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Abstract—Federated learning (FL) enables collaborative model
training without sharing the private data of each individual
participant, making it well-suited for autonomous driving ap-
plications. Preserving the integrity of sensitive data is crucial for
the security of these systems due to the direct implications for
passenger safety. Although federated model training enhances
data privacy for individual participants, it remains vulnerable
to stealthy backdoor attacks that can alter the global model,
potentially threatening system reliability in high-stakes scenarios
such as autonomous driving. We introduce SecFedDrive, a robust
defense mechanism against backdoor attacks on a decentralized
deep FL system. Our approach reduces attack success rates
to as low as 2%, significantly enhancing the security and
reliability of FL. models in autonomous driving environments,
and demonstrates significant reductions in training time relative
to a comparable architecture.

I. INTRODUCTION

Deep learning, a powerful technique for extracting complex
data patterns, is a transformative technology enabling break-
throughs across domains including natural language processing
and computer vision. Autonomous vehicles, which are revolu-
tionizing transportation with a promise of enhancing vehicles’
safety, efficiency, and accessibility, collect and process vast
amounts of data from individual vehicles to train a global
model. Traditional approaches to training deep learning models
are centralized, processing all participants’ training data on
one central server and training the model on one consolidated
dataset; however, this raises concerns about the security of
sensitive participant data and personal information.

A. Federated Learning for Autonomous Driving

Federated learning (FL) [1] is an emerging paradigm in
machine learning that mitigates threats to data privacy and
sovereignty via collaborative learning, where multiple devices
or servers train their respective data separately, aggregating
their local models to comprise a global model without data ex-
change. FL offers additional benefits, e.g., enhanced efficiency
as only parameter updates are communicated, and scalability
by leveraging the computational resources of many devices.

FL is highly relevant to autonomous driving [2] as the sensor
of each vehicle continuously captures vast amounts of sensitive
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data, including image, video, and location information. FL
ensures the privacy of sensitive data while taking advantage
of its heterogeneity—such as different driving conditions, en-
vironmental characteristics, road infrastructure, etc.—to better
generalize global models and enable continuous model updates
to enhance system performance and safety. With the increasing
prevalence of autonomous vehicles, FL offers an efficient
solution that reduces overhead for centralized storage and
processing. However, despite its advantages, this paradigm
does not eliminate all threats to data and model security.

B. Backdoor Attacks on Federated Models

An adversary may launch a black-box backdoor attack on
a federated learning system via data poisoning by stealthily
injecting malicious data into the training set [3], often at the
level of individual pixels that induce subtle perturbations to
mislead the model during training while going undetected.
The adversary may carry out such an attack across multiple
nodes to further skew the model. Model poisoning [4], the
white-box alternative, compromises the integrity of the learn-
ing process by strategically manipulating parameters or the
objective function to bias the model toward specific classes.
Distributed backdoor attacks allow adversaries to exploit the
communication protocol or aggregation processes of FL to
inject poisoned updates and compromise the global model by
attacking participants [5].

Due to the privacy-preserving aggregation of participants’
local models, anomalies are difficult to detect by the central-
ized server [6]. As such, innovative defense mechanisms have
been proposed to combat the growing landscape of threats to
FL. Neural Cleanse [7] is one such strategy designed to thwart
backdoor attacks by neutralizing malicious triggers embedded
in FL models. This scheme probes the internal structure of
neural networks for anomalous patterns indicative of backdoor
triggers. Advanced detection algorithms and analysis tech-
niques enable it to proactively cleanse FLL models of hidden
vulnerabilities, offering a vital layer of protection against
backdoor attacks in an increasingly adversarial environment.

The contributions of this paper is summarized as follows.

o We develop SecFedDrive, a secure FL architecture for de-
fending against strategic backdoor attacks in autonomous
driving. This defense mechanism incorporates two secu-
rity layers in the learning architecture, Residual Check
and Neural Cleanse, that improve the trustworthiness of
vision-based autonomous driving decision-making.
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o We evaluate our approach extensively on two public
datasets, with results showing significant reductions in at-
tack success rate when compared with the FL architecture
lacking the proposed security measures.

e Our proposed FL architecture is lightweight in terms
of training time, reducing its vulnerability to backdoor
attacks through image poisoning during training.

II. RELATED WORK

There are a variety of existing works across the fields of
federated learning, backdoor attacks, and related countermea-
sures. Our work spans all of these focus areas to uncover the
impact of malicious participants injecting backdoor triggers on
an FL network, and the extent to which these attacks can be
mitigated.

A. Federated Learning

McMahan et al. propose a decentralized FL scheme for
training deep neural networks by aggregating locally computed
updates, which is robust to non-IID data distributions and
enhances privacy while maintaining performance [1]. Nguyen
et al. propose FADNet [2], a communication-efficient peer-
to-peer decentralized deep federated learning (DFL) frame-
work for training autonomous driving models, which performs
competitively with centralized alternatives and state-of-the-art
methods of processing autonomous driving datasets. It is used
as a baseline with which to compare our secure FL. network.

B. Backdoor Attacks

Tu et al. investigate the vulnerabilities and robustness of
collaborative multi-agent systems against adversarial perturba-
tions and complexities of executing black-box transfer attacks,
proposing methods for generating adversarial perturbations
that are indistinguishable yet detrimental to the system’s func-
tionality [8]. Bagdasaryan et al. proposes a ”blind” method for
backdoor injection into deep learning models by compromising
loss-value computation during training without access to train-
ing data or the model [9] and introduce an FL-specific model-
poisoning backdoor attack that is trained to evade detection
with a train-and-scale technique [6]. The distributed attack
model presented in [5] also exploits the characteristics of FL
by decomposing a global trigger to embed it locally on a set
of participants.

C. Countermeasures

Wang et al. propose Neural Cleanse [7], the first robust and
generalizable system for detecting and mitigating backdoor
attacks in deep neural networks (DNNs) with proven effective-
ness when deployed against backdoor variations. This work
is foundational to the architecture of our proposed defense
mechanism. Alternative countermeasures include robustness
certification based on model smoothing [10] and post-training
model pruning [11].
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Fig. 1: Overview of federated learning: Local weights are sent
to the cloud server and the aggregated parameters are sent
back. An attacker may target client image data to report false
parameters and have malicious effects on the global model,
impacting vehicles’ steering policy.

III. PROBLEM FORMULATION

We first introduce mathematical foundations for our fed-
erated learning case and the backdoor attack model used to
maliciously alter the learning model’s behavior. The federated
network is comprised of N clients communicating with a
central server S to train the vehicle steering policy. Each client
Ci, i € {1,...,N}, trains a deep learning model on its local
dataset and sends the learned weights 6; to S. S then generates
a global policy for predicting the steering angle from the
calculated aggregated weights 0. Fig. 1 shows the described
architecture.

A. Federated Learning Architecture

Federated learning can be described as an iterative process
of local optimization and global aggregation [12], converging
towards a model that approximates the minimization of a
global loss function. Consider a machine learning problem
with the goal of minimizing a global objective function F(w)
over a model parameter vector w. This global objective func-
tion is the average of local objective functions Fy(w) from K
different clients, described by the following equation:

1 K
= x L W), M

where F(w) represents the objective function for the k-th
client. Each client k has its own local dataset &, and the
local objective function is typically defined as:

Y d(wixi i), 2

F
k (W) | -@k| &

where ¢(w;X;,y;) is the loss function for the model parameter
w on data point (x;,y;). The central server initializes the global
model parameter wy.

Federated learning proceeds in a series of communication
rounds indexed by t =0,1,2,...,7T. At the beginning of round
t, the central server transmits the latest global model parameter
w; to all clients, who then update their parameters based on a
local dataset via local optimization, i.e., as gradient descent:

wh W, —nVE(w), 3)
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Fig. 2: A backdoor trigger pattern demonstration. The Trojan
image contains a small green patch beneath the tree as the
trigger. The residual highlights the difference between images.
where 1 is the learning rate and w,(k) is the updated model
parameter for client k after local training. Clients send their
updated local model parameters wt(k) back to the central server
which aggregates them. The aggregation is a simple average
or a weighted average if clients have different data sizes:

P
Yo% &
This process repeats for a predetermined number of commu-
nication rounds 7 or until convergence criteria are met, with
the goal of minimizing the global objective function F'(w) [1].

Wit1 =

B. Backdoor Attacks

The FL framework faces the vulnerability of strategic back-
door attacks, as illustrated in Fig. 1. Let us define the trigger
injection as the following:

Alx,m,8) =, %)
X?,j,c =(1—mjj) -xije+mj-0je, (6)
where A(:) denotes the function applying a trigger to the
original image x. 6 is a 3D matrix of pixel color intensities
with identical height, width, and color channel dimensions to
the input image. m is a 2D matrix that serves as a mask over
the images, hence determining the extent to which the trigger
can replace the original image. Here, we investigate a 2D mask
that has been applied to all color channels of the pixel. The
values in the mask range from 0 to 1. When m; ; =1 for a
specific pixel (i,j), the trigger overwrites the original color
(¥} j « = 0i,j.c)- When m; j =0, the original color is not modified
(x;A e =Xi, j.c) [7]. The mask we use in our experiments consists
of the right side of the image having some pixels that are
disguised, as shown in Fig. 2.

IV. SECFEDDRIVE ARCHITECTURE

Backdoor data poisoning attacks can be executed through
various attack vectors, such as a spoofed agent, a cyberattacker
targeting the data during transmission, or a malicious insider
manipulating the training data. Due to the high risk posed by
attacks on autonomous driving systems, adversarial behavior
should be anticipated, and proactive security measures should
be implemented against it. We develop SecFedDrive, an in-
depth defense mechanism comprised of two security enhance-
ment layers in the learning architecture: Residual Check and
Neural Cleanse. Specifically, the residual defense prevents
clients from learning malicious data by identifying backdoors

before training, with Neural Cleanse’s neuron pruning and un-
learning methods serving as an additional defense mechanism.

A. Multilayer Defense Mechanisms

1) Residual Check: A preliminary residual defense blocks
images with pixel-based triggers from entering the model
training phase. In image processing, residuals are the absolute
differences between corresponding pixel intensities in two
grayscale images. For a given image, the previous image
passed into the model is compared with it. The images are first
converted from RBG to grayscale, then the residual R(x,y) at a
given pixel coordinate (x,y) is calculated as the absolute value
of the difference between intensity values L;(x,y) and Ly (x,y)
of the two grayscaled images, denoted as the following:

R(x7y):|L1(x7y)_l‘2(x7y)|' @)

Analyzing residuals is an effective technique for capturing
modifications to images [13], and any unusual differences
between images can indicate backdoor triggers. However, these
triggers may not be evident if the differences between images
are too large. For example, a squirrel running across the road
and suddenly appearing in the current image while not being
present in the previous image may be flagged as a trojan attack.

2) Neural Cleanse: Neural Cleanse determines the mini-
mum perturbation & required to modify any input x so that the
model fy classifies x+ & into a target class ¢. Mathematically,
this is formulated as an optimization problem:

5i*:argm§in||5||p st. fo(x+06)=t, forxeD; (8)

In this context, |- ||, represents the £,-norm, commonly the /-
or {p-norm. This optimization can be solved using gradient-
based methods such as Projected Gradient Descent (PGD).
In a federated learning scenario, the server receives 5,»* from
each client i. The aggregated perturbation & is computed as:

N
51

v, 16,». )

Neural Cleanse employs an anomaly detection mechanism
to identify backdoor attacks. The intuition is that a backdoored
client will yield a significantly smaller ||5;*||, compared to non-
backdoored clients. Let ¢ and o denote the mean and standard
deviation of the perturbation norms [|;||, across all clients.
The anomaly score ¢; for each client is given by:

1187l i
)

Q; (10)
A high anomaly score ¢; indicates a potential backdoor attack.
By setting a threshold 7, we can flag and isolate suspicious
clients so that if o; > 7, then client i is suspected of being
backdoored.

The objectives of the optimization are as follows. To analyze
a given target label y, a trigger (m, ) that would misclassify
clean images as 1(y) must first be found. Subsequently, a
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Fig. 3: Visualization of the SecFedDrive architecture, composed of a series of convolutional layers and residual blocks, designed
to process input data for autonomous vehicles in a federated learning setting. Security measures, Residual Check and Neural
Cleanse, are implemented at the boundaries of the neural network architecture, safeguarding both the data entering the input

layer and the loss calculated from the aggregated weights.

trigger that modifies a limited portion of the image must be
found. The formulation of such objectives is described as:

min - £(yr, f(A(x,m, 8))) +|m]

for x € X, (11)

where £(-) is the loss function quantifying classification error—
cross entropy in our experiment—and f(-) is the prediction
function. The optimization problem is solved using a set of
clean images X from the Udacity and CARLA datasets.

B. Main Architecture of SecFedDrive

The architecture of the proposed model, pictured in Figure
3, is implemented using the PyTorch deep learning framework
and inherits from the nn.Module class. The network begins
with a convolutional layer (32 output channels, kernel size 5,
stride 4), followed by a max pooling layer (kernel size 3, stride
2). Three residual blocks follow, with each consisting of a
sequence of operations including batch normalization, ReLU
activation, and convolutional layers, progressively increasing
output channels from 32 to 128. Following the residual blocks,
additional convolutional layers with varying output channels
and strides reduce the spatial dimensions of the input while
increasing the number of channels.

The model incorporates a support feature mechanism,
wherein the output of specific convolutional layers is reshaped
and subjected to a global average pooling operation to obtain
support features. These support features are accumulated using
a fully connected layer to produce a single feature. A fully
connected layer with an input size of 7 and an output size
of 7 is included, along with a dropout layer with a dropout
probability of 0.5 and a ReL.U activation function.

The training process is as follows: In the forward propaga-
tion phase, the input is passed through the initial convolutional
layer and max pooling layer. The output of the max pooling
layer is then processed by the first residual block, and the result
is added to the output of the convolutional layer applied to
the output of the max pooling layer. After passing through the
residual blocks and convolutional layers, the output is flattened
and passed through the fully connected layer, followed by

ReLU activation and dropout. The final output is obtained by
multiplying the flattened output with the accumulated support
feature and taking the mean across the appropriate dimension.

C. Security Layers of SecFedDrive

The Residual Check, inserted at the input layer of the
architecture as seen in Figure 3, captures the residual be-
tween subsequent frames in an autonomous vehicle feed using
OpenCV. In the context of our experiments, the comparison
between the frames was conducted on all the input data
before entering the model. This pre-check flags images with
unusual differences, suggesting potential adversarial triggers.
The system flags these abnormalities before the image is used
in the federated model training, blocking potential backdoor
attacks from impacting the global model. The residual value
threshold is set to an intensity level of 50 (from the default
intensity level of 0) so that normal variations are not mistaken
for attacks.

The Neural Cleanse layer synthesizes potential trigger pat-
terns by maximizing the activation values of neurons in the
Aggregation layer. Patterns are evaluated on their ability to
cause misclassifications when applied to clean inputs, and pat-
terns with high likelihood of being a true backdoor trigger are
pruned. These trigger candidates are then stamped on inputs
and passed through the trained victim global model to identify
neurons that exhibit high activations. The unlearning process in
SecFedDrive takes place when a suspicious backdoor pattern
is detected by the Neural Cleanse and Residual Check layers.
Once the residual check identifies an image with potential
adversarial characteristics, the system removes the image from
the dataset. Following this, the model undergoes an unlearning
process where weights associated with the malicious trigger are
adjusted. Backpropagation is leveraged to minimize activations
from malicious patterns detected. Specifically, any neuron that
becomes hyperactive due to the malicious input is pruned,
and the corresponding weights are retrained, “unlearning” the
backdoor while preserving the model’s overall performance.
The SecFedDrive architecture maintains the integrity of the
federated model by continuously monitoring and correcting
these patterns.
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FADNet (Loss) SecFedDrive (Loss) Attack Success Rate

Participants Training Type
Udacity CARLA  Udacity CARLA FADNet SecFedDrive
10 Benign, 0 Attackers ~ Standard 0.107 0.203 0.102 0.193
9 Benign, 1 Attacker Backdoor Attack 0.097 0.192 0.103 0.192 93.58% 1.96%
7 Benign, 3 Attackers Backdoor Attack 0.104 0.200 0.101 0.192 98.25% 2.04%

5 Benign, 5 Attackers Backdoor Attack 0.106 0.202 0.102 0.195 99.73% 2.10%

TABLE I: Loss performance and attack success rates for FAD-
Net and SecFedDrive on the Udacity and CARLA datasets,
with varying numbers of benign and malicious participants.
While attack success rates increase with more attackers,
SecFedDrive consistently mitigates backdoor attacks across all
scenarios.

V. EXPERIMENTAL RESULTS

This section presents an analysis of the performance and
robustness of federated learning architectures in autonomous
vehicle perception tasks with backdoor attacks. We first outline
the experimental setup before evaluating the efficiency of the
backdoor attack and respective defense mechanisms.

A. Data Description

The Udacity dataset [14] is a comprehensive collection of
404,916 training and 5,614 testing grayscale video frames cap-
tured from real-world urban roads, along with corresponding
steering angle labels. Derived from the open-source Udacity
self-driving car dataset, it presents a challenging environment
with severe lighting changes, sharp curves, and busy traffic
scenarios. We take a sub-sample to create our model training
dataset, consisting of 39,087 images with a reshaped image
size of 32x32 pixels. The CARLA dataset [2] is an augmented
dataset of images created using the Carla driving simulator.
Different lightings, weather conditions, and driving scenarios
were simulated while generating the the 73,235 samples. This
dataset also includes a steering angle label for each image.

B. Experimental Setup

The Flower framework [15] used in our experimentation
is a helpful decentralized, Python-based approach to deep
learning that enables collaborative model training between
clients while preserving data confidentiality. It is particularly
relevant in the context of FL for autonomous vehicles, as it
allows for the training of machine learning models without
the need to centralize sensitive data, such as images, sensor
readings, or other information collected by individual vehicles.
Additionally, we use PyTorch to implement the various layers
specified in the architecture as shown in Figure 3.

As seen in Table I, our experiments test on a FL network
with 10 participants with 4 test cases for 0, 1, 3, and 5 attackers
among them. We also compare the performance of two fed-
erated learning architectures, FADNet [2] and our proposed
SecFedDrive, on autonomous vehicle perception tasks, using
the Udacity and CARLA datasets to evaluate their performance
during a data poisoning backdoor attack. To determine when
to begin adding poisoned images with pixel backdoors to the
model, there is a loss threshold that must be met during the

training process. For the Udacity and CARLA datasets, the
threshold values are 0.4 and 0.3, respectively.

Standard Training over Udacity Dataset Backdoor Atrack Traning over Udacity Dataset

Fig. 4: Loss curves for standard training (left) and backdoor
attacks (right) on the Udacity and CARLA Dataset for a given
client. The backdoor attack curves notably spike where the
model begins to receive infected images when under a pre-
determined threshold for loss. Otherwise, both models demon-
strate comparable curves due to the similarity in architecture
implementation between FADNet and SecFedDrive.

C. Attack Efficiency

Results for the various experiments conducted are displayed
in Figure 4 and Tables I & II. Table I reports the loss values
achieved by each architecture under standard federated training
with only benign participants, as well as when subjected to
backdoor attacks with varying numbers of attackers. As seen
in Fig. 4, both FADNet and SecFedDrive exhibited reasonable
loss values around 0.1-0.2 for the benign setting, with compa-
rable loss curves due to their similar architectures. However,
when only a single attacker was introduced, the success rate
of the backdoor for FADNet reached 93.58%, indicating a
significant vulnerability. As the number of attackers increased
to 3 and 5, FADNet’s attack success rate rose to 98.25% and
99.73% respectively—nearly complete compromise.

Backdoor attacks aim to maintain normal performance on
benign data to avoid detection. As the number of attackers per-
forming backdoor attacks increases in the network, FADNet’s
loss values start to mimic the standard benign training loss.
The loss decreases to 0.097-0.192 with one attacker, but then
increases again to 0.104-0.202 for three and five attackers.
This phenomenon occurs due to the injection of the hidden
trigger into the global model during federated training; i.e., as
more attackers participate, their poisoned updates gain greater
influence over the aggregated global model [8]. The global
model learns the features of the attacker’s trigger pattern as
more attacking data is added during training. Thus, the loss of
clean inputs converges to values similar to standard training as
the model is no longer able to distinguish between the trigger
pattern and clean data. Hence, a successful attack is indicated
by model predictions overridden with the attacker’s label.

D. Defense Efficiency

Table II reports the attack success rates achieved against
SecFedDrive when employing different defense strategies. The
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Participants Residual Neural Cleanse = Combined
9 Benign, 1 Attacker 32.42% 4.88% 1.96%
7 Benign, 3 Attackers 33.65% 5.01% 2.04%
5 Benign, 5 Attackers 33.84% 5.43% 2.10%

TABLE 1II: Attack success rates (%) for SecFedDrive for
different defense mechanisms. The efficacy of Neural Cleanse
is enhanced with the residual defense. Using both defense
mechanisms, success rates are minimized to approximately 2%
for all three participant cases with an adversary.

Residual Check defense, which removes image data that devi-
ates significantly from adjacent frames, reduces the attack suc-
cess rate over 60% to around 32-34% across varying numbers
of attackers. However, this approach still left a substantial vul-
nerability. Incorporating the Neural Cleanse technique to detect
and unlearn backdoor triggers drastically improved SecFed-
Drive’s security, with attack success rates dropping to 4.88-
5.43% using Neural Cleanse alone. The most robust defense
combined Residual Check and Neural Cleanse, decreasing the
attack success rates to only 1.96-2.10%. This multi-pronged
defense strategy effectively neutralized the threat of backdoor
attacks, securing the integrity of the FL system.

E. Training Time Comparison

Table III compares client and server training times for
FADNet and SecFedDrive using Udacity and Carla datasets.
For client training, FADNet demonstrates significantly longer
training times, with 340 seconds for Udacity and 518 seconds
for Carla, whereas SecFedDrive achieves 137 seconds for
Udacity and 244 seconds for Carla. Server training is also
more efficient for SecFedDrive, reducing time requirements
from 636 to 398 seconds (Udacity) and 1097 to 670 seconds
(Carla). The reduced server training times with SecFedDrive
can lead to significant savings in computational resources and
time, facilitating faster deployment of updated models and im-
proving overall system scalability. Additionally, longer training
gives attackers more time to introduce poisoned images into
the data stream, hence SecFedDrive is a more favorable option.

FADNet SecFedDrive

Udacity Carla
340 sec. 518 sec.
636 sec. 1097 sec.

Udacity Carla
137 sec.
398 sec.

244 sec.
670 sec.

Client Training

Server Training

TABLE III: Comparison of client and server training across
different architectures and datasets, with SecFedDrive demon-
strating substantial improvements over the FADNet architec-
ture.

VI. CONCLUSION

This paper explored the vulnerabilities of FL systems to
backdoor attacks and tested countermeasures in the context of
autonomous driving. Extensive experimentation demonstrated
the effectiveness of different backdoor strategies and high-
lighted the significant threat they pose to FL models. It is

seen that as the number of attackers in the network increases,
the loss values for the vulnerable FADNet architecture mimic
those of standard benign training, indicating more success and
stealth in the attackers’ manipulation of the model. To counter
these threats, we proposed and evaluated the use of Residual
Check and Neural Cleanse as defense layers in the learning
architecture, with combined use being the most effective. In
future works, we aim to develop additional defense mecha-
nisms like Februus [16] and test the architecture’s durability
against new attacks such as [17].
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