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Abstract

In the 1970s, Fathi, having proven that the group of compactly sup-

ported volume-preserving homeomorphisms of the n-ball is simple for n ≥ 3,

asked if the same statement holds in dimension two. We show that the

group of compactly supported area-preserving homeomorphisms of the two-

disc is not simple. This settles what is known as the “simplicity conjecture”

in the affirmative. In fact, we prove the a priori stronger statement that

this group is not perfect.

Our general strategy is partially inspired by suggestions of Fathi and the

approach of Oh towards the simplicity question. In particular, we show that

infinite twist maps, studied by Oh, are not finite energy homeomorphisms,

which resolves the “infinite twist conjecture” in the affirmative; these twist

maps are now the first examples of Hamiltonian homeomorphisms that can

be said to have infinite energy. Another consequence of our work is that var-

ious forms of fragmentation for volume-preserving homeomorphisms that

hold for higher dimensional balls fail in dimension two.

A central role in our arguments is played by spectral invariants defined

via periodic Floer homology. We establish many new properties of these

invariants that are of independent interest. For example, we prove that

these spectral invariants extend continuously to area-preserving homeo-

morphisms of the disc, and we also verify for certain smooth twist maps

a conjecture of Hutchings concerning recovering the Calabi invariant from

the asymptotics of these invariants.
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1. Introduction

Let (S, ω) be a surface equipped with an area form. An area-preserving

homeomorphism is a homeomorphism that preserves the measure induced by ω.

Let Homeoc(D, ω) denote the group of area-preserving homeomorphisms of

the two-disc that are the identity near the boundary. Recall that a group is

simple if it does not have a non-trivial proper normal subgroup. The following

fundamental question was raised in the 1970s:

Question 1.1. Is the group Homeoc(D, ω) simple?
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Indeed, the algebraic structure of the group of volume-preserving homeo-

morphisms has been well understood in dimension at least three since the

work of Fathi [Fat80a] from the 70s; but, the case of surfaces, and in particular

Question 1.1, has long remained mysterious.

Question 1.1 has been the subject of wide interest. For example, it is

highlighted in the plenary ICM address of Ghys [Ghy07a, §2.2]; it appears on

McDuff and Salamon’s list of open problems [MS17, §14.7]; it has been one

of the main motivations behind the development of C0-symplectic topology,

which we will further discuss in Appendix B; for other examples, see [Ban78],

[Fat80a], [Ghy07b], [Bou08], [LR10a], [LR10b], [EPP12]. It has generally been

believed since the early 2000s that the group Homeoc(D, ω) is not simple:

McDuff and Salamon refer to this as the simplicity conjecture. Our main

theorem resolves this conjecture in the affirmative.

Theorem 1.2. The group Homeoc(D, ω) is not simple.

In fact, we can obtain an a priori stronger result. Recall that a group G

is called perfect if its commutator subgroup [G,G] satisfies [G,G] = G. The

commutator subgroup [G,G] is a normal subgroup of G. Thus, every non-

abelian simple group is perfect. However, in the case of certain transformation

groups, such as Homeoc(D, ω), a general argument due to Epstein and Higman

[Eps70], [Hig54] implies that perfectness and simplicity are equivalent; see

Proposition 2.1. Hence, we obtain the following corollary.

Corollary 1.3. The group Homeoc(D, ω) is not perfect.

We remark that in higher dimensions, the analogue of Theorem 1.2 con-

trasts our main result: by [Fat80a], the group Homeoc(D
n,Vol) of compactly

supported volume-preserving homeomorphisms of the n-ball is simple for n ≥ 3.

It also seems that the structure of Homeoc(D, ω) is radically different from

that of the group Diffc(D, ω) of compactly supported area-preserving diffeo-

morphisms, as we will review below.

Spectral invariants defined via “Periodic Floer homology” (PFH) play an

essential role in our arguments. These “PFH spectral invariants,” which were

defined by Hutchings, have not been much studied and much of the paper

is devoted to establishing some of their foundational properties. These prop-

erties are of independent interest, and we refer the reader to Section 3.3 for

their precise statements. As far as we know, the present work represents the

first applications of these invariants. Since our paper first appeared, further

interesting applications have occurred in [CGHS23], [EH21], [CGPZ21].

Background. To place Theorem 1.2 in its appropriate context, and to sum-

marize what is known about some related transformation groups, we begin by
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reviewing the long and interesting history surrounding the question of simplic-

ity for various subgroups of homeomorphism groups of manifolds. Our focus

will be on compactly supported homeomorphisms/diffeomorphisms of mani-

folds without boundary in the component of the identity.1

In the 1930s, in the “Scottish Book,” Ulam asked if the identity component

of the group of homeomorphisms of the n-dimensional sphere is simple. In

1947, Ulam and von Neumann announced in an abstract [UvN47] a solution

to the question in the Scottish Book in the case n = 2. In the 50s, 60s, and

70s, there was a flurry of activity on this question and related ones. First, the

works of Anderson [And58], Fisher [Fis60], Chernavski, Edwards and Kirby

[EK71] led to the proof of simplicity of the identity component in the group of

compactly supported homeomorphisms of any manifold. These developments

led Smale to ask if the identity component in the group of compactly supported

diffeomorphisms of any manifold is simple [Eps70]. This question was answered

affirmatively by Epstein [Eps70], Herman [Her73], Mather [Mat74a], [Mat74b],

[Mat75], and Thurston [Thu74].2

The connected component of the identity in volume-preserving, and sym-

plectic, diffeomorphisms admits a homomorphism, called flux, to a certain

abelian group. Hence, these groups are not simple when this homomorphism

is non-trivial. Thurston proved, however, that the kernel of flux is simple in

the volume-preserving setting for any manifold of dimension at least three; see

[Ban97, Ch. 5]. In the symplectic setting, Banyaga [Ban78] then proved that

this group is simple when the symplectic manifold is closed; otherwise, it is not

simple as it admits a non-trivial homomorphism, called Calabi, and Banyaga

showed that the kernel of Calabi is always simple. We will recall the definition

of Calabi in the case of the disc in Section 3.1.

The simplicity of the identity component in compactly supported volume-

preserving homeomorphisms is well understood in dimensions greater than two,

thanks to the article [Fat80a], in which Fathi shows that, in all dimensions,

the group admits a homomorphism, called “mass-flow”; moreover, the kernel

of mass-flow is simple in dimensions greater than two. On simply connected

manifolds, the mass-flow homomorphism is trivial, and so the group is indeed

simple in dimensions greater than two.

1The simplicity question is interesting only for compactly supported maps in the identity

component, because this is a normal subgroup of the larger group. The group Homeoc(D, ω)

coincides with its identity component.
2More precisely, Epstein, Herman and Thurston settled the question in the case of smooth

diffeomorphisms, while Mather resolved the case of Cr diffeomorphisms for r < ∞ and

r 6= dim(M) + 1. The case of r = dim(M) + 1 remains open.
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Thus, the following rather simple picture emerges from the above cases of

the simplicity question. In the non-conservative setting, the connected compo-

nent of the identity is simple. In the conservative setting, there always exists a

natural homomorphism (flux, Calabi, mass-flow) that obstructs the simplicity

of the group. However, the kernel of the homomorphism is always simple.

Despite the clear picture above, established by the end of the 70s, the case

of area-preserving homeomorphisms of surfaces has remained unsettled — the

simplicity question has remained open for the disc and more generally for the

kernel of the mass-flow homomorphism3 — underscoring the importance of

answering Question 1.1. In fact, the case of area-preserving homeomorphisms

of the disc does seem drastically different. For example, the natural homomor-

phisms flux, Calabi, and mass-flow mentioned above that obstruct simplicity

are all continuous with respect to a natural topology on the group; however, we

will show in Corollary 2.2 that there cannot exist a continuous homomorphism

out of Homeoc(D, ω) with a proper non-trivial kernel, when Homeoc(D, ω) is

equipped with the C0-topology; we will review the C0-topology in Section 2.2.

“Lots” of normal subgroups and the failure of fragmentation. Le Roux

[LR10a] has previously studied the simplicity question for Homeoc(D, ω), and

it is valuable to combine his conclusions with our Theorem 1.2.

Inspired by Fathi’s proof of simplicity in higher-dimensions, Le Roux con-

structs a family Pρ, for 0 < ρ ≤ 1, of “quantitative fragmentation properties”

for Homeoc(D, ω). He then establishes the following alternative: if any one of

these fragmentation properties holds, then Homeoc(D, ω) is simple; otherwise,

there is a huge number of proper normal subgroups, constructed in terms of

“fragmentation norms.” Thus, in view of our Theorem 1.2, fragmentation fails

in a very strong way in dimension two and we have not just one proper normal

subgroup but “lots” of them; for example, combining Le Roux’s work [LR10a,

Cor. 7.1] with our Theorem 1.2 yields the following.

Corollary 1.4. Every compact4 subset of Homeoc(D, ω) is contained in

a proper normal subgroup.

As Le Roux explains [LR10a, §7], this is “radically” different from the sit-

uation for the group Diffc(D, ω) of compactly supported area-preserving diffeo-

morphisms of the disc with its usual topology. We refer the reader to [LR10a]

for the definition of Pρ, noting as well that in [EPP12, §5.1] it was previously

shown that Pρ does not hold for 1/2 ≤ ρ ≤ 1.

3We review the mass-flow homomorphism and discuss more about the simplicity question

for its kernel in Appendix B.
4As above, we are working in the C0-topology.
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Finite energy homeomorphisms and infinite twists. Our proof of Theo-

rem 1.2 is partially inspired by suggestions of Fathi and the approach of Oh

towards the simplicity question. It exploits the interplay between the C0-

topology and the celebrated Hofer metric, which is a bi-invariant distance on

the group Diffc(D
2, ω) of area-preserving diffeomorphisms. Recall that any el-

ement of our group Homeoc(D
2, ω) is a C0-limit of a sequence in Diffc(D

2, ω).

We call an element of Homeoc(D
2, ω) a finite energy homeomorphism if it is

the C0-limit of a sequence of diffeomorphisms whose Hofer norm is uniformly

bounded (see Definition 3.1). We prove that finite energy homeomorphisms

form a proper normal subgroup of Homeoc(D
2, ω), implying Theorem 1.2.

The most difficult task consists in proving properness. We prove it by

showing that the so-called “infinite twist maps” (see Section 3.2) are not fi-

nite energy homeomorphisms. This resolves in particular what McDuff and

Salamon refer to as the Infinite Twist Conjecture, which is Problem 43 on

their list of open problems (see [MS17, §14.7]); see Corollary 3.5 for the precise

statement of our result.

Organization of the paper. We now explain the organization of the paper.

In Section 2, we review some of the necessary background from symplectic

geometry, especially the case of surfaces. Section 3 then proves the Simplicity

Conjecture, assuming some new facts about the PFH spectral invariants whose

proofs we defer to the next section. The next part of the paper is devoted

to proving the needed material about PFH spectral invariants. This starts

in Section 4, where we review the construction of periodic Floer homology

and the associated spectral invariants and we prove some of the properties of

PFH spectral invariants, such as Hofer continuity. The next section proves

the key fact that these PFH spectral invariants are C0 continuous for surface

diffeomorphisms. The next section is about computations: we explain some

relevant computations of PFH, leading to a proof of a kind of Weyl law for

positive monotone twist maps.

As a kind of roadmap for the reader who is interested in the Simplicity

Conjecture, but not a Floer homology specialist, we want to emphasize that if

one is willing to take the needed properties of the PFH spectral invariants on

faith, the proof can entirely be understood after reading Sections 2 and 3.
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2. Preliminaries about the symplectic geometry of surfaces

Here we collect some basic facts, and fix notation, concerning two-dimen-

sional symplectic geometry and diffeomorphism groups.

2.1. Symplectic form on the disc and sphere. Let S2 := {(x, y, z) ∈ R3 :

x2 + y2 + z2 = 1} ⊂ R3 and D := {(x, y) ∈ R2 : x2 + y2 6 1}. We equip

the sphere S2 with the symplectic form ω := 1
4πdθ ∧ dz, where (θ, z) are

cylindrical coordinates on R3. Note that with this form, S2 has area 1. Let

S+ = {(x, y, z) ∈ S2 : z > 0} be the northern hemisphere in S2. In certain

sections of the paper, we will need to identify the disc D with S+. To do this,

we will take the embedding ι : D → S2 given by the formula

(1) ι(r, θ) = (θ, 1− r2),

where (r, θ) denotes the standard polar coordinates on R2. We will equip the

disc with the area form given by the pullback of ω under ι; explicitly, this is

given by the formula 1
2π rdr ∧ dθ. We will denote this form by ω as well. Note

that this gives the disc a total area of 1
2 .

Any area form on S2 or D is equivalent to the above differential forms, up

to multiplication by a constant.
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2.2. The C0 topology. Here we fix our conventions and notation concern-

ing the C0 topology.

Denote by Homeo(S2) the group of homeomorphisms of the sphere and

by Homeoc(D) the group of homeomorphisms of the disc whose support is

contained in the interior of D. Let d be a Riemannian distance on S2. The C0

distance between two maps φ, ψ : S2 → S2, is defined by

dC0(φ, ψ) = max
x∈S2

d(φ(x), ψ(x)).

We will say that a sequence of maps φi : S2 → S2 converges uniformly, or

C0-converges, to φ, if dC0(φi, φ) → 0 as i → ∞. As is well known, the notion

of C0-convergence does not depend on the choice of the Riemannian metric.

The topology induced by dC0 on Homeo(S2) is referred to as the C0 topology.

The C0 topology on Homeoc(D) is defined analogously as the topology

induced by the distance

dC0(φ, ψ) = max
x∈D

d(φ(x), ψ(x)).

2.3. Hamiltonian diffeomorphisms. Let

Diff(S2, ω) := {θ ∈ Diff(S2) : θ∗ω = ω}

denote the group of area-preserving, in other words symplectic, diffeomor-

phisms of the sphere. Let C∞(S1×S2) denote the set of smooth time-dependent

Hamiltonians on S2. A smooth Hamiltonian H ∈ C∞(S1 × S2) gives rise to

a time-dependent vector field XH , called the Hamiltonian vector field, defined

via the equation

ω(XHt , ·) = dHt.

The Hamiltonian flow of H, denoted by ϕt
H , is by definition the flow of XH .

A Hamiltonian diffeomorphism is a diffeomorphism that arises as the time-one

map of a Hamiltonian flow. It is easy to verify that every Hamiltonian diffeo-

morphism of S2 is area-preserving. And, as is well known, every area-preserving

diffeomorphism of the sphere is in fact a Hamiltonian diffeomorphism. As for

the disc, as mentioned in the introduction, every θ ∈ Diffc(D, ω) is Hamilton-

ian, in the sense that one can find H ∈ C∞
c (S1 × D) such that θ = ϕ1

H , where

the notation is as in the sphere case. Here, C∞
c (S1 × D) denotes the set of

Hamiltonians on D whose support is compactly contained in the interior of

S1 × D.

Note that Diff(S2, ω) ⊂ Homeo0(S
2, ω) and Diffc(D, ω) ⊂ Homeoc(D, ω).

It is well known that Diff(S2, ω) and Diffc(D, ω) are dense, with respect to the

C0 topology, in Homeo0(S
2, ω) and Homeoc(D, ω), respectively.

2.4. The action functional and its spectrum. Spectral invariants take val-

ues in the “action spectrum.” We now explain what this spectrum is.
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Denote by Ω := {z : S1 → S2} the space of all loops in S2. By a capping

of a loop z : S1 → S2, we mean a map

u : D2 → S2,

such that u|∂D2 = z. We say two cappings u, u′ for a loop z are equivalent if

u, u′ are homotopic rel z. Henceforth, we will only consider cappings up to this

equivalence relation. Note that given a capping u of a loop z, all other cappings

of z are of the form u#A, where A ∈ π2(S
2) and # denotes the operation of

connected sum. A capped loop is a pair (z, u), where z is a loop and u is a

capping for z. We will denote by Ω̃ the space of all capped loops in the sphere.

LetH ∈ C∞(S1×S2) denote a smooth Hamiltonian in S2. Recall thatAH :

Ω̃ → R, the action functional associated to the Hamiltonian H, is defined by

(2) AH(z, u) =

∫ 1

0

H(t, z(t))dt +

∫

D2

u∗ω.

Note that AH(z, u#A) = AH(z, u) + ω(A) for every A ∈ π2(S
2).

The set of critical points of AH , denoted by Crit(AH), consists of capped

loops (z, u) ∈ Ω̃ such that z is a 1-periodic orbit of the Hamiltonian flow ϕt
H .

We will often refer to such (z, u) as a capped 1-periodic orbit of ϕt
H . Given an

integer k, we may also define a capped k-periodic orbit of H as a pair (z, u),

where z is a k-periodic orbit of H and u is a capping of the loop t 7→ z(kt). The

action of a capped k-periodic orbit (z, u) is then defined by the same formula

as (2) except that the first integral should be taken between 0 and k.

The action spectrum of H, denoted by Spec(H), is the set of critical

values of AH ; it has Lebesgue measure zero. It turns out that the action

spectrum Spec(H) is independent of H in the following sense: If H ′ is another

Hamiltonian such that ϕ1
H = ϕ1

H′ , then there exists a constant C ∈ R such

that

Spec(H) = Spec(H ′) + C,

where Spec(H ′) + C is the set obtained from Spec(H ′) by adding the value C

to every element of Spec(H ′). Schwarz [Sch00, Lemma 3.3] proves this in the

case where ω vanishes on π2(M), and the proof generalizes readily to general

symplectic manifolds. Moreover, it follows from the proof of [Sch00, Lemma

3.3] that if H,H ′ are supported in the northern hemisphere S+ ⊂ S2, then the

above constant C is zero and hence

(3) Spec(H) = Spec(H ′).

The PFH spectral invariants will take values in a more general set, which

we call the higher order action spectrum. To define it, let H,G be two Hamil-

tonians. The composition of H and G is the Hamiltonian H#G(t, x) :=

H(t, x) + G(t, (φtH)−1(x)). This is defined so that φtH#G = φtH ◦ φtG; see,
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for example, [HZ94, §5.1, Prop. 1]. Denote by Hk the k-times composition of

H with itself. For any d > 0, we now define the order d spectrum of H by

Specd(H) := ∪k1+···+kj=d Spec(Hk1) + · · ·+ Spec(Hkj ).

Note that Specd(H) may equivalently be described as follows: For every value

a ∈ Specd(H), there exist capped periodic orbits (z1, u1), . . . , (zk, uk) of H the

sum of whose periods is d and such that

a =
∑

AH(zi, ui).

We can use the above to define the action spectrum for compactly sup-

ported disc maps. Recall from Section 2.1 our convention to identify the north-

ern hemisphere of S2 with the disc; we will use this to define the action spec-

trum in the case of the disc.

More precisely, if H,H ′ are supported in the northern hemisphere S+⊂S2

and generate the same time-1 map φ, we in fact have Specd(H) = Specd(H
′)

for all d > 0. Indeed, as an immediate consequence of equation (3) we have

Spec(Hk) = Spec(H ′k) for all k ∈ N, and so it follows from the definition that

Specd(H) = Specd(H
′) for all d > 0. Hence, if φ ∈ DiffS+(S2, ω), then we can

define the action spectra of φ without any ambiguity by setting

(4) Specd(φ) = Specd(H),

where H is any Hamiltonian in C∞
c (S1 × S+) such that φ = ϕ1

H .

2.5. Equivalence of perfectness and simplicity. The goal of this section

is to show that in the case of Homeoc(D, ω), perfectness and simplicity are

equivalent. This is completely independent from the rest of the paper, and not

needed to prove the simplicity conjecture itself — it is only used to establish

the corollary that the group is not perfect.

Proposition 2.1. Any non-trivial normal subgroup H of Homeoc(D, ω)

contains the commutator subgroup of Homeoc(D, ω). Hence, Homeoc(D, ω) is

perfect if and only if it is simple.

As promised in the introduction, we prove in the next corollary that

Homeoc(D, ω) admits no non-trivial continuous homomorphisms. This fact

seems to be well known to the experts, however, we do not know of a pub-

lished reference for it.

Corollary 2.2. The group Homeoc(D, ω) admits no non-trivial homo-

morphism that is continuous with respect to the C0 topology.

Proof. Let H be a non-trivial normal subgroup of Homeoc(D, ω). We will

show that H is dense with respect to the C0 topology; this proves the corollary

because the kernel of a continuous homomorphism is closed.
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By Proposition 2.1, we know that H contains the commutator subgroup of

Diffc(D, ω). Consequently, H contains the kernel of the Calabi homomorphism

as the commutator subgroup of Diffc(D, ω) coincides with the kernel of the

Calabi invariant [Ban78]. (For the interested reader, we review the Calabi

homomorphism in Section 3.)

We claim that the kernel of the Calabi invariant is dense in Diffc(D, ω);

hence, it is dense in Homeoc(D, ω). Indeed, take any ψ ∈ Diffc(D, ω) and let a

denote Cal(ψ). Pick Hamiltonians Hn such that

• Hn is supported in a disc of diameter 1
n ;

•
∫

D
Hn = −a — thus, Cal(ϕ1

Hn
) = −a.

Then, Cal(ϕ1
Hn

◦ ψ) = 0 and ϕ1
Hn

◦ ψ
C0

−−→ ψ. �

The proof of Proposition 2.1 relies on a general argument, due to Epstein

[Eps70] and Higman [Hig54], which essentially shows that perfectness implies

simplicity for transformation groups satisfying certain assumptions. We will

present a version of this argument, which we learned in [Fat80a], in our context.

Proof of Proposition 2.1. Pick h ∈ H such that h 6= Id. We can find a

closed topological disc — that is, a set that is homeomorphic to a standard

Euclidean disc D′ ⊂ D such that h(D′)∩D′ = ∅. Denote by Homeoc(D
′, ω) the

subset of Homeoc(D, ω) consisting of area-preserving homeomorphisms whose

supports are contained in the interior of D′. We will first prove the following

lemma.

Lemma 2.3.The commutator subgroup of Homeoc(D
′, ω) is contained in H.

Proof. We must show that for any f, g ∈ Homeoc(D
′, ω), the commutator

[f, g] := fgf−1g−1 is an element of H.

First, observe that for any f ∈ Homeoc(D
′, ω), we have

(5) [f, r] ∈ H

for any r ∈ H. Indeed, by normality, frf−1 ∈ H and hence frf−1r−1 ∈ H.

Next, one can easily check that for any f, g ∈ Homeoc(D
′, ω),

(6) [f, g][g, hfh−1] = f [g, [f−1, h] ]f−1.

Note that g and hfh−1 are, respectively, supported in D′ and h(D′), which are

disjoint. Thus, [g, hfh−1] = Id. Hence, identity (6) yields

[f, g] = f [g, [f−1, h] ]f−1.

Now, (5) implies that [g, [f−1, h] ] ∈ H which, by normality of H, implies that

f [g, [f−1, h] ]f−1 ∈ H. This gives us the conclusion of the lemma. �

We continue with the proof of Proposition 2.1. Fix a small ε > 0, and let

E be the set consisting of all g ∈ Homeoc(D, ω) whose supports are contained in
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some topological disc of area ε. It is a well-known fact that the set E generates

the group Homeoc(D, ω). This is usually referred to as the fragmentation prop-

erty, and it was proven by Fathi; see Theorems 6.6, A.6.2, and A.6.5 in [Fat80a].

We claim that [f, g] ∈ H for any f, g ∈ E . Indeed, assuming ε is small

enough, we can find a topological disc U that contains the supports of f and

g and whose area is less than the area of D′. There exists r ∈ Homeoc(D, ω)

such that r(U) ⊂ D′. As a consequence, rfr−1, rgr−1 are both supported in D′

and hence, by Lemma 2.3, [rfr−1, rgr−1] ∈ H. Since H is a normal subgroup

of Homeoc(D, ω), and [rfr−1, rgr−1] = r[f, g]r−1, we conclude that [f, g] ∈ H.

Now, the set E generates Homeoc(D, ω) and [f, g] ∈ H for any f, g ∈ E .

Hence, the quotient group Homeoc(D, ω)/H is abelian. Thus, H contains the

commutator subgroup of Homeoc(D, ω). �

3. The proof of the Simplicity Conjecture

We now give the proof of Theorem 1.2, assuming some facts that we will

prove later in the paper. More precisely, this section will explain how to prove

Theorem 1.2 given various new properties about “PFH spectral invariants”

that we then prove.

3.1. A proper normal subgroup of Homeoc(D, ω). To prove Theorem 1.2,

we will define below a normal subgroup of Homeoc(D, ω) that is a variation

on the construction of Oh-Müller [OM07]. We will show that this normal

subgroup is proper.

The energy, or the Hofer norm, of a Hamiltonian H ∈ C∞
c (S1 × D) is

defined by the quantity

‖H‖(1,∞) =

∫ 1

0

Å

max
x∈D

H(t, ·)−min
x∈D

H(t, ·)

ã

dt.

Definition 3.1. An element φ ∈ Homeoc(D, ω) is a finite-energy homeo-

morphism if there exists a sequence of smooth Hamiltonians Hi∈C
∞
c (S1×D)

such that the sequence ‖Hi‖(1,∞) is bounded; i.e., there exists C ∈ R such

that ‖Hi‖(1,∞) 6 C, and the Hamiltonian diffeomorphisms ϕ1
Hi

converge uni-

formly to φ. We will denote the set of all finite-energy homeomorphisms by

FHomeoc(D, ω).

Theorem 1.2 will follow from the following result, where we show that

Theorem 3.2. The set FHomeoc(D, ω) is a proper normal subgroup of

Homeoc(D, ω).

We first show that FHomeoc(D, ω) is a normal subgroup. The properness

will be proved in Section 3.4.

Proof that FHomeoc(D, ω) is a normal subgroup. Consider smooth Hamil-

tonians H,G ∈ C∞
c (S1×D). As was partly mentioned in Section 2.4, it is well
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known (and proved, for example, in [HZ94, §5.1, Prop. 1]) that the Hamilto-

nians

(7) H#G(t, x) := H(t, x) +G(t, (ϕt
H)−1(x)), H̄(t, x) := −H(t, ϕt

H(x)),

generate the Hamiltonian flows ϕt
Hφ

t
G and (ϕt

H)−1 respectively. Furthermore,

given ψ ∈ Diffc(D, ω), the Hamiltonian H(t, ψ(x)) generates the flow ψ−1ϕt
Hψ.

We now show that FHomeoc is closed under conjugation. Take φ ∈

FHomeoc(D, ω), and letHi and C be as in Definition 3.1. Let ψ∈Homeoc(D, ω),

and take a sequence ψi ∈ Diffc(D, ω) that converges uniformly to ψ. Consider

the Hamiltonians Ki(t, x) := Hi(t, ψi(x)). The corresponding Hamiltonian

diffeomorphisms are the conjugations ψ−1
i ϕ1

Hi
ψi that converge uniformly to

ψ−1φψ. Furthermore,

‖Ki‖(1,∞) = ‖Hi‖(1,∞) 6 C,

where the inequality follows from the definition of FHomeoc(D, ω).

We will next check that FHomeoc is a group. Take φ, ψ ∈ FHomeoc,

and let Hi, Gi ∈ C∞
c (S1 × D) be two sequences of Hamiltonians such that

ϕ1
Hi
, ϕ1

Gi
converge uniformly to φ, ψ, respectively, and ‖Hi‖(1,∞), ‖Gi‖(1,∞) 6 C

for some constant C. Then, the sequence ϕ−1
Hi

◦ ϕ1
Gi

converges uniformly to

φ−1 ◦ ψ. Moreover, by the above formulas, we have ϕ−1
Hi

◦ ϕ1
Gi

= ϕ1
Hi#Gi

.

Since ‖H i#Gi‖(1,∞) 6 ‖Hi‖(1,∞) + ‖Gi‖(1,∞) 6 2C, this proves that φ−1 ◦ψ ∈

FHomeoc, which completes the proof that FHomeoc is a group. �

Remark 3.3. In defining FHomeoc(D, ω) as above, we were inspired by

the article of Oh and Müller [OM07], who defined a normal subgroup of

Homeoc(D, ω), denoted by Hameoc(D, ω), which is usually referred as the group

of hameomorphisms; see Appendix B for its definition. It has been conjectured

that Hameoc(D, ω) is a proper normal subgroup of Homeoc(D, ω); see, for ex-

ample, [OM07, Question 4.3].

It can easily be verified that Hameoc(D, ω) ⊂ FHomeoc(D, ω). Hence, it

follows from the above theorem that Hameoc(D, ω) is a proper normal subgroup

of Homeoc(D, ω).

In the next section, we will see explicit examples of φ that we will show

are in Homeoc(D, ω) \ FHomeoc(D, ω).

3.2. The Calabi invariant and the infinite twist. The hard part of The-

orem 3.2 is to show properness. Here we describe the key example of an

area-preserving homeomorphism that is not in FHomeoc(D, ω).

We first summarize some background that will motivate what follows.

As mentioned above, for smooth, area-preserving compactly supported two-

disc diffeomorphisms, non-simplicity is known, via the Calabi invariant. More
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precisely, the Calabi invariant of θ ∈ Diffc(D, ω) is defined as follows. Pick

any Hamiltonian H ∈ C∞
c (S1 × D) such that θ = ϕ1

H . Then,

Cal(θ) :=

∫

S1

∫

D

H ω dt.

It is well known that the above integral does not depend on the choice of H

and so Cal(θ) is well defined; it is also known that Cal : Diffc(D, ω) → R is

a non-trivial group homomorphism, i.e., Cal(θ1θ2) = Cal(θ1) + Cal(θ2). For

further details on the Calabi homomorphism, see [Cal70], [MS17].

We will need to know the value of the Calabi invariant for the following

class of area-preserving diffeomorphisms. Let f : [0, 1] → R be a smooth

function vanishing near 1, and define φf ∈ Diffc(D, ω) by φf (0) := 0 and

φf (r, θ) := (r, θ + 2πf(r)). If the function f is taken to be (positive/negative)

monotone, then the map φf is referred to as a (positive/negative) monotone

twist. Since we will be working exclusively with positive monotone twists, we

will assume monotone twists are all positive, unless otherwise stated.

Now suppose that ω = 1
2π rdr ∧ dθ. A simple computation (see our con-

ventions in Section 2) shows that φf is the time–1 map of the flow of the

Hamiltonian defined by

(8) F (r, θ) =

∫ 1

r

sf(s)ds.

From this we compute

(9) Cal(φf ) =

∫ 1

0

∫ 1

r

sf(s)ds rdr.

We can now introduce the element that will not be in FHomeoc(D, ω). Let

f : (0, 1] → R be a smooth function that vanishes near 1, is decreasing, and

satisfies lim
r→0

f(r) = ∞. Define φf ∈ Homeoc(D, ω) by φ(0) := 0 and

(10) φf (r, θ) := (r, θ + 2πf(r)).

It is not difficult to see that φf is indeed an element of Homeoc(D, ω) that is

in fact smooth away from the origin. We will refer to φf as an infinite twist.

We use infinite twists φf to prove Theorem 3.2 by proving the following

result.

Theorem 3.4. If

(11)

∫ 1

0

∫ 1

r

sf(s)ds rdr = ∞,

then φf /∈ FHomeoc(D, ω).
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Since, as stated in Remark 3.3, Hameoc(D, ω) ⊂ FHomeoc(D, ω), we ob-

tain the following corollary from Theorem 3.4, which resolves the Infinite Twist

conjecture5 mentioned in the introduction.

Corollary 3.5 (“Infinite Twist Conjecture”). Any infinite twist φf sat-

isfying (11) is not in Hameoc(D, ω).

Infinite twists can be defined on any symplectic manifold, and we discuss

them further in Appendix B in the context of future open questions.

3.3. Spectral invariants from periodic Floer homology. To prove Theo-

rem 3.4, we use the theory of periodic Floer homology (PFH), discussed in

Section 4. PFH is a version of Floer homology for area-preserving diffeomor-

phisms that was introduced by Hutchings [Hut02], [HS05]. As with ordinary

Floer homology, PFH can be used to define “spectral invariants.” More pre-

cisely, in the present context these spectral invariants take the form of a se-

quence of functions cd : Diffc(D, ω) → R, where d ∈ N, which we call PFH

spectral invariants and which satisfy various useful properties. We give the

definition of cd in Section 4.3; see, in particular, Remark 4.6.

The definition of PFH spectral invariants is due to Michael Hutchings

[Hut17], but very few properties have been established about these. We will

prove in Theorem 4.5 that the PFH spectral invariants satisfy the following

properties:

(1) Normalization: cd(Id) = 0.

(2) Monotonicity: Suppose that H 6 G where H,G ∈ C∞
c (S1 × D). Then,

cd(ϕ
1
H) 6 cd(ϕ

1
G) for all d ∈ N.

(3) Hofer Continuity: |cd(ϕ
1
H)− cd(ϕ

1
G)| 6 d‖H −G‖(1,∞).

(4) Spectrality: cd(ϕ
1
H) ∈ Specd(H) for any H ∈ C∞

c (S1×D), where Specd(H)

is the order d spectrum of H defined in Section 2.4.

A key property, which allows us to use the PFH spectral invariants for

studying homeomorphisms (as opposed to diffeomorphisms), is the following

theorem, which we prove in Section 5 via the methods of continuous symplectic

topology.

Theorem 3.6. The spectral invariant cd : Diffc(D, ω) → R is continu-

ous with respect to the C0 topology on Diffc(D, ω). Furthermore, it extends

continuously to Homeoc(D, ω).

5The actual formulation in [MS17] of the Infinite Twist conjecture is slightly different than

this, because it does not include the condition (11). However, without this condition, one

can produce infinite twists that lie in Hameoc(D, ω). The authors of [MS17] have confirmed

in private communication with us that imposing condition (11) is consistent with what they

intended.
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Another key property is the following, which was originally conjectured in

greater generality by Hutchings [Hut17].

Theorem 3.7. The PFH spectral invariants cd : Diffc(D, ω) → R satisfy

the Calabi property

(12) lim
d→∞

cd(ϕ)

d
= Cal(ϕ)

if ϕ is a monotone twist map of the disc.

Property (12) can be thought of as a kind of analogue of the “Volume

Property” for ECH spectral invariants proved in [CGHR15]. Our proof of

Theorem 3.7, presented in Section 6, deduces it from computations of PFH for

certain twists maps of S2; this is a topic of interest beyond the Simplicity Con-

jecture; for example, we used these computations in [CGHS23]. We mention

for the interested reader that some newer proofs of Theorem 3.7, proving more

general statements via different methods, can be found in [CGPZ21], [EH21].

3.4. Proofs of the theorems. We now give the proofs of Theorems 3.2, 3.4

and 1.2, assuming the results about PFH spectral invariants stated above.

Proof. Theorem 1.2 is an immediately consequence of Theorem 3.2, and

Theorem 3.2 is an immediate consequence of Theorem 3.4, since we already

proved in Section 3.1 that FHomeoc(D, ω) is a (non-trivial) normal subgroup.

Thus, it remains to prove Theorem 3.4.

We start for the benefit of the reader with an outline of how we do

this. Theorem 3.6 allows one to define the PFH spectral invariants for any

ψ ∈ Homeoc(D, ω). We will show, by using the Hofer Continuity property,

that if ψ is a finite-energy homeomorphism, then the sequence of PFH spectral

invariants {cd(ψ)}d∈N grows at most linearly. On the other hand, in the case

of an infinite twist φf , satisfying the condition in equation (11), the sequence

{cd(φf )}d∈N has super-linear growth, as a consequence of the Calabi prop-

erty (12). From this we can conclude that φf /∈ FHomeoc(D, ω), as desired.

The details are as follows. We begin with the following lemma, which tells

us that for a finite-energy homeomorphism ψ, the sequence of PFH spectral

invariants {cd(ψ)}d∈N grows at most linearly.

Lemma 3.8. Let ψ ∈ FHomeoc(D, ω) be a finite-energy homeomorphism.

Then, there exists a constant C , depending on ψ, such that

cd(ψ)

d
6 C∀d ∈ N.

Proof. By definition, ψ being a finite-energy homeomorphism implies that

there exist smooth Hamiltonians Hi ∈ C∞
c (S1 × D) such that the sequence
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‖Hi‖(1,∞) is bounded, i.e., there exists C ∈ R such that ‖Hi‖(1,∞) 6 C, and

the Hamiltonian diffeomorphisms ϕ1
Hi

converge uniformly to ψ.

The Hofer continuity property and the fact that cd(Id) = 0 imply that

cd(ϕ
1
Hi
) 6 d‖Hi‖(1,∞) 6 dC

for each d ∈ N.

On the other hand, by Theorem 3.6, cd(ψ) = limi→∞ cd(ϕ
1
Hi
). We con-

clude from the above inequality that cd(ψ) 6 dC for each d ∈ N. �

We now turn our attention to showing that the PFH spectral invariants of

an infinite twist φf , which satisfies equation (11), violate the inequality from

the above lemma. We will need the following.

Lemma 3.9. Let φf be an infinite twist satisfying (11), as described in

Section 3.2. Then there exists a sequence of smooth monotone twists φfi ∈

Diffc(D, ω) satisfying the following properties :

(1) the sequence φfi converges in the C0 topology to φf ;

(2) there exist Hamiltonians Fi, compactly supported in the interior of the disc

D, such that ϕ1
Fi

= φfi and Fi 6 Fi+1;

(3) lim
i→∞

Cal(φfi) = ∞.

Proof. Recall that f is a decreasing function of r that vanishes near 1

and satisfies lim
r→0

f(r) = ∞. It is not difficult to see that we can pick smooth

functions fi : [0, 1] → R satisfying the following properties:

(1) fi = f on [1i , 1];

(2) fi 6 fi+1.

Let us check that the monotone twists φfi satisfy the requirements of the

lemma. To see that they converge to φf , observe that φf and φfi coincide

outside the disc of radius 1
i . Hence, φ

−1
f φfi converges uniformly to Id because

it is supported in the disc of radius 1
i . Next, note that by formula (8), φfi

is the time–1 map of the Hamiltonian flow of Fi(r, θ) =
∫ 1
r sfi(s)ds. Clearly,

Fi 6 Fi+1 because fi 6 fi+1. Finally, by formula (9) we have

Cal(φfi) =

∫ 1

0

∫ 1

r

sfi(s)ds rdr >

∫ 1

1
i

∫ 1

r

sfi(s)ds rdr =

∫ 1

1
i

∫ 1

r

sf(s)ds rdr.

Recall that f has been picked such that
∫ 1
0

∫ 1
r sf(s)ds rdr = ∞; see equa-

tion (11). We conclude that lim
i→∞

Cal(φfi) = ∞. �

We will now use Lemma 3.9 to complete the proof of Theorem 3.4.

By the Monotonicity property, we have cd(φfi) 6 cd(φfi+1
) for each d ∈ N.

Since φfi converges in C
0 topology to φf , we conclude from Theorem 3.6 that
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cd(φf ) = limi→∞ cd(φfi). Combining the previous two lines we obtain the

following inequality:

cd(φfi) 6 cd(φf ) ∀ d, i ∈ N.

Now the Calabi property of Theorem 3.7 tells us that limd→∞
cd(φfi

)

d =

Cal(φfi). Combining this with the previous inequality we get Cal(φfi) 6

limd→∞
cd(φf )

d for all i. Hence, by the third item in Lemma 3.9,

lim
d→∞

cd(φf )

d
= ∞,

and so by Lemma 3.8, φf is not in FHomeoc(D, ω). �

Remark 3.10. The proof outlined above does not use the full force of

Theorem 3.7; it only uses the fact that limd→∞
cd(ϕ)
d > Cal(ϕ).

4. Periodic Floer Homology and

basic properties of the PFH spectral invariants

The remainder of the paper is devoted to proving the promised properties

of the PFH spectral invariants required to prove Theorem 3.4 and therefore

Theorem 1.2.

In this section, we recall the definition of Periodic Floer Homology (PFH),

due to Hutchings [Hut02], [HS05], and the construction of the spectral invari-

ants that arise from this theory, also due to Hutchings [Hut17]. We will then

prove that PFH spectral invariants satisfy the Monotonicity, Hofer Continuity,

and Spectrality properties that we mentioned in the previous section. The

spectral invariants appearing in Section 3.3 are defined by identifying area-

preserving maps of the disc, Diffc(D, ω), with area-preserving maps of the

sphere, which are supported in the northern hemisphere S+, and using the

PFH of S2. Thus, the three aforementioned properties will follow from related

properties about PFH spectral invariants on S2; see Theorem 4.5 below.

4.1. Preliminaries on J-holomorphic curves and stable Hamiltonian struc-

tures. A stable Hamiltonian structure (SHS) on a closed three-manifold Y is

a pair (α,Ω), consisting of a 1-form α and a closed two-form Ω, such that

(1) α ∧ Ω is a volume form on Y ;

(2) ker(Ω) ⊂ ker(dα).

Observe that the first condition implies that Ω is non-vanishing, and as a

consequence, the second condition is equivalent to dα = gΩ, where g : Y → R

is a smooth function.

A stable Hamiltonian structure determines a plane field ξ := ker(α) and

a Reeb vector field R on Y given by

R ∈ ker(Ω), α(R) = 1.



PROOF OF THE SIMPLICITY CONJECTURE 199

Closed integral curves of R are called Reeb orbits ; we regard Reeb orbits as

equivalent if they are equivalent as currents.

Stable Hamiltonian structures were introduced in [BEH+03], [CM05] as

a setting in which one can obtain general Gromov-type compactness results,

such as the SFT compactness theorem, for pseudo-holomorphic curves in R×Y .

Here are two examples of stable Hamiltonian structures that are relevant to

our story.

Example 4.1. A contact form on Y is a 1-form λ such that λ ∧ dλ is a

volume form. The pair (α,Ω) := (λ, dλ) gives a stable Hamiltonian structure

with g ≡ 1. The plane field ξ is the associated contact structure, and the Reeb

vector field as defined above gives the usual Reeb vector field of a contact form.

The contact symplectization of Y is

X := R× Yϕ,

which has a standard symplectic form, defined by

(13) Γ = d(esλ),

where s denotes the coordinate on R.

Example 4.2. Let (S, ωS) be a closed surface, and denote by ϕ a smooth

area-preserving diffeomorphism of S. Define the mapping torus

Yϕ :=
S × [0, 1]

(x, 1) ∼ (ϕ(x), 0)
.

Let r be the coordinate on [0, 1]. Now, Yϕ carries a stable Hamiltonian struc-

ture (α,Ω) := (dr, ωϕ), where ωϕ is the canonical closed two form on Yϕ induced

by ωS . Note that the plane field ξ is given by the vertical tangent space of

the fibration π : Yϕ → S1 and the Reeb vector field is given by R = ∂r. Here,

g ≡ 0. Observe that the Reeb orbits here are in correspondence with the

periodic orbits of ϕ.

We define the symplectization of Yϕ by

X := R× Yϕ,

which has a standard symplectic form, defined by

(14) Γ = ds ∧ dr + ωϕ,

where s denotes the coordinate on R.

We say an almost complex structure J on X = R× Y is admissible, for a

given SHS (α,Ω), if the following conditions are satisfied:

(1) J is invariant under translation in the R-direction of R× Y ;

(2) J∂s = R, where s denotes the coordinate on the R-factor of R× Y ;

(3) Jξ = ξ, where ξ := ker(α), and Ω(v, Jv) > 0 for all nonzero v ∈ ξ.



200 D. CRISTOFARO-GARDINER, V. HUMILIÈRE, and S. SEYFADDINI

We will denote by J (α,Ω) the set of almost complex structures that are ad-

missible for (α,Ω). The space J (α,Ω) equipped with the C∞ topology is path

connected, and even contractible. When the SHS is clear from context, we will

call J admissible without specifying which SHS we are referring to.

Define a J-holomorphic map to be a smooth map u : (Σ, j) → (X, J),

satisfying the equation

(15) du ◦ j = J ◦ du,

where (Σ, j) is a closed Riemann surface (possibly disconnected), minus a finite

number of punctures. A J-holomorphic map u : (Σ, j) → (X, J) is called some-

where injective if there exists a point z ∈ Σ such that u−1(u(z)) = {z} and

du : TzΣ → Tu(z)X is injective. An equivalence class of J-holomorphic maps

under the relation of biholomorphisms of the domain will be called a J-holo-

morphic curve. In this paper, we will only consider J-holomorphic curves that

are asymptotic to nondegenerate Reeb orbits at their punctures, and this will

be our standing assumption for the remainder of the paper; see [Wen16] for the

precise definition of asymptotic in this context. Such a J-holomorphic curve

has the property that it is determined by its image if it is somewhere injective

[Wen16]. We will call a J-holomorphic curve irreducible when its domain is

connected. As is common in the literature on ECH, we will sometimes have to

consider J-holomorphic maps up to equivalence of currents, and we call such

an equivalence class a J-holomorphic current ; more precisely, a J-holomorphic

current is a finite set {(Ci,mi)}, where the Ci are distinct irreducible some-

where injective J-holomorphic curves and the mi are positive integers. We will

call a J-holomorphic current irreducible when it consists of just one ordered

pair (Ci,mi).

In the lemma below we state a standard property of J-holomorphic curves

that plays a key role in our arguments. For a proof see, for example, the

argument in [Wen16, Lemma 9.9].

Lemma 4.3. Suppose J ∈ J (α,Ω) where (α,Ω) is a stable Hamiltonian

structure on Y . If C is a J-holomorphic curve in R× Y , then Ω is pointwise

non-negative on C . Furthermore, Ω vanishes at a point on C only if C is

tangent to the span of ∂s and R.

4.2. PFH spectral invariants. Periodic Floer homology (PFH) is a version

of Floer homology, defined by Hutchings [Hut02], [HS05], for area-preserving

maps of surfaces. The construction of PFH is closely related to the better-

known embedded contact homology (ECH) and, in fact, predates the construc-

tion of ECH. We now review what we need to know about the definition of PFH.

For further details on PFH, we refer the reader to [Hut02], [HS05], and for more

about the motivation underlying the definitions, we refer the reader to [Hut14].
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Let (S, ωS) be a closed6 surface with an area form, and let ϕ be a nonde-

generate smooth area-preserving diffeomorphism. Non-degeneracy is defined

as follows: A periodic point p of φ, with period k, is said to be non-degenerate

if the derivative of ϕk at the point p does not have 1 as an eigenvalue. We say

ϕ is d-nondegenerate if all of its periodic points of period at most d are nonde-

generate; if ϕ is d-nondegenerate for all d, then we say it is non-degenerate. A

C∞-generic area-preserving diffeomorphism is nondegenerate. To define spec-

tral invariants, we will need a “twisted” version of PFH, and we now provide

the details of its construction.

Remark 4.4. If we were to carry out the construction outlined below,

nearly verbatim, for a contact SHS (λ, dλ), rather than the SHS (dr, ωϕ), then

we would obtain the (twisted) embedded contact homology ECH; see [Hut14],

[HS06] for further details.

4.2.1. Definition of twisted PFH. Assume now and below for simplicity

that S = S2 and that ϕ is nondegenerate. (For other surfaces, a similar story

holds, but we will not need this.) The twisted periodic Floer homology P̃FH

is the homology of a chain complex P̃FC. To define the twisted PFH chain

complex, we begin by defining certain finite sets α = {(αi,mi)}, called orbit

sets. Specifically, we require that each αi is an embedded Reeb orbit, the αi

are distinct, and the mi are positive. An orbit set is called a PFH generator

if mi = 1 whenever αi is hyperbolic.7 An orbit set α has an associated class

[α] ∈ H1(Yϕ;Z); in the case S = S2, H1(Yϕ;Z) is canonically identified with Z,

and we call the image of [α] under this identification the degree of α.

Choose a reference cycle γ0 in Yϕ such that π|γ0 : γ0 → S1 is an orientation-

preserving diffeomorphism, and fix a trivialization τ0 of ξ over γ0. We can now

define the P̃FH chain complex P̃FC(ϕ, d). A generator of P̃FC(ϕ, d), called a

twisted PFH generator, is a pair (α,Z), where α is a PFH generator of degree d,

and Z is a relative homology class in H2(Yϕ, α, dγ0). Here, H2(Yϕ, α, β) is

defined to be the set of equivalence classes of 2-chains Z in Yϕ satisfying ∂Z =
∑

miαi −
∑

niβi. The original idea behind the definition of a twisted PFH

generator is that we will want to study pseudoholomorphic curves C asymptotic

to PFH generators α, and then the relative homology class Z allows us to keep

track of the homology class of C: We say that a J-holomorphic current C in

X = R × Yϕ, is a current from (α,Z) to (β, Z ′) if C is asymptotic to α as

6PFH can still be defined if S is not closed, but we will not need this here.
7Being hyperbolic means that the eigenvalues at the corresponding periodic point of ϕ are

real. Otherwise, the orbit is called elliptic.
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s→ +∞, asymptotic to β as s→ −∞, and satisfies

Z = [C] + Z ′;

we refer the reader to [HS05, p. 307] for the precise definition of asymptotic in

this context. An important motivation for us is that the introduction of the

relative homology class Z allows us to define an action, see Section 4.2.2.

The chain complex P̃FC(ϕ, d) is freely generated over8 Z2 by twisted PFH

generators. The Z2 vector space P̃FC(ϕ, d) has a canonical Z-grading I given

by

(16) I(α,Z) = cτ,τ0(Z) +Qτ,τ0(Z) +
∑

i

mi
∑

k=1

CZτ (α
k
i ).

Here, τ is (a homotopy class) of a trivialization of the plane field ξ over all Reeb

orbits, cτ (Z) denotes the relative first Chern class of ξ over Z, Qτ (Z) denotes

the “relative self-intersection,” and CZτ (γ
k) denotes the Conley-Zehnder index

of the kth iterate of γ; all of these quantities are computed using the trivializa-

tion τ , and we refer the reader to [Hut02, §2] or [Hut14, §3] for their definition.

Note that the above index depends on the choice of the reference cycle γ0 and

the trivialization τ0 of ξ over γ0, though it can be shown that it does not de-

pend on the choice of trivialization τ over Reeb orbits. If C is a J-holomorphic

current from (α,Z) to (β, Z ′), then we call the quantity I(α,Z)− I(β, Z ′) the

ECH index of C.

We now define the differential on P̃FC(ϕ, d). Suppose now that I(α,Z)−

I(β, Z ′) = 1, and let J ∈ J (dr, ωϕ). We define

MJ((α,Z), (β, Z
′))

to be the moduli space of J-holomorphic currents C in X = R × Yϕ, modulo

translation in the R direction, that are asymptotic to α as s→ +∞, asymptotic

to β as s→ −∞, and satisfy

Z = [C] + Z ′;

we refer the reader to [HS05, p. 307] for the precise definition of asymptotic in

this context. For generic J ∈ J (dr, ωϕ), the above moduli space is a compact

0-dimensional manifold [Hut02, Th. 1.8], and we define the differential by the

rule

〈∂(α,Z), (β, Z ′)〉 = #MJ((α,Z), (β, Z
′)),

where # denotes mod 2 cardinality. Although the chain complex P̃FC(ϕ, d)

is infinite dimensional, the differential is well defined for the following reason:

for a fixed (α,Z), the set of all (β, Z ′) such that I(β, Z ′) = I(α,Z)− 1 is finite

8We could also define PFH over Z, but we do not need this here.
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because ϕ is non-degenerate, and so there are only finitely many Reeb orbit

sets of degree d, and hence only finitely many pairs (β, Z ′) in any fixed grading.

It is known that ∂2 = 0 by [HT07], [HT09], and so the homology P̃FH(ϕ, d) is

well defined. Lee and Taubes [LT12] proved that the homology of this chain

complex does not depend on the choice of J ; in fact, they show that for the

case S = S2, it depends only on d.

For future motivation, we note that the Lee-Taubes invariance results

discussed here come from an isomorphism of PFH and a version of the Seiberg-

Witten Floer theory from [KM07].

Importantly, for the applications to this paper, in computing P̃FH(ϕ, d),

we can relax the assumption that ϕ is nondegenerate to requiring only that ϕ

is d-nondegenerate.

By a direct computation in the case where ϕ is an irrational rotation of

the sphere, i.e., ϕ(z, θ) = (z, θ + α) with α being irrational, we obtain

(17) P̃FH∗(ϕ, d) =

{

Z2 if ∗ = d mod 2,

0 otherwise.

Here is a brief outline of the computation leading to the above identity. The

Reeb vector field in Yϕ has two simple Reeb orbits γ+, γ− corresponding to the

north and the south poles. Both of these orbits are elliptic and so the orbit

sets of P̃FC(ϕ, d) consist entirely of elliptic Reeb orbits. This implies that the

difference in index between any two generators of P̃FC(ϕ, d) chain complex is

an even integer; see [Hut02, Prop. 1.6.d]. Thus, the PFH differential vanishes.

Now, the above identity follows from the fact that for each index k, satisfying

k = d mod 2, there exists a unique generator of index k in P̃FC(ϕ, d).

4.2.2. Definition of the spectral invariants. The vector space P̃FC(ϕ, d)

carries a filtration, called the action filtration,9 induced by

A(α,Z) =

∫

Z

ωϕ.

We define P̃FC
L
(ϕ, d) to be the Z/2 vector space spanned by generators (α,Z)

with A(α,Z) 6 L.

By Lemma 4.3, ωϕ is pointwise non-negative along any J-holomorphic

curve C, and so
∫

C ωϕ > 0. This implies that the differential does not increase

the action filtration, i.e.,

∂(P̃FC
L
(ϕ, d)) ⊂ P̃FC

L
(ϕ, d).

9The relation between the quantity A(α,Z) and the Hamiltonian action functional dis-

cussed in Section 2.4 will be clarified in Lemma 4.10.
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Hence, it makes sense to define P̃FH
L
(ϕ, d) to be the homology of the subcom-

plex P̃FC
L
(ϕ, d).

We are now in position to define the PFH spectral invariants. There is an

inclusion induced map

(18) P̃FH
L
(ϕ, d) → P̃FH(ϕ, d).

If 0 6= σ ∈ P̃FH(ϕ, d) is any nonzero class, then we define the PFH spectral

invariant

cσ(ϕ)

to be the infimum, over L, such that σ is in the image of the inclusion induced

map (18) above. The number cσ(ϕ) is finite, because, as explained above, there

are only finitely many pairs (α,Z) ∈ P̃FC(ϕ, d) of a fixed grading. We remark

that cσ(ϕ) is given by the action of some (α,Z). Indeed, this can be deduced

from the following two observations:

(1) If L < L′ are such that there exists no (α,Z) with L 6 A(α,Z) 6 L′,

then the two vector spaces P̃FC
L
(ϕ, d) and P̃FC

L′

(ϕ, d) coincide and so

P̃FH
L
(ϕ, d) → P̃FH(ϕ, d) and P̃FH

L′

(ϕ, d) → P̃FH(ϕ, d) have the same

image.

(2) The set of action values {A(α,Z) : (α,Z) ∈ P̃FC
L
(ϕ, d)} forms a discrete

subset of R. This is a consequence of the fact that, as stated above, there

are only finitely many Reeb orbit sets of degree d.

In Remark 4.8 below we show that cσ(ϕ) does not depend on the choice

of the admissible almost complex structure J . Note, however, that it does

depend on the choice of the reference cycle γ0.

4.3. Initial properties of PFH spectral invariants. Let p−=(0, 0,−1)∈S2.

We set

S := {ϕ ∈ Diff(S2, ω) : ϕ(p−) = p−, −
1
4 < rot(ϕ, p−) <

1
4},

where rot(ϕ, p−) denotes the rotation number of ϕ at p−; see [KH95] for the

definition of rotation number. We remark that our choice of the constant 1
4 is

arbitrary; any other constant in (0, 12) would be suitable for us; we just need

to slightly enlarge the class of diffeomorphisms arising from Diffc(D
2, ω), so as

to facilitate computations.

Recall from the previous section that the spectral invariant cσ depends on

the choice of reference cycle γ0 ∈ Yϕ. For ϕ ∈ S, there is a unique embedded

Reeb orbit through p−, and we set this to be the reference cycle γ0.

The grading on P̃FH depends on the choice of trivialization τ0 over γ0;

our convention in this paper is that we always choose τ0 such that the rotation
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number θ of the linearized Reeb10 flow along γ0 with respect to τ0 satisfies

−1
4 < θ < 1

4 . This determines τ0 uniquely.

We will want to single out some particular spectral invariants for ϕ ∈ S

and show that they have various convenient properties; we will use these to

define the spectral invariants for ϕ ∈ Diffc(D, ω).

Having set the above conventions, we do this as follows. Suppose that

ϕ ∈ S is non-degenerate. According to equation (17), for every pair (d, k) with

k = d mod 2, we have a distinguished nonzero class σd,k with degree d and

grading k, and so we can define

cd,k(ϕ) := cσd,k
(ϕ).

Lastly, we also define11

cd(ϕ) := cd,−d(ϕ).

We will see in the proof of Theorem 4.5 that the cd,k(ϕ) for nondegenerate

ϕ determine cd,k(ϕ) for all ϕ by continuity.

To prepare for what is coming, we identify a class of Hamiltonians H with

the key property, among others, that S = {ϕ1
H : H ∈ H}. We define

H := {H ∈ C∞(S1 × S2) : ϕt
H(p−) = p−, H(t, p−) = 0, ∀ t ∈ [0, 1],

− 1
4 < rot({ϕt

H}, p−) <
1
4},

where rot({ϕt
H}, p−) is the rotation number of the isotopy {ϕt

H}t∈[0,1] at p−.

Observe that S = {ϕ1
H : H ∈ H}.

The theorem below, which is the main result of this section, establishes

some of the key properties of the PFH spectral invariants and furthermore

allows us to extend the definition of these invariants to all, possibly degenerate,

ϕ ∈ S. In the statement below, ‖·‖(1,∞) denotes the energy, or the Hofer norm,

on C∞(S1 × S2), which is defined as follows:

‖H‖(1,∞) =

∫ 1

0

Å

max
x∈S2

H(t, x)− min
x∈S2

H(t, x)

ã

dt.

Theorem 4.5. The PFH spectral invariants cd,k(ϕ) admit a unique ex-

tension to all ϕ ∈ S satisfying the following properties :

10Following [Hut14, §3.2], we define the rotation number θ as follows: Let {ψt}t∈R denote

the 1-parameter group of diffeomorphisms of Yϕ given by the flow of the Reeb vector field.

Then, Dψt : Tγ0(0)Yϕ → Tγ0(t)Yϕ induces a symplectic linear map φt : ξγ0(0) → ξγ0(t), which

using the trivialization τ0 we regard as a symplectic linear transformation of R2. We define

θ to be the rotation number of the isotopy {φt}t∈[0,1].
11Alternatively, one may define cd(ϕ) :=cd,k(ϕ) for any −d≤k≤d satisfying k=d mod 2.

These alternative definitions are all suitable for our purposes in this article.
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(1) Monotonicity : Suppose that H 6 G, where H,G ∈ H. Then,

cd,k(ϕ
1
H) 6 cd,k(ϕ

1
G).

(2) Hofer Continuity : For any H,G ∈ H, we have

|cd,k(ϕ
1
H)− cd,k(ϕ

1
G)| 6 d‖H −G‖(1,∞).

(3) Spectrality : cd,k(ϕ
1
H) ∈ Specd(H) for any H ∈ H.

(4) Normalization : cd,−d(Id) = 0.

Remark 4.6. To define the PFH spectral invariant cd,k for ϕ ∈ Diffc(D, ω),

we use equation (1) to identify Diffc(D, ω) with area-preserving diffeomor-

phisms of the sphere that are supported in the interior of the northern hemi-

sphere S+.

We similarly define cd : Diffc(D, ω) → R, which was introduced in Sec-

tion 3.3. It follows from Theorem 4.5 that cd : Diffc(D, ω) → R satisfies

properties (1)–(4) in Section 3.3.

The rest of this section is dedicated to the proof of the above theorem. The

proof requires certain preliminaries. First, it will be convenient to explicitly

identify Yϕ with S1×S2. To do so, pick H ∈ H such that ϕ = ϕ1
H .12 We define

S1 × S2 → Yϕ,

(t, x) 7→
(

(ϕt
H)−1(x), t

)

,
(19)

where t denotes the variable on S1. For future reference, note that this identifies

the Reeb vector field on Yϕ with the vector field

(20) ∂t +XH

on S1 × S2. The 2-form ωϕ pulls back under this map to the form

ω + dH ∧ dt,

where ω is the area form on S2.

The Reeb orbit γ0 maps under (19) to the preimage of p− under the map

S1 × S2 → S2; we will continue to denote it by γ0. Moreover, the trivialization

τ0 from above agrees (up to homotopy) under this identification with the triv-

ialization over γ0 given by pulling back a fixed frame of Tp−S
2 under the map

S1 × S2 → S2.

12We remark that the choice of H ∈ H such that ϕ = ϕ1
H is unique up to homotopy of

Hamiltonian isotopies rel endpoints. This fact, which is not used in our arguments, may be

deduced from properties of the rotation number.
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The map (19) allows us to identify R× S1 × S2 with the symplectization

X via

R× S1 × S2 → X,

(s, t, x) 7→ (s, (ϕt
H)−1(x), t).

The symplectic form Γ on X then pulls back to

(21) ωH = ds ∧ dt+ ω + dH ∧ dt.

Let H,G be two Hamiltonians in H. As mentioned earlier, P̃FH(ϕ1
H , d) is

isomorphic to P̃FH(ϕ1
G, d). The proof of this uses Seiberg-Witten theory and

is carried out in [LT12, Cor. 6.1]. This isomorphism is canonical with a choice

of reference cycle in H2(S
1 × S2, γ0, γ0); we say more about this in Remark 4.9

below. We take this reference cycle to be the constant cycle13 over γ0. In this

case, we will see below that the canonical isomorphism

(22) P̃FH(ϕ1
H , d) → P̃FH(ϕ1

G, d),

preserves the Z-grading.

As is generally the case with related invariants, one might expect this

isomorphism to be induced by a chain map counting certain ECH index zero

J-holomorphic curves. In fact, it is not currently known how to define the map

(22) this way; the construction uses Seiberg-Witten theory. Nevertheless, the

map in (22) does satisfy a “holomorphic curve” axiom that was proven by Chen

[Che21] using variants of Taubes’ “Seiberg-Witten to Gromov” arguments in

[Tau96]. A similar “holomorphic curve” axiom was proven in the context of

embedded contact homology by Hutchings-Taubes.

To state what we will need to know about this holomorphic curve axiom

in our context, given Hamiltonians H,G ∈ H, define

K = G+ β(s) · (H −G)

for s ∈ R, where β : R → [0, 1] is some non-decreasing function that is 0 for s

sufficiently negative, 1 for s sufficiently positive, and satisfies 1+β′(s) ·(H−G)

> 0. We can think of K as above as a function on R× S1 × S2. Now consider

the form

ωX = ds ∧ dt+ ω + d(Kdt).

This is a symplectic form on R × S1 × S2. Observe that, for s � 0, the form

ωX agrees with the symplectization form ωH , and for s � 0, it agrees with

13This is the projection γ0 × I → γ0.
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the symplectization form ωG. Let JX be any ωX -compatible14 almost com-

plex structure that agrees with a generic (dt, ωH) admissible almost complex

structure J+ for s� 0 and with a generic (dt, ωG) admissible almost complex

structure J− for s� 0.

Then, the holomorphic curve axiom implies that (22) is induced by a

(non-canonical) chain map

(23) ΨJX ,H,G : P̃FC(ϕ1
H , d, J+) → P̃FC(ϕ1

G, d, J−),

with the property that if 〈ΨJX ,H,G(α,Z), (β, Z
′)〉 6= 0, then there is an ECH

index 0 JX -holomorphic building C from α to β such that

(24) Z ′ + [C] = Z,

as elements of H2(S
1 × S2, α, dγ0); we say more about this in Remark 4.9

below. Here, by a JX -holomorphic building from α to β, we mean a sequence

of Ji-holomorphic curves

(C0, . . . , Ci, . . . , Ck),

such that the negative asymptotics of Ci agree with the positive asymptotics of

Ci+1, the curve C0 is asymptotic to α at +∞, and the curve Ck is asymptotic

to β at −∞; we refer the reader to [Hut14, §5.3] for more details. We remark

for future reference that the Ci are called levels, and each Ji is either
15 JX , J+

or J−. The condition that the ECH index of the building is zero means that

the sum of the ECH indices of the levels add up to zero. In particular, this

index condition, together with (24), implies the earlier claim that the map (22)

preserves the Z-grading by additivity of cτ and Qτ , since the trivializations over

γ0 required to define the grading on P̃FC(ϕ1
H) and P̃FC(ϕ1

G) are the same.

We will want to assume that JX is compatible with the fibration R× S1 ×

S2 → R × S1 in the following sense: Let V be the vertical tangent bundle of

this fibration, and denote by H the ωX -orthogonal complement of V; observe

that H is spanned by the vector fields ∂s and ∂t +XK . Then, we will want JX
to preserve V and H. Given any admissible J± on the ends, we can achieve

this as follows. On the horizontal tangent bundle H, we always demand that

JX sends ∂s to ∂t + XK . On the vertical tangent bundle, we observe that

ωX |V = ω and, in particular, ωX |V is independent of s. We can then connect

J+|V to J−|V through a path of ω-tamed almost complex structures on V.

We can now prove Theorem 4.5. We break the proof up into two parts,

namely we first prove all of the properties except for Spectrality, and then we

prove Spectrality.

14Recall that an almost complex structure J is compatible with a symplectic form ω if

g(u, v) := ω(u, Jv) defines a Riemannian metric.
15More can be said, but we will not need this additional information
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Proof of Theorem 4.5:Monotonicity, Hofer continuity, and normalization.

We begin by first supposing that the monotonicity and Hofer continuity prop-

erties hold when ϕ1
G, ϕ

1
H are nondegenerate and explain how this implies the

rest of the theorem. To that end, let H ∈ H, not necessarily nondegenerate,

and take a sequence Hi ∈ H that C2 converges to H and such that ϕ1
Hi

is

nondegenerate. Then, we define

cd,k(ϕ
1
H) = lim

i→∞
cd,k(ϕ

1
Hi
).

This limit exists thanks to the inequality |cd,k(ϕ
1
Hi
) − cd,k(ϕ

1
Hj

)| 6 d‖Hi −

Hj‖(1,∞). Moreover, the same inequality implies that the limit value does not

depend on the choice of the sequence Hi and so cd,k(ϕ
1
H) is well defined for all

H ∈ H. Thus, we obtain a well-defined mapping

cd,k : S → R.

It can be seen that cd,k continues to satisfy the monotonicity and Hofer con-

tinuity properties for degenerate ϕ1
G, ϕ

1
H . Moreover, note that, by the Hofer

continuity property, the mapping cd,k : S → R is uniquely determined by its

restriction to the set of all non-degenerate ϕ ∈ S.

To prove that cd,−d(Id) = 0, it is sufficient to show that cd,−d(ϕ) = 0

in the case where ϕ is a positive irrational rotation of the sphere; that is,

ϕ(z, θ) = (z, θ+α) with α being a small and positive irrational number. As in

the explanation for equation (17), the chain complex P̃FC(ϕ, d) has a unique

generator in indices k such that k = d mod 2 and it is zero for other indices.

The unique generator of index −d is of the form (α,Z), where α = {(γ0, d)}

and Z is the trivial class in H2(Yϕ, dγ0, dγ0). The action A(α,Z) is zero. This

proves that cd,−d(ϕ) = 0 = cd,−d(Id).
16

For the rest of the proof, we will suppose that ϕ1
H , ϕ

1
G are nondegenerate.

We will now prove the monotonicity and Hofer continuity properties. Let

J+, J− be any generic admissible almost complex structures for ϕ1
H and ϕ1

G

respectively, and let (α1, Z1) + · · · + (αm, Zm) be a cycle in P̃FC(ϕ1
H , d, J+)

representing σd,k, with

cσd,k
(ϕ1

H) = A(α1, Z1) > · · · > A(αm, Zm).

Fix an almost complex structure JX that is compatible with the fibration and

agrees with J+ for s sufficiently positive and J− for s sufficiently negative. Let

(β, Z ′) be a generator in P̃FC(ϕ1
G, d) that has maximal action among generators

that appear with a non-zero coefficient in

ΨJX ,H,G ((α1, Z1) + · · ·+ (αm, Zm)) .

16With a similar argument one can prove that cd,k(Id) = 0 for every −d ≤ k ≤ d with

k = d mod 2.
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Then, by the aforementioned holomorphic curve axiom there is a JX -

holomorphic building from some (αi, Zi) to (β, Z
′). For the rest of the proof, we

will write (αi, Zi) = (α,Z) and will denote the JX -holomorphic building by C.

For the arguments below, which only involve energy and index arguments,

we can assume that C consists of a single JX -holomorphic level — in other

words, is an actual JX -holomorphic curve, rather than a building — so to

simplify the notation, we assume this.

For the remainder of the proof we will need the following lemma.

Lemma 4.7. The following identity holds :

A(α,Z)−A(β, Z ′) =

∫

C

ω + dK ∧ dt+K ′ds ∧ dt.

Furthermore, we have
∫

C

ω + dK ∧ dt > 0.

In the above statement, K ′ denotes ∂K
∂s and, for the rest of this section,

dK denotes the derivatives in the S2 directions.

Proof of Lemma 4.7. We will begin by proving that

(25) A(α,Z)−A(β, Z ′) =

∫

C

ω + d(Kdt),

which establishes the first item because ω+d(Kdt) = ω+dK ∧dt+K ′ds∧dt.

Note that we can write

A(α,Z) =

∫

Z

ω + d(Hdt), A(β, Z ′) =

∫

Z′

ω + d(Gdt).

Hence, equation (25) will follow if we show that
∫

C

ω =

∫

Z

ω −

∫

Z′

ω, and

∫

C

d(Kdt) =

∫

Z

d(Hdt)−

∫

Z′

d(Gdt).

The first identity holds because all of these integrals are determined by the

homology classes, and we have [C] = Z −Z ′. The second identity follows from

the following chain of identities:
∫

C

d(Kdt) =

∫

α

Kdt−

∫

β

Kdt

=

∫

α

Hdt−

∫

β

Gdt

=

∫

Z

d(Hdt)−

∫

Z′

d(Gdt),

where the first equality holds by Stokes’ theorem, the second follows from the

definition of K, and the third is a consequence of Stokes’ theorem combined
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with the fact that H,G both belong to H and so vanish on γ0. This completes

the proof of the first item in the lemma.

Now, we will show that
∫

C(ω + dK ∧ dt) > 0 by showing that the form

ω+dK ∧dt is pointwise non-negative along C. Indeed, at any point p ∈ X, we

can write any vector as v + h, where v ∈ V and h ∈ H are vertical and

horizontal tangent vectors as described in the paragraph before the proof

of Theorem 4.5. Since C is JX -holomorphic, it is sufficient to show that

(ω + dK ∧ dt)(v + h, JXv + JXh) > 0. We will show that

(26) (ω + dK ∧ dt)(v + h, JXv + JXh) = ωX(v, JXv),

which proves the inequality because JX is ωX -tame. Now, to simplify our

notation Ω will denote ω + dK ∧ dt for the rest of the proof. Expanding the

left-hand side of the above equation we get

Ω(v + h, JXv + JXh) = Ω(v, JXv) + Ω(h, JXh) + Ω(v, JXh) + Ω(h, JXv).

We will now show that Ω(v, JXv) = ωX(v, JXv) and Ω(h, JXh) = Ω(v, JXh) =

Ω(h, JXv) = 0, which clearly implies equation (26). To see this, note that v

and JXv are in the kernel of ds ∧ dt, hence

Ω(v, JXv) = ωX(v, JXv),

Ω(v, JXh) = ωX(v, JXh) = 0, Ω(h, JXv) = ωX(h, JXv) = 0.

It remains to show that Ω(h, JXh) = 0, that is, Ω|H = 0. This follows from the

fact that H is spanned by {∂s, ∂t +XK} and ∂s is in the kernel of Ω. Indeed,

a 2-form on a 2-dimensional vector space with non-trivial kernel is identically

zero. �

Note that cd,k(ϕ
1
H) > A(α,Z) and cd,k(ϕ

1
G) 6 A(β, Z ′). Hence,

(27) cd,k(ϕ
1
H)− cd,k(ϕ

1
G) > A(α,Z)−A(β, Z ′).

As a consequence of this inequality, Monotonicity would follow from proving

that if H > G, then A(α,Z)−A(β, Z ′) > 0. By the above lemma we have

(28) A(α,Z)−A(β, Z ′) >

∫

C

K ′ ds ∧ dt.

If H > G, then K ′ > 0. Moreover, ds ∧ dt is pointwise non-negative on C.

Indeed, continuing with the notation as above,

ds ∧ dt(v + h, JXv + JXh) = ds ∧ dt(h, JXh),

since v and JXv are in the kernel of ds ∧ dt; on the other hand, we saw in the

proof of the previous lemma that Ω|H = 0, so
(

1 + β′(H −G)
)

ds ∧ dt(h, JXh) = ωX(h, JXh) ≥ 0.

Hence
∫

C K
′ds ∧ dt > 0, which proves Monotonicity.
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As for Hofer Continuity, it is sufficient to show that

(29)

∣

∣

∣

∣

∫

C

K ′ ds ∧ dt

∣

∣

∣

∣

6 d‖H −G‖(1,∞).

Indeed, this inequality combined with inequalities (27) and (28) implies that

cd,k(ϕ
1
G)−cd,k(ϕ

1
H) 6 d‖H−G‖(1,∞). Similarly, by switching the role of H and

G, one gets cd,k(ϕ
1
H) − cd,k(ϕ

1
G) 6 d‖H − G‖(1,∞), which then implies Hofer

Continuity.

It remains to prove inequality (29). Since as above ds ∧ dt is pointwise

non-negative on C, we have
∣

∣

∣

∣

∫

C

K ′ds ∧ dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

C

β′(s)(H −G)ds ∧ dt

∣

∣

∣

∣

6

∫

C

β′(s)|H −G|ds ∧ dt.

Note that because H,G both vanish at the point p−, for all t, x, we have

|H(t, x)−G(t, x)| 6 max
S2

(Ht −Gt)−min
S2

(Ht −Gt) .

Hence, we get
∣

∣

∣

∣

∫

C

K ′ds ∧ dt

∣

∣

∣

∣

6

∫

C

β′(s)

Å

max
S2

(Ht −Gt)−min
S2

(Ht −Gt)

ã

ds ∧ dt.

We can evaluate the second integral by projecting C to the (s, t) plane; this

projection has degree d, and since
∫ +∞
−∞ β′ = 1, the second integral evaluates to

d‖H −G‖(1,∞).

This completes the proof of Hofer Continuity. �

Remark 4.8. In the special case where H = G, but the two Ji are different,

the Monotonicity argument above, applied first to H > G and next to G > H,

gives that the spectral invariant does not depend on J .

Remark 4.9. On the Seiberg-Witten side, the twisted theory corresponds

to a version of the Floer homology where, instead of taking the quotient of

solutions by the full gauge group G = C∞(M, S1), one only takes the quotient

by the subgroup G0 ⊂ G of gauge transformations in the connected component

of the identity. This has an H1(Y ) action, induced by the action via gauge

transformations, which corresponds to the H2(Y ) action on twisted PFH given

by adding a homology class.

As mentioned above, it was remarked by Taubes [Tau10, §1] that the

twisted invariant on the PFH/ECH side depends on a choice of reference cycle,

and there is an isomorphism between the invariants for different choices of

reference cycles that is canonical only up to a choice of element of H2(Y, ρ, ρ
′),

where ρ, ρ′ are two reference cycles. Implicit in this assertion is that after a
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choice of reference cycle R, the isomorphism (23) satisfies a holomorphic curve

axiom for buildings C satisfying

(30) Z +R = [C] + Z ′.

This is the best way to think about (24); this corresponds to the case where

our reference cycle is constant over ρ.

For more about the connection between the twisted theory and the rel-

evant Seiberg-Witten Floer homology, we refer the reader to [Tau10, §§1, 2],

where Taubes is writing about twisted ECH; we have adapted what is written

there to the PFH context, as suggested by [LT12, Cor. 6.1].

It remains to prove Spectrality. As stated in Section 4.2.2, the spectral

invariant cd,k(ϕ
1
H) is the action of a twisted PFH generator (α,Z) of degree d.

Spectrality, hence Theorem 4.5, is then a consequence of the following lemma.

Lemma 4.10. Let (α,Z) be a twisted PFH generator of degree d for ϕ =

ϕ1
H with H ∈ H. Then, A(α,Z) belongs to Specd(H), as defined in Section 2.4.

Before giving the proof, we describe a construction that will be used in

the proof and also later in the paper.

4.3.1. The class Zα. Let α be an orbit set. We will construct a specific

relative homology class Zα ∈ H2(Yϕ, α, γ0), for ϕ = ϕ1
H withH ∈ H, as follows.

A key input in the construction of this class is a certain map uα : D2 → S2

that we will also want to refer to later in the paper.

We first construct Zα in the case d = 1. Let q ∈ Fix(ϕ), and suppose that

α is the Reeb orbit in the mapping cylinder corresponding to q. The relative

cycle Zα will be of the form Zα = Z0 +Z1 +Z2. We begin by choosing a path

η in S2×{0} ⊂ Yϕ1
H
such that ∂η = (q, 0)− (p−, 0). We parametrize this curve

with a variable x ∈ [0, 1]. We define Z0 to be the chain induced by the map

[0, 1]2 → Yϕ1
H
, (x, t) 7→ (η(x), t).

Its boundary is given by ∂Z0 = α− γ0 + (η, 0)− (ϕ(η), 0). Next we define Z1

to be the chain induced by the map

[0, 1]2 → Yϕ1
H
, (t, x) 7→ (ϕt

H(η(x)), 0).

Then, ∂Z1 = (ϕ(η), 0) − (η, 0) − (ϕt
H(q), 0). Finally, we define Z2 to be the

chain induced by a map (uα, 0), where uα : D2 → S2 is such that uα|∂D2 is the

Hamiltonian orbit t 7→ ϕt
H(q). There is some ambiguity in the choice of uα

here, but to resolve this we select uα according to the following rules:

(i) If α = γ0, the Reeb orbit corresponding to p−, then we take uα to be the

constant disc with image p−.

(ii) If α 6= γ0, then we take uα such that its image does not contain p−.
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Then Z2 does not depend on the choice of uα satisfying the above two condi-

tions, and we now define Zα := Z0 + Z1 + Z2. The key point of the definition

is that ∂Zα = α− γ0.

Next we consider the case where α is an orbit set of degree m consisting of

only one periodic orbit. Let q be a periodic point, of (not necessarily minimal)

period m ∈ N, and suppose that α is the Reeb orbit in the mapping cylinder

corresponding to q. Then, q is a fixed point of ϕm
H . Consider the mapping

torus Yϕm
H
. There is a map c : Yϕm

H
→ Yϕ1

H
, pulling back ωϕ1

H
to ωϕm

H
, given

by mapping each interval S2 × [ km ,
k+1
m ] onto Yϕ via the map (x, t) → (ϕk

H(x),

m · t− k). Now repeat the construction from above to produce a relative cycle

Z ′ in Yϕm and define Zα to be the pushforward of Z ′ under the map c

Finally, let α = {(αi,mi)}, where the αi are simple closed Reeb orbits.

So, each (αi,mi) corresponds to a (not necessarily simple) orbit of a periodic

point qi of ϕ
1
H . By using the construction in the previous paragraph, we can

associate a relative cycle to each (αi,mi); the sum, over i, of all of these cycles

gives a relative cycle from α to dγ0, where d is the sum of the periods of the

periodic points qi.

4.3.2. Proof of Spectrality.

Proof of Lemma 4.10. As in the proof of the Monotonicity and Hofer con-

tinuity properties above, we may assume that ϕ is nondegenerate. Note that

it is sufficient to prove that A(α,Zα) ∈ Specd(H), where Zα is the class con-

structed in Section 4.3.1, since any other Z ∈ H2(Yϕ, α, γ0) is of the form

Zα + k[S2] where k ∈ Z and so A(α,Z) = A(α,Zα) + k.

To prove this, it suffices by the definition of Specd to prove this in the

d = 1 case, since an m-periodic point of ϕ is a fixed point of ϕm and this

is generated by Hm. So, assume this, and let Z0, Z1, Z2 and uα be as in the

definition of Zα in Section 4.3.1. We have
∫

Z0
ωϕ = 0. As for Z1, we have

∫

Z1

ωϕ =

∫ ∫

[0,1]2
ω〈∂tϕ

t
H(η(x)), ∂xϕ

t
H(η(x))〉

=

∫ ∫

[0,1]2
ω〈XHt(ϕ

t
H(η(x))), ∂xϕ

t
H(η(x))〉

=

∫ ∫

[0,1]2
dHt(∂xϕ

t
H(η(x))) =

∫ ∫

[0,1]2
∂xHt(ϕ

t
H(η(x)))

=

∫ 1

0

Ht(ϕ
t
H(q))−Ht(ϕ

t(p−))dt =

∫ 1

0

Ht(ϕ
t
H(q))dt.

Finally,
∫

Z2
ωϕ =

∫

D2 u
∗
αω. Hence,

∫

Zα
ωϕ ∈ Spec(H), and so the lemma is

proved. �
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Remark 4.11. We note for future reference that as ϕm
H can be viewed as the

time 1-map of the Hamiltonian Ft(x) = mHmt(x), we have by the above argu-

ment that for any periodic point q of periodm, corresponding to an orbit set α,

(31)

∫

Zα

ωϕ =

∫

D2

u∗αω +

∫ m

0

Ht(ϕ
t
H(q))dt.

5. C0 continuity

Here we prove Theorem 3.6, using Theorem 4.5 from Section 4.

The central objects of Theorem 3.6 are the maps cd : Diffc(D
2, ω) →

R. Remember from Section 4.3 and Remark 4.6 that these maps are defined

from the spectral invariants cd : S → R, by identifying Diffc(D
2, ω) with the

group DiffS+(S2, ω) consisting of symplectic diffeomorphisms of S2, which are

supported in the interior of the northern hemisphere S+. In the present section,

we directly work in the group DiffS+(S2, ω).

More generally, given an open subset U⊂S2, we will denote by DiffU (S
2, ω)

the set of all Hamiltonian diffeomorphisms compactly supported in an open

subset U .

Our proof is inspired by the proof of the C0-continuity of barcodes (hence,

of spectral invariants) arising from Hamiltonian Floer theory presented in

[LRSV21]. However, our case is complicated by the fact that we are work-

ing with periodic points while [LRSV21] only deals with fixed points. Other

existing proofs of C0-continuity of spectral invariants make use17 of the prod-

uct structure on Hamiltonian Floer homology. It might be possible to define a

“quantum product” on PFH (see [HS05]), however at the time of the writing

of this article, such structures do not exist.

Let d be a positive integer. As in [LRSV21], we treat separately the

C0-continuity of cd at the identity and elsewhere. Theorem 3.6 will be a

consequence of the following two propositions.

Proposition 5.1. The map cd : DiffS+(S2, ω) → R is continuous at Id

with respect to the C0-topology on DiffS+(S2, ω).

Proposition 5.2. Every η ∈ HomeoS+(S2, ω) with η 6= Id admits a C0-

neighborhood V such that the restriction of cd to V ∩DiffS+(S2, ω) is uniformly

continuous with respect to the C0-distance.

This last proposition readily implies that any η ∈ HomeoS+(S2, ω) \ {Id}

admits a C0-neighborhood V to which cd extends continuously. In particular, it

17The product is usually used to deduce continuity everywhere from continuity at Id.

Without a product, we need another argument to prove continuity in the complement of the

identity.
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extends continuously at η. Since this holds for any such homeomorphism η, this

shows together with Proposition 5.1 that cd extends to a map HomeoS+(S2, ω)

→ R continuous with respect to C0-topology, hence Theorem 3.6.

Proposition 5.2 can be rephrased as follows. Any homeomorphism η ∈

HomeoS+(S2, ω), η 6= Id, admits a neighborhood V in HomeoS+(S2, ω) such

that for all ε > 0, there exists δ > 0 satisfying

∀φ, ψ ∈ V ∩DiffS+(S2, ω), if dC0(φ, ψ) < δ, then |cd(φ)− cd(ψ)| < ε.(32)

The Hofer norm. Our proofs will make intensive use of the Hofer norm

for Hamiltonian diffeomorphisms. We now recall its definition and basic prop-

erties. We refer the reader to [Pol01] and the references therein for a general

introduction to the material presented here.

We have seen earlier in the paper the definition of the Hofer norm of a

Hamiltonian on the sphere and the disc. On a general symplectic manifold,

the Hofer norm of a compactly supported Hamiltonian diffeomorphism φ is

defined as

‖φ‖ = inf{‖H‖(1,∞)},

where the infimum runs over all compactly supported Hamiltonians H whose

time-1 map is φ. It satisfies a triangle inequality

‖φ ◦ ψ‖ 6 ‖φ‖+ ‖ψ‖

for all Hamiltonian diffeomorphisms φ, ψ, it is conjugation invariant and, more-

over, we have ‖φ−1‖ = ‖φ‖ for all Hamiltonian diffeomorphisms φ.

The displacement energy of a subset A of the ambient symplectic manifold

is by definition the quantity

e(A) := inf{‖φ‖ : φ(A) ∩A = ∅}.

On a surface, it is known that for a disjoint union of closed discs, with each disc

having area a, and whose union covers less than half the area of the surface,

the displacement energy is a.

Important note. We will use the Hofer norm on the symplectic manifold

S2 \ {p−}. Thus, all the Hamiltonians considered in this section will be com-

pactly supported in the complement of the south pole p−; in particular, they

belong to H.

Note that the second item of Theorem 4.5 can be reformulated as

(33) |cd(ψ)− cd(φ)| 6 d · ‖ψ−1 ◦ φ‖

for all Hamiltonian diffeomorphisms φ, ψ ∈ DiffS2\{p−}(S
2, ω).
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5.1. Continuity at the identity. We first prove Proposition 5.1. The case

d = 1 can be proved with the same proof as [Sey13a], using the so-called ε-shift

technique. We will generalize this idea to make the proof work for all d > 1.

Let us start our proof with a lemma.

Lemma 5.3. Let d > 1, and let F be a time-independent Hamiltonian,

compactly supported in S2\{p−}. Let f = φ1F be the time-one map it generates.

Assume that the next two conditions are satisfied :

(a) for all k ∈ {1, . . . , d}, the k-periodic points of f are precisely the critical

points of F ;

(b) none of the critical points of F are in the closure of S+.

Then, there exists δ > 0 such that cd(φ ◦ f) = cd(f) for any φ ∈ DiffS+(S2, ω)

with dC0(φ, Id) < δ.

Postponing the proof of this lemma, we now explain how it implies Propo-

sition 5.1.

Proof of Proposition 5.1. Let ε > 0. Let F be a function on S2 satisfying

the assumptions of Lemma 5.3, and assume furthermore that

maxF −minF 6
ε

2d
.

For instance a C2-small function supported in the complement of p− all of

whose critical points are in the southern hemisphere is appropriate. Then let

δ be as provided by Lemma 5.3.

Let φ∈DiffS+(S2, ω) be such that dC0(φ, Id)<δ. Then, we have cd(φ◦f) =

cd(f). Using inequality (33) twice and the fact that cd(Id) = 0, we obtain

|cd(φ)| 6 |cd(φ ◦ f)|+ d‖f‖ = |cd(f)− cd(Id)|+ d‖f‖ 6 2d ‖f‖.

Now, by definition of the Hofer norm, ‖f‖ 6 maxF −minF . Thus we get

cd(φ) 6 ε.

This show the C0-continuity of cd at Id. �

We will now prove the lemma.

Proof of Lemma 5.3. Let F be as in the statement of the lemma and f =

φ1F . We want to prove that cd(f) remains unchanged when we C0-perturb f

with a Hamiltonian diffeomorphism supported in the northern hemisphere. To

obtain this, we will first prove that the entire spectrum remains unchanged

under such perturbations.

Let k ∈ {1, . . . , d}; we begin by showing that the set of k-periodic points is

unchanged by these perturbations. By assumption, there exists c > 0 such that

d(fk(x), x) > c

for all x in the closure of S+. Now note that the diffeomorphism (φf)k con-

verges to fk uniformly when φ tends uniformly to Id. Thus, there exists δ > 0
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such for dC0(φ, Id) < δ, the inequality d((φf)k(x), x) > 0 holds for all x in the

closure of S+. In other words, φ ◦ f has no k-periodic points in the closure

of S+. Since φ coincides with the identity outside S+, this implies that φ ◦ f

and f have the same k-periodic points, which are in turn the critical points

of F . For the rest of the proof, we pick δ such that the above holds for all

k ∈ {1, . . . , d}, and φ such that dC0(φ, Id) < δ.

We next show that the actions of these k-periodic points, i.e., the critical

points of F , agree when computed with respect to f and φ ◦ f .

To compute these actions, let H be a Hamiltonian supported in S+ such

that ϕ1
H = φ. By (7), the isotopy ϕt

Hϕ
t
F (whose time one map is φ ◦ f) is

generated by the Hamiltonian H#F (t, x) = H(t, x) + F ((ϕt
H)−1(x)).

Let y be a critical point of F . Then, ϕt
F (y) = y for all t ∈ [0, 1], and since

y /∈ S+, we also have ϕt
H(y) = y for all t ∈ [0, 1]. Thus y remains fixed along

the whole isotopy. A capping of such an orbit is a trivial capping to which is

attached `[S2] for some ` ∈ Z. Also note that since H is supported in S+,

H#F (t, ϕt
Hϕ

t
F (y)) = H(t, y) + F (y) = F (y).

Applying formula (2) we obtain

AH#F (y, `[S
2]) =

∫ 1

0

H#F (t, ϕt
Hϕ

t
F (y))dt+ `Area(S2).

= F (y) + `

= AF (y, `[S
2]).

This shows that Spec(H#F ) = Spec(F ). A similar argument shows that

Spec((H#F )k)=Spec(F k) for all k∈{1, . . . , d}, thus Specd(H#F )=Specd(F ).

By (4), we have proved

(34) Specd(φ ◦ f) = Specd(f)

for all φ ∈ DiffS+(S2, ω) such that dC0(φ, Id) < δ.

There remains the step of deducing cd(φ ◦ f) = cd(f) from this equality

of spectrums.

Given φ ∈ DiffS+(S2, ω) such that dC0(φ, Id) < δ, one can construct, using

the Alexander isotopy, a Hamiltonian isotopy (ϕt
K)t∈[0,1] in DiffS+(S2, ω), such

that dC0(ϕs
K , Id) < δ for all s ∈ [0, 1] and ϕ1

K = φ; we refer the reader to

[Sey13a, Lemma 3.2] for the details.

Equation (34) then implies Specd(ϕ
s
K ◦ f) = Specd(f) for all s ∈ [0, 1].

Now, by Theorem 4.5 the function s 7→ cd(ϕ
s
K ◦ f) is continuous and takes its

values in the measure 0 subset Specd(f) ⊂ R. As a consequence, it is constant.

This shows cd(φ ◦ f) = cd(f) and concludes our proof. �
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5.2. Continuity away from the identity. We now turn our attention to

Proposition 5.2. We want to prove (32), i.e., that any η ∈ HomeoS+(S2, ω),

η 6= Id, admits an open neighborhood V such that for all ε > 0, there exists

δ > 0 satisfying

∀f ∈ V ∩DiffS+(S2, ω) ∀ g ∈ DiffS+(S2, ω),(35)

if dC0(g, Id) < δ then |cd(gf)− cd(f)| < ε.

Our proof will follow from three lemmas, which we now introduce.

To state the first, let us introduce some terminology. We will say that a

diffeomorphism f d-displaces a subset U if the subsets U , f(U), . . . , fd(U) are

pairwise disjoint. Our first lemma states that for g supported in an open subset

d-displaced by f , an even stronger version of (35) holds. It is adapted from

[Ush10, Lemma 3.2], which can be regarded as the analogue for the d = 1 case.

Lemma 5.4. Let f ∈ DiffS+(S2, ω), and let B be an open topological disc

whose closure is included in S2 \ {p−} and that is d-displaced by f . Then, for

all φ ∈ DiffB(S
2, ω), we have cd(φ ◦ f) = cd(f).

We will prove this lemma in Section 5.3. To apply it, we need there to exist

an appropriate open disc B. The next lemma is the key ingredient for this.

Lemma 5.5. Let η ∈ Homeoc(D, ω) with η 6= Id. Then, there exists x ∈ D

such that x, η(x), η2(x), . . . , ηd(x) are pairwise distinct points.

In particular, by the lemma, there exists an open topological disc B whose

closure is d-displaced by η.

If we then let V be the C0 open neighborhood of η given by the set of all f ∈

HomeoS+(S2, ω) that d-displace the closure of the disc B, then by Lemma 5.4,

we have cd(φ◦f)=cd(f) for all φ ∈ DiffB(S
2, ω) and f ∈V∩DiffS+(S2, ω). Now

it turns out that every map g that is sufficiently C0 close to Id is close in Hofer

distance to an element in DiffB(S
2, ω). This is the content of the next lemma.

Lemma 5.6. Let B be an open topological disc whose closure is included

in S2\{p−}. For all ε > 0, there exists δ > 0 such that for all g ∈ DiffS+(S2, ω)

with dC0(g, Id) < δ, there is φ ∈ DiffB(S
2, ω) such that ‖φ−1g‖ 6 ε.

We will prove Lemma 5.6 at the end of Section 5.3. Assuming this, we

can achieve the proof of (35) and hence of Proposition 5.2, as we now explain.

Proof of Proposition 5.2. Let ε > 0, and let δ > 0 be as provided by

Lemma 5.6. Also let f ∈ V ∩DiffS+(S2, ω). Then, for all g satisfying dC0(g, Id)

< δ, there exists φ ∈ DiffB(S
2, ω) such that ‖φ−1g‖ < ε. Thus, using

Lemma 5.4, Hofer continuity (33) and the conjugation invariance of the Hofer

norm, we have

|cd(gf)− cd(f)| = |cd(gf)− cd(φf)| 6 d‖f−1φ−1gf‖ = d‖φ−1g‖ < dε.
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Since ε is arbitrary, this concludes the proof of (35) and of Proposition 5.2,

modulo the proofs of Lemmas 5.4, 5.5 and 5.6. �

5.3. Proofs of Lemmas 5.4, 5.5 and 5.6. We now provide the proofs of the

lemmas stated in the preceding section. We start with the simplest one.

Proof of Lemma 5.5. Let η ∈ Homeoc(D, ω) with η 6= Id, and let d be

a positive integer. It is known (see [CK94]) that for any positive integer N ,

ηN 6= Id. Thus, there exists a point x ∈ D such that ηd!(x) 6= x. For such a

point, x, η(x), η2(x), . . . , ηd(x) are pairwise distinct. Indeed, otherwise, there

would be integers 0 6 k < ` 6 d such that ηk(x) = η`(x), and we would get

η`−k(x) = x, in contradiction with ηd!(x) 6= x since d! is evenly divided by

`− k. �

We now turn our attention to Lemma 5.4.

Proof of Lemma 5.4. Let F be a Hamiltonian supported in S+ with ϕ1
F

= f , and let G be a Hamiltonian supported in B with ϕ1
G = φ. We will prove

that for all s ∈ [0, 1], Specd(ϕ
s
Gf) = Specd(f). This implies, as in the proof of

Lemma 5.3, that the map s 7→ cd(ϕ
s
Gf) is constant, hence the lemma.

Let s ∈ [0, 1]. We will first verify that the diffeomorphism ϕs
Gf admits the

same k-periodic points as f for all k ∈ {1, . . . , d}.

For all ` ∈ {1, . . . , d}, we have B ∩ f `(B) = ∅ and B ∩ f−`(B) = ∅. It

follows that ϕs
G(f

`(B)) = f `(B) for all ` ∈ {−d, . . . , d}, hence

(ϕs
Gf)

k(f−`(B)) = fk−`(B) ∀k ∈ {1, . . . , d}, ∀ ` ∈ {0, . . . , d}.

Since f−`(B) ∩ fk−`(B) = ∅ for such k, `, this implies ϕs
Gf has no k-periodic

points with 1 6 k 6 d in
⋃d

`=0 f
−`(B).

We now fix k ∈ {1, . . . , d}. If x /∈
⋃d

`=0 f
−`(B), then (ϕs

G◦f)k(x) = fk(x).

As a consequence, the k-periodic points of ϕs
G ◦ f are exactly those of f .

We will now prove that the corresponding action values coincide as well.

For that purpose, it is convenient to use an isotopy generating the (ϕs
G ◦ f)k

obtained by concatenation of isotopies rather than composition. Namely, the

map (ϕs
G ◦ f)k is the time-1 map of the isotopy ψt, which at time t ∈ [ `

2k ,
`+1
2k ]

for ` ∈ {0, . . . , 2k − 1} is given by

ψt =

{

ϕ
ρ(2kt−`)
F ◦ (ϕs

G ◦ f)
`
2 if ` is even,

ϕ
sρ(2kt−`)
G ◦ f ◦ (ϕs

G ◦ f)
`−1
2 if ` is odd.

Here, ρ : [0, 1] → [0, 1] is a non-decreasing smooth function which is equal to

0 near 0 and equal to 1 near 1. The role of the time-reparametrization ρ is

simply to make the isotopy smooth at the gluing times.



PROOF OF THE SIMPLICITY CONJECTURE 221

This isotopy is generated by the Hamiltonian K given by the formula

Kt(x) =

{

2kρ′(2kt− `)Fρ(2kt−`)(x) if ` is even,

2ksρ′(2kt− `)Gsρ(2kt−`)(x) if ` is odd

for ` ∈ {0, . . . , 2k − 1} and t ∈ [ `
2k ,

`+1
2k ].

We will compute the spectrum of ϕs
G ◦ f with the help of this particular

Hamiltonian. The action of a capped 1-periodic orbit (z, u) of K, with z =

ϕt
K(x), is given by

AK(z, u) =

∫

D2

u∗ω +

∫ 1

0

Kt(ψ
t(x)) dt =

∫

D2

u∗ω +
2k−1
∑

`=0

∫ `+1
2k

`
2k

Kt(ψ
t(x)) dt

=

∫

D2

u∗ω +
k−1
∑

j=0

Ç

∫ 1

0

Ft(ϕ
t
F ◦ (ϕs

G ◦ f)j(x)) dt

+

∫ 1

0

sGst(ϕ
st
G ◦ f ◦ (ϕs

G ◦ f)j(x)) dt

å

,

after suitable change of variable. Since we showed above that ϕs
G ◦ f has no

k-periodic points in f−1(B), we know that f ◦ (ϕs
G ◦ f)j(x) does not belong

to B, hence to the support of G. It follows that the integrand for the third

integral above has to vanish and the integrand for the second integral above

can be simplified, so that we get

AK(z, u) =

∫

D2

u∗ω +
k−1
∑

j=0

∫ 1

0

Ft(ϕ
t
F ◦ f j(x)) dt.

We see that this action does not depend on s. As a consequence, we get that

Specd(ϕ
s
Gf) = Specd(f) for all s ∈ [0, 1]. �

The proof of Lemma 5.6 remains. Its proof will consist of two steps. First,

by Lemma 5.7 below, a diffeomorphism that is sufficiently C0-close to identity

can be appropriately fragmented into maps supported in balls of small area.

Second, we observe that moving these maps with small support into B can be

achieved with small Hofer norm; this is the content of Lemma 5.8 below.

Before starting the proof of Lemma 5.6, let us state the first of these two

lemmas.

Lemma 5.7 ([LRSV21, Lemma 47]). Let ω0 denote the standard area form

on R2. Let m be a positive integer and ρ a positive real number. For i =

1, . . . ,m, denote by Ui the open rectangle (0, 1)× ( i−1
m , i

m). Then, there exists

δ > 0, such that for every g ∈ Diffc((0, 1)×(0, 1), ω0) with dC0(g, Id) < δ, there

exist g1 ∈ Diffc(U1, ω0), . . . , gm ∈ Diffc(Um, ω0) and θ ∈ Diffc((0, 1)×(0, 1), ω0)

supported in a disjoint union of topological discs whose total area is less than ρ,

such that g = g1 ◦ · · · ◦ gm ◦ θ.
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We can now give the promised proof.

Proof of Lemma 5.6. Let ε > 0. We pick an integer N satisfying 1
2N <

area(B), m a positive multiple of N such that 2N+1
m < ε, and ρ = 1

m .

Let δ be as provided by Lemma 5.7, and let g ∈ DiffS+(S2, ω) be such

that dC0(g, Id) < δ. The map g admits a fragmentation into the form g =

g1 ◦ · · · ◦ gm ◦ θ, with all the gi supported in pairwise disjoint topological discs

Ui of area
1
2m and θ supported in a disjoint union of discs of total area less than

1
2m . (Here, the factor 1

2 comes from the fact that the northern hemisphere S+

has area 1
2 , while Lemma 5.7 is stated on (0, 1)× (0, 1) which has area 1.)

For j = 1, . . . , N , denote by fj the composition fj :=
∏

m
N −1

i=0 gj+iN . Also

write fN+1 := θ, so that noting that the gi commute, we have the following

formula:

g =
N+1
∏

j=1

fj .

Each fj for j = 1, . . . , N is supported in Vj =
⋃

m
N −1

i=0 Uj+iN whose area is
1
2N < area(B). Note that Vj is a disjoint union of discs, each of area 1

2m .

By assumption, the support of fN+1 = θ, which we denote by VN+1, is also

included in a disjoint union of discs of total area smaller than 1
2m .

Let us now state our second lemma, whose proof we postpone to the end

of this section.

Lemma 5.8. Let a ∈ (0, 12), let B1, . . . , Bk ⊂ S+ be pairwise disjoint open

topological discs each of area smaller than a, and let B ⊂ S+ be a topological

disc with area(B) > ka. Then, there exists a Hamiltonian diffeomorphism

h ∈ DiffS2\{p−}(S
2, ω) that maps B1 ∪ · · · ∪Bk into B and satisfies ‖h‖ 6 2a.

In our situation, this lemma implies that for any j = 1, . . . , N + 1,

there exists a Hamiltonian diffeomorphism hj ∈ DiffS2\{p−}(S
2, ω), such that

hj(Vj) ⊂ B and ‖hj‖ 6 1
m .

Consider the diffeomorphism

φ =
N+1
∏

j=1

hj ◦ fj ◦ h
−1
j .

By construction, φ is supported in B. We will show that ‖φ−1g‖ < ε, which

will achieve the proof of Lemma 5.6.

To prove that ‖φ−1g‖ < ε, let us introduce g̃k = f1 ◦ f2 ◦ · · · ◦ fk and

φk = (h1 ◦ f1 ◦ h
−1
1 ) ◦ (h2 ◦ f2 ◦ h

−1
2 ) ◦ · · · ◦ (hk ◦ fk ◦ h

−1
k ) for k = 1, . . . , N + 1.

In particular, g̃N+1 = g and φN+1 = φ. Then, for all k = 1, . . . , N , we have

φ−1
k+1 ◦ g̃k+1 = hk+1 ◦ (f

−1
k+1 ◦ h

−1
k+1 ◦ fk+1) ◦ (f

−1
k+1 ◦ (φ

−1
k ◦ g̃k) ◦ fk+1).
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Thus, by the triangle inequality and the conjugation invariance,

‖φ−1
k+1 ◦ g̃k+1‖ 6 ‖hk+1‖+ ‖h−1

k+1‖+ ‖φ−1
k ◦ g̃k‖ 6

2

m
+ ‖φ−1

k ◦ g̃k‖.

Hence, by induction, ‖φ−1
i ◦g̃i‖≤

2i
m , and so ‖φ−1◦g‖62N+1

m < ε, as wished. �

The last remaining proof is now the following.

Proof of Lemma 5.8. Let U := B1 ∪ · · · ∪ Bk. Since U has smaller area

than B, there exists a Hamiltonian diffeomorphism ψ ∈ DiffS+(S2, ω) such

that ψ(U) ⊂ B. The Hofer norm of ψ may not be small, but we will replace ψ

with an appropriate commutator of ψ whose Hofer norm will be controlled.

Since the displacement energy of U is smaller than a < 1
2 , there exists a

Hamiltonian diffeomorphism ` ∈ DiffS2\{p−}(S
2, ω) such that `(U)∩U = ∅ and

‖`‖ 6 a.

Since `(U) has area smaller than 1
2 , there exists χ ∈ DiffS2\{p−}(S

2, ω)

that fixes U and such that χ(`(U)) ∩ S+ = ∅, which in particular implies that

χ(`(U))∩ supp(ψ) = ∅. Then, `′ = χ◦ `◦χ−1 satisfies the following properties:

(i) `′(U) ∩ U = ∅,

(ii) ‖`′‖ 6 a ,

(iii) `′(U) ∩ supp(ψ) = ∅.

To prove Property (i), start from `(U) ∩ U = ∅ and compose with χ, to get

χ ◦ `(U) ∩ χ(U) = ∅. Since U = χ−1(U), we obtain χ ◦ ` ◦ χ−1(U) ∩ U = ∅,

hence Property (i). Property (ii) follows from the conjugation invariance of the

Hofer norm. Property (iii) is a consequence of Property (i), since χ fixes U .

Now, set h := ψ ◦ `′−1 ◦ψ−1 ◦ `′. By Property (iii), `′−1 ◦ψ−1 ◦ `′(U) = U .

Thus, h(U) = ψ(U) ⊂ B. Moreover,

‖h‖ 6 ‖ψ ◦ `′−1 ◦ ψ−1‖+ ‖`′‖ = 2‖`′‖ 6 2a.

This concludes our proof. �

6. The periodic Floer homology of a monotone twist

In this section we explain how to compute PFH for certain twist maps;

more precisely, we give a combinatorial model of the PFH chain complex for

such maps. As we explain, this leads to a combinatorial formula for computing

PFH spectral invariants. We then use this formula to deduce Theorem 3.7. As

mentioned above, the formula has also had further applications; see [CGHS23]

6.1. Perturbations of rotation invariant Hamiltonian flows. Throughout

this section, we consider Hamiltonian flows on (S2, ω = 1
4πdθ ∧ dz) for an

autonomous Hamiltonian

H =
1

2
h(z),
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where h is some function of z. We have

(36) XH = 2πh′(z)∂θ.

Hence,

ϕ1
H(θ, z) = (θ + 2πh′(z), z)

We further restrict h to satisfy

h′ > 0, h′′ > 0, h(−1) = 0.

Furthermore, we demand that h′(−1), h′(1) are irrational numbers satis-

fying h′(−1) 6 ε0
d and dh′(1)e−h′(1) 6 ε0

d , where ε0 is a small positive number

and d·e denotes the ceiling function. Let D denote the set of Hamiltonians H

that satisfy all of these conditions, and observe that D ⊂ H, where H was

defined in Section 4.3. As a consequence of Theorem 4.5, we have well-defined

PFH spectral invariants cd,k(ϕ
1
H) for all H ∈ D.

The periodic orbits of ϕ1
H are then as follows:

(1) There are elliptic orbits p+ and p−, corresponding to the north and south

poles, respectively.

(2) For each p/q in lowest terms such that h′ = p/q is rational, there is a circle

of periodic orbits, all of which have period q.

These circles of periodic orbits are familiar from Morse-Bott theory, and are

sometimes referred to as “Morse-Bott circles.” There is also a standard ϕ1
H -

admissible18 almost complex structure Jstd respecting this symmetry; its action

on ξ = T (S2 × {pt}) = TS2 is given by the standard almost complex structure

on S2.

As is familiar in this context (see [HS05, §3.1]), we can perform a C2-small

perturbation of H, to split such a circle corresponding to the locus where

h′ = p/q into two periodic orbits, one elliptic and one hyperbolic, such that the

elliptic one ep,q has slightly negative monodromy angle, and the eigenvalues for

the hyperbolic one hp,q are positive. Furthermore, the C2-small perturbation

can be taken to be supported in an arbitrarily small neighborhood of the circle

where h′ = p/q. More precisely, given a ϕ1
H such as above, we can find a

perturbation of ϕ1
H satisfying the properties listed in the definition below.

Definition 6.1. Consider ϕ1
H as above, and fix any positive d and ε > 0.

We call an area-preserving diffeomorphism ϕ0 of S2 a nice perturbation of ϕ1
H

if it satisfies the following properties:

18This means that the almost complex structure is compatible with the standard SHS on

the mapping torus for ϕ1
H .



PROOF OF THE SIMPLICITY CONJECTURE 225

(1) The only periodic orbits of ϕ0 that are of degree at most d are p+, p−, and

the orbits ep,q and hp,q from above such that q 6 d. Furthermore, all of

these orbits are non-degenerate.

(2) The eigenvalues of the linearized return map for ep,q are within ε of 1.

(3) ϕ0(θ, z) = ϕ1
H(θ, z) as long as z is not within ε of a value such that h′ = p/q

where q 6 d.

(4) ϕ0 is chosen so that “Double Rounding” cannot occur for generic J close

to Jstd. See Section 6.2 for the definition of Double Rounding.

Observe that, for a given nice perturbation ϕ0, we can pick a time-

dependent Hamiltonian H̃ such that ϕ1
H̃

= ϕ0 and H̃ = H as long as z is

not within ε of a value such that h′ = p/q with q 6 d.

6.2. The combinatorial model. We now aim to describe the promised com-

binatorial model of P̃FH for the Hamiltonians described in the previous section.

For the remainder of this section, fix d ∈ N and ϕ1
H , where H ∈ D.

To begin, define a concave lattice path to be a piecewise linear, continuous

path P , in the xy-plane, such that P starts and ends on integer lattice points,

its starting point is on the y-axis, the nonsmooth points of P are also at integer

lattice points, and P is concave, in the sense that it always lies above any of the

tangent lines at its smooth points. Moreover, every edge of P has slope between

zero and dh′(1)e. We say a concave lattice path is labeled if each of its edges

is labeled by either e or h, and an edge whose slope is either zero or dh′(1)e is

labeled e. Below, we will establish a bijection between labeled concave lattice

paths as defined in the previous paragraph and P̃FH generators (α,Z).

Let α = {(αi,mi)} be an orbit set of degree d for a nice perturbation ϕ0

of ϕ1
H . First of all, recall that the simple Reeb orbits for Yϕ0 , with degree no

more than d are

(1) the Reeb orbits γ± corresponding to p±;

(2) for each z such that h′(z) = p/q in lowest terms, where q 6 d, there are

Reeb orbits of degree q corresponding to the periodic orbits ep,q and hp,q,

which we will also denote by ep,q and hp,q.

We will now associate to the PFH generator α = {(αi,mi)} a labeled

concave lattice path Pα whose starting point we require to be (0, 0). If (γ−,m−)

∈ α, we set v− = m−(1, 0) and label it by e. If (γ+,m+) ∈ α, we set v+ =

m+(1, dh
′(1)e) and label it by e. Next, consider the orbits in α corresponding

to z = zp,q such that h′(z) = p/q; note that there are at most two such entries

in α: one corresponding to ep/q and another corresponding to hp/q. To these

entries, we associate the labeled vector vp,q = mp,q(q, p), where mp,q is the sum

of multiplicities of ep/q and hp/q; the vector is labeled h if (hp/q, 1) ∈ α, and e

otherwise. (For motivation, note that by the conditions on the twisted PFH
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y
h

h

e

e

d0

h

e

ee

y

yPα,Z

Pα′,Z′

Figure 1. The lattice path Pα,Z for α = {(h1/3, 1), (e2/3, 1),

(h2/3, 1), (e4/3, 1), (e2, 2)}, Z = Zα − 3[S2], and Pα′,Z′ for α′ =

{(γ−, 3), (e2/9, 1), (h2/3, 1), (γ+, 1)}, Z
′ = Zα + 4[S2] (assuming

dh′(1)e = 4).

chain complex, an mi corresponding to a hyperbolic orbit must equal 1.) To

build Pα from all of the data in α, we simply concatenate the vectors v−, vp,q, v+
into a concave lattice path. Note that there is a unique way to do this: the

path must begin with v−, it must end with v+, and the vectors vp/q must be

concatenated in increasing order with respect to the ratios p/q.

Now, given a twisted PFH generator (α,Z) for P̃FC, we define a mapping

(α,Z) 7→ Pα,Z ,

which associates a labeled concave lattice path Pα,Z to (α,Z). More specifi-

cally, when Z = Zα, where Zα is the class defined in Section 4.3.1, we define

Pα,Zα to be the labeled concave lattice path Pα. Since H2(Yϕ) = Z, generated

by the class of S2×{pt}, for any other (α,Z), we have Z = Zα+y[S
2]. We then

define Pα,Z to be Pα shifted by the vector (0, y). We leave to the reader to check

that the mapping defined here is a bijection between generators (α,Z) ∈ P̃FC

of degree d and labeled concave lattice paths with horizontal displacement d;

for simplicity, we sometimes call the horizontal displacement the degree of the

lattice path. Figure 1 shows two examples of such concave lattice paths.

We now state some of the key properties of the above bijection

(α,Z) 7→ Pα,Z .

Action : Define the action A(Pα,Z) as follows. We first define the actions

of the edges of Pα,Z by the following formulae:

A(v−) = 0, A(v+) = m+
h(1)

2
,

A(vp,q) =
mp,q

2
(p(1− zp,q) + qh(zp,q)),
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where v−, v+, and vp,q are as above. We then define the action of Pα,z to be

(37) A(Pα,Z) = y +A(v+) +
∑

vp,q

A(vp,q),

where y is such that Pα,Z begins at (0, y).

We claim that by picking the nice perturbation ϕ0 to be sufficiently close

to ϕ1
H we can arrange for A(α,Z) to be as close to A(Pα,Z) as we wish. To

show this it is sufficient to prove it when α is a simple Reeb orbit and Z = Zα,

where Zα is the relative class from Section 4.3.1. We have to consider the

following three cases:

• If α = γ−, then A(α,Zα) = 0, by equation (31), which coincides with

A(1, 0).

• If α = γ+, then A(α,Zα) = h(1)
2 , by equation (31), which coincides with

A(1, dh′(1)e). Note that in equation (31), the term
∫

D2 u
∗
αω is zero.

• The remaining case is when α = ep,q or hp,q; here, it is sufficient to show

that the action of the Reeb orbits at zp,q, for the unperturbed diffeomor-

phism ϕ1
H , is exactly the quantity 1

2 (p(1− zp,q) + qh(zp,q)). This follows

from equation (31): the term
∫

D2 u
∗
αω is exactly 1

2p(1 − zp,q) and the term
∫ q
0 Ht(ϕ

t
H(q))dt is exactly 1

2qh(zp,q).

Index : Next, we associate an index to a concave lattice path P that begins

at a point (0, y), on the y-axis, and has degree d.

First, we form (possibly empty) regions R±, where R− is the closed region

bounded by the x-axis, the y-axis, and the part of P below the x-axis, while

R+ is the closed region bounded by the x-axis, the line x = d, and the part

of P above the x-axis. Let j+ denote the number of lattice points in the

region R+, not including lattice points on P , and let j− denote the number of

lattice points in the region R−, not including the lattice points on the x-axis;

see Figure 2 below. We now define

(38) j(P ) := j+(P )− j−(P ).

This definition of j is such that if one shifts P vertically by 1, then j(P )

increases by d+ 1

Given a path Pα,Z , associated to a P̃FH generator (α,Z), we define its

index by

(39) I(Pα,Z) := 2j(Pα,Z)− d+ h,

where h denotes the number of edges in Pα,Z labeled by h. See Figure 2 for

an example of a computation of this combinatorial index. It will turn out that

I(Pα,Z) coincides with the PFH index of I(α,Z) as defined in equation (16).
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P

d0

R+

R−

e

e
e

h

Figure 2. The lattice points included in the count of j(P ) are

circled. On this example, j+(P ) = 6, j−(P ) = 5, d = 6, h = 1,

thus j(P ) = 1 and I(P ) = −3.

Corner rounding and the differential : Lastly, we define a combinatorial

process that corresponds to the PFH differential. Let Pβ be a concave lattice

path of degree d that begins on the y-axis; note that for the moment we do not

suppose that Pβ is labeled. Then, if we attach vertical rays to the beginning

and end of Pβ , in the positive y direction, we obtain a closed convex subset Rβ

of the plane; see Figure 3. For any given corner of Pβ , where we include the

initial and final endpoints of Pβ as corners, we can define a corner rounding

operation by removing this corner, taking the convex hull of the remaining

integer lattice points in Rβ , and taking the lower boundary of this region,

namely the part of the boundary that does not consist of vertical lines. Note

that the newly obtained path is of degree d.

Pβ

Rβ

Figure 3. The region Rβ .

Now suppose that Pα and Pβ are two labeled concave lattice paths. We

say that Pα is obtained from Pβ by rounding a corner and locally losing one h if

Pα is obtained from Pβ by a corner rounding such that the following conditions

are satisfied; see the examples in Figure 4:

(i) Let k denote the number of edges in Pβ , with an endpoint at the rounded

corner, which are labeled h. We require that k > 0; so k = 1 or k = 2.
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(ii) Of the new edges in Pα, created by the corner rounding operation, exactly

k − 1 are labelled h.

(iii) The edges in Pα that coincide with an edge of Pβ , or are contained in an

edge of Pβ , keep the same labels as in Pβ .

h

he

e

e

e

h

he
e
hh

e

h
e

e

e

e

h

e

Figure 4. Some examples for the “rounding corner and locally

losing one h” operation. The path Pβ is in black, the new edges

in Pα are in grey. The rounded corner is circled. We only label

the relevant edges.

Similarly, we can give the promised definition of the “Double Rounding,”

which has already been introduced in Section 6.1. Namely, if Pβ,Z′ has three

consecutive edges, all labeled by h, we say that Pα,Z is obtained from Pβ,Z′ by

double rounding if we remove both interior lattice points for these three edges,

take the convex hull of the remaining lattice points (in the region formed by

adding vertical lines, as above), and label all new edges by e.

The notions introduced above and the proposition below give a complete

combinatorial interpretation of the twisted PFH chain complex:

Proposition 6.2. Fix d > 0, and let ϕ0 be a nice perturbation of ϕ1
H ,

where H ∈ D. Then, for generic ϕ0-admissible almost complex structure J

close to Jstd, the bijection

(α,Z) 7→ Pα,Z

between the set of P̃FH generators of degree d and the set of concave lattice

paths of degree d has the following properties :
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(1) A(α,Z) ∼ A(Pα,Z);

(2) I(α,Z) = I(Pα,Z);

(3) 〈∂(α,Z), (β, Z ′)〉 6= 0 if and only if Pα,Z is obtained from Pβ,Z′ by rounding

a corner and locally losing one h.

Here, by A(α,Z) ∼ A(Pα,Z), we mean that by choosing our nice pertur-

bation ϕ0 sufficiently close to ϕ1
H , we can arrange for A(α,Z) to be as close

to A(Pα,Z) as we wish.

Proof. We have already proven the first of the three listed properties in

the above proposition. The other two properties follow from adapting the

arguments in [HS06], [HS05] to our setting, so for brevity we will not provide

the details. For the interested reader, we have provided an outline19 of the

necessary modifications in Appendix A. �

6.3. Computation of the spectral invariants. With the combinatorial model

behind us, we now explain how to compute some relevant PFH spectral invari-

ants via Theorem 6.3 below. This will be used in our proof of Theorem 3.7.

We will need to introduce some notation and conventions before stat-

ing, and proving, the main result of this section. Throughout this section,

we fix ϕ to be a (smooth) positive monotone twist map of the disc. Recall

from Remark 4.6 that we define PFH spectral invariants for maps of the disc

by identifying Diffc(D, ω) with maps of the sphere supported in the northern

hemisphere S+ ⊂ S2, where the sphere S2 is equipped with the symplectic form

ω = 1
4πdθ ∧ dz.

Every monotone twist map of the disc ϕ can be written as the time–1 map

of the flow of an autonomous Hamiltonian

H =
1

2
h(z),

where h : S2 → R is a function of z satisfying

h′ > 0, h′′ > 0, h(−1) = 0, h′(−1) = 0.

This will be our standing assumption throughout this section. For the main

result of this section, Theorem 6.3, we will need to impose the additional

assumption that

(40) h′(1) ∈ N.

The reason for imposing the above assumption is that in our combinatorial

model, Proposition 6.2, h′(1) is assumed to be sufficiently close to dh′(1)e.

19For a very interested reader, an extremely detailed exposition can be found in [CGHS20,

§5].
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Observe that every Hamiltonian H as above can be C∞ approximated by the

Hamiltonians considered in Section 6.1.

Although ϕ is degenerate, we can still define the notion of a concave lattice

path for ϕ as any lattice path obtained from a starting point (0, y), with y ∈ Z,

and a finite sequence of consecutive edges vpi,qi , i = 0, . . . , `, such that

• vpi,qi = mpi,qi(qi, pi) with qi, pi coprime;

• the slopes pi/qi are in increasing order;

• we have 0 6 p0/q0 and p`/q` is at most h′(1).

If p0 = 0, as in Section 6.2 we will define v− = m−(1, 0) = vp0,q0 . If

p`/q` = h′(1), we will define v+ = m+(1, h
′(1)) = vpl,ql . We also let zp,q be

such that h′(zp,q) = p/q.

We can also define the action of such a path just as in Section 6.2: We

first define

(41) A(v−) = 0, A(v+) = m+
h(1)

2
, A(vp,q) =

mp,q

2
(p(1−zp,q)+qh(zp,q)).

We then define the action of a concave lattice path P to be

(42) A(P ) = y +A(v+) +
∑

vp,q

A(vp,q).

The definition of j(P ) from Section 6.2 (see equation (38)) is still valid

here. With this in mind, we have the following:

Theorem 6.3. Let ϕ ∈ Diffc(D, ω) be a monotone twist satisfying the

assumption (40). Then, for all integers d > 0 and k = d mod 2,

(43) cd,k(ϕ) = max{A(P ) : 2j(P )− d = k},

where the max is over all concave lattice paths P for ϕ of horizontal displace-

ment d.

We remark that there exist similar formulas for ECH capacities of concave

[CCGF+14, Th. 1.2.1] and convex [CG19, Cor. A.12] toric domains; see also

[Hut11] for earlier related results.

Proof. We can take a C∞ small perturbation of ϕ to a d-nondegenerate

Hamiltonian diffeomorphism ϕ0, which itself is a nice perturbation of some ϕ1
H ,

where H ∈ D as in Section 6.1.

Since cd,k(ϕ) is the limit of cd,k(ϕ0), as we take smaller and smaller per-

turbations, to prove (43) it suffices to show that an analogous formula holds for

cd,k(ϕ0). We will achieve this by proving that the spectral invariant cd,k(ϕ0)

is carried by the element σ of the PFH chain complex for ϕ0 given by

σ :=
∑

(α,Z),
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where the sum is over all twisted PFH generators (α,Z) where α consists of only

elliptic orbits, is of degree d and I(α,Z) = k. Equivalently, the corresponding

concave lattice path Pα,Z has edges that are all labeled e, and it has degree d

and index k. Note that here, since α consists of only elliptic orbits, I(α,Z) =

2j(Pα,Z)−d. To see why the above sum defining σ is finite, note that since ϕ0

is non-degenerate, there are only finitely many twisted PFH generators (α,Z)

with degree d and index k.

We first claim that σ is in the kernel of the PFH differential. Indeed,

by Proposition 6.2, the differential is the mod 2 sum over every (β, Z ′) such

that Pα,Z can be obtained from Pβ,Z′ by rounding a corner and locally losing

one h. Fix one such Pβ,Z′ . It has exactly one edge labelled h, and so there

are exactly two concave paths, say Pα,Z and Pα̃,Z̃ , which are obtained from

Pβ,Z′ by rounding a corner and locally losing one h. The two paths Pα,Z and

Pα̃,Z̃ are different because, for example, when you round the two corners for

an edge, one rounding contains one of the corners, and the other contains the

other corner. Now, (α,Z) and (α̃, Z̃) both contribute to σ and thus, (β, Z ′)

appears exactly twice in the differential of σ; hence, its mod 2 contribution to

the differential is zero. Consequently, we see that σ is in the kernel of the PFH

differential.

Now, by Proposition 6.2, no concave path with all edges labeled e is ever

in the image of the differential, because the concave path corresponding to

the negative end of a holomorphic curve counted by the differential has more

edges labeled h than the concave path corresponding to the positive end, and

in particular has at least one edge labeled h. So, [σ] 6= 0 in homology. In fact,

σ must carry the spectral invariant for similar reasons. Specifically, if there is

some other chain complex element σ′ homologous to σ, then σ + σ′ must be

in the image of the differential. Nothing in the image of the differential has

a path with all edges labeled by e, so σ′ must contain all possible paths of

degree d and index k with all edges labeled by e, and so its action must be at

least as much as σ. This shows that cd,k(ϕ0) is given by the action of σ, which

completes the proof. �

Corollary 6.4. Under the assumptions of Theorem 6.3,20 we have

cd,k(ϕ) 6 cd,k+2(ϕ)

for any (d, k).

Proof. If ϕ is the identity, then the corollary holds by direct computation,

as in our proof of the Normalization property in Theorem 4.5. Otherwise, if we

20For more general ϕ, (46) can still be established, by using the PFH “U -map,” but we

will not need this in the present work.
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take an action maximizing path of index k, with all edges labeled e as above,

we can always round a corner, and then the grading increases by 2, and the

action does not decrease. �

6.4. Proof of Theorem 3.7. We now prove Theorem 3.7, which establishes

the Calabi property for monotone twist maps of the disc that were introduced

in Section 3.2.

Theorem 3.7 will follow from the theorem below for the invariants cd,k,

which was originally conjectured in greater generality by Hutchings [Hut17].

Theorem 6.5. Let (kd), d = 1, 2, . . . be a sequence of integers, with kd =

d mod 2 for any d. Then, for any positive monotone twist ϕ, we have

(44) Cal(ϕ) = lim
d→∞

Å

cd,kd(ϕ)

d
−

kd
2(d2 + d)

ã

.

A first observation, concerning equation (44), which is also due to Hutch-

ings, is that it suffices to establish (44) for a single such sequence (d, kd) with

d = 1, 2, . . . ranging over the positive integers. Indeed, for d-nondegenerate ϕ,

there is an automorphism of the twisted PFH chain complex given by

(α,Z) 7→ (α,Z + [S2]),

where [S2] denotes the class of the sphere. By [Hut02, Prop. 1.6], this increases

the grading by 2d+ 2. It also increases the action by 1. So, we have

(45) cd,k+2d+2(ϕ) = cd,k(ϕ) + 1

for all ϕ. Now, the right-hand side of equation (44) is invariant under increasing

the numerator of the first fraction by one, and increasing the numerator of the

second fraction by 2d+ 2. Moreover, by Corollary 6.4 we obtain

(46) cd,k(ϕ) 6 cd,k′(ϕ),

when k′ > k, with k = k′ = d mod 2 and ϕ a positive monotone twist. Thus,

given an arbitrary sequence k̃d, we can assume by the above analysis that k̃d
is within 2d + 2 of kd, and |cd,k̃d − cd,kd | 6 1; the limit on the right-hand side

of (44) is then the same for cd,kd and cd,k̃d .

We now give a proof of Theorem 6.5. It is sufficient to prove Theorem 6.5

for monotone twists ϕ, which can be written as ϕ1
H with the Hamiltonian H

satisfying (40). This is because the left- and right-hand sides of equation 44,

i.e., the Calabi invariant and the PFH spectral invariants, are (Lipschitz) con-

tinuous with respect to the Hofer norm and, moreover, every monotone twist

can be approximated, in the Hofer norm, by monotone twists satisfying (40).

Hence, we will suppose for the rest of this section that our monotone twists ϕ

satisfy (40). This allows us to apply Theorem 6.3.
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Our proof relies on a version of the isoperimetric inequality for non-

standard norms, which we now recall; the idea of using this inequality comes

from Hutchings’ proof in [Hut11, §8] of the “Volume Property” for ECH spec-

tral invariants for certain toric contact forms.

Let Ω ⊂ R2 be a convex compact connected subset. Using the standard

Euclidean inner product, the dual norm associated to Ω, denoted ‖ · ‖∗Ω, is

defined for any v ∈ R2 by

(47) ‖v‖∗Ω = max{v · w : w ∈ ∂Ω}.

Let Λ ⊂ R2 be an oriented, piecewise smooth curve and denote by `Ω(Λ) its

length measured with respect to ‖ · ‖∗Ω. When Λ is closed, its length remains

unchanged under translation of Ω.

For our proof, we will suppose that Ω is the region bounded by the graph

of h, the horizontal line through (1, h(1)), and the vertical line through (−1, 0).

Denote by Ω̂ the region obtained by rotating Ω clockwise by ninety degrees;

see Figure 5. We orient the boundary ∂Ω̂ counterclockwise with respect to any

point in its interior.

1−1

graph(h)

Ω

0

h(1)

Ω̂

Figure 5. The convex subsets Ω, Ω̂.

Proof of Theorem 6.5. Let P be a concave lattice path of horizontal dis-

placement d for ϕ. Complete the path P to a closed, convex polygon by adding

a vertical edge at the beginning of P and a horizontal edge at the end; orient

this polygon counterclockwise, relative to any point in its interior; and, rotate

it clockwise by ninety degrees. Call the resulting path Λ; see Figure 6. We will

need the following lemma.

Lemma 6.6. The following identities hold :

(1) `Ω(∂Ω̂) = 2(2h(1)− I), where I :=
∫ 1
−1 h(z)dz;
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Λ

P d

V

0

Figure 6. The path P and the closed path Λ.

(2) `Ω(Λ) = dh(1)+2y+2V−2A(P ), where V denotes the vertical displacement

of the path P .

Proof of Lemma 6.6. According to the Isoperimetric Theorem [BM94], for

any simple closed curve Γ, we have

(48) `2Ω(Γ) > 4A(Ω)A(Γ),

where A(Ω) and A(Γ) denote the Euclidean areas of Ω and the region bounded

by Γ, respectively. Moreover, equality holds when Γ is a scaling of a ninety

degree clockwise rotation of ∂Ω; see [Hut11, Example 8.3]. The first item

follows immediately from the equality case of the theorem applied to Γ = ∂Ω̂

because A(Γ) = A(Ω) = 2h(1) − I. Alternatively, item (1) could be obtained

via direct computation.

We now prove the second item. The length of the polygon Λ is given by

the sum
∑

e∈Λ ‖e‖∗Ω, where the sum is taken over the edge vectors e of Λ. It

follows from the method of Lagrange multipliers that

‖e‖∗Ω = e · pe

for some point pe ∈ ∂Ω, where e points in the direction of the outward normal

cone at pe. Hence, we can write

(49) `Ω(Λ) =
∑

e∈Λ

e · pe =
∑

e∈Λ

e · (pe −m),

where the second equality holds, for any m ∈ R2, because Λ is closed. We will

calculate `Ω(Λ) using the choice m = (1, 0).

Let e denote one of the edges of Λ corresponding to a vector vp,q =

mp,q(q, p) in P . Now, we have e = mp,q(p,−q), since we are taking a ninety

degree clockwise rotation; moreover, pe −m = (zp,q − 1, h(zp,q)). Thus,

e · (pe −m) = mp,q(p,−q) · (zp,q − 1, h(zp,q))

= mp,q (p(zp,q − 1)− qh(zp,q))

= −2A(vp,q),

where the final equation follows from (41).
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If e is an edge of Λ corresponding to either of the vectors v = v− =

m−(1, 0) or v = v+ = m+(1, dh
′(1)e), then a similar computation to the above

yields e · (pe − m) = −2A(v). Summing over all of the edges e of Λ, corre-

sponding to vectors in P , we obtain the quantity

(50) 2y − 2A(P ).

The remaining two edges of Λ are the vectors e1 = (0, d) and e2 = (−V, 0)

for which we have

e1 · (pe1 −m) = (0, d) · (−1, h(1)) = dh(1),

e2 · (pe2 −m) = (−V, 0) · (−2, 0) = 2V.
(51)

We obtain from equations (49), (50), and (51) that `Ω(Λ) = dh(1) + 2y +

2V − 2A(P ). �

Step 1: Calabi gives the lower bound. Here, we will prove the lower bound

needed for establishing equation (44). In other words, we will show that for

any sequence (kd), we have

(52) Cal(ϕ) 6 lim inf
d→∞

Å

cd,kd(ϕ)

d
−

1

2

kd
d2 + d

ã

.

To prove the above, fix ε > 0. We will show that for all sufficiently large

positive integers d, there exists a sequence of concave lattice paths {Pε,d}, such

that

(53)

∣

∣

∣

∣

Cal(ϕ)−

Å

A(Pε,d)

d
−

1

2

kd
d2 + d

ã
∣

∣

∣

∣

6 ε,

where kd = 2j(Pε,d) − d denotes the combinatorial index of Pε,d. By Theo-

rem 6.3, we have A(Pε,d) 6 cd,kd(ϕ) and, by the argument we explained in

Section 6.4 (see the discussion after Theorem 6.5), proving (52) for one se-

quence kd with d ranging across all sufficiently large positive integers proves

it for all such sequences, and so we conclude (52) from the above, since ε was

arbitrary.

We now turn to the description of the concave paths Pε,d. Let P be a

concave path approximating the graph of h such that it begins at (−1, 0),

ends on the line x = 1, is piecewise linear, and its vertices are rationals with

numerator an even integer and denominator d. Let Λ be the convex polygon

obtained as follows: Add a vertical edge at the beginning of P and a horizontal

edge at the end of it; orient this polygon counterclockwise, relative to any point

in its interior; and, rotate it clockwise by ninety degrees. The convex polygon

Λ approximates ∂Ω̂. More precisely, given ε, we pick, for all sufficiently large

positive integers d, paths P , subject to the conditions above, and such that

(A) P is within ε of the graph of h;
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(B) |`Ω(Λ)− `Ω(∂Ω̂)| 6 ε, which by Lemma 6.6 is equivalent to

|`Ω(Λ)− 2(2h(1)− I)| 6 ε;

(C) the area of the region under the path P , and above the x-axis, is within

ε of I.

Let Pε,d,Λε,d be the images of P,Λ, respectively, under the mapping

(x, y) 7→
d

2
(x+ 1, y).

The path Pε,d is a concave lattice path of degree d. Recall that Cal(ϕ) = 1
4I.

We will prove the two inequalities below, which will imply equation (53):
∣

∣

∣

∣

A(Pε,d)

d
−
I

2

∣

∣

∣

∣

6
3ε

4
,

∣

∣

∣

∣

1

2

kd
d2 + d

−
I

4

∣

∣

∣

∣

6
ε

4
.

(54)

We first examine the term
A(Pε,d)

d . By Lemma 6.6, and using the fact that

`Ω(Λε,d) =
d
2`Ω(Λ), we obtain

A(Pε,d)

d
=
dh(1) + 2V − `Ω(Λε,d)

2d

=
h(1)

2
+
V

d
−
`Ω(Λ)

4
.

By item (A) above, the term V
d is within ε

2 of h(1)
2 . By item (B) above,

the term `Ω(Λ) is within ε of 2(2h(1)− I), hence the first inequality in (54).

As for the second inequality, we know that, up to an error of O(d), the

index kd is twice the area between the x-axis and the path Pε,d. Because Pε,d

is a scaling of P by a factor of d
2 , item (C) above implies

−
d2

2
ε+O(d) 6 kd −

d2

2
I 6

d2

2
ε+O(d),

which for sufficiently large d yields the second inequality in (54). �

Step 2: Calabi gives the upper bound. We now complete the proof of The-

orem 6.5. We emphasize again, for the convenience of the reader, that as

mentioned in Remark 3.10, we do not actually need this step of the proof for

the proof of our main result Theorem 1.2.

To complete the proof, we need to show that

(55) Cal(ϕ) > lim sup
d→∞

Å

cd,k(ϕ)

d
−

1

2

k

d2 + d

ã

.

To do this, we will show that

(56) Cal(ϕ) > lim sup
d→∞

Å

A(P )

d
−

1

2

k

d2 + d

ã

for all degree d concave lattice paths P of combinatorial index k.
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Let P be a concave lattice path of degree d and combinatorial index k. Let

E be a real number with E > h(1) and E > 2V
d , and let ΩE be the compact

convex subset of R2 bounded by the graph of h, the vertical segments {−1} ×

[0, E] and {1}×[h(1), E], and the horizontal segment [0, d]×{E}. For example,

with the notation of Lemma 6.6, we have Ω = Ωh(1). Inequality (56) will follow

from letting E tend to ∞ after applying the isoperimetric inequality (48) to

the domain ΩE and to the following curve ΛE .

To define ΛE , consider the region delimited by our lattice path P , the

vertical segments {0}× [y, y+ dE
2 ] and {d}× [y+V, y+ dE

2 ], and the horizontal

segment [0, d]×{y+ dE
2 }. Our curve ΛE is the boundary of this region, rotated

clockwise by ninety degrees; see Figure 7.

1−1

graph(h)

ΩE

ΛE

P d

V

0

0

E

dE
2

y

Figure 7. The convex subset ΩE and the path ΛE .

The isoperimetric inequality (48) gives

(57) `2ΩE
(ΛE) > 4A(ΩE)A(ΛE).

The area factors are easily computed. We have

A(ΩE) = 2E − I, A(ΛE) =
1
2d

2E − a(P ),

where a(P ) denote the area of the region between P , the horizontal segment

[0, d] × {y} and the vertical segment {d} × [y, y + V ] (in grey on Figure 7).

Moreover, a computation similar to that of item (2) in Lemma 6.6, gives

`ΩE
(ΛE) = 2dE + 2y − 2A(P ).

Thus, (57) gives

(2dE + 2y − 2A(P ))2 > 4(2E − I)(12d
2E − a(P )).

After simplification, we obtain

−2dEA(P ) +A(P )2 + 2dEy − 2yA(P ) + y2 > −2a(P )E − 1
2d

2EI + Ia(P ).
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Dividing by 2d2E and letting E go to +∞ then yields:

1

4
I >

A(P )

d
−
a(P ) + dy

d2
.

Now 2a(P )+ 2dy corresponds to k up to an error O(d). Thus, for all sequence

of paths Pd of degree d and index kd,

1

4
I > lim sup

d→∞

Å

A(Pd)

d
−

1

2

kd
d2 + d

ã

,

from which (56) follows.

Appendix A. More about combinatorial PFH and ECH

The purpose of this appendix is to give an outline of the argument from

[HS06], [HS05], adapted to our setting, that was promised in Proposition 6.2.

Preliminaries : Comparison with previous results. We first review the se-

tups in [HS06], [HS05], [Cho16] to clarify for the reader the ways in which

our setting differs from the settings for previously known results. The papers

[HS06], [Cho16] consider a number of manifolds, including the case of S1 × S2,

which is the one relevant to us here, and they give a combinatorial model very

much analogous to the one in Proposition 6.2. However, they are about toric

contact forms and they give a combinatorial presentation for the corresponding

ECH, while what we need for the proposition is about PFH. The paper [HS05]

is about PFH and gives a combinatorial model for the chain complex that is

analogous to the one in Proposition 6.2; however, it is only for Dehn twists,

while we are interested in monotone twist maps of S2. However, as we will see

below, none of these differences are serious for the arguments.

Outline of the proof of Proposition 6.2.

Step 1: Computation of the index. We first sketch how to prove the sec-

ond item in Proposition 6.2, which gives a combinatorial interpretation of the

ECH index I. We assume here, and throughout this appendix, that we have

trivialized the mapping torus via (19).

Given an orbit set α, we first define a relative homology class Z ′
α ∈ H2(S

2×

S1, α, dγ−) as follows. Write α = {(γ−,m−)}∪{(αi,mi)}i∪{(γ+,m+)}, where

each (αi,mi) is either an (hpi/qi , 1) or an (epi/qi ,mpi/qi). We define Z ′
α :=

m−Z
′
− +m+Z

′
+ +

∑

imiZ
′
αi
, where

• Z ′
− ∈ H2(S

2 × S1, γ−, γ−) is the trivial class;

• Z ′
+ ∈ H2(S

2 × S1, γ+, γ−) is represented by the map

S+ : [0, 1]× [0, q] → S2 × S1, (s, t) 7→ (Rtdh′(1)e(η(s)), t),

where η is a meridian from the South pole p− to the North pole p+, and

Rtκ denotes the rotation on S2 by the angle 2πtκ;
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• for αi = ep,q or hp,q, the relative class Z ′
αi

∈ H2(S
2 × S1, αi, qγ−) is repre-

sented by the map

Sαi
: [0, 1]× [0, q] → S2 × S1, (s, t) 7→ (Rt p

q
(η(s)), t),

where η is a portion of the great circle that begins at p− and ends at z p
q
.

Recall that we also need to fix trivializations τ of the vertical tangent bundle

along the periodic orbits: along the orbit γ−, the trivialization is given by any

frame of Tp−S
2 independent of t; along γ+, we take a frame that rotates posi-

tively with rotation number dh′(1)e; along other orbits, we use as trivializing

frame (∂θ, ∂z) ∈ TS2. One now computes from the definitions that

CZτ (α) =
∑

i

mi
∑

k=1

CZ(αk
i ) +

m−
∑

k=1

CZ(γk−) +

m+
∑

k=1

CZ(γk+) = −M + h,(58)

cτ (Z
′
α) = −

∑

mipi −m+dh
′(1)e = −wα + yα,(59)

and
Zα = Z ′

α + (wα − yα)[S
2],

where Zα is the class from Section 4.3.1. Here,M denotes the total multiplicity

of all orbits, h denotes the total number of hyperbolic orbits, and (0, yα), (d, wα)

denote the endpoints of the path Pα,Zα . Similarly to [HS05, §3.2], one also

computes that

Qτ (Z
′
α) = −(wα − yα)− 2Area(Rα

′)− (wα − yα)(d− 1),(60)

where Rα
′ is the region between Pα,Z and the straight line connecting (0, yα)

to (d, wα).

By combining (58), (59), (60), and the definition of the grading (16), we

have

I(α,Z ′
α) = −M + h− (wα − yα)(d+ 1)− 2Area(R′

α).

An application of Pick’s Theorem, which we leave to the reader, then estab-

lishes the second item in the proposition for Z ′
α. The second item for a general

Z ∈ H2(S
2 × S1, α, dγ−) then follows as another easy exercise using the fact

that H2(S
2 × S1, α, dγ−) is an affine space over H2(S

2 × S1;Z).

Step 2: Curves correspond to corner rounding. We now comment on the

proof of the third item. We break the proof into two parts. The first is the

following lemma, which establishes the “only if” part of the item.

Lemma A.1. Let ϕ0 be a nice perturbation of ϕ1
H , where H ∈ D. Assume

that I(Pα,Z)− I(Pβ,Z′) = 1. Then, for generic admissible J close to Jstd,

〈∂(α,Z), (β, Z ′)〉 6= 0

only if Pα,Z is obtained from Pβ,Z′ by rounding a corner and locally losing

one h.
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The remainder of this step sketches the proof of this lemma. To start,

a straightforward adaptation of [HS05, Prop. 3.12] and [HS06, Prop. 10.12],

which we skip for brevity, yields the following lemma.

Lemma A.2. Let ϕ0 be a nice perturbation of ϕ1
H , where H ∈ D, let J be

any admissible almost complex structure, and let C be a J-holomorphic curve

from (α,Z) to (β, Z ′). Then

(a) Pβ,Z′ is never above Pα,Z .

(b) Let z0 ∈ (−1, 1) be such that C intersects Sz := {z = z0} ⊂ R × S2 × S1

transversely, and assume that ϕ0 has no periodic points of period ≤ d

on Sz . If this intersection is nullhomologous in Sz , then it is empty.

Thus by part (a) of this lemma, we know that Pβ,Z′ is never above Pα,Z .

Consider the region between Pα,Z and Pβ,Z′ . We can take this region and de-

compose it into two kinds of subregions: non-trivial subregions where Pα,Z is

above Pβ,Z′ — meaning that the parts of Pα,Z and Pβ,Z′ intersect at most at

two points in these regions; and, trivial subregions where the concave paths

(without the labels) coincide. See Figure 8.

non-trivial regions

trivial regions

Figure 8. Examples of trivial and non-trivial regions. The path

Pβ,Z′ is in black, the path Pα,Z is in grey were it does not

coincide with Pβ,Z′ .

Now, by general theory as in [Hut14, Prop. 3.7], any curve C counted by

the twisted PFH differential can be written in the form C = C0 t C1, where

C1 is irreducible and has Fredholm and ECH index one and C0 is a union of

R-invariant cylinders or multiple covers thereof. It suffices to establish the

result for the “interesting” component C1.

One first shows that for the component C1 of a curve C satisfying the

hypotheses of the lemma, there is exactly one non-trivial region and no trivial

regions. Here is a sketch of the proof. First, we show that there must be at

least one non-trivial region: otherwise, by invoking Lemma A.2(b), one shows
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that C1 would have to be “local,” in the sense that C1 is a cylinder from some

hp,q to an ep,q arising from the perturbation of the Morse-Bott setup; how-

ever, these cylinders cancel in pairs, since, as is familiar in the Morse-Bott

picture, they correspond to flow lines from a perfect Morse function on the

circle of Reeb orbits. Thus, there is at least one non-trivial region, and an

index computation along the lines of Step 1 shows that if there was more than

one region, then the Fredholm index of C1 would be at least two. It therefore

remains to argue that there are no trivial regions for C1. For brevity, we skip

this since the argument for this is similar to the kind of arguments we have

already presented in this paragraph.

Now assume that C1 is a curve from (α,Z) to (β, Z ′). Then, we know from

above that there is exactly one non-trivial region between Pα,Z and Pβ,Z′ . By

the second item of Proposition 6.2, we have

1 = I(α,Z)− I(β, Z ′) = 2j + hα − hβ ,

where j is the number of lattice points in the region between Pα,Z and Pβ,Z′ ,

not including lattice points on Pα,Z , and hα, hβ denote the number of edges

labeled h in Pα,Z , Pβ,Z′ , respectively. The number of edges in Pβ,Z′ , which we

denote by rβ , satisfies the following inequality: hβ 6 rβ 6 j + 1 . Hence, in

view of Step 1 we have

I(α,Z)− I(β, Z ′) > 2(rβ − 1)− rβ = rβ − 2,

with equality if and only if Pα,Z and Pβ,Z′ start at the same point, end at

the same point, the region between Pα,Z and Pβ,Z′ contains no interior lattice

points, every edge of Pβ,Z′ is labelled h, and no edge of Pα,Z is labeled h. Since

I(α,Z) − I(β, Z ′) = 1, we can rewrite the above inequality as rβ 6 3. Thus,

rβ ∈ {1, 2, 3} and Lemma A.1 follows from a straightforward combinatorial

analysis of these three cases for rβ that we leave to the reader; the case rβ = 3

is exactly the case of Double Rounding, which is ruled out by the choice of

nice perturbation.

Step 3: Corner rounding corresponds to curves. To complete the proof of

the proposition, we therefore have to show

Lemma A.3. Let ϕ0 be a nice perturbation of ϕ1
H , where H ∈ D. If Pα,Z

is obtained from Pβ,Z′ by rounding a corner and locally losing one h, then

〈∂(α,Z), (β, Z ′)〉 6= 0. In other words, counting mod 2 we have

#MJ((α,Z), (β, Z
′)) = 1

for generic admissible J.

The remainder of this step is devoted to the sketch of the proof of this

lemma.
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Define

X1 := {(t, θ, z) ∈ S1 × S2 : −1 < z}, X ′
1 := {(t, θ, z) ∈ S1 × S2 : z < 1}.

We first show that either every C ∈ MJ((α,Z), (β, Z
′)) is entirely contained

in X1, or every C ∈ MJ((α,Z), (β, Z
′)) is entirely contained in X ′

1; the basic

idea of the proof is that, otherwise, in view of Lemma A.2(b) and the compu-

tations in Step 1, the ECH index I for such a C would be larger than one; for

brevity, we say no more here.

The idea is now to relate #MJ((α,Z), (β, Z
′)) = 1 to a count previously

studied in the context of the ECH differential. We explain this in the case

where MJ((α,Z), (β, Z
′)) = MJ(α, β;X1), i.e., the curves are entirely in X1;

the case of X ′
1 is essentially the same.

We identify X1 with a subset of the boundary of the “concave toric do-

main”

XΩ := {(z1, z2)|(π|z1|
2, π|z2|

2) ∈ Ω},

where Ω is the region bounded by the axes and the graph of f(x), where

f(x) := h(1−2x)
2 for 0 6 x 6 1. It is well known (and easy to prove) that the

boundary ∂XΩ is a contact manifold, with contact form given by the restric-

tion of the standard one-form on R4. Consider the subset of ∂XΩ given by

X2 := {(z1, z2)|π(|z1|
2, |z2|

2) ∈ ∂Ω − {(1, 0)}}. Note that this is ∂XΩ with a

Reeb orbit removed. Define the mappings

ψ : X1 → X2, (t, θ, z) 7→
(

1
2(1− z), θ, 12h(z), 2πt

)

,

Ψ : R×X1 → R×X2, (s, t, θ, z) 7→
(

s, 12(1− z), θ, 12h(z), 2πt
)

.
(61)

Here, we are regarding ∂XΩ ⊂ C2 = R4, and we are equipping C2 with co-

ordinates (ρ1 := π|z1|
2, θ1, ρ2 := π|z2|

2, θ2). One can check that the above

diffeomorphisms have the following properties:

(i) The Reeb vector field R on X1 pushes forward under ψ to a positive

multiple of the contact Reeb vector field R̂ on X2.

(ii) The two-form dλ on X2 pulls back under ψ to ωϕ on X1. Thus, the SHS

(λ, dλ) on X2 pulls back under ψ to the SHS (ψ∗λ, ωϕ) on X1.

By property (i), ψ induces a bijection between the Reeb orbit sets of R in

X1 and the Reeb orbit sets of R̂ in X2. We will denote the induced bijection by

α 7→ α̂.

Now, suppose Pα,Z is obtained from Pβ,Z′ via rounding a corner and lo-

cally losing one h. Let Ĵ be a contact admissible almost complex structure

on the symplectization R × ∂XΩ, and consider MĴ(α̂, β̂) as the space of Ĵ-

holomorphic currents C, modulo translation in the R direction, which are

asymptotic to α̂ as s→ +∞ and β̂ as s→ −∞. For a generic choice of contact
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admissible Ĵ , this moduli space is finite and its mod 2 cardinality determines

the ECH differential in the sense that

〈∂ECH α̂, β̂〉 = #MĴ(α̂, β̂).

The ECH differential in this case has been worked out in [Cho16],21 with the

conclusion that the following hold:

(A1) The image of every curve in MĴ(α̂, β̂) is contained in R×X2.

(B1) The mod 2 count of curves in MĴ(α̂, β̂) is 1.

Now define J1 to be the almost complex structure on R×X1 given by the

pullback under Ψ of the restriction of a generic Ĵ as above. By (A1) and (B1),

the mod 2 count of curves in MJ1((α,Z), (β, Z
′);X1) is one. However, J1 is

not necessarily admissible, because the SHS given by (ψ∗λ, ωϕ) does not agree

with the standard SHS (dt, ωϕ) on the mapping torus. Nevertheless, these two

SHSs are homotopic and one can connect J1 to an admissible almost complex

structure J0 through a suitable family Jt. One then shows that the counts for

J0 and J1 agree by constructing a compact cobordism between the relevant

moduli spaces via spaces of Jt-holomorphic curves. The argument for this is a

standard SFT compactness argument, wherein all possible degenerations into

buildings are analyzed, together with an argument that is similar to the ar-

gument at the beginning of this step, showing that the Jt-holomorphic curves

stay in a compact subset of X1 via a variant of Lemma A.2(b); we omit the

details for brevity. �

Remark A.4. Choi [Cho16] finds his curves by referencing a paper by

Taubes [Tau02], which works out various moduli spaces of curves for a par-

ticular contact form on S1 × S2; Choi then does a deformation argument that

is analogous to Step 3 above. Choi also uses an inductive argument to re-

duce to considering moduli spaces of twice and thrice punctured spheres that

is nothing like what is in Step 3; the reason he does this is to be able to use

the above paper by Taubes, which does not directly address all the curves

needed to analyze corner rounding operations, which could lead, for example,

to curves with an arbitrary number of ends.22 These ideas were pioneered by

Hutchings-Sullivan in [HS06], [HS05], who use them to find the curves that

they need. A strategy like this can also be used instead of citing Choi, but we

did not do so for brevity.

We should also note that there is considerably more in Choi’s work than

what we use here — in particular, Choi analyzes very general contact forms

21We also refer the reader to [Yao22b], [Yao22a] for further details about the Morse-Bott

arguments used in this computation.
22We should note that two other papers [Tau06a], [Tau06b] by Taubes that came after

[Tau02] do address these kind of curves.
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(for example, the contact form on a toric domain that is neither concave nor

convex) for which there could be curves corresponding to regions more general

than those that come from rounding a corner and locally losing one h, and for

which more complicated arguments are needed — however, we do not need to

consider anything like that in this paper.

Appendix B. Discussion and open questions

We discuss here some open questions relating to the main results of our

article. We also discuss developments since our article first appeared.

Simplicity on other surfaces. Let M denote a closed manifold equipped

with a volume form ω, and denote by Homeo0(M,ω) the identity component

in the group of volume-preserving homeomorphisms of M . In [Fat80a], Fathi

constructs the mass-flow homomorphism

F : Homeo0(M,ω) → H1(M)/Γ,

mentioned above, where H1(M) denotes the first homology group of M with

coefficients in R and Γ is a discrete subgroup of H1(M) whose definition we

will not need here. Clearly, Homeo0(M,ω) is not simple when the mass-flow

homomorphism is non-trivial. This is indeed the case when M is a closed sur-

face other than the sphere. Fathi proved that ker(F) is simple if the dimension

of M is at least three. The following question is posed in [Fat80a, App. A.6].

Question B.1 (Fathi). Is ker(F) simple in the case of surfaces? In par-

ticular, is the group Homeo0(S
2, ω) of area and orientation preserving homeo-

morphisms of the sphere simple?

Update: In the original version of this paper, we remarked that one might

be able to resolve this question by adapting the methods of the paper, af-

ter some further development of the theory of PFH spectral invariants. In

fact, we later resolved the question (in the negative) in [CGHM+22a], together

with Mak and Smith, using a similar argument to the one given in Section 3;

however, we used a different kind of spectral invariant, called “link spectral

invariants,” instead of PFH ones. After that work, the needed further devel-

opment of PFH invariants required to resolve Question B.1 via these invariants

occurred in [EH21], [CGPZ21], which can be used to give an alternative proof.

C0-symplectic topology and simplicity in higher dimensions. From a sym-

plectic viewpoint, a natural generalization of area-preserving homeomorphisms

to higher dimensions is given by symplectic homeomorphisms. These are,

by definition, those homeomorphisms that appear as C0 limits of symplec-

tic diffeomorphisms. By the celebrated rigidity theorem [Eli87], [Gro85] of

Eliashberg and Gromov, a smooth symplectic homeomorphism is a symplectic
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diffeomorphism. These homeomorphisms form the cornerstone of the field of

C0-symplectic topology that explores continuous analogues of smooth symplec-

tic objects; see, for example, [OM07], [Ban08], [HLS15], [HLS16], [BO16].

The connection between C0-symplectic topology and the simplicity conjec-

ture is formed by the fact that, in dimension two, symplectic homeomorphisms

are precisely the area- and orientation-preserving homeomorphisms of surfaces.

Indeed, as we mentioned in Section 1, the simplicity conjeture has been one of

the driving forces behind the development of C0-symplectic topology; for exam-

ple, the articles [OM07], [Oh10], [Vit06], [BS13], [Hum11], [LR10b], [LR10a],

[EPP12], [Sey13a], [Sey13b] were, at least partially, motivated by this conjec-

ture.

The connection to C0-symplectic topology motivates the following gener-

alization of Question 1.1.

Question B.2. Is Sympc(D
2n, ω), the group of compactly supported sym-

plectic homeomorphisms of the standard ball, simple?23

As we will now explain, Question B.1 admits a natural generalization to

higher dimensions as well. To keep our discussion simple we will suppose that

(M,ω) is a closed symplectic manifold. However, this assumption is not neces-

sary and the question below can be reformulated for non-closed manifolds too.

On a symplectic surface (M,ω), the group ker(F) discussed in the above

section is often referred to as the group of Hamiltonian homeomorphisms and

is denoted by Ham(M,ω); see, for example, [LC06]. The reason for this ter-

minology is that it can be shown that ker(F) coincides with the C0 closure of

Hamiltonian diffeomorphisms. Hence, in this language, Question B.1 may be

rephrased as the question of whether or not the group of Hamiltonian home-

omorphisms is simple. On higher dimensional symplectic manifolds, the ele-

ments of the C0 closure of Ham(M,ω) are also called Hamiltonian homeomor-

phisms and have been studied extensively in C0-symplectic topology; see, for

example, [OM07], [BHS18], [BHS21], [Kaw22].

Question B.3. Is Ham(M,ω) a simple group?

In comparison, Banyaga’s theorem states that the group of Hamiltonian

diffeomorphisms is simple for closed M .

Finite energy homeomorphisms. The group of finite energy homeomor-

phisms, FHomeo(M,ω), can be defined on arbitrary symplectic manifolds; the

construction is analogous to what is done in Section 3.1. It forms a normal

23An argument involving the Alexander isotopy shows that Sympc(D
2n, ω) is connected.
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subgroup of Ham(M,ω). However, we do not know if it is always a proper nor-

mal subgroup. Infinite twists can also be constructed on arbitrary symplectic

manifolds: the construction of φf , described in Section 3.2, admits a general-

ization to D2n. And the analogue of equation (11), the condition for having

“infinite” Calabi invariant, can also be formulated in higher dimensions.

Question B.4. Is it true that infinite twists, which satisfy the higher

dimensional analogue of equation (11), are not finite energy homeomorphisms?

Clearly, a positive answer to this question would settle all of the above

simplicity questions. After the first version of this paper appeared, the case

of surfaces was resolved in the affirmative in [CGHM+22a]; see the discussion

after Question B.1. However, a serious obstacle arises in higher dimensions:

here, for example, PFH, and the related Seiberg-Witten theory, have no known

generalization.

We now return to the case of the disc, where we know that FHomeoc(D, ω)

is a proper normal subgroup of Homeoc(D, ω). This immediately gives rise to

several interesting questions about FHomeoc(D, ω).

Question B.5. Is FHomeoc(D, ω) simple?

As was mentioned in Remark 3.3, the Oh-Müller group Hameoc(D, ω),

which we introduce below, is a subgroup of FHomeoc(D, ω), and it can easily

be checked that it is a normal subgroup.

Update. We resolved Question B.5 by extending the Calabi invariant to

Hameoc(D, ω); see the discussion after Question B.8 below.

Question B.6. Is the group Hameoc(D, ω) a proper normal subgroup of

FHomeoc(D, ω)?

Update. Buhovsky resolved Question B.6 in the affirmative in [Buh23].

Another interesting direction to explore is the algebraic structure of the

quotient Homeoc(D, ω)/FHomeoc(D, ω). At present we are not able to say

much beyond the fact that this quotient is abelian; see Proposition 2.1. Here

are two sample questions.

Question B.7. Is the quotient Homeoc(D, ω)/FHomeoc(D, ω) torsion-

free? Is it divisible?

Extension of the Calabi invariant. Ghys [Ghy07a], Fathi and Oh [OM07,

Conj. 6.8] have asked if the Calabi invariant extends to either of Hameoc(D, ω)

or Homeoc(D, ω). It seems natural to add FHomeoc(D, ω) to the list.

Question B.8. Does the Calabi invariant admit an extension to any of

Hameoc(D, ω), FHomeoc(D, ω), or Homeoc(D, ω)?
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We now explain a partial answer to this question, making use of some

developments in [CGPZ21], [EH21] that occurred after the first version of this

paper appeared.

Theorem B.9. The Calabi homomorphism

Cal : Diffc(D, ω) → R

extends to Hameoc(D, ω).

The first complete proof of Theorem B.9 appeared in [CGHM+22a]; we

summarize the relevant history below after giving our proof.

Proof. Let us begin with the definition24 of Hameoc(D, ω). We say φ ∈

Homeoc(D, ω) is a hameomorphism if there exists a sequence of smooth Hamil-

tonians Hi ∈ C∞
c (S1 × D) and a continuous H ∈ C0

c (S
1 × D) such that

ϕ1
Hi

C0

−−→ φ, and ‖H −Hi‖(1,∞) → 0.

The set of all hameomorphisms is denoted by Hameoc(D, ω).
25 It defines a

normal subgroup of Homeoc(D, ω) which is clearly contained in FHomeoc(D, ω).

Take φ ∈ Hameoc(D, ω) and H ∈ C0
c (S

1×D) as in the previous paragraph;

we let ϕH denote φ. Define

(62) Cal(ϕH) :=

∫

S1

∫

D

H ω dt.

We first show that Cal is well defined. First, note that because Cal is a

homomorphism on Diffc(D, ω), to show this it suffices to show that if ϕH = Id,

then

(63)

∫

S1

∫

D

H ω dt = 0.

Suppose that ϕH = Id, and fix a sequence (H1, H2, . . . , ) for ϕH as in the

definition of Hameoc(D, ω).

Claim B.10. For all i, we have | cdd (ϕ
1
Hi
)| 6 ‖H −Hi‖(1,∞).

Proof. By Hofer continuity of PFH spectral invariants, we have | cdd (ϕ
1
Hj

)−
cd
d (ϕ

1
Hi
)| 6 ‖Hj − Hi‖(1,∞) for all i, j. Fixing i and taking the limit of this

24The definition we have given here is a slight variation of the one in [OM07]; it can

easily be checked that if φ is a hameomorphism in the sense of [OM07], then it is also a

hameomorphisms in the sense described here.
25Oh and Müller use the terminology Hamiltonian homeomorphisms for the elements of

Hameoc(D, ω). We have chosen to avoid this terminology because in the surface dynamics

literature it is commonly used for referring to homeomorphisms that arise as C0 limits of

Hamiltonian diffeomorphisms.
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inequality, as j → ∞, yields the claim, by Theorem 3.6 and item (4) of Theo-

rem 4.5, since ϕ1
Hj

C0

−−→ Id. �

We now establish (63). For all i, d ∈ N, we have
∣

∣

∣

∣

∫

S1

∫

D

H ω dt

∣

∣

∣

∣

6

∣

∣
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∣

∫

S1

∫

D

H ω dt − Cal(ϕ1
Hi
)

∣

∣

∣

∣

+
∣

∣

∣
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cd
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(ϕ1

Hi
)
∣
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∣
+
∣

∣

∣

cd
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(ϕ1

Hi
)
∣

∣

∣

6 ‖H −Hi‖(1,∞) +
∣

∣

∣Cal(ϕ1
Hi
)−

cd
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(ϕ1

Hi
)
∣

∣

∣+
∣
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cd
d
(ϕ1

Hi
)
∣

∣

∣

6 2‖H −Hi‖(1,∞) +
∣

∣
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Cal(ϕ1
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cd
d
(ϕ1

Hi
)
∣

∣

∣
,

where the last inequality follows from Claim B.10. Now take any ε > 0. There

exists N ∈ N such that if i > N , then ‖H −Hi‖(1,∞) 6
1
2ε. Hence, for i > N ,

we have
∣

∣

∣

∣

∫

S1

∫

D

H ω dt

∣

∣

∣

∣

6 ε+
∣

∣

∣Cal(ϕ1
Hi
)−

cd
d
(ϕ1

Hi
)
∣

∣

∣ .

By [CGPZ21], [EH21], the conclusion of Theorem 3.7 holds for arbitrary ϕ ∈

Diffc(D
2, ω). Hence, |

∫

S1

∫

D
H ω dt| 6 ε, hence (63), hence the claimed exten-

sion of Cal.

It remains to show that

Cal : Hameoc(D, ω) → R

is indeed a homomorphism. Having shown that (62) is well defined, this has

in fact already been shown in [Oh10] and so we will only provide a sketch

of the argument. Take ϕH , ϕG ∈ Hameoc(D, ω). Without loss of generality,

we may suppose that H(t, x) and G(t, x) vanish for t near 0 ∈ S1; this can

be achieved by replacing H with the reparametrization ρ′(t)H(ρ(t), x), where

ρ : [0, 1] → [0, 1] coincides with 0 near 0 and with 1 near 1; see [Pol01, p. 31]

for more details on the reparametrization argument.

It can be checked that ϕH ◦ϕG = ϕK , where K is the concatenation of H

and G given by the formula

K(t, x) =

{

2H(2t, x) if t ∈ [0, 12 ],

2G(2t− 1, x) if t ∈ [12 , 1].

It follows immediately from the above formula, and equation (62), that

Cal(ϕH ◦ ϕG) = Cal(ϕH) + Cal(ϕG).

Verification of the fact that Cal(ϕ−1
H ) = −Cal(ϕH) is similar and so we omit it.

�
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Historical remarks. The above proof of Theorem B.9 was suggested in the

first version of this paper, except that at that time, the necessary developments

in [CGPZ21], [EH21] had not yet occurred. In fact, prior to [CGPZ21], [EH21],

but after the first version of this paper appeared, we showed in [CGHM+22a]

that Calabi extends to Hameoc(D, ω) by using essentially the same argument

as above, but replacing the PFH spectral invariants with the aforementioned

link spectral invariants, which have similar properties.

Update. We later showed in [CGHM+22b] that Calabi extends to all of

Homeoc(D, ω), though not canonically, via a different kind of argument using

link spectral invariants.

New invariants and new applications. A key role in our paper is played

by PFH spectral invariants. In the years since our paper first appeared, some

new invariants have been discovered that share enough similar properties with

the PFH ones that one can adapt the arguments in our paper with minor

modifications to obtain the applications to the Simplicity Conjecture, using

these other invariants instead of PFH ones.

One such family of invariants is the family of link spectral invariants

[CGHM+22a], [PS21] that we already mentioned above. Another is the family

of “elementary PFH spectral invariants” defined in [Edt22]. These invari-

ants have various great features. For example, the link spectral invariants

are known to be quasimorphisms, and one can use them to deduce very fine

information about the normal subgroup structure [CGHM+22b]; and, the el-

ementary PFH spectral invariants can be constructed without making any

reference to Floer homology. As for the PFH invariants, some new applica-

tions have occurred as well beyond questions about the algebraic structure

of homeomorphism groups. We already mentioned the application resolving

the Kapovich-Polterovich question; this was a central open problem about

the Hofer geometry of surfaces, and it can also be resolved with link spectral

invariants [PS21]. Another important application occurred in the series of pa-

pers [CGHS23], [EH21], [CGPPZ21], [Pra23], [PP22], proving the C∞-closing

lemma, and various refinements, for area-preserving diffeomorphisms of closed

surfaces or compact surfaces with boundary.
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de Janeiro, 2008. MR 2458739. Zbl 1161.58007. https://doi.org/10.

21711/217504322008/em141.

[BEH+03] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and

E. Zehnder, Compactness results in symplectic field theory, Geom.

Topol. 7 (2003), 799–888. MR 2026549. Zbl 1131.53312. https://doi.

org/10.2140/gt.2003.7.799.

[BM94] J. E. Brothers and F. Morgan, The isoperimetric theorem

for general integrands, Michigan Math. J. 41 no. 3 (1994), 419–

431. MR 1297699. Zbl 0923.49019. https://doi.org/10.1307/mmj/

1029005070.

[Buh23] L. Buhovsky, On two remarkable groups of area-preserving home-

omorphisms, J. Math. Phys. Anal. Geom. 19 no. 2 (2023), 339–373.

MR 4633987. https://doi.org/10.15407/mag19.02.339.

[BHS18] L. Buhovsky, V. Humilière, and S. Seyfaddini, A C0 counterex-

ample to the Arnold conjecture, Invent. Math. 213 no. 2 (2018),

759–809. MR 3827210. Zbl 1395.37037. https://doi.org/10.1007/

s00222-018-0797-x.

[BHS21] L. Buhovsky, V. Humilière, and S. Seyfaddini, The action

spectrum and C0 symplectic topology, Math. Ann. 380 no. 1-2

(2021), 293–316. MR 4263685. Zbl 1471.53067. https://doi.org/10.

1007/s00208-021-02183-w.

[BO16] L. Buhovsky and E. Opshtein, Some quantitative results in

CalC0 symplectic geometry, Invent. Math. 205 no. 1 (2016),

1–56. MR 3514957. Zbl 1348.53074. https://doi.org/10.1007/

s00222-015-0626-4.

[BS13] L. Buhovsky and S. Seyfaddini, Uniqueness of generating Hamilto-

nians for topological Hamiltonian flows, J. Symplectic Geom. 11 no. 1

(2013), 37–52. MR 3022920. Zbl 1282.37030. https://doi.org/10.4310/

JSG.2013.v11.n1.a3.

[Cal70] E. Calabi, On the group of automorphisms of a symplectic mani-

fold, in Problems in Analysis (Sympos. in Honor of Salomon Bochner,

Princeton Univ., Princeton, N.J., 1969), Princeton Math. Series 31,



252 D. CRISTOFARO-GARDINER, V. HUMILIÈRE, and S. SEYFADDINI
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