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ABSTRACT

Bonds between distinct solids rarely present sharp discontinuities in mechanical properties. Particularly in the case of the bonds between polymers with metals,
ceramics, and semiconductors, interphase regions are formed whose mechanical behavior differs from that of the bulk polymer. This paper examines the potential of
detecting interphases associated with thin polymer layers under axial and shear loading. We demonstrate that a recent asymptotic analysis co-developed by one of
our honorees can be extended and holds in the presence of interphases. As a result, we are able to establish the conditions under which interphases may be detected
when thin layers are loaded in tension and shear. Further, our analysis suggests that interphases may significantly reduce the high degree of triaxiality that has long

been associated with thin, nearly incompressible layers.

1. Introduction

Epoxies are ubiquitous in applications ranging from primary struc-
tural adhesive joints, laminated fiber-reinforced polymers to encapsu-
lants and molding compounds for microelectronic packaging. For many
applications, the bonds formed between epoxies and their various target
substrates (metals, ceramics, semiconductors, fibers, etc.) play an
important role, and they should be considered as separate constitutive
entities. This important point was first recognized by Sharpe (1972),
who postulated that the bonds form an interphase, with properties
distinct from those of the epoxy and the contact substrate. The nature of
epoxy interphases has been examined by studying the migration of the
amido-amine hardener to the substrate, which results in an
off-stoichiometric cure near the substrate (Bouchet and Roche, 2002;
Dey et al., 2014; Drzal, 1986; Roche et al., 2002; Vanlandingham et al.,
1999). Interphases may also be formed when substrates are function-
alized with covalent tethers to the epoxy (Drzal et al., 1983; Drzal et al.,
1982; Mello and Liechti, 2006). The mechanical properties of in-
terphases have been studied using scanning probe microscopy tech-
niques such as Peak Force Quantitative Nano-Mechanics (PF-QNM) (Qi
et al., 2019) and atomic force microscopy (Zhang et al., 2018). In the
latter case, the indentation data was accompanied by an extensive finite
element analysis in an attempt to account for the effect of the substrate
on such data. Typically, these approaches have suggested that epoxy
interphases are about 10-20 nm thick and are more compliant than the
bulk epoxy. Recently Yang et al. (2021) probed interphases indirectly,
by performing experiments on laminated silicon-epoxy double-canti-
lever beams. Using Winkler’s elastic foundation model, they calculated

effective normal and shear compliances of thin epoxy layers, which
turned out to be significantly higher than those one would obtain for
perfectly bonded epoxy layers. Accordingly, the difference was right-
fully attributed to interphases.

Interphases are also abundant in filled rubbers as well as in situations
where rubbers are bonded to other substrates. In this case, the rubber
molecules adhere to the stiffer substrates via combinations of van der
Waals interactions, hydrogen bonding, and chemical bonding. In
contrast to epoxy interphases, the rubber interphase is usually stiffer
than the surrounding rubber matrix. For example, Brune et al. (2016)
examined the interphase that formed in an elastomer joined to the sili-
con oxide surface of a silicon wafer using scanning probe microscopy
coupled with finite element modeling. The interphase was 40 nm thick
and was composed of a region of tightly bound rubber with thickness
less than 10 nm and shear modulus greater than 250 MPa closer to the
silicon oxide surface. This was followed by a more loosely bound rubber
region with a thickness around 30 nm and shear modulus around 7 MPa.
For reference, the neat polymer had a shear modulus of 0.3 MPa. A
similar interphase structure has been identified by Tian et al. (2019),
who examined interphase formation in a silicon-filled rubber composite
using PF-QNM. The presence of the interphase was confirmed by
transmission electron microscopy.

Macroscopically, it is natural to model interphases as cohesive zones
(Gowrishankar et al., 2012; Liechti et al., 2000; Needleman, 1990;
Sorensen and Jacobsen, 2003; Ungsuwarungsri and Knauss, 1987; Wu
et al., 2019). That is, an interphase is represented by continuously
distributed springs, whose deformation is characterized by relating the
transmitted tractions to the displacement jumps across the interphase.
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The use of continuously distributed springs goes back to Winkler’s work
published in 1867; for a recent review of related models we refer to
Dillard et al. (2018). Alternatively, one can model interphases in the
context of Gurtin-Murdoch’s surface elasticity framework (Gurtin and
Murdoch, 1975, 1978; Ru, 2010), which has significantly influenced the
pertinent literature. We believe that, at this stage, such an effort would
be premature, as available experimental data are rather limited, and it
has not been established that Winkler’s model is inadequate.

If, in addition to deformation properties, the springs can be endowed
with fracture properties, then cohesive zone models can be extended to
nucleation and growth of cracks. This idea goes back to Barenblatt
(1959) and Dugdale (1960); for a review of related models we refer to
Park and Paulino (2011). Again, we believe that the use of Gurtin--
Murdoch’s type models (Gorbushin et al., 2020; Kim et al., 2011a,
2011b) for fracture modeling is premature due to limited experimental
data. To this end, let us mention that although the mixed-mode behavior
of adhesive layers and laminated composites has been extracted since
the seminal work of Sorensen and Kirkegaard (2006), it is only recently
that extracted traction-separation relations have been associated with
interphases (Wu et al., 2019). This result has been further refined by
Yang et al. (2021) using asymmetrically loaded double cantilever beam
specimens, so that both normal and shear modes were independently
engaged and associated spring stiffnesses were extracted. Nonetheless,
there is still a concern that the strain states in the interlayer and asso-
ciated interphases that are produced by the rotation of the adherends
may complicate the extraction of interphase stiffnesses.

In this paper, we propose a new experimental setup for probing in-
terphases. It involves a thin polymeric layer bonded to two very stiff
plates; the term thin implies that the layer thickness is much smaller
than its base dimensions. This proposal is motived by the asymptotic
analysis of Movchan et al. (2021), which revealed that, under axisym-
metric conditions, a thin layer of compressible material, bonded to two
rigid plates, realizes uniform strain and stress fields almost everywhere
except for small regions near the free surface. Here we demonstrate that
this property holds in the presence of interphases and establish simple
relationships between normal and shear stiffnesses of interphases and
the overall specimen response. Consequently, the proposed experi-
mental setup offers a very simple and unambiguous methodology for
extracting the interphase stiffnesses.

The paper Movchan et al. (2021), seminal to this work, is one of the
many impactful contributions of the honorees to asymptotic analysis of
solids and multi-scale structures (Movchan and Movchan, 1995; Kozlov
et al., 1999; Movchan et al., 2002; Maz’ya et al., 2013), wave propa-
gation (Movchan et al., 2017), and applied mathematics education
(Ockendon et al., 2003).

The proposed experimental setup goes back to Gent and Lindley
(1959), who recognized that it realizes large stress concentrations
conducive to cavitation in nearly incompressible rubbers. This point has
been confirmed in multiple studies (Chalhoub and Kelly, 1990; Gent,
1994; Horton et al., 2002; Lindley, 1979; Lindsey et al., 1963; Qiao and
Lu, 2015; Schapery, 2018; Tsai and Lee, 1998). In contrast, in this paper,
we focus primarily on compressible layers. In the process, we demon-
strate that thin layers of compressible versus nearly incompressible
materials exhibit significantly different responses. Further, we show that
interphases may significantly affect the response of thin nearly incom-
pressible rubber layers.

This paper is structured as follows: In Section 2, we motivate our
work and develop its foundation by examining the case of thin layers
perfectly bonded to two rigid plates. In Section 3, we extend our
approach to thin layers bonded to two rigid plates via interphases. In
Section 4, we extend key results of Section 2 and 3 to multi-layers, fol-
lowed by a discussion of some of the implications of these results in
Section 5.
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2. Thin layers perfectly bonded to two rigid plates

In this section, we present a sequence of analytical and finite element
solutions leading to a very simple approximate but nevertheless accurate
analysis of thin layers bonded to two rigid plates, as long as Poisson’s
ratio v of the layer material is not too close to 1/2. We refer to such
layers as thin and compressible. In contrast, if v is close to 1/2, we refer
to layers as nearly incompressible. Of course, if v is equal to 1/2, we refer
to such layers as incompressible.

2.1. Motivational examples

Consider a homogeneous rectangular layer with a square L x L base
and thickness H perfectly bonded to two rigid plates. We describe this
layer using natural Cartesian coordinates (Fig. 1):
7£<x<é 7é<y<é 7§<z<g.

2 2’ 2 2’ 2 2

In this subsection, our objective is to illustrate that thin compressible
layers realize essentially uniform strain and stress fields in their bulk
under both normal and shear loadings. The term essentially means that
the strain and stress fields are very close to uniform except for a small
region adjacent to the lateral faces defined by the equations x = +L/2 or
y = +£L/2. For illustrative purposes, we consider epoxy and rubber
layers perfectly bonded to rigid plates. These materials are chosen
because for epoxy Poisson’s ratio is v = 0.33, and therefore it is a good
representative of compressible materials. In contrast, for rubber v =
0.499905 (Anderson et al., 2004), and therefore it is nearly incom-
pressible. Fig. 2 presents four contour plots for rectangular layers sub-
jected to shear by displacing the upper plate by U, and the lower plate
by — Uy. Each plot in Fig. 2 is for the stress oy, normalized by its average
value as a function of x and y in the mid-plane z = 0. The contour plots
for thick epoxy (Fig. 2a) and rubber (Fig. 2b) layers, characterized by H/
L = 1, show that the stress distributions are essentially the same and
non-uniform. In contrast, for thin layers, characterized by H/L = 0.01,
the contour plots for epoxy (Fig. 2¢) and rubber (Fig. 2d) are essentially
the same and uniform, except near the edges x = £L/2. Since Fig. 2isan
illustration it does not involve any numerical values.

Results shown in Fig. 2 are not surprising. First, the difference be-
tween epoxy and rubber is not essential, simply because shearing is not
affected by the degree of compressibility. Second, all contour plots in
Fig. 2 would be perfectly uniform if the lateral faces x = +L/2 were
subjected to appropriate shear tractions rather than kept traction-free.
For the thin layers, the effect of these shear tractions is localized to
small regions of size O(H) adjacent to the lateral faces x = +L/2. That is,
the response of thin layers is in compliance with Saint-Venant’s princi-
ple. For the thick layers, the effect of traction-free lateral faces x = +L/2
affects the entire specimen, and therefore the stress distribution is

z

L
x

Fig. 1. A rectangular layer with a square L x L base and thickness H con-
strained by two rigid plates.
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Fig. 2. Normalized oy, stress distribution in the mid-plane of four layers subjected to shear: (a) epoxy layer with H/L = 1, (b) rubber layer with H/L = 1, (c) epoxy

layer with H/L = 0.01, and (d) rubber layer with H/L = 0.01.

essentially non-uniform.

If the layers were subjected to boundary conditions realizing pure
shear, then the elastic response of the layers would be characterized by
the shear modulus. Since the lateral faces are kept traction-free, the
stress and strain fields in the layers are non-uniform, and their overall
elastic response is characterized by the apparent shear modulus defined
as

ral <0-xz>
G: = ,
)

where the angular brackets denote volume averaging and y is the engi-

neering shear strain. For thin layers, the stress and strain fields are
essentially uniform and therefore

G~y (@]

Here we use Lame’s constant y to distinguish between the shear
modulus, an intrinsic material property, and G, an apparent property
specific to thin layers. The symbol relating the left- and right-hand sides
of (1) means that the sides are asymptotically equal. The contour plots
shown in Fig. 3 are similar to those in Fig. 2, except that the layers were
subjected to stretching by displacing the upper plate by U, and the lower
plate by — U,. Accordingly, the plots are for the normalized stress o, as
a function of x and y in the mid-plane z = 0. It is clear that the differ-
ences between the epoxy versus rubber layers are significant, especially
for the thin layers. This suggests that there are significant differences
between compressible and nearly incompressible thin layers, and this
issue will be addressed in Section 2.2. Here we simply observe that the
stress field o, is essentially uniform in the thin compressible epoxy
layer, but not in the thin nearly incompressible rubber layer. Note that

contours shown in Fig. 3a,b,d look more and more circular as one moves
away from the edges toward the center. This suggests that the stress field
0, near the center is not sensitive to the fact that the base is a square. To
this end, we consider normal loading of another thin epoxy layer, which
is identical to the original one, except that its base is a circle of diameter
L rather than the square. The normalized o,, stress distributions for these
two cases are compared in Fig. 4. Perhaps it is not surprising that these
distributions are essentially the same. This observation allows us to
examine the role of compressibility using axisymmetric deformation of
circular layers.

2.2. Normal loading of circular cylindrical layers perfectly bonded to two
rigid plates

In the previous subsection, we conjectured that thin epoxy
(compressible) layers constrained by two rigid plates realize essentially
uniform stress-strain states in their bulk under both shear and normal
loading conditions. While this uniformity was expected under shear, its
presence was somewhat surprising under normal loading conditions.
Further, it appeared that the uniformity was not realized by nearly
incompressible rubber layers. In this subsection, we focus on circular
thin layers under axisymmetric loading conditions induced by displac-
ing the plates by +U,. Our analysis relies on the asymptotic solution of
this problem developed in Movchan et al. (2021). Here we summarize
key results of that work, and refer to the source for further details.

A thin circular cylindrical layer with thickness H = 2h and diameter
D = 2a (Fig. 5) is characterized by the geometric aspect ratio

_H _h

é::Da

(2)
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(a) (b)

(c) (d)

Fig. 3. Normalized o, stress distribution in the mid-plane of four layers subjected to normal loading: (a) epoxy layer with H/L = 1, (b) rubber layer with H/L =1,

(c) epoxy layer with H/L = 0.01, and (d) rubber layer with H/L = 0.01.

(a) (b)

Fig. 4. Normalized o, stress distributions in the mid-plane of (a) rectangular and (b) circular thin epoxy layers with H/L = 0.01.

and the dimensionless material parameter (Lindsey et al., 1963) From now on we use u and y as the pair of intrinsic elastic constants, and

imply that all layers under consideration are thin.

L= w 3) The asymptotic solution of Movchan et al. (2021) for the apparent
(1-v) Young’s modulus is

The parameter y arises naturally from the governing equations, and it is ey (1

; i 6(3 —272)%n (£

confined to the interval - (6) 3 ¢
E(é:’){)::(s):)? 1+ 5)

2z _ 2 ) — z
%>;{20 for—1<v<1/2. @ G-x )[25;(11 (5) 310(5)]
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v

D=2a

Fig. 5. A circular cylindrical layer perfectly bonded to two rigid plates.

The hat symbol denotes that this solution is valid for any y in the ad-
missible interval defined in (4). In particular, for incompressible layers
E: =lim,_oE(&y) ~ 3—”2 (6)
8¢

Here we use the tilde symbol to denote that this expression is restricted
to incompressible materials. While this expression is commonly used in
rheometry, it is of little practical use in the solid mechanics community,
since the important role of compressibility has been recognized in the
seminal work of Gent and Lindley (1959). For this reason, in Sections 2
through 4, we will not consider incompressible layers. Nevertheless,
those layers will be discussed in Section 5, where we show that the
assumption of incompressibility is further undermined in the presence of
interphases.

For compressible materials, characterized by y = O(1), it is mean-
ingful to introduce the small parameter

é‘ =T, (7)
and rewrite (5) in the form

o 6(3 — 2°)¢1, (é)
Ben=gs e —;(2){2;(2411 (g> ~ 34 (‘)}

7
Then the apparent Young’s modulus for compressible material layers is

®

. 3
E: =lime_oE((,y) ~ )(_/; ©

Here we use the bar symbol to denote that this expression is restricted to
compressible layers.

Note that (6) and (8) imply that E is not a material property, whereas
E can be treated as one. The second half of this statement is a conse-
quence of the essential uniformity of the strain and stress fields in
compressible material layers. Those fields are very simple, and their
non-zero components are

823’17
and
U CE 1)
rr — 069 — ){2 h
3u U,
azzz—”—".
x h

These fields also characterize laterally constrained uniaxial stretching of
the layer. Thus, in a compressible layer, the constraints imposed by
perfectly bonded plates are equivalent to those imposed by perfectly
lubricated plates and a cylindrical confinement.

Note that while ¢ was introduced as a small parameter for charac-
terizing thin compressible layers, formally, ¢ can be extended to nearly
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incompressible layers, and even incompressible layers, for which {—co.
Thus ¢ can be adopted as a measure of compressibility of thin con-
strained layers. Further, it is meaningful to associate nearly incom-
pressible layers with { = O(1). For example, a layer with £ = 0.01 and
v = 0.49 results in { = 0.04<1, and therefore the layer is characterized
as compressible! But, for the thin rubber layer considered in Section 2.1,
with ¢ =0.01 and v = 0.499905, ¢ ~ 0.4 = O(1), and therefore it is
characterized as nearly incompressible.

2.3. Verification of the approximate solution for single layers

In this subsection, we are concerned with evaluating the approxi-
mations in (1) and (9) for the apparent moduli E and G for homogeneous
rectangular compressible layers perfectly bonded to two rigid plates
(Fig. 1). To this end, E and G are compared with the corresponding
moduli obtained from convergent finite element solutions, denoted by
Epg and Grg, which are treated as the benchmarks. All results reported
herein are for epoxy layers for which

u=113GPa and y =0.872.

These material properties result in the apparent properties

E=444GPa and G =1.13 GPa.

We evaluated these predictions for three epoxy layers and compiled
results in Table 1. It is clear that the accuracy of both E and G improves
by an order of magnitude as ¢ decreases by an order of magnitude.
Further, the accuracy is better than one percent for layers with £ < 1072,
Results compiled in Table 1 for fully three-dimensional problems are
consistent with more detailed evaluations for E based on axisymmetric
problems for circular layers in Movchan et al. (2021). In particular, the
data there supports the trend

[E — Ere| _
EFE

|G — G| _

O(&) and G

0(8).

3. Thin layers bonded to two rigid plates via interphases
3.1. Interphases

In this section, we consider layers bonded to rigid plates via in-
terphases, modeled as distributed springs with the normal stiffness ky
and shear stiffness ks. As far as analysis is concerned, an interphase
between two layers modifies the displacement continuity conditions so
that the jumps in the normal and tangential displacements are propor-
tional to the corresponding traction components:

[[uN]]:,% and [us] :,ﬁ— 10)

Here the brackets denote the jump across the interphase. Of course, the
continuity condition on the tractions

tN = tS = 0
is unaffected by the interphase as it is solely dictated by equilibrium. For
an interphase between a layer and a rigid plate, (10) implies:

tN:kN(UNfuN) and tjiks(U57M5)7 (11)

Table 1
Apparent moduli E and G for epoxy rectangular layers versus the corresponding
predictions obtained from convergent finite element solutions.

£=10"3 £ =102 £=10"
|E — Epg|/Eme 4x 1074 6x 1073 6x 1072
|G — Gre|/Gre 1x 107* 3x 1073 3x 1072
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Fig. 6. A circular cylindrical layer bonded to two rigid plates via interphases.
where Uy and Us are the plate displacements.

3.2. Axisymmetric loading of a circular cylindrical layer

Consider a circular layer bonded to two rigid plates via identical
interphases with the stiffnesses ky and ks (Fig. 6). Under axisymmetric
loading, the boundary conditions on the flat surfaces follow from (11)

z==*h, kN(Mz;Uz)J"azz:Ov ks, +0-rz:0- 12)

On the cylindrical traction-free surface, the boundary conditions are
r=a, o0,=0 and o,=0.

In the asymptotic setting, these boundary conditions are to be
satisfied in Saint-Venant’s sense:

h h

r=a, / 0,dz = / 0.,dz =0. 13)

—h ~h

We solve the arising boundary-value problem of classical elasticity
following Movchan et al. (2021). Accordingly, the displacements are
represented in terms of a Love-Galerkin’s potential @, so that

___1 oo
T T =) oraz

_do 1o 1w Fo

T Tror T 2(1-w) o2

14)

The potential must satisfy the bi-harmonic equation

# 19 &\
(W+?E+a_z2) ®=0. as)
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and therefore the potential is expressed in the form

®~A;(R)Z* + Ay (R)Z* + A (R)Z + Ao(R) . (16)
Up to a constant C, the functions of R in this equation are determined by
enforcing the boundary conditions in (12):

Ao(R) = A2(R) ~ 0,

_312- 6648,

Al(R) 3(R)7

(B =2")bs an
2e27) R
A3(R) ~ M+ CI, <ﬁ)
20" (2+ By) ¢
Here
kvH  2kyh ksH  2ksh
Py : :%: EN and fq ::%:TS (18)

are normalized stiffnesses of the distributed springs, I is a Bessel
function, and

o 163 =27%) + (3 = x*)BslBy
¢ '# G-+ hbs 19

The parameter ¢ “isa generalization of ¢ defined in (7), and we use the
asterisk to denote that this definition involves the interphases. In
particular

c:hmﬁN_,oo I
[)’s—wo

The constant C in (17) is obtained by imposing the boundary conditions
in (13). The first of these conditions yields

368 U.3-27 )by
2 p) {22600 1 (1) -3+ G- (1) |
(20)

Cr~

whereas the second condition is trivially satisfied due to symmetry about
the plane z = 0.

The potential @ allows us to calculate the displacement, strain, and
stress fields. Their expressions are lengthy and therefore not stated. For
our purposes, it is important to calculate the force transmitted through
the system,

a 1

F= /aa‘z:ﬂﬂrdr = 27m2/azz|2:1RdR,
0 0

which leads directly to

(21)

Next, to exploit the smallness of £, we define the scaled coordinates
R:=" and z:=2=%.
a h aé
_ 9,2 ‘(L
. 38, 6(3 = 2)¢ (Z)
E (S x) = 1+
22+ Py)

Then the asymptotic approximation for the bi-harmonic operator in (15)
takes the form

2

F10 PN 1@ 10 1 FN 1o
o ror 02) a*\OR* ROR £ 072) ~ g¢t az*’

226 -2+ By (}) =327 + B —x*)Bullo (f)

Here we calculated the force acting on the upper plate z = h but any z —

plane would be acceptable for the calculation. Of course, Eisa gener-
alization of E defined in (8), and they are naturally related
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Pg— 0

Similar to (9), (21) yields the expression

T S )%
E =lim,_E (£ 1] 712(2+/;N)_E2+/3N'

(22)

This expression is somewhat surprising as it yields E independent of fg.
This point will be examined in Sections 3.3 and 3.4.

3.3. Validity of the asymptotic solutions

In this subsection, we compare the asymptotic solutions for E and
E*, given in (21) and (22), respectively, with convergent finite element
solutions. This choice differs from that made in Section 2.3 where we
focused on E rather than E, as there we were confident in E based on
verification studies in Movchan et al. (2021), and the objective there was
to evaluate E and G for thin compressible layers. In this subsection, we

consider E and E'*, with the provision that they cannot be accurate for
sufficiently small g, because the case of fg = 0 corresponds to laterally
unconstrained uniaxial stretching, while the asymptotic solution implies
that compressible layers are fully constrained in the lateral direction.

Since the parametric space for E ) /p and E /u is four-dimensional,
and we have already established that the asymptotic solution is accu-
rate for £«1, any value of y , and fy, fs— 0, here we focus on the pa-
rameters fy and fg. To this end, we set £ =102 and explore the
parametric space spanned by fy and fg for epoxy and rubber layers.
Comparisons are presented in Table 2 (epoxy) and 3 (rubber).

Each colored cell of Tables 2 and 3 contains two numbers; the upper

number is the error for E* and the lower number is the error for E . The
colors are assigned as follows: (i) if the error for both E andE exceeds
1%, then the cell is colored red; (ii) if the error for E"* butnot E exceeds

1%, then the cell is colored yellow; and (iii) if the error for both E andE
is less than 1%, then the cell is colored green.

It is clear that both E and E_are not accurate for both epoxy and

Table 2
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rubber layers for sufficiently small f¢. But this is where similarities end,
as for the epoxy layer E is essentially as accurate as E , whereas for the

rubber layer E is inaccurate in the entire parametric domain. This
statement is consistent with the fact that Table 2 contains no yellow
cells, and Table 3 contains no green cells. Further, for the epoxy layer,

both B and E are accurate if both Py and fg are small. In contrast, for
the rubber layer, 8y has essentially no bearing on the accuracy of E and

3.4. Properly constrained layers

In this subsection, we focus on explaining the results presented in
Tables 2 and 3 We refer to layers for which at least E is accurate as
properly constrained. Those layers are represented by yellow and green
cells, and characterized by sufficiently large fjs.

First, let us consider improperly constrained compressible layers,
characterized by y = O(1), fs<1, and py>1. To this end we observe
that B depends on f5 only because ¢* depends on fg, and therefore, it is
sufficient to focus on ¢*. For y = 0(1), ps<1, and py>1, (19) is well
approximated by

. L6 =2 |1
et ﬁﬁ

which implies that large "1 is possible even for compressible layers
with {«1. That is, a compressible layer perfectly bonded to rigid plates
is characterized by {* = ¢{<1. However, if the same layer is improperly
constrained, it is characterized by ¢">>1, and Bessel’s functions in (21)
behave rather differently for small verses large .

For y = O(1), fs<1, and fy<1, (19) yields the approximation

< 3G =2¢%) By
C"’g 37)(2 \/;7

which explains why small §y can mediate the effect of small f;.
For nearly incompressible layers, characterized by y<«1 and { =

The relative error for the asymptotic solutions versus convergent finite solutions for the apparent moduli E . E foran epoxy layer with ¢ = 1072,

Color red is assigned to cases in which the errors for both E and E are above 1%. Color green is assigned to cases in which the errors for both E

and E are below 1%.

E' -E|lE
|_* e |/ B Bs =1/100 B =10 Bs =100
|E _EFE |/EFE
1x1072 9%x107
=100
Py 7107 6x107
9%x10°° 8x107°
=10
Py 6x107° 5%107°
3x107° 3x107°
ﬂN =1
3x107 2x107
B, =1/10 1x1073 4x10™ 1x10™ 1x10™ 9x107°
N 8x107 2x107° 8x107* 4x107* 3x107*
5x107* 2x107 5x107° 4x107° 4x107°
=1/100
P 8x10™* 3x107™ 9%107° 4x10° 4107
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Table 3

The relative error for the asymptotic solutions versus convergent finite solutions for the apparent moduli E , E forarubber layer with & = 1072,

Color red is assigned to cases in which the errors for both E andE exceed 1%. Color yellow is assigned to cases in which the error for E isbelow

1% but the error for E  is above 1%.
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|E"~E,. |/E,,

_. B.=1/100 | pB,=1/10
|E _EFE|/EFE § ’

By, =100

By =10

B, =1/10

B, =1/100

0(1), (19) is approximated as

. e [ B
: NC\//:S\/ @+hy)

This expression explains why fs<1 results in improperly constrained
nearly incompressible layers, but it does not explain why in Table 3 gy

has essentially has no bearing on the accuracy of E andE . To this end,
let us revisit the definitions for Sy and fg in (18), which were conceived
with compressible layers in mind. Accordingly gy is defined by
normalizing ky with E, and g is defined by normalizing ks with y. For
nearly incompressible layers, (9) implies Ex>u, so that even if both By
and fg are small, it is still possible to have ks<ky. To address this
inconsistency, one has to replace (18) with normalizations appropriate
for nearly incompressible layers. We will not pursue this delicate issue in
this work.

4. Properly constrained compressible multilayers

In this section, we extend key results from Sections 2 and 3 to
compressible multilayers with and without interphases.

4.1. Single layer

Comparisons of asymptotic and finite element solutions presented in
Table 2 suggest that E defined in (22) is an accurate approximation for
the apparent Young’s modulus for properly constrained compressible
layers. Equation (22) is straightforward to adopt for calculating the

normal stiffness of the distributed springs, provided that E has been
determined experimentally:

ﬂN R —— (23)

Together with (18) this equation yields the equation for calculating the
normal stiffness in terms of the apparent moduli:

B =1 B, =10 B, =100
5x107° 7x107* 2x107
1x10' 3x10° 2x10°
5x107° 7x107* 2x107
8x10° 2x10° 2x10°
4%107° 5x107 1x107
4x10° 1x10° 8x107"
4%x107° 5x107* 2x107
7x10™ 3x107" 2x107"
7%x107° 3x107 2x107°
2x10™ 7x107 6x107

2/1 1\
= —=—-= . 24
N H(E E) 24)

This equation can be rewritten as

Z:ZHG). (25)
ki

This form leads to a very useful interpretation: the overall system

compliance H, /Eﬁ is the compliance of the layer H/E plus the compliance
of the two interphases. Thus, the layer and two interphases can be
thought as three layers of distributed springs connected in series, and the
stiffness of the distributed springs representing the layer is E/H. Equa-
tion (25) can be adopted for calculating the apparent shear modulus:

H H 1\ H 2
,*::+2(—):7+— (26)
G G ks) ks
and
2/1 1\
ks:—<j——) . @7
H\G n

Thus equations (24) and (27) provide a simple and unambiguous way of
determining the stiffnesses ky and ks in terms of the intrinsic material
properties of the layer, E and y, its thickness H, and the apparent moduli

E andG .

4.2. Compressible multi-layers perfectly bonded to two rigid plates

The simplicity of solutions for a single compressible layer perfectly
bonded to two rigid plates can be extended to multilayers. Consider a
multilayer formed by N monolayers perfectly bonded to each other, and
to two constraining rigid plates. Each monolayer is characterized by its
apparent Young’s modulus E, shear modulus G, and thickness H.

Normal loading of the multilayer can be easily analyzed by regarding
it as a system of N linearly elastic elements connected in series. Those
elements transmit the same force (or average normal stress (o)) and
their elongations are proportional to their compliances. Accordingly, the
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governing equations are

Equilibrium : {6} = (0..)

Hooke's law : Au@ ==
< E(z) (28)

N
Compatibility : > Aul’) = AU..

i=1
Here <a§’2) is the average stress in the ith layer, Auéi) is the axial elon-
gation in the ith layer, and AU, is the total axial elongation of the multi-
layer. The governing equations are straightforward to combine to
calculate the apparent Young’s modulus of the multi-layer:

E=SL (29)

If a rectangular multi-layer is subjected to shear in the y— z plane, the
governing equations are essentially the same

Equilibrium : () = (z,.)

Hooke's law : Aui’j =
N -

Compatibility : > Aul’ = AU,.
i=1

The notation here is self-explanatory. Similar to (29) the apparent shear
modulus of the multi-layer is given by the equation

HO

=

Ql
I
T

(30)

_MZ
P

4.3. Verification of the approximate solution for tri-layers with high-
contrast properties

In this subsection, we consider circular tri-layers in which the inte-
rior compressible layer is sandwiched between two identical
compressible exterior layers (Fig. 7). We denote the properties of the

interior layer by E” and H®, and the properties of the exterior layers by
£ and H", so that (29) implies

HY 4 2H®

N T ey
We evaluated this approximation by setting 1) = 1(¢ = 0.33 and
_HY 4200 ]
N D T 100°
E e , H e)
EO O
FO o

Fig. 7. A tri-layer formed by an interior layer and two identical exterior layers
perfectly bonded to two rigid plates. The properties of the interior layer are E(i),

H®, and the properties of the exterior layers are E  H®).
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Table 4
Approximation error |E —FEpg|/Eg for thin circular tri-layers with extreme
property contrasts.

|E — Egg|/Erm 2H®) /HD =1/100 2H® /HY =100
E9/EY =1/100 6x 1073 5x 1073
F/EY = 100 6x 1073 3x 1073

For these fixed parameters, we considered two high-contrast ratios

oo 2H©

E
—=1x% 1072 or 100 and =1x 1072 or 100.
E H)

Thus E was evaluated for four extreme cases. The results for the
approximation errors for E are compiled in Table 4. It is clear that the

accuracy of (23) is essentially independent of the values of £ /E(i) and
H©® /HY, Furthermore, the errors in Table 4 are comparable to those
compiled in Table 1 for ¢ =1/100. Based on these results, we conjecture
that the approximation errors for compressible, constrained multi-layers
are small and essentially independent of their compositional details, so
that (31) holds in general.

4.4. Properly constrained compressible multi-layer with interphases

In this subsection, we combine the analyses of properly constrained
monolayers with interphases in 4.1 and of perfectly bonded multilayers
presented in Section 4.2 to analyze properly-constrained multilayers
with interphases. Thus, per Section 3.4, we assume that each layer is
compressible ({<1) and for each interphase the ratio fg/fy is suffi-
ciently large. Further, per Section 4.1, we treat both monolayers and
interphases as elastic elements connected in series. Then, for N layers
and N + 1 interphases, (29) and (30) are generalized as

N
> HY
= i=1
E=7 o
Yo+ XS
s E =1 kv
and
N
> HO
= =1
G _NH“) N+1 ]’
Zam + W
S

respectively. Of course, similar to (23) through (26) these equations can

be adopted for determining k,(\? and k(si> from measurements of E and G .

5. Discussion

With a view of determining interphase stiffness values from normal
and shear loadings of thin polymer layers, we now examine the sensi-
tivity of load-displacement responses to the presence of interphases. The

natural vehicles for addressing this issue are the apparent moduli E

(Eqn. (8)) and E (Eqn. (21)). The former represents layers bonded to the
rigid plates directly, and the latter represents layers bonded to the rigid
plates via compliant interphases. We define the sensitivity to the in-
terphases as

Accordingly, very stiff, practically undetectable, interphases, are char-
acterized by S<1. Conversely, soft, detectable, interphases are charac-
terized by S slightly less than one. Sensitivity contour plots for 50 um
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10%

1071

1072 107! 1 10

(b
Bs

Fig. 8. Sensitivity S contour plots for 50um thick epoxy (a) and rubber (b) layers. The colors are assigned as follows: (i) red if the error for both E andE exceeds 1%,

(ii) yellow if the error for E* butnot E exceeds 1%, and (iii) green if the error for both E and TE* is less than 1%. (For interpretation of the references to color in this

figure legend, the reader is referred to the Web version of this article.)

thick epoxy and rubber layers are shown in Fig. 8. There we plot S as a
function of the normalized stiffnesses y and fs. In addition, we include
results from Tables 2 and 3 to define the parametric subdomains in

which E is a valid approximation. This allows us to identify properly
constrained layers suitable for measuring ky and ks.

It is clear that for both epoxy and rubber there is essentially no
conflict between the accuracy of the asymptotic solution and sensitivity
S. Note that in Fig. 8a the contour plots become flat for sufficiently large

Ps. Those represent the regime where E and E become interchange-

able, and of course the flatness is consistent with the fact that per (22) E
is independent of fs. In contrast, the flatness does not persist in Fig. 8b,

and this is not surprising, as E isnota good approximation for nearly
incompressible rubber layers.

Let us mention that the measurements of ky and ks reported by Yang
et al. (2021), who used 50 ym thick epoxy layers result in gy = 0.056

and g = 0.7. For this point, E is an accurate approximation and the
interphases are easily detectable as S > 0.9. On the other hand, given
that rubber interphases tend to be much stiffer than the bulk rubber, we
can see that they will be more difficult or even impossible to detect.

An interesting feature of interphases in nearly incompressible layers
is their impact on the strain and stress fields. The asymptotic solution
developed in Section 3.2 allows us to consider several quantities of in-
terest and various ways of presenting results. The upshot of those studies
is that interphases reduce non-uniformity of the strain and stress fields,
and therefore inhibit the ability of thin rubber layers to realize stress
concentrations leading to cavitation.

The most important stress component associated with cavitation is
the average normal stress defined as

[ =§tro',j.

For incompressible layers perfectly bonded to rigid plates, this stress is
very large indeed,

(o) ()

This expression can be obtained in the limit y—0, fy—o0, fg—o0. The

U,
o © >~ ,Ll% =
4a&

(32)

10

second part of the expression implies that perfect bonding amplifies ¢ by
a factor £72/12 in comparison to uniaxial tension realized by perfectly
lubricated plates. We regard (32) as a benchmark stress level induced
upon imposing all three constraints characterized by the limit y—0,
Pny—o0, fs—o0. In what follows, we relax one constraint at a time and
quantify its effect on a rubber layer with & = 0.01. All results are ob-
tained from the solution presented in Section 3.2.

First, we set y = 0.024, which corresponds to v = 0.499905, and
retain the limit fy—o0, fs—o0. The corresponding value of ¢ is

oV ~0.4769.

Thus if rubber is assumed to be incompressible, the stress is over-
estimated roughly by a factor of two. Next, we retain y = 0.024 and the
perfect shear constraint fg—oo, and evaluate the corresponding o
normalized by 6!) as a function of . The range of §y chosen in Fig. 9
demonstrates that even Sy = 102 results in more than a 20% reduction
in ¢ in comparison to ¢!). Finally, let us retain y = 0.024, set fy—oo,
and evaluate the corresponding ¢ normalized by ¢(!) as a function of fq.
The range of g chosen in Fig. 10 demonstrates that even for f; = 100,

the reduction in ¢ in comparison to ¢! is only about 1%. Thus,

o 0.8
1
o®
0.6
0.4
0.2
2000 4000 6000 8000 10000

By

Fig. 9. The normalized stress 6/c(!) as a function of gy for a rubber layer with
£=0.01 and fg—co.
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Fig. 10. The normalized stress 6/c(!) as a function of fs for a rubber layer with
£=0.01 and fy—oo.

mechanical characterization of thin rubber layers must account for their
compressibility and the normal stiffness of their interphases; the shear
stiffness of the interphases must be sufficiently large to provide proper
constraints, but insignificant otherwise.

In summary, we proposed a new experimental setup for probing in-
terphases. It involves a thin polymeric layer bonded to two very stiff
plates. The experimental setup was analyzed under the assumption that
the layer and interphase are linear elastic and the plates are rigid. We
demonstrated that for compressible layers, which represent most poly-
mers, the governing equations are particularly simple, and can be
extended to analysis of multilayers with or without interphases. Further,
we identified the parametric range in which our approach is applicable
and interphases are detectable via load-displacement measurements.
Once experimental data become available, it will significantly impact
existing modeling approaches to interphases (Gurtin and Murdoch,
1975, 1978; Ru, 2010) and composites (Lipton and Vernescu, 1996;
Klarbring and Movchan, 1998; Hashin, 2002; Benveniste, 2006).
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