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A B S T R A C T

This paper presents the formulation, design procedure, and application of a hybrid model predictive control
(HMPC) scheme for hybrid systems that is embedded in a mixed logical dynamical (MLD) framework.
The proposed scheme adopts a three degrees-of-freedom (3DoF) tuning method to accomplish precise
setpoint tracking and ensure robustness in the face of disturbances (both measured and unmeasured) and
uncertainty. Furthermore, the HMPC algorithm employs setpoint and disturbance anticipation to proactively
enhance controller performance and potentially reduce control effort. Slack variables in the objective function
prevent the mixed-integer quadratic problem from becoming infeasible. The effectiveness of the proposed
algorithm is demonstrated through its application in three distinct case studies, which include control of
production–inventory systems, time-varying behavioral interventions for physical activity, and management of
epidemics/pandemic prevention. These case studies indicate that the HMPC algorithm can effectively manage
hybrid dynamics, setpoint tracking and disturbance rejection in diverse and demanding circumstances, while
tuned to perform well in the presence of nonlinearity and uncertainty.

1. Introduction

Hybrid systems characterized by the coexistence of continuous dy-
namics and discrete events form an increasing part of many complex
real-world applications. Hybrid systems encompass various sub-classes,
each possessing distinct characteristics and requirements; mixed logical
dynamical (MLD) systems, which model the dynamics of a hybrid
system as a system of linear difference equations subject to inequality
constraints involving continuous and discrete variables, stand out as a
widely available class of hybrid systems (Bemporad & Morari, 1999;
Camacho et al., 2010). By incorporating logical rules and mode tran-
sitions, MLD systems provide a precise representation of systems with
discrete behaviors and enable the design of mode-dependent control
strategies. For MLD systems, a control problem relying on hybrid model
predictive control (HMPC) can be solved using mixed-integer linear
programming (milp) or mixed-integer quadratic programming (miqp)
methods. Consequently, the controller can systematically optimize con-
trol actions over a finite horizon while accounting for system dynamics,
diverse constraints, and performance objectives.

In recent years, HMPC has gained increasing attention in the con-
text of MLD systems, finding applications in diverse domains, among
these traffic control (Groot et al., 2012), network systems (Gaid et al.,
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2006), microgrids (Garcia-Torres et al., 2018), traction control (Borrelli
et al., 2006), co-generation power plants (Ferrari-Trecate et al., 2004),
power electronics (Geyer et al., 2008) and thermal storage in build-
ings (Berkenkamp & Gwerder, 2014). An emerging application has been
to use HMPC for interventions to improve health-related behaviors;
these include managing gestational weight gain (Guo et al., 2022),
increasing physical activity (El Mistiri et al., 2023; Khan et al., 2022),
smoking cessation (Timms et al., 2014), and naltrexone as a treatment
for fibromyalgia (Deshpande et al., 2014).

Motivated by the preponderance and complexity of systems with
continuous and discrete dynamics, this paper proposes a hybrid model
predictive control approach for mixed logical dynamical systems, with
emphasis on the large and important sub-class of MLD systems featuring
continuous dynamics and hybrid continuous and discrete decisions.
The objective is to achieve setpoint tracking and rejection of mea-
sured and unmeasured disturbances with an independent and intuitive
tuning procedure resulting in satisfactory, robust performance under
constraints. The following describes the inspiration for the 3DoF-KF
HMPC algorithm and some of its unique properties; these are:
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• Discrete controller actions (such as categorical decisions and satis-
fying “If/Then” conditions) are addressed by using an MLD model
for the system under consideration.
• A three-degree-of-freedom (3DoF) formulation based on estima-
tion using two Kalman filters is employed. This formulation en-
ables independent tuning of Type-I and Type-II filters (Morari &
Zafiriou, 1989) within the closed-loop system, facilitating direct,
individual adjustments for the speed of setpoint tracking as well
as the rejection of both measured and unmeasured disturbances.
The 3DoF-KF HMPC controller mimics the positive attributes of
Internal Model Control (IMC) (Morari & Zafiriou, 1989) while
being able to enforce constraints. The combination of intuitive
tuning with corresponding robustness proves to be particularly
useful.
• The inclusion of slack variables for each output, serving two
purposes: penalizing constraint violations and preventing the op-
timization problem from becoming infeasible. Incorporating slack
variables in the objective function with appropriate penalties (in
lieu of inequality constraints) allows the optimization problem to
remain feasible even if output constraints are not strictly satisfied.
This approach enables managing multiple controller objectives
using a limited set of manipulated variables.
• The objective function is further enhanced with a terminal cost
and a terminal inequality constraint. Terminal inequality con-
straints ensure feasible predicted trajectories, prevent constraint
violations, and guide the system towards desired setpoints for
stability, allowing controlled deviation from the setpoint at the
final time step. The terminal cost drives convergence by minimiz-
ing deviations from the reference trajectory, resulting in accurate
tracking. This approach balances the constraint relaxation and op-
timization objectives, improving the efficiency of the optimization
problem.
• The ability to configure the controller for different operation
phases of an intervention, when needed. This feature is partic-
ularly useful in an application to a behavioral intervention pro-
moting physical activity, where the controller will automatically
reconfigure itself to reduce dependence on financial incentives as
the participant approaches the goal of 10k steps/day.
• The ability to accomplish both setpoint and disturbance antici-
pation, enabling proactive adjustment of control actions based on
predicted future changes in these variables. The result is improved
tracking accuracy, faster response to setpoint transitions, and en-
hanced disturbance rejection. This feature allows the controller to
address requirements preemptively, potentially reducing control
effort and avoiding unnecessary adjustments, while ultimately
improving overall closed-loop performance.

The paper describes three detailed case studies involving the algorithm
that are examined in diverse application settings: (i) inventory and
Work-in-Progress (WIP) management in production–inventory systems,
(ii) “just-in-time” behavioral interventions for promoting physical ac-
tivity in sedentary adults, and (iii) epidemic control of a nonlinear
Susceptible-Infected-Recovered (SIR) model. The solutions are imple-
mented in MATLAB/Simulink with CPLEX (International Business Ma-
chines Corp., 2019) employed to solve the corresponding miqp problem.
All significant features of the 3DoF-KF HMPC algorithm are collectively
illustrated in these case studies, with the results providing compelling
evidence for the effectiveness of the proposed strategy in successfully
addressing hybrid dynamics, achieving accurate setpoint tracking and
disturbance rejection, and attaining robustness under uncertainty.

This paper is structured as follows: Section 2 formulates the prob-
lem. Section 3 provides a detailed explanation of the three-degree-of-
freedom procedure for setpoint tracking, measured disturbance rejec-
tion, and unmeasured disturbance rejection. The formulation of the
HMPC scheme for MLD systems is outlined in Section 4. Section 5
provides a comprehensive description of three case studies in which the
proposed HMPC algorithm is applied. Concluding remarks and ongoing
research activities are presented in Section 6.

2. Problem formulation

2.1. Process model

Consider a hybrid process with dynamics that can be described by
the following state-space with MLD model representation (Bemporad &
Morari, 1999):

xk+1 = Adxk + B1uk + B2�k + B3zk + Bddk + Bvvk (1)

�k = C xk +Dvvk (2)

yk = �k + �k (3)

E5 e E2�k − E4yk − E1uk + E3zk + Eddk − E6uk−1

− E7yk−1 − Eaak (4)

where xk * R
nx and uk * R

nu represent state and control input with
both continuous and binary entries, respectively. �k * R

ny is the process
noise-free output, yk * R

ny represents the measurable process output,
dk * R

nd ist represents measured disturbance, vk is the unmeasured
disturbance, and �k represents measurement noise. The measurement
noise at each output is assumed to be white noise with a diagonal
covariance matrix: E{��T } = � = diag{�1,& , �ny}, �j e 0. �k * {0, 1}nd
and zk * R

nz correspond to auxiliary variables (binary and categor-
ical discrete respectively) that serve to incorporate logical decisions
through (4). The dimensionality of the auxiliary variables is determined
by the number of linear constraints specified in (4), which are directly
related to the distinct features of logical decisions (Bemporad & Morari,
1999). The variable ak functions as an additional signal within the
propositional logic, allowing the controller to behave according to
user-specified requirements.

The system being analyzed is open-loop stable, with vk as a random
signal that follows the model:

�k+1 = Aw�k + Bwwk (5)

vk = Cw�k (6)

The matrix Aw possesses eigenvalues that are contained within the
unit disk, while wk represents integrated white noise. The unmeasured
disturbance vector vk is assumed to comprise uncorrelated components,
leading to the conditions Bw = Cw = ÷, where ÷ refers to the identity
matrix with suitable dimensions. Moreover, Aw is defined as Aw =

diag{�1,& , �ny}, where the entries of Aw are 0 for disturbances with a
single integrator and 1 for disturbances with double integrator (Morari
& Zafiriou, 1989).

By applying the difference operator � = 1 − q−1 to Eqs. (1)–(4)
and (5), an extended state-space model is established in the following
manner:

Xk+1 = ïXk + ð1�uk + ð2��k + ð3�zk + ðd�dk + ðw�wk (7)

yk = ñXk + �k (8)

where

Xk =

⎡⎢⎢⎣

�xk
��k
�k

⎤⎥⎥⎦
, ï =

⎡⎢⎢⎣

A BvCw 0

0 Aw 0

C A C BvCw +DvCwAw ÷

⎤⎥⎥⎦
, ñ =

[
0 0 ÷

]

ði =
⎡⎢⎢⎣

Bi
0

C Bi

⎤⎥⎥⎦
, ðw =

⎡⎢⎢⎣

0

Bw
DvCwBw

⎤⎥⎥⎦
, i = 1, 2, 3, d

The variable �wk is considered to be a white noise with a diagonal
covariance matrix.

E{�wk�w
T
k
} = ą = diag{!1, !2,& , !ny}, !j e 0
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Fig. 1. Schematic diagram depicting the application of a proposed Kalman filter-based HMPC scheme to a process. The scheme aims to achieve setpoint tracking while effectively
accounting for both measured and unmeasured disturbances. The controller utilizes filtered signals obtained by filtering the measured disturbances and setpoint as its inputs.
Kalman Filter-I is associated with (25)–(26), while Kalman Filter-II is associated with (27)–(28).

2.2. HMPC problem

Taking into consideration the insights from Bemporad and Morari
(1999), a quadratic cost function is employed:

Jk |

p−11
j=1

‖‖‖(yk+j − yr,k+j )
‖‖‖
2

Wy

+

m−11
i=0

‖‖(�uk+i)‖‖2Wd u

+

m−11
i=0

‖‖(uk+i − ur,k+i)‖‖2Wu
+

p1
j=1

‖‖‖(�k+j − �r,k+j )
‖‖‖
2

Wd

+

p1
j=1

‖‖‖(zk+j − zr,k+j )
‖‖‖
2

Wz

+
‖‖‖(yk+p − yr,k+p)

‖‖‖
2

Wyt

(9)

yr represents the unfiltered setpoint, p stands for the prediction horizon,
m for the control horizon, and W∗ > 0 stands for weight matrix
corresponding to the relevant process variable. The respective refer-
ence trajectory is denoted by (ç)r, The vector 2-norm weighted by the
matrix W is denoted as ‖(ç)‖W ∗ |

√
(ç)TW∗(ç). Mathematically, the

optimization problem can be represented as follows:

min
uk+i , �k+j , zk+j ,  k+j

Jk +

p1
j=1

‖‖‖( k+j )
‖‖‖
2

Ws

(10)

subject to mixed integer constraints in (4) and

ymin −  k+j d yk+j d ymax +  k+j (11)

umin d uk+i d umax (12)

�umin d �uk+i d �umax (13)

 k+j e 0 (14)

"i = 0, 1,& , m − 1, "j = 1, 2,& , p

 * R
ny denotes the slack variables and Ws > 0 represents the

corresponding penalty weight matrix. The choice of Ws is user-defined,
and its value specifies the extent of constraint enforcement. As Ws

increases, the importance of constraint enforcement also increases. If
Ws is sufficiently large (Ws ³ @), “soft” constraints effectively behave
as “hard” constraints. To achieve a higher level of flexibility, a separate
slack variable for each output is used over the prediction horizon,
thereby increasing the degrees of freedom. At the final step of the

prediction horizon, terminal inequality constraints are added to the op-
timization problem. These constraints allow for a controlled deviation
from the setpoint at the final time step and define an acceptable region
around the setpoint. Doing so they influence system behavior over the
long term while simultaneously ensuring feasibility and stability. umin,
umax, �umin, �umax, ymin, and ymax are lower and upper bounds on
inputs, move sizes, and outputs, respectively.

The goal is to develop an HMPC decision algorithm for the extended
model expressed in Eqs. (7)–(8) that can minimize the objective func-
tion expressed in (9), reliably track the target setpoint in the presence
of measured and unmeasured disturbances, and satisfy constraints in
(11)–(14). This can be accomplished by employing Kalman filters to
accurately estimate the state X of the extended model, as discussed in
the next section. Fig. 1 presents a block diagram that depicts the un-
derlying philosophy of our proposed HMPC scheme for the constrained
process. The optimizer is used to find a sequence of decision variables
that can effectively minimize the objective function stated in Eq. (10)
while satisfying the constraints expressed in Eqs. (11)–(14). Using first-
order low-pass filters, the white noise signal (wk) becomes a stochastic,
autocorrelated disturbance (vk).

3. Three-degree-of-freedom procedure

The MPC formulation employed in this study relies on a 3DoF tuning
mechanism that enables the performance requirements for setpoint
tracking, unmeasured disturbance rejection, and anticipated measured
disturbance rejection to be separately adjusted. Each degree of freedom
is characterized by a speed-of-response parameter whose selection is
simpler and more intuitive than specifying weights (e.g. move sup-
pression) as done in traditional MPC formulations. This procedure is
described in the ensuing subsections:

3.1. Reference trajectory/setpoint tracking

A filter is used to generate the filtered setpoint yr,f l t from the
unfiltered setpoint yr (Khan et al., 2022), i.e., "j = 1,& , ny
yr,f l t,k+i
yr,k+i

= f (q , �jr ), "i = 1,& , p (15)
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where f (q , �jr ) is a Type-I discrete-time filter for the j-th reference as
given in (Morari & Zafiriou, 1989).

f (q , �jr ) =
(1 − �jr )q
q − �

j
r

, 0 d �jr < 1, "j = 1,& , ny (16)

The setpoint tracking speed can be adjusted by selecting time constants
�
j
r for setpoint tracking, which correspond to unique values of �

j
r for

each output j. Mathematically, the relationship between the desired
closed-loop time constant (�r) and the parameter (�r) is described by
the following equation:

�jr = −
Ts

ln(�
j
r )

ó �jr = e−Ts∕�
j
r (17)

where Ts is the sampling time and ln(�r) denotes the natural logarithm
of �r. Lower values of �

j
r result in faster setpoint tracking of output

j. The variables ur, �r, and zr are assumed to be constant at their
respective predefined target values over the prediction horizon.

3.2. Measured disturbance rejection

The proposed formulation utilizes externally generated forecasts
for both unfiltered and filtered measured disturbances. These forecasts
serve as anticipated signals, which are subsequently supplied to the
control algorithm. The measured disturbance signals are filtered as
follows:
df l t,k+i
dk+i

= f (q , �j
d
), "j = 1,& , nd ist

"i = 0, 1,& , p − 1 (18)

where f (q , �j
d
) can be either a Type-I (asymptotic step) filter or a

Type-II (asymptotic ramp) filter depending on the nature of the system
dynamics. A Type-II filter will be utilized if an asymptotically ramp
disturbance exists; otherwise, a Type-I filter will be employed. For the
system to be Type nf , the filter has to satisfy

Type nf ∶
dk

d qk
(1 − f (q , �j

d
))
|||q=1 = 0 (19)

For a Type I system, (19) is satisfied with f (q , �j
d
) = 1, "j = 1,& , nd ist,

and the filter

f (q , �j
d
) =

(1 − �j
d
)q

q − �
j
d

, 0 d �
j
d
< 1 (20)

clearly meets that requirement. For nf e 2, the filter given in (20) is not
sufficient. In this case, the following filter structure is examined (Morari
& Zafiriou, 1989).

f (q , �j
d
) = (�0 + �1q−1 +ñ + �!q

−!) ×
(1 − �j

d
)q

q − �
j
d

(21)

where the coefficients �0, �1,& , �! are chosen such that f (1, �j
d
) satis-

fies (19) for a user-specified value of �j
d
(also within the range [0 1).

For a Type-II system with nf = 2, it is important to choose ! e 2 to
avoid the trivial solution f (q , �j

d
) = 1. The minimum norm solution for

nf = 2 and ! e 2, is found to be

�k =
−6k�

j
d

(1 − �j
d
)!(! + 1)(2! + 1)

, (22)

�0 = 1 − (�1 +ñ + �!), "k = 1, 2,& , ! (23)

The speed at which measured disturbances are rejected can be inde-
pendently adjusted by employing a filter f (q , �j

d
) for each individual

measured disturbance signal. The value of �j
d
can be tuned by reg-

ulating the desired closed-loop time constant �j
d
for each measured

disturbance j and is defined by the equation:

�
j
d
= −

Ts

ln(�
j
d
)
ó �

j
d
= e−Ts∕�

j
d (24)

The values of �d for each disturbance influence the speed of measured
disturbance rejection. When the value of �j

d
is decreased, the speed of

disturbance rejection will increase.

3.3. Unmeasured disturbance rejection

Given that the state Xk in Eqs. (7)–(8) cannot be directly measured,
it is necessary to employ a filter for estimating Xk. To ensure precise
future predictions of the output yk and enable true 3DoF, a two-step
procedure for estimating the augmented state Xk is presented. In the
first step, the state X̂k of the state Xk is estimated by utilizing the
following filter structure, which takes into account both unfiltered
measured disturbance dk and unmeasured disturbances.

X̂k|k−1 = ïX̂k−1|k−1 + ð1�uk−1 + ð2��k−1 + ð3�zk−1 + ðd�dk−1 (25)

X̂k|k = X̂k|k−1 +ùf (yk − ñX̂k|k−1) (26)

X̂k|k−1 is the value of X̂ at time instant k estimated at time instant
k − 1. Given that the unfiltered measured disturbance dk is utilized
in Eqs. (25), the correction term in Eq. (26) specifically represents the
impact of unmeasured disturbances. The speed and nature of rejecting
these unmeasured disturbances are shaped by the selection of the gain
matrix ùf . Finally, in the estimation of an augmented system state,
both the filtered measured disturbance signal df l t and the contribu-
tion arising from the unmeasured disturbance are taken into account.
This contribution is obtained as the prediction error resulting from
Eqs. (25)–(26).

Xf l t,k|k−1 = ïXf l t,k−1|k−1 + ð1�uk−1 + ð2��k−1 + ð3�zk−1

+ ðd�df l t,k−1 (27)

Xf l t,k|k = Xf l t,k|k−1 +ùf (yk − ñX̂k|k−1) (28)

Xf l t,k|k−1 is the value of Xf l t at time instant k estimated at time
instant k− 1. The terms in Eq. (28) (except for the last term) represent
the impact of the filtered measured disturbances. On the other hand,
the correction term in (26) represents the effect of the unmeasured
disturbances. Therefore, the variable Xf l t,k considers both the filtered
measured disturbances and the unmeasured disturbances. This filter
structure ensures that the tuning for measured disturbances (denoted
by �j

d
) does not impact the rejection of unmeasured disturbances. Con-

versely, adjusting the gain matrix ùf does not influence the rejection
speed of the measured disturbances. In other words, the measured
disturbances and unmeasured disturbances are decoupled within this
filter design.

The optimal value of the gain matrixùf can be computed by solving
the algebraic Riccati equation (Maciejowski, 2002)

þ@ = ïþ@ïT −ïþ@ñT
[
ñ þ@ñT + �

]−1
ñ þ@ïT + ðwą ðTw (29)

where þ@ is the only positive-definite solution, and from which the
stationary gain matrix ùf can be computed as:

ùf = þ@ñT
[
ñ þ@ñT + �

]−1
(30)

Nevertheless, doing so necessitates estimating covariance matrices for
unmeasured disturbances, which may not be precisely known. Instead,
the parameterization approach described in Lee et al. (1994) is adopted;
it provides the user with the flexibility to customize the speed of
unmeasured disturbance rejection for each output channel. For an
asymptotically stable plant, the algebraic Riccati Eq. (29) associated
with the model (7)–(8) has a solution.

þ =

⎡
⎢⎢⎢⎣

0 0 0

0 þ22 þ23

0 þT
23

þ33

⎤⎥⎥⎥⎦
(31)

where the dimensions of the blocks correspond to the dimensions of
the vectors x, � , and y. Consequently, the Kalman filter gain matrix is
given by

ùf =

⎡⎢⎢⎣

0

þ23

þ33

⎤⎥⎥⎦
[
þ33 + �

]−1
(32)
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Furthermore, since Aw and ą are both diagonal, the blocks þ23 and
þ33 are both diagonal (and square). Consequently, ùf has the form

ùf =
[
0 F Tw F Ty

]T
(33)

where Fw = diag
{
f 1
w, ñ , f

ny
w

}

Fy = diag
{
f 1
y , ñ , f

ny
y

}

f
j
w =

(f
j
y )

2

1 + �j − �jf
j
y

, "j = 1,& , ny

and f jy ³ 0 as !j∕�j ³ 0 (34)

f jy ³ 1 as !j∕�j ³ @ (35)

The tuning parameter f jy , which ranges from 0 to 1 for all values of
!j∕�j , can be adjusted by regulating the time constant �u for each
output channel. Therefore, by appropriately tuning �u, the impact of
unmeasured disturbances can be effectively mitigated. The relationship
between the desired closed-loop time constant (�u) and the parameter
(fy) follows the equation:

�ju = −
Ts

ln(f
j
y − 1)

ó f jy = 1 − e−Ts∕�
j
u (36)

The tuning parameter f jy directly affects the speed at which unmea-
sured disturbances are rejected. As f jy approaches zero, the state es-
timator progressively pays less attention to the correction of predic-
tion errors. In such cases, the control solution primarily relies on
the deterministic model (25) and the feedforward anticipation signal.
Conversely, as f jy approaches 1, the state estimator aims to compensate
for all prediction errors, leading to an aggressive controller behavior.
By adjusting the value of f jy instead of the variances !j and �j , users
have a direct and intuitive means (in comparison to adjusting move
suppression in conventional MPC formulations) to influence unmea-
sured disturbance rejection and impact the robustness of the control
system (Lee & Yu, 1994).

Remark 1. It needs mentioning that the MLD model in Eqs. (1)–(4) is
capable of accommodating discrete outputs. However, in this paper all
output signals are assumed to be continuous. In Eqs. (32) and (33), the
filter gain matrix ùf is parameterized in such a way that the elements
corresponding to �xk (which may include both continuous and discrete
system states) are set to 0. As a result, unmeasured disturbances do
not affect the original system states xk, but only the outputs yk are
adjusted to compensate for the cumulative impact of all disturbances in
the process. This characteristic enables the proposed MPC formulation
to achieve offset-free responses when dealing with asymptotic step or
ramp disturbances on the outputs, depending on whether Aw = 0 or
Aw = ÷ is chosen, respectively. To achieve this, it is necessary to
measure all controlled outputs. Additionally, the controller effectively
rejects asymptotic step or ramp disturbances by utilizing the integral
action derived from the augmented model in the difference form with
Aw = 0 or Aw = ÷, respectively.

3.4. Robustness considerations

A key factor in tuning MPC controllers is accounting for the trade-
off between performance and robustness (Garriga & Soroush, 2010).
In the three-degree-of-freedom formulation, plant-model mismatch is
treated as an unmeasured disturbance, and the controller’s sensitivity
to model uncertainty is determined by the tuning of the unmeasured
disturbance mode via f jy (Schwartz & Rivera, 2010; Schwartz et al.,
2006). For linear continuous (non-hybrid) systems, Lee and Yu (1994)
describes a robustness analysis of the filter from Eqs. (25)–(35) under
unconstrained conditions. In particular, they present the sensitivity
and complementary sensitivity functions for the closed-loop system

across a range of values for f jy and �i, and how formal robustness
guarantees can be achieved by utilizing the concept of the Structured
Singular Value (Zhou et al., 1996). Formally testing the robustness of
MPC is considerably more challenging in the constrained case with
discrete decision variables, although some intuitive methods can be
considered (Rossiter, 2003). Within the scope of this paper, it is not
possible to present a formal proof illustrating the effect of these tuning
and disturbance parameters on the robustness of a constrained hybrid
system. Considering the direct connection between the value of f jy and
the nominal closed-loop bandwidth, it is expected that as f jy approaches
0, increasing robustness will come at the cost of performance. Robust-
ness considerations will form part of the discussion of the case studies
presented in Section 5.

4. Formulation of HMPC for MLD systems

In this section, a formulation of the HMPC strategy for MLD systems
is introduced. To predict the future values of the output variable yk,
Eqs. (25)–(28) are utilized and propagated forward for p steps into the
future. At each step, it is assumed that the future error correction term
(yk+1 − ñX̂k+1|k) is equal to zero, as it is not available at the current
sampling instant k. This assumption is reasonable and can be shown
to be optimal (Maciejowski, 2002). Additionally, it is essential to take
into account the forecasted values of unfiltered and filtered measured
disturbances, denoted as �dk+l and �df l t,k+l respectively, where l =

1, 2,& , p. Therefore, by considering these assumptions, the following
output prediction equation for the objective function (expressed in
(10)) is formulated by propagating (27)–(28) for p steps into the future.

ćf l t,k+1 = � Xf l t,k +ö1ăk +ö2�̄k +ö3Ĉk +ödòf l t,k −ö11uk−1

− ö21�k−1 −ö31zk−1 −öd1df l t,k−1 (37)

Moreover, an output prediction equation for the constraints (expressed
in (4), (11)–(14)) is formulated by propagating (25)–(26) for p steps

into the future.

ć̂k+1 = �X̂k +ö1ăk +ö2�̄k +ö3Ĉk +ödòk −ö11uk−1 −ö21�k−1

− ö31zk−1 −öd1dk−1 (38)

where ö1, 	k+1 are given in Box I.

ćf l t,k+1 =

⎡⎢⎢⎢⎢⎣

yf l t,k+1
yf l t,k+2

ð

yf l t,k+p

⎤⎥⎥⎥⎥⎦
, ć̂k+1 =

⎡⎢⎢⎢⎢⎣

ŷk+1
ŷk+2
ð

ŷk+p

⎤⎥⎥⎥⎥⎦
, � =

⎡⎢⎢⎣

ñ ï
ð

ñ ïp

⎤⎥⎥⎦
, �̄k =

⎡⎢⎢⎢⎢⎣

�k
�k+1
ð

�k+p−1

⎤⎥⎥⎥⎥⎦

Ĉk =

⎡
⎢⎢⎢⎢⎣

zk
zk+1
ð

zk+p−1

⎤
⎥⎥⎥⎥⎦
, òk =

⎡
⎢⎢⎢⎢⎣

dk
dk+1
ð

dk+p−1

⎤
⎥⎥⎥⎥⎦
, òf l t,k =

⎡
⎢⎢⎢⎢⎣

df l t,k
df l t,k+1

ð

df l t,k+p−1

⎤
⎥⎥⎥⎥⎦

ăk =

⎡⎢⎢⎢⎢⎣

uk
uk+1
ð

uk+m−1

⎤⎥⎥⎥⎥⎦
, Hi1 =

⎡⎢⎢⎢⎢⎣

ñ ði
ñ ïði
ð

ñ ïp−1ði

⎤⎥⎥⎥⎥⎦
, i = 1, 2, 3, d

Similarly, the inequality expressed in (4) is propagated for p steps into
the future. Hence, it follows that

Ē5 e Ē2�̄k + Ē3Ĉk + Ē1ăk + Ē4ć̂k + Ēdòk + Ē6uk−1 + Ē7yk−1 − Ēaāk

(39)

where

Ēi = diag{Ei,& , Ei}, i = 2, 3, d . a

Ēj =
[
−Ej 0 ñ 0

]T
, j = 6, 7
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ö1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ñ ð1 0 ñ 0 0

ñ ïð1 − ñ ð1 ñ ð1 ñ 0 0

ñ ï2ð1 − ñ ïð1 ñ ïð1 − ñ ð1 ó ð ð

ð ð ó ñ ð1 ð

ñ ïm−1ð1 − ñ ïm−2ð1 ñ ïm−2ð1 − ñ ïm−1ð1 ñ ñ ïð1 − ñ ð1 ñ ð1

ñ ïmð1 − ñ ïm−1ð1 ñ ïm−1ð1 − ñ ïm−2ð1 ñ ñ ï2ð1 − ñ ïð1 ñ ïð1

ð ð ð ð ð

ñ ïp−1ð1 − ñ ïp−2ð1 ñ ïp−2ð1 − ñ ïp−1ð1 ñ ñ ïp−m+1ð1 − ñ ïp−mð1 ñ ïp−mð1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

	k+1 =

⎡⎢⎢⎢⎢⎣

 k+1
 k+2
ð

 k+p

⎤⎥⎥⎥⎥⎦
, öi =

⎡
⎢⎢⎢⎢⎢⎣

ñ ði 0 ñ 0 0

ñ ïði − ñ ði ñ ði ñ 0 0

ñ ï2ði − ñ ïði ñ ïði − ñ ði ñ ð ð

ð ð ó ð ð

ñ ïp−1ði − ñ ïp−2ði ñ ïp−2ði − ñ ïp−3ði ñ ñ ïði − ñ ði ñ ði

⎤
⎥⎥⎥⎥⎥⎦

, i = 2, 3, d

Box I.

Ē1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1 0 ñ 0

−E6 ó ó 0

0 ó ó ð

0 ó −E6 −E1

0 ó 0 −E6 − E1

ð ð 0 ð

0 ñ ñ −E6 − E1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, āk =

⎡
⎢⎢⎢⎢⎣

ak
ak+1
ð

ak+p−1

⎤
⎥⎥⎥⎥⎦

Ē4 =

⎡⎢⎢⎢⎢⎣

−E4 0 ñ 0

−E7 −E4 ó 0

0 ó ó ð

ð ó −E7 −E4

⎤⎥⎥⎥⎥⎦
, Ē5 =

⎡⎢⎢⎢⎢⎣

E5

E5

ð

E5

⎤⎥⎥⎥⎥⎦

Eq. (39) can be further simplified by substituting ć̂k from (38) and

rewriting it as,

ó5 e ó2�̄k + ó3Ĉk + ó1ăk + ódòk + ó4X̂k − ó41uk−1 − ó42�k−1

− ó43zk−1 − ó4ddk−1 + ó6uk−1 + ó7yk−1 − óaāk (40)

where

ói =
(
Ēi + Ē4ȫi

)
, ó4 = Ē4�̄ , ój = Ēj , j = 5, 6, 7, a

ó4i = Ē4ȫi1, i = 1, 2, 3, d

�̄ =

[
ñ

�(1 ∶ (p − 1)ny, ∶)

]
, ȫi =

[
[0]ny

öi(1 ∶ (p − 1)ny, ∶)

]

i = 1, 2, 3, d , 11, 21, 31, d1

The HMPC problem stated in (9)–(14) can now be reformulated in
vector form by utilizing (37) into the objective function and (38) into

the constraints.

min
ăk, �̄k,

Ĉk, 	k+1
Jk

º
=

‖‖‖(ćf l t,k+1 − ćr,f l t,k+1)
‖‖‖
2

Ŵy

+ ‖‖(ăk −ăr,k)
‖‖2Ŵu

+

‖‖(Ĉk −Ĉr,k)
‖‖2Ŵz

+ ‖‖(Ruăk − Ru0uk−1)
‖‖2Ŵd u +

‖‖	k+1‖‖2Ŵs

(41)

subject to mixed integer constraints according to (40) and

ćmin − 	k+1 d ć̂k+1 d ćmax + 	k+1 (42)

ămin d ăk d ămax (43)

�ămin d �ăk d �ămax (44)

	k+1 e 0 (45)

where Ŵ∗ = diag(W∗), and

Ru0 =

⎡⎢⎢⎢⎢⎣

÷

0

ð

0

⎤⎥⎥⎥⎥⎦
, Ru =

⎡
⎢⎢⎢⎢⎢⎣

÷ 0 ñ 0 0

−÷ ÷ ñ 0 0

0 −÷ ó ð ð

ð ð ó ó ð

0 0 ñ −÷ ÷

⎤
⎥⎥⎥⎥⎥⎦

The variables ćr,f l t, ăr, �̄r, and Ĉr represent the reference vectors for
the outputs, inputs, auxiliary binary variables, and auxiliary continuous
variables respectively, as provided below:

ćr,f l t,k+1 =
[
yT
r,f l t,k+1 yT

r,f l t,k+2 ñ yT
r,f l t,k+p

]T
(46)

ăr,k =
[
uT
r,k

uT
r,k+1

ñ uT
r,k+m−1

]T
(47)

�̄r,k =
[
�T
r,k

�T
r,k+1

ñ �T
r,k+p−1

]T
(48)

Ĉr,k =
[
zT
r,k

zT
r,k+1

ñ zT
r,k+p−1

]T
(49)

As the constant terms do not impact the optimization problem and the
optimal solution, they are excluded from the objective function. Next,
by substituting ćf l t,k+1 and ć̂k+1 as expressed in Eqs. (37)–(38) into
(41)–(42), and performing straightforward computations, the following
miqp problem is obtained.

min
�k

Jk
º
=

1

2
�T
k
ö�k + õT �k (50)

ā̃�k d û (51)

Here �k = [ă T
k
, �̄T
k
,ĈT

k
, 	k+1T ]T represents the decision variables for

the optimization problem per (50) and (51). To ensure convexity in
the miqp optimization problem, the Hessian matrix ö representing the
quadratic terms must satisfy the conditions of being symmetric and
positive definite (or semi-definite). Additionally, the gradient vector õ
accounts for the linear terms. The coefficient matrices ā̃ and û are
employed to express the constraints.

ö = 2ÿ, õ = 2

⎡⎢⎢⎢⎢⎣

gT
1

gT
2

gT
3

0

⎤⎥⎥⎥⎥⎦
, ā̃ =

⎡⎢⎢⎢⎢⎣

ā̃1

ā̃2

ā̃3

ā̃4

⎤⎥⎥⎥⎥⎦
, û =

⎡⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
b4
b5
0

⎤⎥⎥⎥⎥⎥⎥⎦
The coefficient matrices can be found in Appendix. For the design
and implementation of the proposed scheme, a detailed step-by-step
procedure is provided and summarized in Algorithm 1.

4.1. Stability and convergence

The nominal stability and convergence properties of HMPC using
MLD models are discussed in Theorem 1. The miqp optimization prob-
lem defined in (50)–(51) incorporates the prominent features of a
synthesis approach of HMPC, like robust stability and feasibility.
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Algorithm 1 3DoF-KF HMPC Algorithm

1. Specify the design parameters, i.e. p, m, �ir (or �
i
r), �

j
d
(or �j

d
), � iu

(or f iy), 1 d i d ny, 1 d j d nd ist, and the corresponding weight
matrices and limits that are defined in (9)–(14).

2. Obtain the measurements yk, uk−1 and dk.
3. Initialize Kalman Filter-I at k = 0 to estimate the augmented

state using unfiltered measured disturbances �dk−1 according to
equations (25)–(26), assuming steady-state conditions (��k−1 =

0, �zk−1 = 0). The filter gain ùf can be calculated using (33).
4. Initialize Kalman Filter-II at k = 0 using the estimated aug-

mented state obtained in step 3 and the filtered measured
disturbances �df l t,k−1 to ensure accurate 3DoF estimation and
to decouple the effects of unmeasured and filtered measured
disturbances, as shown in (27)–(28).

5. Solve the miqp problem expressed in (50)–(51) to obtain a
sequence of control actions and other decision variables, namely
ăk, �̄k, and Ĉk. Using the receding horizon principle, implement
the first control move uk|k to the process model to obtain new
measurements.

6. Set k = k + 1, wait until the next sampling time, and return to
step 3, utilizing the estimated augmented state, unfiltered and
filtered measured disturbances, and decision variables obtained
in the previous iteration.

Theorem 1. For the system under consideration subjected to constraints
(4) and (11)–(14), the miqp optimization problem expressed in (50)–(51)
is solved at each sampling instant k. At each sampling instant k, assume the
existence of an initial state x0 such that the corresponding miqp problem
(50)–(51) is feasible. Then, for any given weights Wy e 0, Wyt e 0,
Wd u > 0, Wu > 0, Wd e 0, and Wz e 0:

1. The miqp problem (50)–(51) is also feasible for the sampling instant
k + 1.

2. The closed-loop dynamics of HMPC converge asymptotically as fol-
lows:

• limk³@ yk = yr,f l t, indicating convergence of the output yk to
the filtered reference trajectory yr,f l t
• limk³@

‖‖�uk‖‖Wd u = 0, denoting convergence of incremental
inputs �uk
• limk³@ uk = ur, representing convergence of the manipulated
variables uk to ur
• limk³@

‖‖�k − �r‖‖Wd
= 0, representing convergence of the

binary auxiliary variables �k to �r
• limk³@

‖‖zk − zr‖‖Wz
= 0, representing convergence of the

continuous auxiliary variables zk to zr
Moreover, the closed-loop system satisfies constraints (4) and (11)–
(14) at each sampling instant k e 0.

Proof. The proof is an extension of the one provided in Bemporad
and Morari (1999), and can be shown utilizing Lyapunov theory and
following straightforward computations. ¦

Remark 2. The HMPC formulation in this work employs distinct
prediction equations, (37) for the objective function and (38) for con-
straints, to balance optimality and robustness. For the objective func-
tion expressed in (10), Kalman Filter-II (described in (27)–(28)) with
filtered measured disturbances is used, providing accurate future state
predictions and ensuring true 3DoF control. For constraints expressed in
(4), (11)–(14), Kalman Filter-I (described in (25)–(26)) with unfiltered

Fig. 2. Schematic diagram for a classical production–inventory system that considers
how starts u(t) can be adjusted to maintain inventory Im(t) at setpoint while satisfying
capacity constraints on Work-in-Progress (WIP).

Table 1
Control design parameters for the production–inventory problem.
Parameter Value Parameter Value

p 30 days m 20 days
�d (Faster tuning) [0 0]T Fy (Faster tuning) diag{1, 1}
�d (Slower tuning) [0.9 0]T Fy (Slower tuning) diag{0.3, 0.3}
�r (Faster tuning) [0 0]T �r (Slower tuning) [0.9 0]T
umin 0 umax 100

�umin −@ �umax @

ymax (For Fig. 4) [800, 150]T ymin (For Fig. 4) [0, 0]T

ymax (For Fig. 3) [@, @]T ymin (For Fig. 3) [−@, −@]T

Wu, Wd u 0, 0.4 Wy, Wyt diag{1, 0}

measured disturbances (that the real plant experiences) is employed,
reflecting the actual system state more accurately for robust constraint
satisfaction, capturing rapid variations more precisely. This choice
allows solutions closer to actual system constraints and ensures ro-
bust constraint satisfaction by accurately reflecting real-time physical
limitations.

This dual choice of prediction equations theoretically results in a
slightly relaxed miqp optimization problem compared to using (37) for
both objective function and constraints. It offers superior performance
by balancing optimized control actions with robust constraint handling,
capturing rapid variations more accurately while avoiding overly con-
servative solutions that may occur with filtered measured disturbance
based prediction Eq. (37) for both objective and constraints.

5. Case studies

The effectiveness and versatility of the algorithm is demonstrated in
a series of industrially-relevant case studies; these include:

1. Control of production–inventory systems, meaningful in manu-
facturing and enterprise systems,

2. Development of personalized interventions for physical activity,
a relevant problem to mHealth and population health, and

3. Control of an SIR epidemic model, a topic relevant to pandemic
prevention.

These are described in the ensuing subsections.

5.1. Application to production inventory

The production–inventory system is a widely studied problem with
numerous applications in enterprises (Nandola & Rivera, 2013). Fig. 2
depicts a schematic of a production–inventory system incorporating
both feedback and feedforward control decisions. This system can be ef-
fectively modeled using a fluid analogy. In this analogy, the production
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Fig. 3. Simulation results demonstrating the application of proposed 3DoF HMPC algorithm to the classical production–inventory model, showcasing both fast and slow tuning of
the filters within the algorithm. In the bottom panel, two disturbances are depicted: one measured disturbance occurring at day 40 and an unmeasured disturbance occurring at
day 10.

node is represented as a pipe with a throughput time denoted by � days
and yield denoted by K. The inventory is analogous to material or fluid
stored in a tank. Additionally, the delivery process from the warehouse
is represented as a pipe with a transportation time of �d days. By
applying the principle of mass conservation, a differential equation is
derived that relates the net stock (material inventory denoted as Im) to
factory starts (input pipe flow denoted as u(t)) and consumer demand
(output tank flow denoted as d(t)), while also establishing a differential
equation that describes the relationship between WIP and factory starts:

d Im(t)
d t

= K u(t − �) − d(t) (52)

d W I P (t)
d t

= u(t) − u(t − �) (53)

where Im is the controlled variable, W I P is the Work-In-Progress
that refers to materials that are being assembled but not yet finished
product, and u(t) is the manipulated variable. Customer demand d(t) is
composed of the sum of the forecasted demand (df (t), known �f days
ahead of time) and unforecasted demand duf (t) as shown below:

d(t) = df (t − �f ) + duf (t) (54)

In discrete time, for daily sampling, the dynamics of this system are
governed by the equations

Im,k+1 = Im,k +K uk−� − dk (55)

W I Pk+1 = W I Pk + uk − uk−� (56)

The primary objective of this system is to meet customer demand dk
while simultaneously maintaining the net stock inventory at a prede-
termined target level. This involves sensibly adjusting the factory starts
and incorporating feedforward compensation based on the forecasted
demand df ,k. The control system strives to achieve a proper balance
between production output and demand, ensuring that the inventory
remains within the specified target range. In the specific scenario
considered in this case study, the manipulated input uk is limited to four
specific values: 0, 33.33, 66.66, and 100. As a result, the plant described
by Eq. (55) falls into a category of a hybrid system characterized by
a discrete-level input uk and a continuous output yk. The system can

be effectively represented and modeled using the MLD framework, as
outlined in (1)–(4). To account for the discrete nature of the input,
binary auxiliary variables (�1, �2, �3, �4) and continuous auxiliary
variables (z1, z2, z3, z4) are introduced, and their relationships are
defined as follows:

�1,k = 1 õ z1,k = 0 (57)

�2,k = 1 õ z2,k = 33.33 (58)

�3,k = 1 õ z3,k = 66.66 (59)

�4,k = 1 õ z4,k = 100 (60)
nc d1
i=1

�i,k =1, uk =
nc d1
i=1

zi,k (61)

where nc d denotes the number of categorical decisions. The symbol
“õ” should be read as if and only if (e.g. �1,k = 1 if and only if
z1,k = 0 else 0 or vice versa). The conditions specified in (57)–(61)
ensure that the input uk can only assume one of four specific values
at any given instant. The logical implication (õ) in (57)–(59) can be
represented as linear inequality constraints using propositional logic
equivalence (Williams, 1993), which can then be transformed into a
matrix representation as shown in (4). This results in an MLD model for
the production–inventory problem mentioned earlier. The MLD model
can be utilized to formulate an HMPC problem in the form of (50)–
(51). For this particular case, certain parameter values are assumed: a
sampling time of Ts = 1 day, �f and p set to 30 days, a system gain of
K set to 0.9, and a throughput time of � equal to 3 days.

Fig. 3 depicts the effect of manipulating the tuning parameters
�r, �d , and fy on the nominal speed of response and the robustness
of the algorithm. As mentioned earlier, both the speed of setpoint
tracking and the speed of measured disturbance rejection vary inversely
with the values of �r and �d , respectively. Additionally, the speed of
unmeasured disturbance rejection is directly influenced by the value of
fy. To initiate the analysis, a step change with a magnitude of 300 is
introduced in the setpoint. The solid line in the figure corresponds to
the controller’s performance when the 3DoF tuning parameters �r = 0.9,
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Fig. 4. Simulation results demonstrating the effectiveness of disturbance anticipation in the proposed HMPC algorithm. The figure further showcases the impact of including a slack
variable in the objective function, ensuring the feasibility of the optimization problem. The second-to-last panel of the figure illustrates the response of the Work in Progress (WIP)
variable, which meet the WIP constraint due to utilizing anticipation feature whereas violates the WIP constraint in the absence of anticipation feature. The proposed optimization
problem is feasible for both the cases: with anticipation and without anticipation, due to the inclusion of slack, the algorithm avoids becoming stuck and successfully maintains
system stability despite the constraint violation.

�d = 0.9, and fy = 0.3 are employed, while the dashed lines represent
the controller’s performance using the parameters �r = �d = 0 and
fy = 1. It is evident from the graph that the system achieves quicker
setpoint tracking when �r is set to 0.9 in comparison to when it is set
to 0.

On day 40, a step change in the actual demand dk with a magnitude
of 60 is introduced. This change is accurately forecasted without any
error, so dk equals the forecasted demand df ,k, which remains at
60 until day 60. When �d = 0, the controller promptly detects the
demand change and takes immediate feedforward action to maintain
the inventory at the setpoint without any deviation (shown as the
dashed line). However, when �d = 0.9, the production rate slows down,
resulting in a decrease in inventory (shown as the solid line).

On day 61, demand experiences a sudden decrease from 60 to 30.
This change introduces a negative bias of 30 units in the forecast,
representing an unmeasured disturbance (duf ,k = dk − df ,k = −30).
In this scenario, the controller initiates feedback action; however, it
takes some time for the controller to detect the decrease in demand,
leading to the inventory exceeding the setpoint. Nevertheless, through
continuous control action, the system gradually settles at the setpoint.
Comparing the values of fy, a faster rejection of unmeasured dis-
turbances is achieved when fy = 1 in contrast to fy = 0.3. The
simulation results effectively illustrate how the adjustable parameters
�r, �d , and fy have a discernible impact on the closed-loop response of
the production–inventory system. By adjusting these parameters, users
can attain desired levels of performance and robustness.

Fig. 4 provides visual evidence supporting the effectiveness of incor-
porating disturbance anticipation and slack into the HMPC algorithm.
Tuning parameters of the controller can be found in Table 1. Here
the solid line in the figure corresponds to the controller’s performance
in the presence of disturbance anticipation, while the dashed lines
represent the controller’s performance without anticipation. The results
presented in both cases demonstrate the controller’s performance under
the influence of faster 3DoF tuning parameters, specifically �r = �d = 0,

and fy = 1. On day 40, there is a step change in the actual demand dk
with a magnitude of 60. This change is accurately forecasted without
any error, so dk equals the forecasted demand df ,k, which remains at
60 until day 60. On day 61, the demand suddenly decreases from 60 to
30. This change introduces a negative bias of 15 units in the forecast,
representing an unmeasured disturbance (duf ,k = dk−df ,k = −15). As is
evident from Fig. 4, the controller (with anticipation) proactively builds
inventory prior to the occurrence of the actual demand dk, and thus
prevents violations of the WIP constraint. By doing so, the algorithm
avoids the need to use slack. Without the anticipation feature, the
controller lacks the ability to forecast future demand; as a result, when
the demand enters at day 40, the inventory levels start to decline
gradually, as indicated by the dashed line in the top panel of the
graph. However, during this period, the controller takes advantage of
slack, which allows for violations of the WIP constraint. By utilizing
this slack allowance with a weight of Ws = diag{1, 100}, the system
gains flexibility to gradually increase the inventory level, reaching the
desired setpoint and avoiding further violations of the WIP constraint.

5.2. Application to Just Walk, a behavioral intervention for increasing
physical activity

Just Walk is an adaptive behavioral intervention developed at Ari-
zona State University, specifically tailored for overweight and seden-
tary individuals (Hekler et al., 2018; Phatak et al., 2018). The primary
objective of this intervention is to create dynamic models of partic-
ipants using system identification techniques, with the ultimate goal
of motivating sedentary individuals to walk 10,000 steps a day. To
achieve this, participants are assigned daily step goals and provided
with incentives in the form of expected points. When participants meet
their daily goals, these expected points are converted into granted
points. As a result, participants can redeem the awarded points for
rewards such as gift cards.
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Fig. 5. Schematic of a closed-loop behavioral intervention based on a participant model
from Just Walk.

In this study, an objective evaluation of the hybrid model predictive
control approach for MLD systems is conducted. The approach uti-
lizes a dynamical model estimated from data obtained during the Just
Walk intervention. The closed-loop intervention comprises two distinct
stages. The first stage, known as the initiation phase, focuses on guiding
individuals towards a healthier state by setting daily “ambitious but
doable” step goals and providing rewards when the goals are met. The
second stage, referred to as the maintenance phase, involves eliminating
rewards as individuals come close to the 10,000 step/day goal. The
transition from initiation to maintenance phases (and possible return
to initiation, if necessary) is managed by the control algorithm.

5.2.1. Intervention design and development
In this intervention, individual performance is evaluated by tak-

ing into account the following signals (also known as intervention
constructs):

• Daily Goals (u8): An external cue that is used to indicate the target
number of steps to be achieved on a daily basis, such as 10,000
steps per day.
• Daily Expected Points (u9): A predetermined number of points
announced on a daily basis for the individuals who success-
fully meet their daily goals. This point allocation serves as an
outcome expectancy for reinforcement, offering motivation and
incentivizing individuals to achieve their objectives.
• Granted Points (u10): The number of points awarded to individuals
upon achieving the daily goals, which is equivalent to the daily
expected points. This allocation of points is accomplished through
an “If/Then” block.
• Behavior (y4): The total number of steps walked at the end of the
day.
• Goal Attainment (y7 = y4−u8): the difference between daily goals
and behavior, reflecting a participant’s ability to attain their goal.

In this case study, goal attainment is treated as an output signal,
subject to constraints. Details of the output constructs of the Just Walk
identification model (depicted in Fig. 5) based on Social Cognitive
Theory (SCT) can be found in the work by Martín et al. (2020). For
the Just Walk dynamic model, the input and output vectors are

u =
[
u8 u9 u10

]T
, y =

[
y4 y7

]T
(62)

nuc = 1, nud = 2, ny = 2

The environmental context signals, Temperature andWeekday/Weekend,
are considered as measured disturbances. Unmeasured disturbances
(e.g., a family member’s illness or an unexpected party invitation) are
presumed to follow a Gaussian distribution and impact only the daily
steps taken, rather than influencing the system states (i.e., Bv = 0,
Dv = I).

5.2.2. Problem-specific constraints
Values of the intervention components are determined by contin-

uous daily goals u8 and a discrete set of expected points u9,k, where
u9,k * U9 = {0, 50, 100, 150, 20}. As a result, the auxiliary variables can
be defined as follows:

�j ,k = 1 õ zj ,k = 50 × j , "j = 0,& , nc d (63)

This condition is enforced by

zj ,k = 50 × j × �j ,k, "j = 0,& , nc d (64)

Here nc d = 4. To enforce the exclusive assignment of a single value to
u9 at each sampling instant k, it is essential to integrate the following
constraints into the proposed HMPC scheme.
nc d1
j=0

�j ,k = 1, u9,k =

nc d1
j=0

zj ,k (65)

The impact of all entries for a specific day can only be assessed
based on the outputs recorded after midnight, as the step count for
that day is logged until 11:59 PM and resets to zero at the start of
the next day. Consequently, the output measurements are adjusted to
align temporally with their corresponding inputs from that day. The
propositional logic discussed here is a key component of the HMPC
formulation and can be represented by the E matrices defined in (4).
It is vital to address output measurement limitations and ensure that
Expected Points convert to Granted Points at the beginning of the next
day. To indicate whether the goal has been met, the auxiliary variable
�g s is used, which assesses if the steps taken on the previous day (k− 1)
meet or exceed the daily target goal (steps). This concept can be further
elucidated by examining the underlying logic.

�g s,k = 1 õ y4,k−1 e u8,k−1 (66)

The technique known as big-M reformulation is used to convert logical
constraints into a set of linear conditions that maintain the same
feasible set (Martín et al., 2016). To determine the value of �g s, the
following constraints are taken into consideration:

y4,k−1 − u8,k−1 d �g s,k [ymax
4

− umin
8

] (67)

y4,k−1 − u8,k−1 e [1 − �g s,k] [ymin4
− umax

8
] (68)

To represent the granted points, auxiliary variable zg s = u9,k−1�g s,k is
introduced, where u10,k = zg s,k. At the start of each day, goal attainment
is checked. If the goal has been met (i.e., goal attainment is greater
than or equal to zero), the granted points (u10,k) for the current day are
set equal to the expected points (u9,k−1) that were announced on the
previous day. This can be expressed mathematically as:

u9,k−1 − zg s,k d [1 − �g s,k][umax9
− umin

10
] (69)

u9,k−1 − zg s,k e [1 − �g s,k][umin9
− umax

10
] (70)

If the goals are not achieved, no points are given that day (u10 = 0)

zg s,k e �g s,kumin10
, zg s,k d �g s,kumax10

(71)

The constraints described by (66)–(71) are incorporated in (4) by defin-
ing the values for matrices in (4) through the HYSDEL Toolbox (Torrisi
& Bemporad, 2004).

5.2.3. Maintenance phase
A maintenance phase is incorporated into the intervention to avoid

financial dependency. During this phase, financial incentives for par-
ticipants are reduced, encouraging them to sustain healthy behavior
without relying on monetary rewards.

The maintenance phase initiates when the intervention target of
10,000 steps/day is achieved for at least ns − 2 days out of the last ns
days. In this phase, a participant’s daily step count must remain within
a specified range of the intervention target, defined by a tolerance value
tol. The HMPC algorithm is reconfigured to sustain desired behavior
with minimal reliance on financial rewards, reducing dependency on
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Fig. 6. Time series plot displaying results from ARX modeling for three (of five)
multisine cycles for a representative Just Walk participant. Five input sequences
corresponding to measured disturbances (Temperature and Weekend) and manipulated
variables (Goals, Expected Points and Granted Points) are shown from top. The bottom
plot displays predicted Behavior (estimated from an ARX model), actual Behavior and
daily Goals (all in steps/day). Estimation and validation data regions are highlighted
in magenta and cyan, respectively. The overall NRMSE fit is 27.46% (with 43.40%
fit for estimation and 12.28% fit for validation). The ARX model is estimated using
regularized least-squares regression with a model order of na = 2, nb = nk = [1 1 1 1 1];
regularization parameters are � = 102 and Ā = 1.

monetary incentives. Furthermore, the HMPC must be able to reintro-
duce rewards (expected points) in the event of significant behavioral
relapses. This reconfiguration is achieved by modifying the penalty
weights in the objective function, reflecting the unique considerations
of each intervention phase. To implement this criterion effectively, a
new auxiliary logical variable "k is introduced. (Note that this vari-
able is not included in the general HMPC formulation as outlined in
(1)–(4)).

"k−i = 1 µ |y4,k−i − y4,r| d tol , "i = 0,& , ns − 1 (72)

Hence, the maintenance phase is activated at sampling instant k if the
following condition holds.
ns−11
i=0

"k−i e ns − 2 (73)

During the maintenance phase, the controller is reconfigured to reduce
the use of expected points (u9). For target inputs represented as ur =

[u8,r u9,r u10,r]
T , an appropriate value for u9,r is selected (e.g., u9,r = 0

points/day), while simultaneously adjusting the input weight matrix
to Wu = diag{0, w9, 0}. The value of w9 influences the expected
performance of setpoint tracking relative to meeting the input target.
If, at any given sampling instant k, the condition specified in (73) is not
satisfied (indicating a potential relapse), the controller reactivates the
initiation phase. This reactivation introduces rewards (expected points)
to the participant to restore the desired behavior level, effectively
bringing the participant back into the maintenance phase.

5.2.4. Simulation results
Experimental data from a representative Just Walk participant

(Fig. 6) was utilized to estimate a personalized dynamic model via
system identification, using the procedure described in El Mistiri et al.
(2023). ARX estimation with regularization is employed for one par-
ticipant, with the model generated by estimating over the inputs
Temperature,Weekday/Weekend, Goals, Expected Points (EP) and Granted
Points (GP); step responses are shown in Fig. 7. In accordance with the
input signal cycles, the data were split into five sub-experiments (each
sub-experiment representing one 16-day multisine cycle), allowing for
testing various combinations of estimation and validation data and
reducing bias from any “novelty effects” at the start of the interven-
tion. For estimation, the first, third, and fifth sub-experiments were

Fig. 7. Step responses of regularized ARX identified model for the five inputs:
Temperature, Weekday/Weekend, Goals, Expected Points (EP), and Granted Points (GP)
along with their DC gains.

employed, while validation was carried out using the second and fourth
sub-experiments.

Fig. 8 showcases the application of the proposed HMPC scheme
to the representative identified model of Just Walk intervention. The
tuning parameters for the controller can be found in Table 2. The
results demonstrate the effectiveness of the HMPC algorithm in deliv-
ering a personalized behavioral intervention based on the individual
model. HMPC effectively delivers a personalized behavioral interven-
tion by setting progressively increasing, “ambitious but attainable”
targets for the daily step count. Initially, during the approximately 31-
days initiation phase, reasonable goals and expected points are used
to motivate the participant and provide rewards upon achieving daily
goals. As can be seen in Fig. 8, the controller successfully awards
granted points with a unit delay when the goals are achieved, abiding
by the measurement restrictions described in Section 5.2.2. On day
32, when the participant’s performance meets the condition expressed
in (73), the maintenance phase is activated (highlighted in green).
This phase reduces reliance on points as incentives to reduce financial
dependency, with the allocation of expected and granted points guided
by corresponding weights and constraints.

To initiate controller reconfiguration during the intervention’s
maintenance phase, it is required that Behavior remains within a
tolerance range of tol = 400 steps/day from the target value of 10,000
steps/day for a minimum of 6 out of the last ns = 8 days. The
unmeasured disturbance is assumed to follow a Gaussian distribution
with a mean of 0 and a standard deviation of 150. On day 40 of the
intervention, there is a substantial and sustained drop in temperature
(magnitude exaggerated for illustrative purposes) that persists for 8
days. This scenario can be likened to winter cold snap conditions,
which often deter individuals from achieving their daily step goals due
to significant changes in climate. This disturbance pulse causes a de-
crease in the participant’s step count, pushing it outside of the defined
tolerance region. Consequently, the initiation phase is reiterated by
the controller. As observed from Fig. 8, the controller reconfiguration
facilitates the utilization of financial rewards to incentivize the partici-
pant and drive their step count towards the desired level of physical
activity (10,000 steps/day), effectively mitigating the effect of the
temperature disturbance. Furthermore, the benefits of the disturbance
anticipation feature are evident as the controller proactively increases
the daily goals provided to the participant one day before the predicted
temperature drop (on day 39). This proactive adjustment assists the
participant in preparing for the anticipated challenge and encourages
them to maintain their step count despite the forthcoming decrease
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Fig. 8. Simulation results obtained by the application of an HMPC scheme to the Just Walk identified ARX model in the presence of both measured (temperature and
weekend/weekday) and unmeasured disturbances.

in temperature. As a result, behavior returns to the tolerance region
by day 43 of the intervention and stays within this range for the
following 6 days. This leads to the subsequent re-activation of the
maintenance phase on day 49. Despite the abrupt and high magnitude
temperature change, the controller performs well in terms of measured
disturbance rejection without violating goal attainment constraints. In
addition, as illustrated in Fig. 8, the controller performs well in terms
of rejection of stochastic unmeasured disturbance. However, abrupt
and very substantial changes in unmeasured disturbances may induce
violations of the goal achievement constraint. Hence, the inclusion of
slack variables in the objective function (10) is crucial to ensure smooth
operation of the controller and prevent infeasibilities that could hinder
the implementation of real-world interventions effectively. Throughout
the simulation, as depicted in Fig. 8, two types of measured distur-
bances persist: an autoregressive disturbance characterized by daily
temperature changes, and a deterministic disturbance occurring at
the start of the weekend. Despite the continuous presence of these
disturbances, the controller showcases remarkable ability to reject them
and relies on anticipation to accurately maintain the output at the
desired setpoint. The anticipation feature proves particularly beneficial
when dealing with predictable disturbances like the weekday/weekend
signal or when accurate local temperature forecasts are available. The
effectiveness of this feature depends directly on the delay of the plant
model for a given input. A longer delay enhances the usefulness of the
anticipation functionality.

5.3. Application to SIR epidemic model

The purpose of this case study is to demonstrate the effectiveness
of the proposed HMPC algorithm on a highly nonlinear system. The
SIR model is a widely accepted mathematical model for studying the
trajectory of epidemics (Rivera et al., 2022; Simon, 2020). It compart-
mentalizes the overall population into three categories: Susceptible (S),
Infected (I), and Recovered (R), and can be visualized as a chemical
reactor. In this study, the problem formulation includes births and
deaths as inflows and outflows, respectively, thus representing the
system as a well-stirred Continuous Stirred Tank Reactor (CSTR), as

Table 2
Control design parameters for Just Walk Study.

Parameter Value Parameter Value

p 20 days u9,max 200 points/day
m 10 days �u8,min −@

�d [0.5 0]T �u8,max @ steps/day
�r [0.85 0]T �u9,min −100

Fy diag{0.6, 0} �u9,max 100 points/day
Wy, Wyt diag{1, 0} ymin [−@ − 100]T
Wu diag(0, 0.001, 0) ymax [@ @]T

Wd u diag(0.001, 0, 0) ns 8 days
u8,min 0 steps/day tol 400 steps
u8,max 15000 steps/day Wu (maintenance) diag{0, 1, 0}

u9,min 0 points/day Ws diag{0, 10}

Table 3
Nominal parameters values for the SIR plant model.
Parameters Units Values Parameters Units Values

Br Persons/Day 500 �̄ Person−1Day−1 0.0005
� Day−1 0.2 
̄ Day−1 0.29
k̄v Day−1 0 Ts Day 1

illustrated in Fig. 9. A susceptible person who comes into contact
with an infected person is transferred to the infected class. However,
the opposite is not true. This mechanism is similar to an irreversible
auto-catalytic reaction. Meanwhile, the infected population is removed
through recovery or death. These processes can be formulated as a
system of chemical reactions:

S + I
�(t)
←←←←←←←←←←←←←←³ 2I (74)

I

(t)
←←←←←←←←←←←←←←³ R (75)

S
kv(t)
←←←←←←←←←←←←←←←←←←³ R (76)

A decrease in �(t) implies an increase in social distancing, lock-
downs, and masking, and therefore a decrease in I(t). Similarly, as-
suming a fraction 
(t) of the infected population recovers per day, and
a fraction � of the overall population becomes deceased, an increase
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Fig. 9. Schematic illustrating the SIR model with births, deaths, and vaccination as a
CSTR.
Source: Adapted from Rivera et al. (2022) and Simon (2020).

Table 4
Control design parameters for the SIR problem.

Parameter Value Parameter Value

p 50 Days ymin 0

m 20 Days ymax @

�r 6 Days �umin −@

�d 3 Days �umax @

�u 2 Days Wy, Wyt 1

umin 0.07�i Wd u(1DoF) (a) 0.1
(b) 10

umax @ Wd u(3DoF) 0

in 
(t) as well as � causes I(t) to decrease. For this study, � is held
at a fixed value signifying a constant mortality rate. Another factor
that affects the system is the fraction of the susceptible population
vaccinated per day (kv(t)). An increase in kv(t) can be instrumental
in decreasing I(t) indirectly. Based on these considerations, the use of
accounting principles leads to the lumped parameter model:
d S
d t

= Br − �(t)S(t)I(t) − � S(t) − kv(t)S(t) (77)

d I
d t

= �(t)S(t)I(t) − 
(t)I(t) − � I(t) (78)

R(t) =
Br
�

− S(t) − I(t) (79)

where Br denotes the birth rate, �(t) is the transmission rate of the
infection, 
(t) refers to the recovery rate, � is the mortality rate, and
kv(t) denotes the vaccination rate. �(t), 
(t), and kv(t) are time-varying.
For constant Br and �, the total population N =

Br
�

= S(t) + I(t) + R(t)
remains constant. As noted in Simon (2020), there exist two possible
steady states in (77)–(78), where the one resulting in an initial non-zero
infected population (i.e., the endemic case) is considered:

S̄ =
(� + 
̄)

�̄
, Ī =

(
Br
� + 
̄

−
� + k̄v

�̄

)
(80)

Nominal plant parameters are summarized in Table 3, which are the
basis for the linearized model that is provided to the proposed HMPC
algorithm (with all E matrices in (4) equal to zero as there are no cat-
egorical decisions). The SIR model allows us to study the performance
of the 3DoF-KF HMPC framework in the presence of disturbances and
model uncertainty resulting from linearization. For this purpose, I(t) is
considered to be the controlled variable, �(t) the manipulated variable,
and kv(t) and 
(t) the measured and the unmeasured disturbance,
respectively. The controller uses daily sampling (Ts = 1 day) with
tuning parameters summarized in Table 4.

As depicted in Fig. 10 , a nominal output response that serves as
a reference is obtained by simulating the fully unconstrained 3DoF
controller on the linearized plant model, as shown by the blue dotted
line. This provides an understanding of the workings of the controller

in the absence of any plant-model mismatch. For the nonlinear plant
model, a comparative study of the proposed framework is done by sim-
ulating a traditional single-degree-of-freedom (1DoF) HMPC with move
suppression under the same conditions of plant dynamics, input–output
constraints, prediction, and move horizons. On day 10, a setpoint
change reflecting a 50% reduction in the desired infected popula-
tion is introduced into the system. Per Fig. 10, the 3DoF-KF HMPC
demonstrates a fast closed-loop speed of response in setpoint track-
ing without any noticeable undershoot or oscillation. To demonstrate
disturbance rejection capabilities, a 10% increase in the vaccination
rate is introduced at t = 80 days. Taking advantage of the increased
vaccination rate, the controller increases �(t), thus relaxing on lock-
down and other social distancing policies that were previously needed
to reduce infection. The controller further exhibits robustness and
unmeasured disturbance rejection when there is a 10% increase in
the recovery rate at day 120. The 3DoF-KF framework accounts for
plant-model mismatch and further increases �(t) to mitigate it, prac-
tically eliminating distancing restrictions and restoring normality. The
3DoF-KF HMPC control, therefore, achieves satisfactory results through
physically realizable control actions despite the notable plant-model
mismatch and shows a similar output trajectory when compared to the
nominal case. In contrast, the move-suppression-based HMPC controller
shows evidence of poor epidemic control both in terms of manipulated
and control variable responses. For the case of Wd u = 0.1, traditional
HMPC displays aggressive control, resulting in underdamped responses.
Wd u = 10 detunes the aggressive nature of the controller but still
displays significant oscillations and notably long settling times. These
indicate the suboptimal performance of 1DoF move-suppression-based
control and the superiority of the 3DoF-KF HMPC framework.

6. Summary and conclusions

In this paper, a hybrid model predictive control approach for mixed
logical dynamical systems based on Kalman filters is presented, referred
to as 3DoF-KF HMPC. The goal is to develop an HMPC-based algorithm
that accurately tracks the desired setpoint in the presence of dis-
turbances (measured and unmeasured), nonlinearity, and constraints,
relying on discrete and continuous decision-making. The proposed
approach provides users with the flexibility of three-degree-of-freedom
tuning and incorporates disturbance anticipation. This enables users to
independently and intuitively adjust the speed of setpoint tracking and
rejection of both measured and unmeasured disturbances. To ensure
the optimization problem remains tractable and to address multiple
controller objectives with a limited number of manipulated variables,
terminal cost, terminal constraint, and slack variables are introduced
into the objective function, thereby enhancing its flexibility and adapt-
ability of the algorithm. The effectiveness of the proposed technique
was demonstrated by application in three demanding case studies:
a production–inventory system, an optimized behavioral intervention
based on the Just Walk study, and epidemic control demonstrated on
the nonlinear SIR model.

As a broad-based algorithm that displays diverse functionality and
addresses a myriad of closed-loop requirements, 3DoF-KF HMPC will
require a custom implementation in practice; in some settings this
will involve software development efforts that while challenging are
not insurmountable. For instance, 3DoF-KF HMPC has been applied in
an NIH-funded clinical trial (YourMove) for increasing physical activ-
ity (NIH Reporter, 2020); this effort has involved using MATLAB along
with CPLEX optimization software (International Business Machines
Corp., 2019), all interfaced with sensor and actuator information in
a ‘‘glue’’ layer written in PYTHON. Additional research efforts have
been the basis for using 3DoF-KF HMPC to experimentally achieve
closed-loop control of pH in a pilot-scale raceway bioreactor (Banerjee,
Otálora et al., 2024). Enhancements include integration with data-
driven “Model-on-Demand” (MoD) estimation for the control of non-
linear, highly-interactive multivariable systems (Banerjee, Khan et al.,
2024).
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Fig. 10. Evaluation of 3DoF-KF HMPC performance for the SIR model with (1DoF) HMPC control. A setpoint change of 50% reduction in the infected population at t = 10 days
with a step measured disturbance dk = 10% increase in vaccination rate at t = 80 days and a step unmeasured disturbance vk = 10% increase in recovery rate at t = 120 days
are evaluated for different cases. Case 1 (nominal): The proposed 3DoF controller applied on unconstrained linearized plant (blue, dots), Case 2: the 3DoF formulation applied to
the nonlinear SIR plant (green, solid), Case 3: 1DoF HMPC with move suppression Wd u = 0.1 (magenta, dashed), Case 4: 1DoF HMPC with move suppression Wd u = 10 (brown,
dash-dot). The following constraints were used: 0.07�i d uk d @, and 0 d yk d @. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

CRediT authorship contribution statement

Owais Khan: Writing – review & editing, Writing – original draft,
Software, Methodology, Investigation, Formal analysis, Conceptualiza-
tion. Mohamed El Mistiri: Writing – review & editing, Writing – orig-
inal draft, Software, Methodology, Investigation, Conceptualization.
Sarasij Banerjee: Writing – review & editing, Writing – original draft,
Software, Methodology, Investigation. Eric Hekler: Writing – review
& editing, Resources, Project administration, Investigation, Funding
acquisition, Conceptualization. Daniel E. Rivera: Writing – review &
editing, Writing – original draft, Supervision, Project administration,
Methodology, Funding acquisition, Conceptualization.

Declaration of Generative AI in Scientific Writing

While drafting this manuscript, the primary author sought assis-
tance from Grammarly (2024) and ChatGPT (OpenAI, 2023) to improve
readability and language. Subsequently, all authors carefully reviewed
and edited the text as needed, assuming complete responsibility for the
content of the publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was supported by grant R01CA244777 from the Na-
tional Cancer Institute (NCI) of the National Institutes of Health (NIH),
USA and grant 2200161 from the Division of Chemical, Bioengineer-
ing, Environmental and Transport Systems (CBET), USA, U.S. National
Science Foundation (NSF). The writers’ views are their own and may
not represent those of NIH and NSF. The authors further appreciate
helpful comments and insights from Dr. Naresh N. Nandola of Siemens
Corporation and Mr. Francesco Campregher from the University of
Brescia, Italy.

Appendix. Matrices associated with the miqp problem

The following are the entries for the coefficient matrices described
in (50) and (51).

ÿ =

⎡
⎢⎢⎢⎢⎣

q11 ö1
T Ŵyö2 ö1

T Ŵyö3 0

ö2
T Ŵyö1 q22 ö2

T Ŵyö3 0

ö3
T Ŵyö1 ö3

T Ŵyö2 ö3
T Ŵyö3 + Ŵz 0

0 0 0 Ŵs

⎤
⎥⎥⎥⎥⎦

q11 = ö1
T Ŵyö1 + R

T
u Ŵd uRu + Ŵu,

q22 = ö2
T Ŵyö2 + Ŵd

ā̃1 =
[
ó1 ó2 ó3 0

]
, ā̃2 =

[
ö1 ö2 ö3 −÷

−ö1 −ö2 −ö3 −÷

]

ā̃3 =

⎡⎢⎢⎢⎢⎣

÷ 0 0 0

−÷ 0 0 0

Ru 0 0 0

−Ru 0 0 0

⎤⎥⎥⎥⎥⎦
, ā̃4 =

[
0 0 0 −÷

]

g1 = Xf l t,kT�T Ŵyö1 − ćr,f l t,kT Ŵyö1 −ăr,k
T Ŵu − �k−1

TH21
T Ŵyö1

− uk−1
T (Ru0

T Ŵd uRu +H11
T Ŵyö1) − zk−1TH31

T Ŵyö1

− df l t,k−1THd1
T Ŵyö1 +òT

f l t,köd
T Ŵyö1

g2 = Xf l t,kT�T Ŵyö2 − ćr,f l t,kT Ŵyö2 − �̄
T
r,k
Ŵd +òT

f l t,kö
T
d
Ŵyö2

− uT
k−1

HT
11
Ŵyö2 − �k−1

TH21
T Ŵyö2 − zk−1

TH31
T Ŵyö2

− dT
f l t,k−1Hd1

T Ŵyö2

g3 = Xf l t,kT�T Ŵyö3 − ćr,f l t,kT Ŵyö3 −Ĉr,k
T Ŵz +òT

f l t,köd
T Ŵyö3

− uk−1
TH11

T Ŵyö3 − �k−1
TH21

T Ŵyö3 − zk−1
TH31

T Ŵyö3

− df l t,k−1THd1
T Ŵyö3

b1 = ó5 − ó4X̂k − ódòk + ó41uk−1 + ó42�k−1 + ó43zk−1 + ó4ddk−1−

ó6uk−1 − ó7yk−1 + óaāk

b2 = ćmax −�X̂k −ödòk +H11uk−1 +H21�k−1 +H31zk−1 +Hd1dk−1

b3 = −ćmin +�X̂k +ödòk −H11uk−1 −H21�k−1 −H31zk−1 −Hd1dk−1
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b4 =

[
ămax

−ămin

]
, b5 =

[
Ru0uk−1 + �ămax

−Ru0uk−1 − �ămin

]
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