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A B S T R A C T   

Bonds between distinct solids rarely present sharp discontinuities in mechanical properties. Particularly in the case of the bonds between polymers with metals, 
ceramics, and semiconductors, interphase regions are formed whose mechanical behavior differs from that of the bulk polymer. This paper examines the potential of 
detecting interphases associated with thin polymer layers under axial and shear loading. We demonstrate that a recent asymptotic analysis co-developed by one of 
our honorees can be extended and holds in the presence of interphases. As a result, we are able to establish the conditions under which interphases may be detected 
when thin layers are loaded in tension and shear. Further, our analysis suggests that interphases may signi昀椀cantly reduce the high degree of triaxiality that has long 
been associated with thin, nearly incompressible layers.   

1. Introduction 

Epoxies are ubiquitous in applications ranging from primary struc-
tural adhesive joints, laminated 昀椀ber-reinforced polymers to encapsu-
lants and molding compounds for microelectronic packaging. For many 
applications, the bonds formed between epoxies and their various target 
substrates (metals, ceramics, semiconductors, 昀椀bers, etc.) play an 
important role, and they should be considered as separate constitutive 
entities. This important point was 昀椀rst recognized by Sharpe (1972), 
who postulated that the bonds form an interphase, with properties 
distinct from those of the epoxy and the contact substrate. The nature of 
epoxy interphases has been examined by studying the migration of the 
amido-amine hardener to the substrate, which results in an 
off-stoichiometric cure near the substrate (Bouchet and Roche, 2002; 
Dey et al., 2014; Drzal, 1986; Roche et al., 2002; Vanlandingham et al., 
1999). Interphases may also be formed when substrates are function-
alized with covalent tethers to the epoxy (Drzal et al., 1983; Drzal et al., 
1982; Mello and Liechti, 2006). The mechanical properties of in-
terphases have been studied using scanning probe microscopy tech-
niques such as Peak Force Quantitative Nano-Mechanics (PF-QNM) (Qi 
et al., 2019) and atomic force microscopy (Zhang et al., 2018). In the 
latter case, the indentation data was accompanied by an extensive 昀椀nite 
element analysis in an attempt to account for the effect of the substrate 
on such data. Typically, these approaches have suggested that epoxy 
interphases are about 10–20 nm thick and are more compliant than the 
bulk epoxy. Recently Yang et al. (2021) probed interphases indirectly, 
by performing experiments on laminated silicon-epoxy double-canti-
lever beams. Using Winkler’s elastic foundation model, they calculated 

effective normal and shear compliances of thin epoxy layers, which 
turned out to be signi昀椀cantly higher than those one would obtain for 
perfectly bonded epoxy layers. Accordingly, the difference was right-
fully attributed to interphases. 

Interphases are also abundant in 昀椀lled rubbers as well as in situations 
where rubbers are bonded to other substrates. In this case, the rubber 
molecules adhere to the stiffer substrates via combinations of van der 
Waals interactions, hydrogen bonding, and chemical bonding. In 
contrast to epoxy interphases, the rubber interphase is usually stiffer 
than the surrounding rubber matrix. For example, Brune et al. (2016) 
examined the interphase that formed in an elastomer joined to the sili-
con oxide surface of a silicon wafer using scanning probe microscopy 
coupled with 昀椀nite element modeling. The interphase was 40 nm thick 
and was composed of a region of tightly bound rubber with thickness 
less than 10 nm and shear modulus greater than 250 MPa closer to the 
silicon oxide surface. This was followed by a more loosely bound rubber 
region with a thickness around 30 nm and shear modulus around 7 MPa. 
For reference, the neat polymer had a shear modulus of 0.3 MPa. A 
similar interphase structure has been identi昀椀ed by Tian et al. (2019), 
who examined interphase formation in a silicon-昀椀lled rubber composite 
using PF-QNM. The presence of the interphase was con昀椀rmed by 
transmission electron microscopy. 

Macroscopically, it is natural to model interphases as cohesive zones 
(Gowrishankar et al., 2012; Liechti et al., 2000; Needleman, 1990; 
Sorensen and Jacobsen, 2003; Ungsuwarungsri and Knauss, 1987; Wu 
et al., 2019). That is, an interphase is represented by continuously 
distributed springs, whose deformation is characterized by relating the 
transmitted tractions to the displacement jumps across the interphase. 
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The use of continuously distributed springs goes back to Winkler’s work 
published in 1867; for a recent review of related models we refer to 
Dillard et al. (2018). Alternatively, one can model interphases in the 
context of Gurtin-Murdoch’s surface elasticity framework (Gurtin and 
Murdoch, 1975, 1978; Ru, 2010), which has signi昀椀cantly in昀氀uenced the 
pertinent literature. We believe that, at this stage, such an effort would 
be premature, as available experimental data are rather limited, and it 
has not been established that Winkler’s model is inadequate. 

If, in addition to deformation properties, the springs can be endowed 
with fracture properties, then cohesive zone models can be extended to 
nucleation and growth of cracks. This idea goes back to Barenblatt 
(1959) and Dugdale (1960); for a review of related models we refer to 
Park and Paulino (2011). Again, we believe that the use of Gurtin--
Murdoch’s type models (Gorbushin et al., 2020; Kim et al., 2011a, 
2011b) for fracture modeling is premature due to limited experimental 
data. To this end, let us mention that although the mixed-mode behavior 
of adhesive layers and laminated composites has been extracted since 
the seminal work of Sorensen and Kirkegaard (2006), it is only recently 
that extracted traction-separation relations have been associated with 
interphases (Wu et al., 2019). This result has been further re昀椀ned by 
Yang et al. (2021) using asymmetrically loaded double cantilever beam 
specimens, so that both normal and shear modes were independently 
engaged and associated spring stiffnesses were extracted. Nonetheless, 
there is still a concern that the strain states in the interlayer and asso-
ciated interphases that are produced by the rotation of the adherends 
may complicate the extraction of interphase stiffnesses. 

In this paper, we propose a new experimental setup for probing in-
terphases. It involves a thin polymeric layer bonded to two very stiff 
plates; the term thin implies that the layer thickness is much smaller 
than its base dimensions. This proposal is motived by the asymptotic 
analysis of Movchan et al. (2021), which revealed that, under axisym-
metric conditions, a thin layer of compressible material, bonded to two 
rigid plates, realizes uniform strain and stress 昀椀elds almost everywhere 
except for small regions near the free surface. Here we demonstrate that 
this property holds in the presence of interphases and establish simple 
relationships between normal and shear stiffnesses of interphases and 
the overall specimen response. Consequently, the proposed experi-
mental setup offers a very simple and unambiguous methodology for 
extracting the interphase stiffnesses. 

The paper Movchan et al. (2021), seminal to this work, is one of the 
many impactful contributions of the honorees to asymptotic analysis of 
solids and multi-scale structures (Movchan and Movchan, 1995; Kozlov 
et al., 1999; Movchan et al., 2002; Maz’ya et al., 2013), wave propa-
gation (Movchan et al., 2017), and applied mathematics education 
(Ockendon et al., 2003). 

The proposed experimental setup goes back to Gent and Lindley 
(1959), who recognized that it realizes large stress concentrations 
conducive to cavitation in nearly incompressible rubbers. This point has 
been con昀椀rmed in multiple studies (Chalhoub and Kelly, 1990; Gent, 
1994; Horton et al., 2002; Lindley, 1979; Lindsey et al., 1963; Qiao and 
Lu, 2015; Schapery, 2018; Tsai and Lee, 1998). In contrast, in this paper, 
we focus primarily on compressible layers. In the process, we demon-
strate that thin layers of compressible versus nearly incompressible 
materials exhibit signi昀椀cantly different responses. Further, we show that 
interphases may signi昀椀cantly affect the response of thin nearly incom-
pressible rubber layers. 

This paper is structured as follows: In Section 2, we motivate our 
work and develop its foundation by examining the case of thin layers 
perfectly bonded to two rigid plates. In Section 3, we extend our 
approach to thin layers bonded to two rigid plates via interphases. In 
Section 4, we extend key results of Section 2 and 3 to multi-layers, fol-
lowed by a discussion of some of the implications of these results in 
Section 5. 

2. Thin layers perfectly bonded to two rigid plates 

In this section, we present a sequence of analytical and 昀椀nite element 
solutions leading to a very simple approximate but nevertheless accurate 
analysis of thin layers bonded to two rigid plates, as long as Poisson’s 
ratio ν of the layer material is not too close to 1/2. We refer to such 
layers as thin and compressible. In contrast, if ν is close to 1/2, we refer 
to layers as nearly incompressible. Of course, if ν is equal to 1/2, we refer 
to such layers as incompressible. 

2.1. Motivational examples 

Consider a homogeneous rectangular layer with a square L × L base 
and thickness H perfectly bonded to two rigid plates. We describe this 
layer using natural Cartesian coordinates (Fig. 1): 

−
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2
< x <

L

2
, −

L

2
< y <

L

2
, −

H

2
< z <

H

2
.

In this subsection, our objective is to illustrate that thin compressible 
layers realize essentially uniform strain and stress 昀椀elds in their bulk 
under both normal and shear loadings. The term essentially means that 
the strain and stress 昀椀elds are very close to uniform except for a small 
region adjacent to the lateral faces de昀椀ned by the equations x = ±L/2 or 
y = ±L/2. For illustrative purposes, we consider epoxy and rubber 
layers perfectly bonded to rigid plates. These materials are chosen 
because for epoxy Poisson’s ratio is ν = 0.33, and therefore it is a good 
representative of compressible materials. In contrast, for rubber ν =

0.499905 (Anderson et al., 2004), and therefore it is nearly incom-
pressible. Fig. 2 presents four contour plots for rectangular layers sub-
jected to shear by displacing the upper plate by Ux and the lower plate 
by − Ux. Each plot in Fig. 2 is for the stress σxz normalized by its average 
value as a function of x and y in the mid-plane z = 0. The contour plots 
for thick epoxy (Fig. 2a) and rubber (Fig. 2b) layers, characterized by H/

L = 1, show that the stress distributions are essentially the same and 
non-uniform. In contrast, for thin layers, characterized by H/L = 0.01, 
the contour plots for epoxy (Fig. 2c) and rubber (Fig. 2d) are essentially 
the same and uniform, except near the edges x =±L/2. Since Fig. 2 is an 
illustration it does not involve any numerical values. 

Results shown in Fig. 2 are not surprising. First, the difference be-
tween epoxy and rubber is not essential, simply because shearing is not 
affected by the degree of compressibility. Second, all contour plots in 
Fig. 2 would be perfectly uniform if the lateral faces x = ±L/2 were 
subjected to appropriate shear tractions rather than kept traction-free. 
For the thin layers, the effect of these shear tractions is localized to 
small regions of size O(H) adjacent to the lateral faces x = ±L/2. That is, 
the response of thin layers is in compliance with Saint-Venant’s princi-
ple. For the thick layers, the effect of traction-free lateral faces x = ±L/2 
affects the entire specimen, and therefore the stress distribution is 

Fig. 1. A rectangular layer with a square L × L base and thickness H con-
strained by two rigid plates. 
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essentially non-uniform. 
If the layers were subjected to boundary conditions realizing pure 

shear, then the elastic response of the layers would be characterized by 
the shear modulus. Since the lateral faces are kept traction-free, the 
stress and strain 昀椀elds in the layers are non-uniform, and their overall 
elastic response is characterized by the apparent shear modulus de昀椀ned 
as 

G : =
8σxz98
γxz

9 ,

where the angular brackets denote volume averaging and γ is the engi-
neering shear strain. For thin layers, the stress and strain 昀椀elds are 
essentially uniform and therefore 
G c μ. (1)  

Here we use Lame’s constant μ to distinguish between the shear 
modulus, an intrinsic material property, and G, an apparent property 
speci昀椀c to thin layers. The symbol relating the left- and right-hand sides 
of (1) means that the sides are asymptotically equal. The contour plots 
shown in Fig. 3 are similar to those in Fig. 2, except that the layers were 
subjected to stretching by displacing the upper plate by Uz and the lower 
plate by − Uz. Accordingly, the plots are for the normalized stress σzz as 
a function of x and y in the mid-plane z = 0. It is clear that the differ-
ences between the epoxy versus rubber layers are signi昀椀cant, especially 
for the thin layers. This suggests that there are signi昀椀cant differences 
between compressible and nearly incompressible thin layers, and this 
issue will be addressed in Section 2.2. Here we simply observe that the 
stress 昀椀eld σzz is essentially uniform in the thin compressible epoxy 
layer, but not in the thin nearly incompressible rubber layer. Note that 

contours shown in Fig. 3a,b,d look more and more circular as one moves 
away from the edges toward the center. This suggests that the stress 昀椀eld 
σzz near the center is not sensitive to the fact that the base is a square. To 
this end, we consider normal loading of another thin epoxy layer, which 
is identical to the original one, except that its base is a circle of diameter 
L rather than the square. The normalized σzz stress distributions for these 
two cases are compared in Fig. 4. Perhaps it is not surprising that these 
distributions are essentially the same. This observation allows us to 
examine the role of compressibility using axisymmetric deformation of 
circular layers. 

2.2. Normal loading of circular cylindrical layers perfectly bonded to two 
rigid plates 

In the previous subsection, we conjectured that thin epoxy 
(compressible) layers constrained by two rigid plates realize essentially 
uniform stress-strain states in their bulk under both shear and normal 
loading conditions. While this uniformity was expected under shear, its 
presence was somewhat surprising under normal loading conditions. 
Further, it appeared that the uniformity was not realized by nearly 
incompressible rubber layers. In this subsection, we focus on circular 
thin layers under axisymmetric loading conditions induced by displac-
ing the plates by ±Uz. Our analysis relies on the asymptotic solution of 
this problem developed in Movchan et al. (2021). Here we summarize 
key results of that work, and refer to the source for further details. 

A thin circular cylindrical layer with thickness H = 2h and diameter 
D = 2a (Fig. 5) is characterized by the geometric aspect ratio 

ξ : =
H

D
=

h

a
(2)  

Fig. 2. Normalized σxz stress distribution in the mid-plane of four layers subjected to shear: (a) epoxy layer with H/L = 1, (b) rubber layer with H/L = 1, (c) epoxy 
layer with H/L = 0.01, and (d) rubber layer with H/L = 0.01. 
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and the dimensionless material parameter (Lindsey et al., 1963) 

χ : =

��������������������
3(1 − 2ν)

2(1 − ν)

:
. (3)  

The parameter χ arises naturally from the governing equations, and it is 
con昀椀ned to the interval 
3

2
> χ g 0 for − 1 < ν f 1/2. (4)  

From now on we use μ and χ as the pair of intrinsic elastic constants, and 
imply that all layers under consideration are thin. 

The asymptotic solution of Movchan et al. (2021) for the apparent 
Young’s modulus is 

�E(ξ, χ) : =
8σzz9

8εzz9
c

3μ

χ2

§
«««
«««

1+

6(3 − 2χ2) ξ

χ
I1

(
χ

ξ

)

(3 − χ2)

[
2ξχI1

(
χ

ξ

)
− 3I0

(
χ

ξ

)]

«
««̄

««̄
. (5) 

Fig. 3. Normalized σzz stress distribution in the mid-plane of four layers subjected to normal loading: (a) epoxy layer with H/L = 1, (b) rubber layer with H/L = 1,
(c) epoxy layer with H/L = 0.01, and (d) rubber layer with H/L = 0.01. 

Fig. 4. Normalized σzz stress distributions in the mid-plane of (a) rectangular and (b) circular thin epoxy layers with H/L = 0.01.  
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The hat symbol denotes that this solution is valid for any χ in the ad-
missible interval de昀椀ned in (4). In particular, for incompressible layers 

�E : = limχ→0
�E(ξ, χ) c

3μ

8ξ2
. (6)  

Here we use the tilde symbol to denote that this expression is restricted 
to incompressible materials. While this expression is commonly used in 
rheometry, it is of little practical use in the solid mechanics community, 
since the important role of compressibility has been recognized in the 
seminal work of Gent and Lindley (1959). For this reason, in Sections 2 
through 4, we will not consider incompressible layers. Nevertheless, 
those layers will be discussed in Section 5, where we show that the 
assumption of incompressibility is further undermined in the presence of 
interphases. 

For compressible materials, characterized by χ = O(1), it is mean-
ingful to introduce the small parameter 

ζ : =
ξ

χ
, (7)  

and rewrite (5) in the form 

�E(ζ, χ) c 3μ

χ2

§
«««
«««

1+

6(3 − 2χ2)ζI1

(
1
ζ

)

(3 − χ2)

[
2χ2ζI1

(
1
ζ

)
− 3I0

(
1
ζ

)]

«
««̄

««̄
. (8)  

Then the apparent Young’s modulus for compressible material layers is 

E : = limζ→0
�E(ζ, χ) c 3μ

χ2
. (9)  

Here we use the bar symbol to denote that this expression is restricted to 
compressible layers. 

Note that (6) and (8) imply that �E is not a material property, whereas 
E can be treated as one. The second half of this statement is a conse-
quence of the essential uniformity of the strain and stress 昀椀elds in 
compressible material layers. Those 昀椀elds are very simple, and their 
non-zero components are 

εzz c
Uz

h  

and 

σrr = σθθ c

(
3 − 2χ2

)
μ

χ2

Uz

h
,

σzz c
3μ

χ2

Uz

h
.

These 昀椀elds also characterize laterally constrained uniaxial stretching of 
the layer. Thus, in a compressible layer, the constraints imposed by 
perfectly bonded plates are equivalent to those imposed by perfectly 
lubricated plates and a cylindrical con昀椀nement. 

Note that while ζ was introduced as a small parameter for charac-
terizing thin compressible layers, formally, ζ can be extended to nearly 

incompressible layers, and even incompressible layers, for which ζ→∞. 
Thus ζ can be adopted as a measure of compressibility of thin con-
strained layers. Further, it is meaningful to associate nearly incom-
pressible layers with ζ = O(1). For example, a layer with ξ = 0.01 and 
ν = 0.49 results in ζ = 0.04≪1, and therefore the layer is characterized 
as compressible! But, for the thin rubber layer considered in Section 2.1, 
with ξ = 0.01 and ν = 0.499905, ζ j 0.4 = O(1), and therefore it is 
characterized as nearly incompressible. 

2.3. Veri昀椀cation of the approximate solution for single layers 

In this subsection, we are concerned with evaluating the approxi-
mations in (1) and (9) for the apparent moduli E and G for homogeneous 
rectangular compressible layers perfectly bonded to two rigid plates 
(Fig. 1). To this end, E and G are compared with the corresponding 
moduli obtained from convergent 昀椀nite element solutions, denoted by 
EFE and GFE, which are treated as the benchmarks. All results reported 
herein are for epoxy layers for which 
μ= 1.13 GPa and χ = 0.872.

These material properties result in the apparent properties 
E= 4.44 GPa and G = 1.13 GPa.

We evaluated these predictions for three epoxy layers and compiled 
results in Table 1. It is clear that the accuracy of both E and G improves 
by an order of magnitude as ξ decreases by an order of magnitude. 
Further, the accuracy is better than one percent for layers with ξ f 10−2.
Results compiled in Table 1 for fully three-dimensional problems are 
consistent with more detailed evaluations for E based on axisymmetric 
problems for circular layers in Movchan et al. (2021). In particular, the 
data there supports the trend 
|E − EFE|

EFE

=O(ξ) and
|G − GFE|

GFE

=O(ξ).

3. Thin layers bonded to two rigid plates via interphases 

3.1. Interphases 

In this section, we consider layers bonded to rigid plates via in-
terphases, modeled as distributed springs with the normal stiffness kN 
and shear stiffness kS. As far as analysis is concerned, an interphase 
between two layers modi昀椀es the displacement continuity conditions so 
that the jumps in the normal and tangential displacements are propor-
tional to the corresponding traction components: 

EuNF=
tN

kN

​ and ​ EuSF =
tS

kN

. (10)  

Here the brackets denote the jump across the interphase. Of course, the 
continuity condition on the tractions 
tN = tS = 0  

is unaffected by the interphase as it is solely dictated by equilibrium. For 
an interphase between a layer and a rigid plate, (10) implies: 
tN = kN(UN − uN) and tS = kS(US − uS), (11) 

Fig. 5. A circular cylindrical layer perfectly bonded to two rigid plates.  

Table 1 
Apparent moduli E and G for epoxy rectangular layers versus the corresponding 
predictions obtained from convergent 昀椀nite element solutions.   

ξ = 10−3 ξ = 10−2 ξ = 10−1 

|E − EFE|/EFE 4× 10−4 6× 10−3 6× 10−2 

|G − GFE|/GFE 1× 10−4 3× 10−3 3× 10−2  
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where UN and US are the plate displacements. 

3.2. Axisymmetric loading of a circular cylindrical layer 

Consider a circular layer bonded to two rigid plates via identical 
interphases with the stiffnesses kN and kS (Fig. 6). Under axisymmetric 
loading, the boundary conditions on the 昀氀at surfaces follow from (11) 
z= ± h , kN(uz 3 Uz) + σzz = 0 , kSur + σrz = 0 . (12)  

On the cylindrical traction-free surface, the boundary conditions are 
r = a , σrr = 0 and σrz = 0 .

In the asymptotic setting, these boundary conditions are to be 
satis昀椀ed in Saint-Venant’s sense: 

r = a ,

+h

−h

σrrdz =

+h

−h

σrzdz = 0. (13) 

We solve the arising boundary-value problem of classical elasticity 
following Movchan et al. (2021). Accordingly, the displacements are 
represented in terms of a Love-Galerkin’s potential Φ, so that 

ur = −
1

2(1 − ν)

∂2
Φ

∂r∂z
,

uz =
∂2

Φ

∂r2
+

1

r

∂Φ

∂r
+

1 − 2ν

2(1 − ν)

∂2
Φ

∂z2
.

(14)  

The potential must satisfy the bi-harmonic equation 
(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)2

Φ= 0. (15) 

Next, to exploit the smallness of ξ, we de昀椀ne the scaled coordinates 

R : =
r

a
and Z :=

z

h
=

z

aξ
.

Then the asymptotic approximation for the bi-harmonic operator in (15) 
takes the form 
(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)2

=
1

a4

(
∂2

∂R2
+

1

R

∂

∂R
+

1

ξ2

∂2

∂Z2

)2

c
1

a4ξ4

∂4

∂Z4
,

and therefore the potential is expressed in the form 
ΦcA3(R)Z

3 + A2(R)Z
2 + A1(R)Z + A0(R) . (16)  

Up to a constant C, the functions of R in this equation are determined by 
enforcing the boundary conditions in (12): 
A0(R) = A2(R) c 0,

A1(R) c
3[12 − (3 − χ2)(8 + βS)]

(3 − χ2)βS

A3(R),

A3(R) c
a2ξ2UzβN

2χ2(2 + βN)
+ CI0

(
R

ζ*

)
.

(17)  

Here 

βN : =
kNH

E
=

2kNh

E
and βS :=

kSH

μ
=

2kSh

μ
(18)  

are normalized stiffnesses of the distributed springs, I0 is a Bessel 
function, and 

ζ*
: = ζ

��������������������������������������������������������
[6(3 − 2χ2) + (3 − χ2)βS]βN

(3 − χ2)(2 + βN)βS

:
. (19)  

The parameter ζ* is a generalization of ζ de昀椀ned in (7), and we use the 
asterisk to denote that this de昀椀nition involves the interphases. In 
particular 
ζ= lim βN→∞

βS→∞

ζ*.

The constant C in (17) is obtained by imposing the boundary conditions 
in (13). The 昀椀rst of these conditions yields 

Cc
3a2ξ2Uz(3−2χ2)β2

N

2χ2(2+βN)

{
2χ2(3−χ2)(2+βN)ζ

*I1

(
1

ζ*

)
−3[2χ2+(3−χ2)βN ]I0

(
1

ζ*

)},

(20)  

whereas the second condition is trivially satis昀椀ed due to symmetry about 
the plane z = 0. 

The potential Φ allows us to calculate the displacement, strain, and 
stress 昀椀elds. Their expressions are lengthy and therefore not stated. For 
our purposes, it is important to calculate the force transmitted through 
the system, 

F =

+a

0

σzz|z=h2πrdr = 2πa2

+1

0

σzz|Z=1RdR,

which leads directly to  

Here we calculated the force acting on the upper plate z = h but any z −
plane would be acceptable for the calculation. Of course, �E* is a gener-
alization of �E de昀椀ned in (8), and they are naturally related 

Fig. 6. A circular cylindrical layer bonded to two rigid plates via interphases.  

�E*
(ζ*, χ) c

3μβN

χ2(2 + βN)

§
«««
«««

1+

6(3 − 2χ2)βNζ*I1

(
1

ζ*

)

2χ2(3 − χ2)(2 + βN)ζ
*I1

(
1

ζ*

)
− 3[2χ2 + (3 − χ2)βN ]I0

(
1

ζ*

)

«
««̄

««̄
. (21)   
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�E(ζ, χ)= lim βN→∞

βS→∞

�E*
(ζ*, χ)

Similar to (9), (21) yields the expression 

E
*
= limζ*→0

�E*
[ζ*, χ] c

3μβN

χ2(2 + βN)
=E

βN

2 + βN

. (22)  

This expression is somewhat surprising as it yields E* independent of βS. 
This point will be examined in Sections 3.3 and 3.4. 

3.3. Validity of the asymptotic solutions 

In this subsection, we compare the asymptotic solutions for �E* and 
E*, given in (21) and (22), respectively, with convergent 昀椀nite element 
solutions. This choice differs from that made in Section 2.3 where we 
focused on E rather than �E, as there we were con昀椀dent in �E based on 
veri昀椀cation studies in Movchan et al. (2021), and the objective there was 
to evaluate E and G for thin compressible layers. In this subsection, we 
consider �E* and E*, with the provision that they cannot be accurate for 
suf昀椀ciently small βS, because the case of βS = 0 corresponds to laterally 
unconstrained uniaxial stretching, while the asymptotic solution implies 
that compressible layers are fully constrained in the lateral direction. 

Since the parametric space for �E*
/μ and E*

/μ is four-dimensional, 
and we have already established that the asymptotic solution is accu-
rate for ξ≪1, any value of χ , and βN, βS→∞, here we focus on the pa-
rameters βN and βS. To this end, we set ξ = 10−2 and explore the 
parametric space spanned by βN and βS for epoxy and rubber layers. 
Comparisons are presented in Table 2 (epoxy) and 3 (rubber). 

Each colored cell of Tables 2 and 3 contains two numbers; the upper 
number is the error for �E* and the lower number is the error for E*. The 
colors are assigned as follows: (i) if the error for both �E* and E* exceeds 
1%, then the cell is colored red; (ii) if the error for E* but not �E* exceeds 
1%, then the cell is colored yellow; and (iii) if the error for both �E* and E* 

is less than 1%, then the cell is colored green. 
It is clear that both �E* and E* are not accurate for both epoxy and 

rubber layers for suf昀椀ciently small βS. But this is where similarities end, 
as for the epoxy layer E* is essentially as accurate as �E*, whereas for the 
rubber layer E* is inaccurate in the entire parametric domain. This 
statement is consistent with the fact that Table 2 contains no yellow 
cells, and Table 3 contains no green cells. Further, for the epoxy layer, 
both �E* and E* are accurate if both βN and βS are small. In contrast, for 
the rubber layer, βN has essentially no bearing on the accuracy of �E* and 
E*. 

3.4. Properly constrained layers 

In this subsection, we focus on explaining the results presented in 
Tables 2 and 3 We refer to layers for which at least �E* is accurate as 
properly constrained. Those layers are represented by yellow and green 
cells, and characterized by suf昀椀ciently large βS. 

First, let us consider improperly constrained compressible layers, 
characterized by χ = O(1), βS≪1, and βN≫1. To this end we observe 
that �E* depends on βS only because ζ* depends on βS, and therefore, it is 
suf昀椀cient to focus on ζ*. For χ = O(1), βS≪1, and βN≫1, (19) is well 
approximated by 

ζ* j ζ

����������������������
6(3 − 2χ2)

3 − χ2

: �����
1

βS

:
,

which implies that large ζ*≫1 is possible even for compressible layers 
with ζ≪1. That is, a compressible layer perfectly bonded to rigid plates 
is characterized by ζ* = ζ≪1. However, if the same layer is improperly 
constrained, it is characterized by ζ*≫1, and Bessel’s functions in (21) 
behave rather differently for small verses large ζ*. 

For χ = O(1), βS≪1, and βN≪1, (19) yields the approximation 

ζ* j ζ

����������������������
3(3 − 2χ2)

3 − χ2

: ������
βN

βS

:
,

which explains why small βN can mediate the effect of small βS. 
For nearly incompressible layers, characterized by χ≪1 and ζ =

Table 2 
The relative error for the asymptotic solutions versus convergent 昀椀nite solutions for the apparent moduli �E*

, E* for an epoxy layer with ξ = 10−2. 
Color red is assigned to cases in which the errors for both �E* and E* are above 1%. Color green is assigned to cases in which the errors for both �E* 

and E* are below 1%. 
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O(1), (19) is approximated as 

ζ* j ζ

������
6

βS

: �����������������
βN

(2 + βN)

:
.

This expression explains why βS≪1 results in improperly constrained 
nearly incompressible layers, but it does not explain why in Table 3 βN 
has essentially has no bearing on the accuracy of �E* and E*. To this end, 
let us revisit the de昀椀nitions for βN and βS in (18), which were conceived 
with compressible layers in mind. Accordingly βN is de昀椀ned by 
normalizing kN with E, and βS is de昀椀ned by normalizing kS with μ. For 
nearly incompressible layers, (9) implies E≫μ, so that even if both βN 
and βS are small, it is still possible to have kS≪kN. To address this 
inconsistency, one has to replace (18) with normalizations appropriate 
for nearly incompressible layers. We will not pursue this delicate issue in 
this work. 

4. Properly constrained compressible multilayers 

In this section, we extend key results from Sections 2 and 3 to 
compressible multilayers with and without interphases. 

4.1. Single layer 

Comparisons of asymptotic and 昀椀nite element solutions presented in 
Table 2 suggest that E* de昀椀ned in (22) is an accurate approximation for 
the apparent Young’s modulus for properly constrained compressible 
layers. Equation (22) is straightforward to adopt for calculating the 
normal stiffness of the distributed springs, provided that E* has been 
determined experimentally: 

βN =
2E

*

E − E
* . (23)  

Together with (18) this equation yields the equation for calculating the 
normal stiffness in terms of the apparent moduli: 

kN =
2

H

(
1

E
* −

1

E

)−1

. (24)  

This equation can be rewritten as 
H

E
* =

H

E
+ 2

(
1

kN

)
. (25) 

This form leads to a very useful interpretation: the overall system 
compliance H/E* is the compliance of the layer H/E plus the compliance 
of the two interphases. Thus, the layer and two interphases can be 
thought as three layers of distributed springs connected in series, and the 
stiffness of the distributed springs representing the layer is E/H. Equa-
tion (25) can be adopted for calculating the apparent shear modulus: 
H

G
* =

H

G
+ 2

(
1

kS

)
=

H

μ
+

2

kS

(26)  

and 

kS =
2

H

(
1

G
* −

1

μ

)−1

. (27)  

Thus equations (24) and (27) provide a simple and unambiguous way of 
determining the stiffnesses kN and kS in terms of the intrinsic material 
properties of the layer, E and μ, its thickness H, and the apparent moduli 
E* and G*. 

4.2. Compressible multi-layers perfectly bonded to two rigid plates 

The simplicity of solutions for a single compressible layer perfectly 
bonded to two rigid plates can be extended to multilayers. Consider a 
multilayer formed by N monolayers perfectly bonded to each other, and 
to two constraining rigid plates. Each monolayer is characterized by its 
apparent Young’s modulus E, shear modulus G, and thickness H. 

Normal loading of the multilayer can be easily analyzed by regarding 
it as a system of N linearly elastic elements connected in series. Those 
elements transmit the same force (or average normal stress 8σzz9) and 
their elongations are proportional to their compliances. Accordingly, the 

Table 3 
The relative error for the asymptotic solutions versus convergent 昀椀nite solutions for the apparent moduli �E*

, E* for a rubber layer with ξ = 10−2. 
Color red is assigned to cases in which the errors for both �E* and E* exceed 1%. Color yellow is assigned to cases in which the error for �E* is below 
1% but the error for E* is above 1%. 
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governing equations are 
Equilibrium :

8
σ(i)

zz

9
= 8σzz9

Hooke
2

s law : Δu(i)
z =

8
σ(i)

zz

9
H(i)

E
(i)

Compatibility :

3N

i=1

Δu(i)
z = ΔUz.

(28)  

Here 8σ(i)
zz 9 is the average stress in the ith layer, Δu(i)

z is the axial elon-
gation in the ith layer, and ΔUz is the total axial elongation of the multi- 
layer. The governing equations are straightforward to combine to 
calculate the apparent Young’s modulus of the multi-layer: 

E =

3N
i=1

H(i)

3N
i=1

H(i)

E
(i)

. (29) 

If a rectangular multi-layer is subjected to shear in the y− z plane, the 
governing equations are essentially the same 

Equilibrium :

8
τ(i)yz

9
=

8
τyz

9

Hooke
2

s law : Δu(i)
y =

τ(i)H(i)

G
(i)

Compatibility :

3N

i=1

Δu(i)
y = ΔUy.

The notation here is self-explanatory. Similar to (29) the apparent shear 
modulus of the multi-layer is given by the equation 

G=

3N
i=1

H(i)

3N
i=1

H(i)

G(i)

. (30)  

4.3. Veri昀椀cation of the approximate solution for tri-layers with high- 
contrast properties 

In this subsection, we consider circular tri-layers in which the inte-
rior compressible layer is sandwiched between two identical 
compressible exterior layers (Fig. 7). We denote the properties of the 
interior layer by E(i) and H(i), and the properties of the exterior layers by 
E(e) and H(e), so that (29) implies 

E =
H(i) + 2H(e)

H(i)

E
(i) + 2 H(e)

E
(e)

. (31)  

We evaluated this approximation by setting ν(i) = ν(e) = 0.33 and 

ξ=
H(i) + 2H(e)

D
=

1

100
.

For these 昀椀xed parameters, we considered two high-contrast ratios 

E
(e)

E
(i)
= 1 × 10−2 or 100 and

2H(e)

H(i)
= 1 × 10−2 or 100.

Thus E was evaluated for four extreme cases. The results for the 
approximation errors for E are compiled in Table 4. It is clear that the 
accuracy of (23) is essentially independent of the values of E(e)

/E(i) and 
H(e)/H(i). Furthermore, the errors in Table 4 are comparable to those 
compiled in Table 1 for ξ = 1/100. Based on these results, we conjecture 
that the approximation errors for compressible, constrained multi-layers 
are small and essentially independent of their compositional details, so 
that (31) holds in general. 

4.4. Properly constrained compressible multi-layer with interphases 

In this subsection, we combine the analyses of properly constrained 
monolayers with interphases in 4.1 and of perfectly bonded multilayers 
presented in Section 4.2 to analyze properly-constrained multilayers 
with interphases. Thus, per Section 3.4, we assume that each layer is 
compressible (ζ ≪1) and for each interphase the ratio βS/βN is suf昀椀-
ciently large. Further, per Section 4.1, we treat both monolayers and 
interphases as elastic elements connected in series. Then, for N layers 
and N + 1 interphases, (29) and (30) are generalized as 

E
*
=

3N
i=1

H(i)

3N
i=1

H(i)

E
(i) +

3N+1

i=1

1

k
(i)
N  

and 

G
*
=

3N
i=1

H(i)

3N
i=1

H(i)

G
(i) +

3N+1

i=1

1

k
(i)
S

,

respectively. Of course, similar to (23) through (26) these equations can 
be adopted for determining k(i)

N and k(i)S from measurements of E* and G*. 

5. Discussion 

With a view of determining interphase stiffness values from normal 
and shear loadings of thin polymer layers, we now examine the sensi-
tivity of load-displacement responses to the presence of interphases. The 
natural vehicles for addressing this issue are the apparent moduli �E 
(Eqn. (8)) and �E* (Eqn. (21)). The former represents layers bonded to the 
rigid plates directly, and the latter represents layers bonded to the rigid 
plates via compliant interphases. We de昀椀ne the sensitivity to the in-
terphases as 

S : = 1 −
�E*

�E
.

Accordingly, very stiff, practically undetectable, interphases, are char-
acterized by S≪1. Conversely, soft, detectable, interphases are charac-
terized by S slightly less than one. Sensitivity contour plots for 50 μm 

Fig. 7. A tri-layer formed by an interior layer and two identical exterior layers 
perfectly bonded to two rigid plates. The properties of the interior layer are E(i)

,

H(i), and the properties of the exterior layers are E(e)
,H(e). 

Table 4 
Approximation error |E−EFE|/EFE for thin circular tri-layers with extreme 
property contrasts.  
|E − EFE|/EFE 2H(e)/H(i) = 1/100 2H(e)/H(i) = 100 
E(e)

/E(i)
= 1/100 6× 10−3 5× 10−3 

E(e)
/E(i)

= 100 6× 10−3 3× 10−3  
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thick epoxy and rubber layers are shown in Fig. 8. There we plot S as a 
function of the normalized stiffnesses βN and βS. In addition, we include 
results from Tables 2 and 3 to de昀椀ne the parametric subdomains in 
which �E* is a valid approximation. This allows us to identify properly 
constrained layers suitable for measuring kN and kS. 

It is clear that for both epoxy and rubber there is essentially no 
con昀氀ict between the accuracy of the asymptotic solution and sensitivity 
S. Note that in Fig. 8a the contour plots become 昀氀at for suf昀椀ciently large 
βS. Those represent the regime where �E* and E* become interchange-
able, and of course the 昀氀atness is consistent with the fact that per (22) E* 

is independent of βS. In contrast, the 昀氀atness does not persist in Fig. 8b, 
and this is not surprising, as E* is not a good approximation for nearly 
incompressible rubber layers. 

Let us mention that the measurements of kN and kS reported by Yang 
et al. (2021), who used 50 μm thick epoxy layers result in βN = 0.056 
and βS = 0.7. For this point, E* is an accurate approximation and the 
interphases are easily detectable as S > 0.9. On the other hand, given 
that rubber interphases tend to be much stiffer than the bulk rubber, we 
can see that they will be more dif昀椀cult or even impossible to detect. 

An interesting feature of interphases in nearly incompressible layers 
is their impact on the strain and stress 昀椀elds. The asymptotic solution 
developed in Section 3.2 allows us to consider several quantities of in-
terest and various ways of presenting results. The upshot of those studies 
is that interphases reduce non-uniformity of the strain and stress 昀椀elds, 
and therefore inhibit the ability of thin rubber layers to realize stress 
concentrations leading to cavitation. 

The most important stress component associated with cavitation is 
the average normal stress de昀椀ned as 

σ : =
1

3
trσij.

For incompressible layers perfectly bonded to rigid plates, this stress is 
very large indeed, 

σ(0) c
Uμ

4aξ3
=

(
3μ

U

h

)
×

(
1

12ξ2

)
. (32)  

This expression can be obtained in the limit χ→0, βN→∞, βS→∞. The 

second part of the expression implies that perfect bonding ampli昀椀es σ by 
a factor ξ−2/12 in comparison to uniaxial tension realized by perfectly 
lubricated plates. We regard (32) as a benchmark stress level induced 
upon imposing all three constraints characterized by the limit χ→0,
βN→∞, βS→∞. In what follows, we relax one constraint at a time and 
quantify its effect on a rubber layer with ξ = 0.01. All results are ob-
tained from the solution presented in Section 3.2. 

First, we set χ = 0.024, which corresponds to ν = 0.499905, and 
retain the limit βN→∞, βS→∞. The corresponding value of σ is 
σ(1) j 0.47σ(0).

Thus if rubber is assumed to be incompressible, the stress is over-
estimated roughly by a factor of two. Next, we retain χ = 0.024 and the 
perfect shear constraint βS→∞, and evaluate the corresponding σ 

normalized by σ(1) as a function of βN. The range of βN chosen in Fig. 9 
demonstrates that even βN = 103 results in more than a 20% reduction 
in σ in comparison to σ(1). Finally, let us retain χ = 0.024, set βN→∞,

and evaluate the corresponding σ normalized by σ(1) as a function of βS.
The range of βS chosen in Fig. 10 demonstrates that even for βS = 100, 
the reduction in σ in comparison to σ(1) is only about 1%. Thus, 

Fig. 8. Sensitivity S contour plots for 50μm thick epoxy (a) and rubber (b) layers. The colors are assigned as follows: (i) red if the error for both �E* and E* exceeds 1%, 
(ii) yellow if the error for E* but not �E* exceeds 1%, and (iii) green if the error for both �E* and E* is less than 1%. (For interpretation of the references to color in this 
昀椀gure legend, the reader is referred to the Web version of this article.) 

Fig. 9. The normalized stress σ/σ(1) as a function of βN for a rubber layer with 
ξ = 0.01 and βS→∞.
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mechanical characterization of thin rubber layers must account for their 
compressibility and the normal stiffness of their interphases; the shear 
stiffness of the interphases must be suf昀椀ciently large to provide proper 
constraints, but insigni昀椀cant otherwise. 

In summary, we proposed a new experimental setup for probing in-
terphases. It involves a thin polymeric layer bonded to two very stiff 
plates. The experimental setup was analyzed under the assumption that 
the layer and interphase are linear elastic and the plates are rigid. We 
demonstrated that for compressible layers, which represent most poly-
mers, the governing equations are particularly simple, and can be 
extended to analysis of multilayers with or without interphases. Further, 
we identi昀椀ed the parametric range in which our approach is applicable 
and interphases are detectable via load-displacement measurements. 
Once experimental data become available, it will signi昀椀cantly impact 
existing modeling approaches to interphases (Gurtin and Murdoch, 
1975, 1978; Ru, 2010) and composites (Lipton and Vernescu, 1996; 
Klarbring and Movchan, 1998; Hashin, 2002; Benveniste, 2006). 
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