-) is repre-
sented by the map

Sai : [O’ 1] X [O’q] — S2 X Sl’ (Sat) = (Rtg (7](8))7t)7

where 7 is a portion of the great circle that begins at p_ and ends at z».
q

Recall that we also need to fix trivializations 7 of the vertical tangent bundle
along the periodic orbits: along the orbit vy_, the trivialization is given by any
frame of T, S? independent of ¢; along 7, we take a frame that rotates posi-
tively with rotation number [h’(1)]; along other orbits, we use as trivializing
frame (9p,0,) € TS?. One now computes from the definitions that

(58)  CZ(a) =) i CZ(af) + Z CZ(vE) + Z CZ(V5) = —M +h,
i k=1 k=1 k=1

(59)  cr(Zh) == > mipi —mi [N (1)] = —wa + Ya,
and

Zo = chx + (wa — ya)[82]7
where Z, is the class from Section 4.3.1. Here, M denotes the total multiplicity
of all orbits, h denotes the total number of hyperbolic orbits, and (0, y), (d, wa)
denote the endpoints of the path P, 7, . Similarly to [HS05, §3.2], one also
computes that

(60) Q+(Z;,) = —(wa — Ya) — 2Area(Ra) — (Wa — ya)(d — 1),
where R, is the region between P, z and the straight line connecting (0, y,)
to (d,wq).
By combining (58), (59), (60), and the definition of the grading (16), we
have
I(a,Z)) = —M + h — (wo — Ya)(d + 1) — 2Area(R.).

An application of Pick’s Theorem, which we leave to the reader, then estab-
lishes the second item in the proposition for Z/,. The second item for a general
7Z € Hy(S* x S', a,dy_) then follows as another easy exercise using the fact
that H>(S? x S, a, dy_) is an affine space over Ho(S? x S; 7).

Step 2: Clurves correspond to corner rounding. We now comment on the
proof of the third item. We break the proof into two parts. The first is the
following lemma, which establishes the “only if” part of the item.

LEMMA A.1. Let ¢ be a nice perturbation of ok, where H € D. Assume
that 1(P,,z) — I(Pg z/) = 1. Then, for generic admissible J close to Jgq,

(0(a, 2),(8,2')) #0

only if Py z is obtained from Pg gz by rounding a corner and locally losing
one h.
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The remainder of this step sketches the proof of this lemma. To start,
a straightforward adaptation of [HS05, Prop. 3.12] and [HS06, Prop. 10.12],
which we skip for brevity, yields the following lemma.

LEMMA A.2. Let g be a nice perturbation of go}{, where H € D, let J be
any admissible almost complex structure, and let C be a J-holomorphic curve
from (o, Z) to (8,Z"). Then
(a) Pg z is never above Py 7.

(b) Let zg € (—1,1) be such that C intersects S, == {z = 2} C R x §? x St

transversely, and assume that @y has no periodic points of period < d

on S,. If this intersection is nullhomologous in S,, then it is empty.

Thus by part (a) of this lemma, we know that Pj 7/ is never above P, 7.
Consider the region between P, 7 and Pg 7. We can take this region and de-
compose it into two kinds of subregions: non-trivial subregions where P, 7 is
above Pg 7 — meaning that the parts of P, z and Pg 7z intersect at most at
two points in these regions; and, trivial subregions where the concave paths
(without the labels) coincide. See Figure 8.

non-trivial regions

Figure 8. Examples of trivial and non-trivial regions. The path
Pg 7 is in black, the path P, 7 is in grey were it does not
coincide with Pg 7.

Now, by general theory as in [Hut14, Prop. 3.7], any curve C' counted by
the twisted PFH differential can be written in the form C = Cy U Cy, where
(4 is irreducible and has Fredholm and ECH index one and Cj is a union of
R-invariant cylinders or multiple covers thereof. It suffices to establish the
result for the “interesting” component Cf.

One first shows that for the component Cj of a curve C satisfying the
hypotheses of the lemma, there is exactly one non-trivial region and no trivial
regions. Here is a sketch of the proof. First, we show that there must be at
least one non-trivial region: otherwise, by invoking Lemma A.2(b), one shows
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that C7 would have to be “local,” in the sense that C; is a cylinder from some
hpq to an ey, arising from the perturbation of the Morse-Bott setup; how-
ever, these cylinders cancel in pairs, since, as is familiar in the Morse-Bott
picture, they correspond to flow lines from a perfect Morse function on the
circle of Reeb orbits. Thus, there is at least one non-trivial region, and an
index computation along the lines of Step 1 shows that if there was more than
one region, then the Fredholm index of € would be at least two. It therefore
remains to argue that there are no trivial regions for C;. For brevity, we skip
this since the argument for this is similar to the kind of arguments we have
already presented in this paragraph.

Now assume that C is a curve from («, Z) to (8, Z"). Then, we know from
above that there is exactly one non-trivial region between P, 7 and Pg 7. By
the second item of Proposition 6.2, we have

1=I(a,Z) = I(B,Z") = 2j + ho — hg,

where j is the number of lattice points in the region between P, 7z and Pg 7/,
not including lattice points on P, z, and hy, hg denote the number of edges
labeled h in P, z, Pg 7/, respectively. The number of edges in Pg 7/, which we
denote by rg, satisfies the following inequality: hg < rg < j + 1 . Hence, in
view of Step 1 we have

I(a,Z2) - 1(B,2") >2(rg—1)—rg=1r3—2,

with equality if and only if P, 7z and Pj z start at the same point, end at
the same point, the region between P, 7z and Pg 7/ contains no interior lattice
points, every edge of Pg 7 is labelled h, and no edge of P, 7 is labeled h. Since
I(a,Z) — I(8,Z') = 1, we can rewrite the above inequality as rg < 3. Thus,
rg € {1,2,3} and Lemma A.1 follows from a straightforward combinatorial
analysis of these three cases for rg that we leave to the reader; the case g3 = 3
is exactly the case of Double Rounding, which is ruled out by the choice of
nice perturbation.

Step 3: Corner rounding corresponds to curves. To complete the proof of
the proposition, we therefore have to show

LEMMA A.3. Let @g be a nice perturbation of cpllq, where H € D. If P, 7

is obtained from Pg 7 by rounding a corner and locally losing one h, then
(0(a, 2),(B,Z")) # 0. In other words, counting mod 2 we have

#My((e,2),(8,2')) =1
for generic admissible J.

The remainder of this step is devoted to the sketch of the proof of this
lemma.
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Define
X ={(t,0,2) eS' x$?: -1 <2}, X|:={(t,0,2)eS' xS?:2<1}.

We first show that either every C' € M((«a, Z),(B,Z')) is entirely contained
in Xy, or every C' € M;((«, Z),(8,2')) is entirely contained in X7; the basic
idea of the proof is that, otherwise, in view of Lemma A.2(b) and the compu-
tations in Step 1, the ECH index [ for such a C' would be larger than one; for
brevity, we say no more here.

The idea is now to relate #M ;((«, Z), (8, 7Z')) = 1 to a count previously
studied in the context of the ECH differential. We explain this in the case
where M ;((a, Z),(8,2")) = Mj(a, B; X1), i.e., the curves are entirely in X7;
the case of X| is essentially the same.

We identify X; with a subset of the boundary of the “concave toric do-
main”

Xo = {(21, 22)|(7|21]?, 7|22 ) € O},
where €2 is the region bounded by the axes and the graph of f(x), where
f(z) = h(l 22) for 0 < x < 1. Tt is well known (and easy to prove) that the
boundary OXQ is a contact manifold, with contact form given by the restric-
tion of the standard one-form on R*. Consider the subset of 0Xq given by
Xo := {(21, 20)|7(|z1|%, |22|%) € 9Q — {(1,0)}}. Note that this is X with a
Reeb orbit removed. Define the mappings

VX1 = Xo, (t,0,2)— (3(1—2),0,3h(2),27t),
1
’ 2

(61)
U:RxX; = Rx Xy, (s,6,0,2) — (s,5(1—2),0, 3h(2),2nt) .

Here, we are regarding 0Xqo C C2 = R*, and we are equipping C? with co-
ordinates (p; = 7|21/, 01, p2 = 7|22/%,02). One can check that the above
diffeomorphisms have the following properties:

(i) The Reeb vector field R on X; pushes forward under ¢ to a positive
multiple of the contact Reeb vector field R on X,.

(ii) The two-form dX on X pulls back under ¢ to w, on X;. Thus, the SHS
(A,dX) on X pulls back under 9 to the SHS (*A,w,) on X.

By property (i), 1 induces a bijection between the Reeb orbit sets of R in
X, and the Reeb orbit sets of R in X5. We will denote the induced bijection by

a = Q.

Now, suppose P, z is obtained from Pg 7 via rounding a corner and lo-
cally losing one h. Let J be a contact admissible almost complex structure
on the symplectization R x 0Xq, and consider M j(&, B) as the space of J-
holomorphic currents C, modulo translation in the R direction, which are
asymptotic to & as s — +o0 and B as s — —oo. For a generic choice of contact
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admissible .J , this moduli space is finite and its mod 2 cardinality determines
the ECH differential in the sense that

(OpcH &, B) = #M;(a, ).
The ECH differential in this case has been worked out in [Cho16],%! with the
conclusion that the following hold:

(A1) The image of every curve in M (&, $) is contained in R x Xs.
(B1) The mod 2 count of curves in M ;(4, B) is 1.

Now define J; to be the almost complex structure on R x X; given by the
pullback under ¥ of the restriction of a generic J as above. By (A1) and (B1),
the mod 2 count of curves in My, ((a, Z), (8, Z"); X1) is one. However, J; is
not necessarily admissible, because the SHS given by (¢*\, w,) does not agree
with the standard SHS (dt,w,) on the mapping torus. Nevertheless, these two
SHSs are homotopic and one can connect .J; to an admissible almost complex
structure Jy through a suitable family J;. One then shows that the counts for
Jo and J; agree by constructing a compact cobordism between the relevant
moduli spaces via spaces of Ji-holomorphic curves. The argument for this is a
standard SF'T compactness argument, wherein all possible degenerations into
buildings are analyzed, together with an argument that is similar to the ar-
gument at the beginning of this step, showing that the J;-holomorphic curves
stay in a compact subset of X via a variant of Lemma A.2(b); we omit the
details for brevity. O

Remark A.4. Choi [Chol6] finds his curves by referencing a paper by
Taubes [Tau02], which works out various moduli spaces of curves for a par-
ticular contact form on S! x S?; Choi then does a deformation argument that
is analogous to Step 3 above. Choi also uses an inductive argument to re-
duce to considering moduli spaces of twice and thrice punctured spheres that
is nothing like what is in Step 3; the reason he does this is to be able to use
the above paper by Taubes, which does not directly address all the curves
needed to analyze corner rounding operations, which could lead, for example,
to curves with an arbitrary number of ends.?? These ideas were pioneered by
Hutchings-Sullivan in [HS06], [HS05], who use them to find the curves that
they need. A strategy like this can also be used instead of citing Choi, but we
did not do so for brevity.

We should also note that there is considerably more in Choi’s work than
what we use here — in particular, Choi analyzes very general contact forms

21We also refer the reader to [Yao22b], [Yao22a] for further details about the Morse-Bott
arguments used in this computation.

22We should note that two other papers [Tau06a], [Tau06b] by Taubes that came after
[Tau02] do address these kind of curves.
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(for example, the contact form on a toric domain that is neither concave nor
convex) for which there could be curves corresponding to regions more general
than those that come from rounding a corner and locally losing one h, and for
which more complicated arguments are needed — however, we do not need to
consider anything like that in this paper.

Appendix B. Discussion and open questions

We discuss here some open questions relating to the main results of our
article. We also discuss developments since our article first appeared.

Stmplicity on other surfaces. Let M denote a closed manifold equipped
with a volume form w, and denote by Homeog(M,w) the identity component
in the group of volume-preserving homeomorphisms of M. In [Fat80a], Fathi
constructs the mass-flow homomorphism

F : Homeog(M,w) — Hi(M)/T,

mentioned above, where H; (M) denotes the first homology group of M with
coefficients in R and I' is a discrete subgroup of H;(M) whose definition we
will not need here. Clearly, Homeoy(M,w) is not simple when the mass-flow
homomorphism is non-trivial. This is indeed the case when M is a closed sur-
face other than the sphere. Fathi proved that ker(F) is simple if the dimension
of M is at least three. The following question is posed in [Fat80a, App. A.6].

QUESTION B.1 (Fathi). Is ker(F) simple in the case of surfaces? In par-
ticular, is the group Homeoo(S?,w) of area and orientation preserving homeo-
morphisms of the sphere simple?

Update: In the original version of this paper, we remarked that one might
be able to resolve this question by adapting the methods of the paper, af-
ter some further development of the theory of PFH spectral invariants. In
fact, we later resolved the question (in the negative) in [CGHM™22a], together
with Mak and Smith, using a similar argument to the one given in Section 3;
however, we used a different kind of spectral invariant, called “link spectral
invariants,” instead of PFH ones. After that work, the needed further devel-
opment of PFH invariants required to resolve Question B.1 via these invariants
occurred in [EH21], [CGPZ21], which can be used to give an alternative proof.

CV-symplectic topology and simplicity in higher dimensions. From a sym-
plectic viewpoint, a natural generalization of area-preserving homeomorphisms
to higher dimensions is given by symplectic homeomorphisms. These are,
by definition, those homeomorphisms that appear as C° limits of symplec-
tic diffcomorphisms. By the celebrated rigidity theorem [Eli87], [Gro85] of
Eliashberg and Gromov, a smooth symplectic homeomorphism is a symplectic
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diffeomorphism. These homeomorphisms form the cornerstone of the field of
CO-symplectic topology that explores continuous analogues of smooth symplec-
tic objects; see, for example, [OMO7], [Ban08], [HLS15], [HLS16], [BO16].

The connection between CO-symplectic topology and the simplicity conjec-
ture is formed by the fact that, in dimension two, symplectic homeomorphisms
are precisely the area- and orientation-preserving homeomorphisms of surfaces.
Indeed, as we mentioned in Section 1, the simplicity conjeture has been one of
the driving forces behind the development of C%-symplectic topology; for exam-
ple, the articles [OMO7], [Oh10], [Vit06], [BS13], [Hum11], [LR10b], [LR10a],
[EPP12], [Sey13a], [Sey13b] were, at least partially, motivated by this conjec-
ture.

The connection to C?-symplectic topology motivates the following gener-
alization of Question 1.1.

QUESTION B.2. Is Symp,(D?",w), the group of compactly supported sym-
plectic homeomorphisms of the standard ball, simple??

As we will now explain, Question B.1 admits a natural generalization to
higher dimensions as well. To keep our discussion simple we will suppose that
(M, w) is a closed symplectic manifold. However, this assumption is not neces-
sary and the question below can be reformulated for non-closed manifolds too.

On a symplectic surface (M,w), the group ker(F) discussed in the above
section is often referred to as the group of Hamiltonian homeomorphisms and
is denoted by Ham(M,w); see, for example, [LC06]. The reason for this ter-
minology is that it can be shown that ker(F) coincides with the C" closure of
Hamiltonian diffeomorphisms. Hence, in this language, Question B.1 may be
rephrased as the question of whether or not the group of Hamiltonian home-
omorphisms is simple. On higher dimensional symplectic manifolds, the ele-
ments of the C closure of Ham(M,w) are also called Hamiltonian homeomor-
phisms and have been studied extensively in C°-symplectic topology; see, for
example, [OMO07], [BHS18], [BHS21], [Kaw22].

QUESTION B.3. Is Ham(M,w) a simple group?

In comparison, Banyaga’s theorem states that the group of Hamiltonian
diffeomorphisms is simple for closed M.

Finite energy homeomorphisms. The group of finite energy homeomor-
phisms, FHomeo(M,w), can be defined on arbitrary symplectic manifolds; the
construction is analogous to what is done in Section 3.1. It forms a normal

23 An argument involving the Alexander isotopy shows that Symp,(D*",w) is connected.
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subgroup of Ham(M,w). However, we do not know if it is always a proper nor-
mal subgroup. Infinite twists can also be constructed on arbitrary symplectic
manifolds: the construction of ¢, described in Section 3.2, admits a general-
ization to D?". And the analogue of equation (11), the condition for having
“infinite” Calabi invariant, can also be formulated in higher dimensions.

QUESTION B.4. Is it true that infinite twists, which satisfy the higher
dimensional analogue of equation (11), are not finite energy homeomorphisms?

Clearly, a positive answer to this question would settle all of the above
simplicity questions. After the first version of this paper appeared, the case
of surfaces was resolved in the affirmative in [CGHM™22a]; see the discussion
after Question B.1. However, a serious obstacle arises in higher dimensions:
here, for example, PFH, and the related Seiberg-Witten theory, have no known
generalization.

We now return to the case of the disc, where we know that FHomeo. (D, w)
is a proper normal subgroup of Homeo.(D,w). This immediately gives rise to
several interesting questions about FHomeo.(D,w).

QUESTION B.5. Is FHomeo.(D,w) simple?

As was mentioned in Remark 3.3, the Oh-Miiller group Hameo.(D,w),
which we introduce below, is a subgroup of FHomeo.(D, w), and it can easily
be checked that it is a normal subgroup.

Update. We resolved Question B.5 by extending the Calabi invariant to
Hameo.(D,w); see the discussion after Question B.8 below.

QUESTION B.6. Is the group Hameo.(D,w) a proper normal subgroup of
FHomeo, (D, w)?

Update. Buhovsky resolved Question B.6 in the affirmative in [Buh23].

Another interesting direction to explore is the algebraic structure of the
quotient Homeo, (D, w)/FHomeo.(D,w). At present we are not able to say
much beyond the fact that this quotient is abelian; see Proposition 2.1. Here
are two sample questions.

QUESTION B.7. Is the quotient Homeo.(D,w)/FHomeo.(D,w) torsion-
free? Is it divisible?

Eztension of the Calabi invariant. Ghys [Ghy07al, Fathi and Oh [OMO7,
Conj. 6.8] have asked if the Calabi invariant extends to either of Hameo.(D,w)
or Homeo, (D, w). It seems natural to add FHomeo.(ID,w) to the list.

QUESTION B.8. Does the Calabi invariant admit an extension to any of
Hameo.(D,w), FHomeo.(D,w), or Homeo.(D, w)?
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We now explain a partial answer to this question, making use of some
developments in [CGPZ21], [EH21] that occurred after the first version of this
paper appeared.

THEOREM B.9. The Calabi homomorphism
Cal : Diff .(D,w) —» R
extends to Hameo.(D, w).

The first complete proof of Theorem B.9 appeared in [CGHM™22a]; we
summarize the relevant history below after giving our proof.

Proof. Let us begin with the definition®* of Hameo.(D,w). We say ¢ €
Homeo.(D,w) is a hameomorphism if there exists a sequence of smooth Hamil-
tonians H; € C°(S' x D) and a continuous H € CO(S! x D) such that

1 C°
PH, — qb, and ”H— HZH(I,oo) — 0.

The set of all hameomorphisms is denoted by Hameo.(D,w).?’ It defines a
normal subgroup of Homeo. (D, w) which is clearly contained in FHomeo.(D, w).

Take ¢ € Hameo (D, w) and H € C%(S! x D) as in the previous paragraph;
we let ¢ denote ¢. Define

(62) Cal(gy) = / 1 /D Huwd.

S
We first show that Cal is well defined. First, note that because Cal is a
homomorphism on Diff .(D, w), to show this it suffices to show that if oy = Id,
then

(63) /SlfDdet:().

Suppose that i = Id, and fix a sequence (Hy, Ha,...,) for ¢ as in the
definition of Hameo.(D, w).

CraM B.10. For all i, we have |%d(<p}{1)| < |H — Hill(1,00)-

Proof. By Hofer continuity of PFH spectral invariants, we have \%d(go}{j )—
%d(go}qiﬂ < |[Hj — Hill(1,00) for all i,j. Fixing i and taking the limit of this

24The definition we have given here is a slight variation of the one in [OMO7]; it can
easily be checked that if ¢ is a hameomorphism in the sense of [OMO7], then it is also a
hameomorphisms in the sense described here.

250h and Miiller use the terminology Hamiltonian homeomorphisms for the elements of
Hameo.(D,w). We have chosen to avoid this terminology because in the surface dynamics
literature it is commonly used for referring to homeomorphisms that arise as C° limits of
Hamiltonian diffeomorphisms.
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inequality, as j — oo, yields the claim, by Theorem 3.6 and item (4) of Theo-

. ey
rem 4.5, since O, — Id. (]

We now establish (63). For all i,d € N, we have

/Sl/Ddet' < /Sl/Ddet —Cal(cp}{i)'

C C
+ |Callel,) = k)| + | SHeh,)
Cd Cd
< IIH = Hillg,o0) + | Calloh,) = S (oh)| + [ (oh)

Cd
< 2|[H — Hill,00) + |Cal(phy,) — H0,)

)

where the last inequality follows from Claim B.10. Now take any ¢ > 0. There
exists N € N such that if i > N, then [|[H — H;|(1 ) < e. Hence, for i > N,
we have

/ /detl <e+ ‘Cal(so,lqi) — k)
st JD d

By [CGPZ21], [EH21], the conclusion of Theorem 3.7 holds for arbitrary ¢ €
Diff (D% w). Hence, | [g [, Hwdt| < e, hence (63), hence the claimed exten-
sion of Cal.

It remains to show that
Cal : Hameo.(D,w) — R

is indeed a homomorphism. Having shown that (62) is well defined, this has
in fact already been shown in [Ohl10] and so we will only provide a sketch
of the argument. Take g, pg € Hameo.(D,w). Without loss of generality,
we may suppose that H(t,x) and G(t,x) vanish for ¢ near 0 € S!; this can
be achieved by replacing H with the reparametrization p/(t)H (p(t), x), where
p:10,1] — [0, 1] coincides with 0 near 0 and with 1 near 1; see [Pol01, p. 31]
for more details on the reparametrization argument.

It can be checked that v o pg = wx, where K is the concatenation of H
and G given by the formula

K(t.2) 2H (2t, 7) if ¢ € [0, 3],
7x =
2G(2t — 1,2)  ifte [, 1].

It follows immediately from the above formula, and equation (62), that

Cal(pg o pg) = Cal(vn) + Cal(pg).

Verification of the fact that Cal(¢}') = —Cal(pp) is similar and so we omit it.
U
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Historical remarks. The above proof of Theorem B.9 was suggested in the
first version of this paper, except that at that time, the necessary developments
in [CGPZ21], [EH21] had not yet occurred. In fact, prior to [CGPZ21], [EH21],
but after the first version of this paper appeared, we showed in [CGHM™22a]
that Calabi extends to Hameo.(DD,w) by using essentially the same argument
as above, but replacing the PFH spectral invariants with the aforementioned
link spectral invariants, which have similar properties.

Update. We later showed in [CGHM'22b| that Calabi extends to all of
Homeo.(D,w), though not canonically, via a different kind of argument using
link spectral invariants.

New invariants and new applications. A key role in our paper is played
by PFH spectral invariants. In the years since our paper first appeared, some
new invariants have been discovered that share enough similar properties with
the PFH ones that one can adapt the arguments in our paper with minor
modifications to obtain the applications to the Simplicity Conjecture, using
these other invariants instead of PFH ones.

One such family of invariants is the family of link spectral invariants
[CGHM"22a], [PS21] that we already mentioned above. Another is the family
of “elementary PFH spectral invariants” defined in [Edt22]. These invari-
ants have various great features. For example, the link spectral invariants
are known to be quasimorphisms, and one can use them to deduce very fine
information about the normal subgroup structure [CGHM™'22b]; and, the el-
ementary PFH spectral invariants can be constructed without making any
reference to Floer homology. As for the PFH invariants, some new applica-
tions have occurred as well beyond questions about the algebraic structure
of homeomorphism groups. We already mentioned the application resolving
the Kapovich-Polterovich question; this was a central open problem about
the Hofer geometry of surfaces, and it can also be resolved with link spectral
invariants [PS21]. Another important application occurred in the series of pa-
pers [CGHS23|, [EH21], [CGPPZ21], [Pra23], [PP22], proving the C'*°-closing
lemma, and various refinements, for area-preserving diffeomorphisms of closed
surfaces or compact surfaces with boundary.
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