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Role of Mixup in Topological Persistence Based
Knowledge Distillation for Wearable Sensor Data

Eun Som Jeon, Hongjun Choi, Matthew P. Buman, and Pavan Turaga

Abstract— The analysis of wearable sensor data has enabled many suc-
cesses in several applications. To represent the high-sampling rate time-
series with sufficient detail, the use of topological data analysis (TDA)
has been considered, and it is found that TDA can complement other
time-series features. Nonetheless, due to the large time consumption
and high computational resource requirements of extracting topological
features through TDA, it is difficult to deploy topological knowledge in
machine learning and various applications. In order to tackle this prob-
lem, knowledge distillation (KD) can be adopted, which is a technique
facilitating model compression and transfer learning to generate a smaller
model by transferring knowledge from a larger network. By leveraging
multiple teachers in KD, both time-series and topological features can be
transferred, and finally, a superior student using only time-series data is
distilled. On the other hand, mixup has been popularly used as a robust
data augmentation technique to enhance model performance during training. Mixup and KD employ similar learning
strategies. In KD, the student model learns from the smoothed distribution generated by the teacher model, while mixup
creates smoothed labels by blending two labels. Hence, this common smoothness serves as the connecting link that
establishes a connection between these two methods. Even though it has been widely studied to understand the interplay
between mixup and KD, most of them are focused on image based analysis only, and it still remains to be understood
how mixup behaves in the context of KD for incorporating multimodal data, such as both time-series and topological
knowledge using wearable sensor data. In this paper, we analyze the role of mixup in KD with time-series as well as
topological persistence, employing multiple teachers. We present a comprehensive analysis of various methods in KD
and mixup, supported by empirical results on wearable sensor data. We observe that applying mixup to training a student
in KD improves performance. We suggest a general set of recommendations to obtain an enhanced student.
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[. INTRODUCTION have the potential to make sensor data processing pipelines
more robust to different types of time-series corruptions [4]-
[6]. Topological features can be represented in many ways [7],
[8], a common approach is referred to as the persistence image
(PI) — which can aid in easily deploy topological persistence
in machine learning owing to it 2D image-like form. Prior
research has found that persistence images provide additional
information that complements the raw time-series data to
improve performance in time-series classification problems on
wearable sensor data [2], [3], [9]. Applications of topological
methods also have touched upon many areas particularly in
sensor data analysis [10]-[12].

Although TDA has shown great promise, leveraging topo-
logical features by TDA on edge-devices including wearable

EARABLE sensor data analysis has enabled many
Wapplication by utilizing the power of deep learning.
However, there are common challenges, such as inter- and
intra-person variability, sensor-level noises, dependency on
the sampling rate of the sensors, resulting in performance
degradation and difficulties for deployment with machine
learning. To mitigate these problems, topological data analysis
(TDA) methods have been utilized on wearable sensor data
analysis [1]-[3], which have resulted in many robust ways to
capture detailed time-series information, and can be increas-
ingly applied to many different areas. TDA methods allow
for capturing and preserving shape-related information and
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devices, particularly implementing them on small form factor
and memory limited devices, is difficult because of large
computational resources and time consumption requirements
to extract the topological features [4], [13]. Also, previous
studies implement separate models in test-time simultaneously
to utilize topological as well as time-series data to improve
performance [2], which can increase the complexity of a
model. Based on this insight, new methods to create a unified
model for maximizing efficiency and integration of topological
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features is required.

To address these issues, knowledge distillation (KD) can be
adopted as a solution, which generates a small and superior
model by transferring knowledge from a large network model.
Furthermore, it enables to leverage multimodal data to distill
a robust single model. With KD, a teacher trained with
topological features can be utilized to provide more diverse
information to a student while complementing time-series
features. With multiple teachers trained with the raw time-
series and topological representations, a single and superior
student, using the time-series data alone, can be distilled [3].

In KD, the temperature hyperparameter plays a key role in
learning process, which controls the smoothness of distribution
and determines the difficulty level of the distillation process.
In this context, recently, many studies have delved into the
impact of mixup augmentation in KD [14]-[18]. Particularly,
for image analysis, Choi et al. [15] explored the interplay of
mixup with KD and revealed that smoothness serves as the
connecting link to understand the effect of mixup in KD. For
more details, in KD, the student learns from the smoothed
distribution provided by the teacher model, and this distribu-
tion is further smoothed by increasing the temperature value.
Similarly, mixup generates new smooth labels by blending
two given inputs and ground truth labels, which are then
further smoothed by strongly interpolated samples (e.g., a
high alpha value in the beta distribution). Thus, their behave
as a connecting link for promoting smoothness in learning
process, which can generate synergetic effects to distill a
robust lightweight model [15], [17].

There are different augmentation methods such as regular-
ization effect [19], model invariance [20], and feature learning
[21]. However, these techniques are more focus on alleviating
noises or data point issues in rotation, which are different
from mixup [22] blending multiple samples. Further, even if
other augmentations (e.g. cutmix [23] and adversarial training
[24]) are effective, mixup offers different benefits in much
lower computational overhead and provides solid foundations,
particularly in the context of knowledge distillation [25]-[27].

Even though the interplay between two techniques, mixup
and KD, is significantly crucial in performance improvement,
the majority of previous studies have primarily concentrated
on image-based analysis. To the best of our knowledge,
the impact of mixup and KD in the context of both time-
series and topological representations on wearable sensor data
remains unexplored. Furthermore, the behavior of mixup for
multiple teachers and different strategies in KD have not been
investigated.

In this paper, we study the behavior of mixup in KD
with multimodalities using both time-series and topological
representations for wearable sensor data analysis. We imple-
ment different KD approaches for utilizing time-series as well
as topological persistence to train a student. We investigate
whether the mixup method can enhance the performance
of topological persistence-based KD using various teachers.
Additionally, we compare the performance of using mixup in
KD to determine if leveraging both representations yields more
benefits than relying solely on time-series data.

The contributions of this paper are summarized below:

e« We analyze the interplay between mixup and KD for
wearable sensor data, and compare different strategies
in KD with single-teacher and multiple-teacher based
distillation, leveraging time-series as well as topological
persistence.

o We study the effects of mixup on training both teacher
and student models. We aim to identify which training
strategy for utilizing mixup in KD provides the most
benefit in the activity classification task and explore
whether the effects of mixup are comparable to those
of other time domain augmentation methods in KD.

o Through the analysis of multiple strategies for employ-
ing mixup with multiple teachers, we propose improved
learning approaches by regulating smoothness through
temperature and the number of mixup pairs.

The rest of the paper is organized as follows. In section II,
we describe mixup and KD techniques with persistence image.
In section III, we explain strategies to leverage topological
persistence with mixup in KD. In section IV, we present our
experimental results and analysis. In section VI, we discuss
our findings and conclusions.

[l. BACKGROUND
A. Mixup Augmentation

Mixup augmentation [28] is used commonly in deep-
learning techniques to alleviate issues of memorization and
sensitivity to adversarial examples. Two examples drawn at
random from training data are mixed by linear interpolation
[28]. Let the training data be D = {(1,y1), .., (Tn,Yn)}s
where 7 is the number of samples. Input data is z € X C R?
and its corresponding label is y € Y = {1,2,...,K}. The
sampling process for mixup can be written as follows:

i’lj(A) = )\Il + (1 - )\)Ij,

Ui (A) = Ayi + (1 = N)y;,
where A € [0,1] follows the distribution P, where A\ ~
Beta(a, ). A is to specify the extent of mixing. The hyper-
parameter « controls the strength of interpolation between
feature-target pairs. o generates strongly interpolated samples.

To train a function f, the following mixup loss function is
minimized:

Loia(f) = 75 D03 Ear, [Len(f (), 550, @

i=1 j=1

(D

where Lo is a standard cross-entropy loss function.

Many different variants of mixup have been studied [23],
[29], [30]. Intrinsically, these methods have similarities in that
they mix the input data (e.g. images) and labels proportionally
to extend the training distribution. The benefits of mixup with
time-series data were explored in previous studies [31]-[33].
In this study, we use the conventional mixup to explore the
effects on knowledge distillation [28] for time-series data.

B. Persistence Image

TDA has been applied in various fields [4], [34]-[36], which
can characterize the shape of raw data. One important tool
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in TDA is persistent homology, which provides a multiscale
description with topological features. When applied to point
clouds, these features are often described as cavities char-
acterized by points, triangles, and edges by filtration [8],
[37]. The extension to time-series data is via sub level-set
filtrations, where level-sets are tracked. The birth and death
times of topological features can be represented as a multiset
of points in a persistence diagram (PD). Since the number
and locations of the points in PDs vary depending on the
underlying data, it is difficult to use them directly in machine
learning pipelines. To project the features on the stable vector
representation, a persistence image can be used, mapping the
scatter points based on their persistence value (life time) [4].
Firstly, PD is mapped to an integrable function p : R —
R2, called a persistence surface (PS), which is defined as a
weighted sum of Gaussian functions. A PI can be created by
integrating PS on a grid box that is defined by discretization.
The values of PI represent the persistence points of the PD.
The example of PD and PI are shown in Fig. 1. Even though
TDA can provide additional information to the raw time-series
to improve performance, it is challenging to run the method
on a resource constrained devices, because extracting Pls by
TDA requires a large amount of time and memory. To solve
this problem, in this paper, we adopt knowledge distillation
that distills a single student utilizing the raw time-series data

alone as an input.
0 20 10 60 =
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Fig. 1: time-series data and its corresponding PD and PI.
Higher persistence in PD is represented with brighter color
in PL

C. Knowledge Distillation

Knowledge distillation trains a smaller (student) model from
a larger (teacher) model [38], [39]. The student model is
trained by minimizing the difference between its outputs and
soft labels, called relaxed knowledge, from a teacher, which
improves performance beyond using hard labels (labeled data)
alone. The loss function of standard knowledge distillation
[39] is:

L= (17T)£CE(O'(tS)7yg)+T£KD(fT7fS)7 (3)

where t is logits of a student model fg, fr is a teacher model,
Yg is a ground truth label, o(-) is a softmax function, Lx p(-)
is KD loss function, and 7 is hyper-parameter; 0 < 7 < 1. The
difference between the outputs of the student and the teacher
is mitigated by employing Kullback-Leibler divergence loss
function, which is described as follows:

T ¢ fr(zi),  fs(@i)

Lrp(fr,fs) =~ p KL(o( T ), ( T

i=1

), &)

where K L(-) measures Kullback-Leibler divergence loss, 7
is a hyper-parameter, temperature, to smooth the outputs. To
obtain the best performance, in this paper, we utilize a teacher
trained by early stopping the training process in KD [40].

Not only logits, but also features from intermediate layers
can be utilized to knowledge transfer, which is called feature-
based distillation [41]. Attention transfer (AT) has been widely
used, which uses attention maps extracted by a sum of squared
attention mapping function [42]. Tung et al. [43] extracts
similarities within a mini-batch of samples from a teacher and
a student, where those maps have to be matched in distillation
process. Even though various techniques have been utilized to
improve the performance, they typically address single-modal
issues with a single teacher.

Multiple teachers can be utilized to provide more and
diverse knowledge to a single student [3], [41], [44], [45].
Using a uni-modal data with different teachers, a student can
establish its own knowledge by integrating diverse knowledge
from the teachers [46]. However, in some cases, data samples
or labels used for training a teacher cannot be leveraged to
train or test a student [41]. Jeon er al. [3] utilize multiple
teachers to train a single student by transferring features from
both the persistence image and the raw time-series data. Even
though two teachers have different architectural designs and
use different types of inputs, their logit information can be
transferred with KD loss that can be written as:

Lxpm(fr., fro, fs) =nLkp(fr: fs)
+ (1 - W)EKD(fTbva)v

where 7 is a hyper-parameter to control the effects from
different teachers, and fr, and fr, are teacher models trained
with time-series data and PIs, respectively. Then, the total loss
function can be written as:

Lm - (1 - T)L"CE(O-(ts)vyg) +7—£KDm(leafT27fS)- (6)

For further improvement in KD, mixup augmentation meth-
ods have been widely studied. Specifically, mixup and KD
share a common thread in serving smoothness during the train-
ing process. To accommodate synergetic effects, the interest
in the interplay between mixup and KD grows, which has
been analyzed in many studies [14]-[18]. However, most of
the studies were conducted with image data only. It is still
required to be explored with time-series and multimodalities
using different representations. Based on these insights, we
investigate the effects of mixup in KD for time-series on
wearable sensor data by utilizing a single or multiple teachers.
Also, we present compatible or incompatible views through an
empirical analysis.

(&)

[1l. ANALYSIS STRATEGIES FOR MIXUP IN KD

To analyze the effect of mixup in persistence based KD, we
utilize different approaches that are explained in this section.

A. Leveraging Topological Persistence

1) Leveraging A Single Teacher: With the process of stan-
dard knowledge distillation, a single teacher trained with PIs
can be used to transfer knowledge to a student, as illustrated in
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Fig. 2: Strategies to leverage topological persistence in KD.
(a) utilizes a single teacher trained with PIs. (b) uses different
teachers trained with PIs and the raw time-series data, respec-
tively.

Fig. 2(a). PIs are generated by TDA from the raw time-series
data. PIs are 2D images, so the teacher model consists of a
2D kernel of CNNs. To train a student with time-series (1D)
data, 1D CNNs can be used. Logit of the teacher and student
is leveraged to transfer knowledge.

2) Leveraging Multiple Teachers: Multiple teachers can be
used to train a single student. For instance, two teachers,
trained with time-series and PIs, can transfer knowledge
simultaneously, as described in Fig. 2(b). The student utilizes
time-series alone as an input. In this way, the student can
obtain benefits from both of these different features, but it still
requires only time-series implementation at test time. Since
two teachers are trained with different modalities and have
different architectural designs, it is difficult to create a unified
model and knowledge gap making performance degradation
can be produced [41]. To mitigate this issue, we adopt an
annealing strategy that trains a student by initializing weight
values from a model learned from scratch [3].

B. Mixup Strategy in KD

We set different strategies to utilize mixup in KD, as
described in Fig. 3. Details are explained as follows.

o Mixup for learning from scratch: To investigate the
effects of mixup on time-series, we compare mixup- and
non-mixup trained models.

e Mixup in KD: To explore the connecting link between
mixup and KD, we train a student model with mixup and
different temperatures, using various methods in KD.

o Mixup-trained teacher and student: We apply mixup
not only to a student but also to teachers to figure out the
effects of the augmentation method in KD. With different
combinations of applying mixup, we investigate which
strategy is effective in KD.

o Distillation with different temperature and partial
mixup: To analyze the effects of smoothness from tem-
perature on mixup in KD, a student is trained with the
augmentation method and different temperature parame-
ters. In this way, we figure out how much temperature
impacts the performance of mixup in KD. Also, to ana-
lyze the smoothness of mixup, we utilize partial mixup
(PMU) that uses only a few mixup pairs in a batch, as
addressed in the previous study [15]. The method uses
small amounts of mixup pairs to control the strength of
smoothness, which alleviates excessive smoothness.

o Mixup for different teachers: Two teachers generate
different knowledge and effects for a student in dis-
tillation. To explore the effects of mixup for different
modalities, we apply different hyper-parameters to teach-
ers. The training objective for the student in KD with
multiple teachers and different mixup hyper-parameters
is as follows:

minE, o [
Exi~py, [M{(1 = 7)Lonia(fs) + 7LD (f1y, f5) H+ (7
Exonpy, [(1=M{(1 = 7)Lnia(fs) + TLx D (fr2, f5)}]

where A\; and Ao are to specify the extent of mixing,
whose o parameters are different.

In Table I, we provide the floating point operations per
second (FLOPs) with networks and processing time for an
epoch with batch size of 64 in training process for strategies
in Fig. 3. The processing time is measured on a desktop with
a 3.50 GHz CPU (Intel® Xeon(R) CPU E5-1650 v3), 48 GB
memory, and NVIDIA TITAN Xp (3840 NVIDIA® CUDA®
cores and 12 GB memory) graphic card. As explained in the
table, Strategy (e) takes the longest time and larger complexity
compared to other strategies. Through the training, all of
strategies distill the same sized single student even though
each strategy is different. In test-time, a single student model
is implemented alone, which corresponds to the Student.

More details of settings and experimental results for each
strategy are explained in section IV.

IV. EXPERIMENTS

In this section, we describe datasets and implementation
details. We utilize various strategies of KD and mixup to
investigate the effects on wearable sensor data analysis. We
analyze optimized solutions and describe ablations.

A. Dataset Description and Implementation Details

1) Dataset Description: We analyze the strategies with wear-
able sensor data on GENEActiv and PAMAP2 datasets. These
datasets consist with diverse window size and number of
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Fig. 3: Approaches for incorporating mixup in KD.

TABLE [: Details of efficiency for different training strategies
with mixup and KD, which are explained in Fig. 3. Teachers
are WRN16-3 and Student is WRN16-1.

Strategy GFLOPs PFocessing
Teacher Student | Time (sec)
(a) - 4.54
(b)
© 6.02 0.71 8.19
(d) 8.50
Strategy GFLOPs Pfocessin g
Teacher]l  Teacher2 | Student | Time (sec)
(e) 6.02 57.55 0.71 22.48

channels obtained from multiple sensors on different activities.
Thus, experiments on these datasets aid in showing various
evaluations under different conditions, which helps to explain
generalizability and applicability of methods.

GENEActiv. GENEActiv dataset [47] was collected by
GENEACctiv sensor, using waterproof, a light-weight and writ-
worn tri-axial accelerometer. The sampling frequency was 100
Hz. By referring to the previous study [3], [48], we select 14
daily activities for analysis, such as walking, standing, and
sitting. Each class has over 9 hundred samples with 500 time
steps of window size, corresponding to 5 seconds with full-
non-overlapping sliding windows. The number of subjects for
training and testing is 130 and 43, respectively, and the number
of samples is around 16k and 6k, respectively.

PAMAP2. PAMAP2 dataset [49] was recorded from heart
rate, temperature, accelerometers, gyroscopes, and magne-
tometers, which include 3 Colibri wireless inertial measure-
ment units (IMU). The sampling frequency was 100 Hz for
9 subjects. The recordings are downsampled to 33.3Hz by
referring to the previous study [48], [SO]. A window size for a
sample is 100 time steps or 3 seconds with 22 time steps for
segmenting the sequences, which allows semi-non-overlapping
sliding windows with 78% overlapping [49]. We use 12 daily
activities including lying, sitting, walking, etc. For evaluation

in experiments, we use leave-one-subject-out combinations.

2) Implementation Details: We use the Scikit-TDA python
library [51] and the Ripser package to produce PDs and
extract PIs [2]. For GENEActiv, the standard deviation for
the Gaussian kernel is set to 0.25 and the birth-time range of
PI is [-10, 10], respectively, as do the same in the previous
studies [2], [3]. For PAMAP2, the parameter for Gaussian
kernel is 0.015 and the range for PI is [-1, 1], respectively.
Each PI is generated from each channel and the values are
normalized by its maximum intensity value. The size of PI is
set to 64 x64. For training models, we set the total number of
epochs as 200, SGD with momentum of 0.9, a weight decay
of 1 x10~%, and batch size for 64. To train a model with time-
series data (1D data), 1D convolutional layers are utilized. The
initial learning rate is 0.05 that decreases by 0.2 at 10 epochs
and drops by 0.1 every [£] where e is the total number of
epochs. A model using image representation for Pls consists
of 2D convolutional layers. The initial learning rate is 0.1 that
drops by 0.5 at 10 epochs and by 0.2 at every 40 epochs.
We measure the performance with WideResNet (WRN) [52]
that is popularly utlized in the validation of KD [3], [40],
[48]. For default settings, we set 7, i, and 7 as 0.7, 0.7,
and 4 for GENEActiv, and 0.99, 0.3, and 4 for PAMAP2,
referring to the previous study [3], [48] and to consider best
performance. We run 3 times and report the averaged accuracy
and standard deviation. As a baseline, we implement standard
KD [39], attention transfer (AT) [53], and similarity-preserving
knowledge distillation (SP) [43], which utilize logit as well as
feature from intermediate layers for distillation. Parameters
for AT and SP are set as 1500 and 1000 for GENEActiv, and
3500 and 700 for PAMAP2, respectively. A simple knowledge
distillation (SimKD) [54] and DIST [55] leveraging intra- and
inter-class relations for knowledge transfer are also used as
baselines. Also, multi-teacher based approaches such as AVER
[46], EBKD [56], and CA-MKD [45], Base [3] are used for
baselines. Since two teachers are incorporated with different
dimensional layers, only logits are used for distillation of
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baselines. When mixup is applied, « is 0.1 for both datasets.

B. Preliminary: Effects of Topological Persistence in KD

In this section, as preliminaries, we conduct experiments
with a single and multiple teacher based distillation methods.
For multiple teacher based methods, we train models with
time-series as well as PIs by leveraging topological persis-
tence. Teachers and students are trained with the various KD
strategies explained in the previous section. Note, “TS” and
“Ann.” denote using time-series data to train a student model
and using two teachers in KD and an annealing strategy [3],
respectively. Teacher] and Teacher2 are teachers trained with
time-series and persistence images, respectively.

TABLE II: Accuracy (%) with various knowledge distillation

TABLE IV: Accuracy (%) with various knowledge distillation
methods on PAMAP2.

Teacherl Teacher2 Student TS PI TS+PI

(ID CNNs) (2D CNNs) (ID CNNs) [ KD | KD | Base | Ann.

“(’gg]ﬁllsl'l W(l;g]{f'l 85.96 | 85.04 | 85.91 | 86.09
. ’ . > 2.1 2.58 2.32 2.33
85.27) 86.93) £2.19)£2.58 | £232 1+

nglgifs Wlfl\él{f'3 86.50 | 86.68 | 86.18 | 87.12
(0.5M, (LM, WpN16-1 | 2221 | £2.19 | £237 | £2.26
85.80) 8723) 0 06M

W(lgl\]]if‘l W(%ljif‘l 82.99) [84.9285.08 | 85.54 | 85.89
. > . ’ 2.4 2.44 2.26 2.2
84.81) 87.45) £2:45 | £244| £2.26 | £2.26

W(lfl\llif'3 "2’;@33 86.26 | 85.39 | 86.04 | 86.33
. ’ : > 2.4 2. 2.34 2.
84.46) §7.88) +2.40 | £2.35 | £2.34 | £2.30

methods on GENEACctiv.

TABLE V: Accuracy (%) for related methods on PAMAP2.
For KD, teachers are WRN16-3 and students are WRN16-1.

Teacherl Teacher2 Student TS PI TS+PI

(ID CNNs) (2D CNNs) (1D CNNs) (KD | KD | Base | Ann.

“(’('f&llsl'l W(gl\;;/f" 69.71 | 67.83 | 69.09 | 70.15
: ’ N > +0.38 | +0.17 | +0.37 | £0.03
67.66) 58.64)

WISI;I;/?S w1?1\611{/?-3 69.50 | 68.79 | 69.24 | 70.71
(. > (1. > WRNI16-1 | £0.10 | £0.73 | £0.62 | £0.12
68.89) 59800 (0.06M

W(lgl\lli,f'l W(lgljl%/f'l 67.66) | 68.32|68.51|69.55|70.44

N > N > +0.63 | +0.01 | £0.41 | £+0.10
68.63) 59.45)
W(lfl\llifs ngﬁ” 68.01 | 68.46 | 69.42 | 69.97
N > N > +0.69 | +0.28 0.58 0.06
69.23) 59.69) 10381+

TABLE Ill: Accuracy (%) for related methods on GENEActiv
with 7 classes. For KD, teachers are WRN16-3 and students

Method Accuracy
Student 82.81+2.51
Chen and Xue [59] 83.06
Ha et al. [60] 73.79
Ha and Choi [61] 74.21
2 Catal et al. [62] 85.25
Kim et al. [63] 81.57
KD 86.38+2.25
AT 84.44+2.22
SP 84.89+2.10
AVER 86.00+2.45
= EBKD 85.62+2.37
& CA-MKD 85.02+2.64
= Base 86.18+2.37
Ann. 87.1242.26

are WRN16-1.

Window length

Method 1000 500
Student 89.29+£032  86.83£0.15
SVM [57] 86.29 85.86
Choi et al. [58] 89.43 87.86
» | KD 89.882£0.07 88.16+0.15
&= | AT 90.32+£0.09  87.60+0.22
SP 88.4740.19  87.69-+0.18
DIST 90.204+039  87.0540.31
SimKD 90.474032  88.1640.37
AVER 90.06+0.33  87.054+0.37
& | EBKD 89.8240.14  87.660.28
% | CA-MKD 90.134+034  88.0440.26
Ann. 90.714+0.15  88.2640.24

As described in Table II, for GENEActiv, Ann. using
multiple teachers shows the best in all cases. Among different

is important to improve performance. Specifically, training a
student from weights of learning from scratch helps to alleviate
the knowledge gap that makes it difficult to transfer knowledge
to a student from multiple teachers. These results show that
topological features implement time-series to improve the
performance.

TABLE VI: Accuracy (%) for different structure of teachers
on GENEActiv.

combinations, WRIN16-3 teachers distill a superior student.
To compare with previous studies, we tested a combination of
teachers (WRN16-3) and students (WRN16-1) on GENEActiv
utilizing different window length for 7 classes, where the
combination showed the best in past studies [3], [40], [48]. As
shown in Table III, Ann. outperforms previous methods. Also,
as summarized in Table IV and V, for PAMAP2, Ann. outper-
forms methods using a single teacher and previous methods.
WRN16-3 teachers for Ann. produce best performance. This
represent that considering coherent characteristics of a student

Architecture Difference
Method Depth Width
WRN WRN WRN WRN
Teacherl 16-1 28-1 28-1 28-3
(1ID CNNs) | (0.06M, (0.2M, | (0.1M, (1.1M,
67.66) 68.63) | 68.63)  69.23)
WRN WRN WRN WRN
Teacher2 28-1 16-1 28-3 28-1
(2D CNNs) (0.1M, 0.2M, | (3.3M, (0.4M,
59.45) 58.64) | 59.69) 59.45)
Student WRN16-1
(1D CNNs) (0.06M, 67.664-0.45)
Base 68.71 67.89 68.26 69.09
+0.36 +0.27 +0.13 +0.59
Ann. 69.95 70.34 70.28 69.95
+0.05 +0.14 +0.08 +0.07

Leveraging heterogeneous teachers. We conducted experi-
ments with heterogenous structure of teachers. As illustrated in
Fig. VI, one better teacher does not guarantee a better student,
which corroborates the previous studies [40]. Even though

Authorized licensed use limited to: Arizona State University. Downloaded on December 23,2024 at 22:54:02 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3517653

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017)

teachers have heterogeneous structures, they complement each
other to improve the performance, which is shown with better
performance than a model learned from scratch (Student).

C. Effect of Mixup in KD

In this section, we explore effects of mixup for learning
from scratch and KD, which provides smoothness in training
process. To analyze the interplay of mixup and KD, we utilize
response based KD methods, including Base and Ann., which
does not require to use additional weights and aids in more
prominently showing the effects of interplay with mixup.
Firstly, we train a model from scratch with mixup. Secondly,
we train a student in KD with mixup. Also, to see the effects
of smoothness by temperature in KD, we train students with
different temperatures.

741 mmm Scratch

20 W Scratch
o T2 s Mixup
X 88
; 70 ==
g > 86
S £ o
o
< % g8
64 80
62 78
WRN16-1 WRN16-3 WRN28-1 WRN28-3 WRN16-1 WRN16-3 WRN28-1 WRN28-3
Model Model
(a) GENEActiv (b) PAMAP2

Fig. 4: Results of various models trained from scratch with or
without mixup.

We trained various models from scratch with mixup, as
illustrated in Fig. 4. In all cases, models trained with mixup
show better performance. In Fig. 5, we show the results of
various models trained with KD and mixup. WRN16-1 is used
as a student. Mixup is applied to train a student in KD. In
overall cases, with mixup generates better results. However,
in some cases, the performance is worse than without mixup.
This implies that mixup affects differently in KD compared to
learning from scratch. Specifically, significant characteristics
of input data, such as peaky points within a sample, can be
softened because of blending different data for mixup, which
was similar to results of injecting smoothness as addressed in
previous study [48]. In all cases, Ann. shows better perfor-
mance when mixup is added. This represents that topological
features can complement time-series features to improve the
performance. In details, persistence image representation can
aid to preserve significant information, which generates syner-
getic effect with time-series features for classification. We also
trained models with different temperature hyper-parameters
that can generate a smoothness effect for knowledge transfer.
As shown in Fig. 6, when T=12, all cases show the best.
Therefore, temperature can significantly affect to performance
in KD.

We plot t-SNE with a WRN16-3 teacher and WRN16-1
student and measure the V-Score [64] of outputs from the
penultimate layers in Fig. 7. V-score is a metric to evaluate
clustering, implying that a higher value is better clustering.
For GENEACctiv, classes from O to 5 are walking or running
at different speeds. Class 7, 8, and 9 are activities related
to hand motions such as brushing teeth and driving a car.

== TS === Pl = Base Ann.
TS+M. === P[+M. mssm Base+M. Ann.+M.
= Scratch ==s= Scratch+M.

Accuracy (%)

WRN16-3 WRN28-1
Teacher

(a) GENEActiv

Accuracy (%)

WRN16-3 WRN28-1

Teacher
(b) PAMAP2

Fig. 5: Results of various models trained with KD and mixup.
TS and PI are results of students trained with KD. M. denotes
using mixup.

~
w
©
o

. = WRN16-3 == WRN16-3
o wen2gl | 88 WRN28-1
£ o &
> ! >
il B B
3 68 3 &
g, i: || | DR C b

s [ | 80

65 78

T=1 =12 T=20 =1 T=12 T=20
Temperature Temperature
(a) GENEActiv (b) PAMAP2

Fig. 6: Results of various models with different temperature
in KD.

Class 12 and 13 are walking up and down stairs, respectively.
When a student is trained with mixup, it generates a higher
V-Score, compared to Student that is trained from scratch and
results with conventional KD. Also, more distance between
classes can be observed, which is measured with the V-
Score and shown with the distance of the center point of
the classes, particularly the gap between class 7, 8, and 9. In
addition, some compacted points became more sparse, which
is illustrated with class 12. For temperature, a high value of
temperature provides more smoothness (soft knowledge) in
KD, which can increase V-Score. When 7 is 12, the result
shows the best, where the result is similar to the one of KD
with mixup. When 7T is 1, the result is worse than learning
from scratch. Thus, smoothness can affect the performance
of KD at large. Based on these results, we can observe that
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V-Score: 0.5884
(a) Student

(b) KD

V-Score: 0.6124
(c) KD with Mixup

V-Score: 0.5850
d7=1

V-Score: 0.6120
(e)T=12

V-Score: 0.6063

(Hh7=20

Fig. 7: t-SNE plots of output for various models on GENEActiv. A teacher is WRN16-3 and a student is WRN16-1, which
are trained with time-series data. “Student” is a model learned from scratch.

injecting smoothness plays a key role in KD. That is, both
mixup and temperature can significantly affect performance
in distillation with generating soft knowledge, which can
generate a synergistic effect to improve performance.

Augmentations in KD. Additionally, we conducted exper-
iments with different augmentation methods (cutout [65] and
cutmix [23]) in KD. The hyperparameter of cutout is 0.2.
As explained in Table VII, all augmentations show improved
results for learning from scratch. However, with KD, mixup
only achieves improvement while other augmentations show
degradation. This corroborates the benefits of mixup in KD,
explored in prior studies [14]-[18], [25]-[27].

TABLE VII: Accuracy (%) for different augmentations meth-
ods on GENEActiv. LS denotes learning from scratch.

Method Student Mixup Cutout Cutmix
LS 6766045 68(.(())%?%63 68(.?3)?%64 68(.17.(())1%94
(WRI;]?GI) 69.71:0.38 69('3211[%24 65('37 ,99jch563 65(37 .59j6ti)565
(WR%S—U 68.320.63 68(.(2)33%23 65(2 .3235581 66{§.§jfj44

D. Teacher-Student with Mixup

To explore the effect of mixup-trained teachers as well as
students, we set various combinations of using the augmenta-
tions in KD. Note, “T”, “S”, “mT” and “mS” denote a teacher
model, a student model, a mixup-trained teacher model, and
using mixup to train a student model. As explained in previous
sections, WRN16-3 teachers generated a superior student
compared to other combinations. On the other hand, WRN28-
1 model learned from scratch showed less improvement with

= (T, S) (mT,S) === (T, mS) == (mT, mS)
- Time Series - Persistence Image
714 71
2 704 & 70
z z
© 69 ® 69
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67 67
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WRN16-3 WRN28-1 WRN16-3 WRN28-1
Teacher Teacher
B Ann.
2 A 72
71 71
£ 70 & 70
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© 69 @ 69
3 3
3 68 3 681
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67 67
66
WRN16-3 WRN28-1 WRN16-3 WRN28-1
Teacher Teacher
(a) GENEActiv
Time Series Ann.
92 92
90 90
T 88 T 881
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S 84 5 841
8 82 S 82
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Fig. 8: Results of various approaches in KD, trained with
mixup. Brackets denote (Teacher, Student).

Authorized licensed use limited to: Arizona State University. Downloaded on December 23,2024 at 22:54:02 UTC from IEEE Xplore. Restrictions apply.
© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3517653

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

mixup than other capacity of models. For further analysis with
mixup in KD, we use WRN16-3 and WRN28-1 for teachers
and WRN16-1 for a student to consider different depth and
width combinations of teacher-student networks and different
effects on mixup in KD. As shown in Fig. 8, Ann. shows
the best among different approaches in KD. Students distilled
by using PI alone and Base show worse performance than the
one learned from scratch without using mixup. For Ann., when
teachers are trained without mixup and a student is trained with
mixup (T, mS), the student outperforms learning from scratch
and other combinations of teacher-student trained with/without
mixup. These results represent that reducing knowledge gap
with an annealing strategy (Ann.) is effective for applying
mixup in KD to train a student with multiple teachers. Also,
soft knowledge of topological persistence provided by mixup
indeed aid to train a student. In addition, this result corrobo-
rates the fact that the effects of mixup are similar to those of
time domain augmentation methods, such as Gaussian noise,
providing smoothness in KD, as analyzed in the previous study
[48].

E. Analysis of the Effects of Smoothness

1) Analysis of Temperature with Mixup-trained Student: In
previous sections, we observed that both temperature and
mixup inject smoothness into KD training process. To in-
vestigate the compatibility of smoothness with temperature
and mixup, we evaluate KD with time-series data (TS+KD)
and Ann. with different temperature parameters. The results
of GENEACctiv is illustrated in Fig. 9. For TS+KD, when 7T
is 1, with mixup improves the performance, implying that
injecting smoothness can aid for training a student in KD. For
both KD with time-series and Ann, in without mixup cases,
it shows the best when 7T is 4 for WRN16-3 teacher and T
is 12 for WRN16-3 teacher. With mixup, it shows the best
when 7 is 12 for WRN16-3 teacher and 7 is 4 for WRN28-
1 teacher, which are different from without mixup. In Fig.
10, for PAMAP2, KD with time-series data without mixup
performs the best when 7 is 12. However, other results show
their best when 7 is 4. For both datasets, some accuracy results
of KD with time-series and mixup are lower than those without
mixup. This represents that excessive smoothness can hinder
the training process in KD. For Ann. with mixup outperforms
without mixup in all cases. This implies that Ann. has better
compatibility for utilizing mixup in KD and can allow more
smoothness to improve performance than training with time-
series alone.

2) Partial Mixup: To control the effects of smoothness
on training procedures, we use PMU to alleviate excessive
smoothness, which can degrade performance. We utilize dif-
ferent amounts of mixup pairs such as 0%, 10%, 50%, and
100%, where 0% means mixup is not applied and 100%
denotes all samples of mixup pairs are used for training
(FMU). Mixup is applied when a student is trained. As
described in Table VIII, when teacher models are WRN16-
3, less amounts of mixup pairs can distill a better student.
When teacher models are WRN28-1, 50% of PMU shows
the best. In Table IX, for PAMAP2, FMU shows the best.
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Fig. 9: Results of various models with different temperature
and mixup in KD on GENEActiv. Mixup is applied when a
student is trained.
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Fig. 10: Results of various models with different temperature
and mixup in KD on PAMAP2. Mixup is applied when a
student is trained.

However, for WRN28-1, PMU with 10% of Ann. distills the
best student. These results show that fewer mixup pairs can
generate better performance. Also, if complexity of a dataset is
high, mixup pairs contributes more to improving performance.
On the other hand, KD with time-series data and Ann. have
different optimal proportions of mixup pairs. This may be
because Ann. uses both representations, including both time-
series with 1D data and topological representations with 2D
data, for training. Mixup influences different representations
differently, so utilizing two teachers can provide more diverse
relaxed knowledge for distillation, which is different from
using one single teacher.

F. Mixup for Different Teachers

Since two teachers can provide different effects on dis-
tillation, we use different hyper-parameters for mixup to
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TABLE VIII: Accuracy (%) with various mixup pair propor-
tions on GENEActiv.

PMU PMU

Teachers Method | No mixup 0.1 0.5 FMU
69.50 69.20 69.11 68.94

wrntes TPl soae 006 +027 s
Ann 70.71 7113  70.73  71.07

' +0.12 4014 £006  +0.01

6832 69.17 69.05 6884

WRN2S.1 TSHD | g6 036 4005 +023
Ann 70.44 70.75  70.82  70.68

' £010  £002  £0.05 £0.10

TABLE IX: Accuracy (%) with various mixup pair proportions
on PAMAP?2.

Teachers Method | No mixup P(I)VI ]U P(I)VISU FMU
86.50 86.75 86.05 87.34

WRN16.3 TSHRD | 01 400 4227 4203
: Ann 87.12 87.63 87.54  87.98

: 4226 4235 4234 221

84.92 85.42 8536  85.58

wrnos TP anas +230 a2as £226
Amn 85.89 86.69 8647 86.35

: 4226 4220 4229 4239

knowledge transfer from two teachers when a student is trained
in KD. We utilize Ann. that shows the best in most of the
cases presented in the previous sections. Note, o and ao
are hyper-parameters of mixup for Teacherl and Teacher2.
As summarized in Table X and XI, applying different mixup
hyper-parameters can distill a better student.

TABLE X: Accuracy (%) with various hyper-parameter pairs
of mixup for teachers on GENEActiv. Ann. is used for KD.

o o Teachers
WRN16-3 WRN28-1
0.1 0.1 70.724+0.06  70.88+0.04
0.1 0.15 | 70.93+0.11  70.7940.12
0.15 0.1 70.9940.03  70.8840.18
0.15 0.15 | 70.96+0.16  71.16+0.05
0.15 0.2 71.0740.14  71.01+£0.16
0.2 0.15 | 71.2240.12  71.004-0.07
0.2 0.2 71174022 70.93+0.21

TABLE Xl: Accuracy (%) with various hyper-parameter pairs
of mixup for teachers on PAMAP2. Ann. is used for KD.

o o Teachers
WRN16-3 WRN28-1
0.1 0.1 87.98+221  86.35+2.39
0.1 0.15 | 87.9942.29 86.7242.41
0.15 0.1 87.94+226  86.0042.43
0.15 0.15 | 87.674+2.21  86.7042.35

As depicted in Table XII and XIII, we evaluate with differ-
ent teachers having different architectural designs of depth and
width for networks. Mix. denotes applying mixup for training
a student. o of mixup is 0.1. When « is applied differently
for teachers (diff. o), (aq, as) is (0.15, 0.2) for GENEActiv

and (0.1, 0.15) for PAMAP2. In all cases, applying different
mixup hyper-parameters can distill a better student.

TABLE XII: Accuracy (%) with various knowledge distillation
methods and different hyper-parameter of mixup for teachers
on GENEActiv.

Teacherl Teacher2 Student £S+PI =
(ID CNNs) (2D CNNs) (1D CNNs) | Base | Ann. +1\£11f; Mix ?;'ff )
V:'g(l)\g]\f['l W(léljif'l 68.71 | 69.95 | 70.67 70.92
. ’ N ’ 0.36 0.05 0.05 0.24
67.66) 59.45) +036| + * *
W%I\Kf’l Wl;ﬁifs \&2(1)21(\)1;&1 68.26 | 70.28 | 70.74 70.86
(. > (3.3M, . +0.13 | +0.08 | £0.15 +0.13
68.63) 59.69) 67.66)
W(%I;;‘/(I)’I %2@@3 68.90 | 70.49 | 70.91 71.21
69.05) 56.60) £0.50 | £0.05 | £0.05 +0.06

TABLE XIlI: Accuracy (%) with various knowledge distillation
methods and different hyper-parameter of mixup for teachers
on PAMAP2.

Teacherl Teacher2 Student §S+PI X

(ID CNNs) (2D CNNs) (1D CNNs) | Base | Ann. +1\511$< M ?(;‘i‘ff )
V:lgoNsll\?fl V‘;‘;ﬁﬁ'l 85.78 | 85.33 | 86.47 87.09
: ’ . > +2.29 | +2.22 | £2.35 +2.16
85.27) 87.45)

WRN28-3  WRN28-1  WRNI6-1 | o o fo ool oo oo 47,80
(1.IM, (0.4M, O06M | 5 | o8 | 4217 +2.09
84.46) 87.45) 82.99)

W(%I;]ifs W(lgljif'l 85.48 | 85.82 | 86.80 87.29

iy > . ’ 2.37 2.26 2.23 2.20
85.80) 87.45) + + * *

To figure out if using different mixup hyper-parameters
can complement the partial mixup method, we apply different
proportions of mixup pairs for training a student with different
mixup hyper-parameters. In Table XIV, FMU shows the best
for both cases of teachers. With small proportions of mixup
pairs, a large degradation of performance is shown, where
the results are lower than training without mixup. When the
complexity of the dataset is low and the size of the model is
small, partial mixup can yield an adverse effect on training
a student, which may produce pairs of inputs that are not
expressive enough to learn. In Table XV, 50% of mixup pairs
show the best. These results imply that using the proper mixup
pair proportion for training a student is important to improve
their performance in KD. Also, considering the effects on
different relaxed knowledge of a mixup from two teachers
can generate a better student.

G. Analysis of Optimized Solution

1) Parametric Plots: A solution space comparison for two
models can give a valuable understanding of their behavior in
training or testing and how these models are related. One of
the useful tools for the analysis is the parametric plot that has
been widely studied [66]-[68].

In Fig. 11, we plot classification accuracy for with function
V(1 — k)zk + Kkzf) for k € [-2, 2], where 2 and z; are
different solutions. Teachers are WRN16-3 and students are
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TABLE XIV: Accuracy (%) with various hyper-parameter pairs
of mixup on GENEActiv. Ann. is used for KD.

o s Mixup Teachers
WRN16-3 WRN28-1
0.15 0.2 FMU 71.074+0.14  71.01+0.16
0.15 0.2  PMUGB0%) | 70.57+£0.17  70.4640.10
0.15 02 PMU(10%) | 70.5540.14  70.7340.24
0.2 0.15 FMU 71.22+0.12  71.00£0.07
0.2 015 PMUG0%) | 70.3740.05  70.42+0.03
02 015 PMUI0%) | 70.6440.04 70.384+0.23

TABLE XV: Accuracy (%) with various hyper-parameter pairs
of mixup on PAMAP2. Ann. is used for KD.

o o Mixu Teachers

1 2 P WRN16-3  WRN28-1
0.1 0.15 FMU 87.994229  86.7242.41
0.1 0.15 PMUGB0%) | 88.13+2.19  86.73+2.23
0.1 0.15 PMU(10%) 87.8842.29  86.68+2.26
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Fig. 11: Parametric plots with accuracy (%) for various pairs
of models on GENEActiv. Brackets denote solutions (2, z;).
x = 0 implies to z; and x = 1 to z;. “Student” is a model
learned from scratch.

WRN16-1, which produced the best overall performance in the
previous sections. In Fig. 11(a), when & is 0.5, the accuracy of
training and testing is lower than 30%, which represents that
the solution spaces of learning from scratch and KD with time-
series data are different, whereas the result in Fig. 11(b) shows
approximately 70% at x = 0.5. This implies that the solution
space of Ann. is similar to that of Student. As illustrated in
Fig. 11(c), it shows more flattened results. The result at around
+ = 1.0 shows a more gentle slope than the one at x = 0, which
indicates that using mixup to train a student in KD leads to
get benefits for failure prediction and mitigates reliable over-
fitting. When a mixup trained teacher is used, the student’s
solution space is similar to that of a non-mixup trained teacher.

Based on (c¢) and (d), we can observe that utilizing mixup
trained students (T, mS) leads to a better solution space that
is relatively less susceptible to perturbations than using mixup
trained teachers (mT, S).

2) Mixup Hyper-parameter «: To explore the performance
on « of mixup and its sensitivity, we train various models with
learning from scratch, KD, and Ann. using different settings of
«, which is described in Table XVI. The optimal « parameters
for models trained with time-series and topological persistence
are different. When « value is between the optimal one of TS
and PI (o € [0.1, 0.4]), Ann. performs better than training
with the other value (o = 0.05). Therefore, setting the proper
« leads to getting the best performance, and an intermediate
« can generate the best performance when different teachers
are applied.

TABLE XVI: Test accuracy (%) under different settings of «
on GENEActiv. WRN16-1 is used for learning from scratch
and a student.

Mixup o

Method  —55——1 — 02 04
= | g | 6799 6804 6928 6935
s +041 4063 £0.19 4052
S| pp | 5923 5908 5971 5947
+0.41 +0.77 +0.58 +0.19
Ts | 09027 6894  69.15  69.39
& +0.22 +0.15 +0.13 +0.21
© pp | 6731 68.08 6677  68.02
S +0.28 +0.44 40.66 +0.35
Z | apg | 7063 7072 7117 7135
’ +0.03 +0.06 +0.22 +0.14
Ts | 0895 6884 6874 69.16
= +0.44 +0.23 40.39 +0.55
Q| p | 6777 6806 6792 67.83
= 4050 4034 4049 4028
2 Ann, | 7081 70.88 7093 7076
’ +0.26 +0.04 +0.21 +0.19

V. DISCUSSION

We explored the interplay between mixup and KD on
diverse strategies with multimodal representations including
topological features for wearable sensor data analysis. To
achieve more improved synergistic effects, partial mixup can
be utilized, which prevents excessive smoothing effects that
generate degradation. As an extended research, these strategies
introduced in this paper are applicable to diverse computer
vision tasks [69], [70], such as image recognition, object
tracking and detection, and segmentation. For example, when
a model for image recognition is trained with our strategy,
the trained model can be utilized as a backbone model in a
framework for many different computer vision tasks. Also,
this study can be explored on vision based or different types
of sensor signal, using motion capture or ECG, based human
activity recognition. These can be more investigated as a future
work.

VI. CONCLUSION

In this paper, we explored the role of mixup in topological
based KD with different approaches. We confirmed that mixup
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and temperature in KD have a connecting link that imposes
smoothness for training process. Excessive smoothness pro-
duced inferior supervision that hinders training a student in
KD. We observed that utilizing topological features can com-
plement time-series to improve the end performance. Also, us-
ing topological persistence showed better compatibility when
using mixup in KD.

Further, two teachers transfer different statistical knowledge
so that their optimal parameters for augmentation in distillation
can be different, where teachers are trained with time-series
and topological features, respectively. We would like to extend
a framework using multiple teachers to find optimal hyper-
parameters of mixup and partial mixup adaptively, considering
different statistical characteristics of teachers. In addition, our
findings provide insights for developing further advanced dis-
tillation methods for various fields including wearable sensor
data analysis and computer vision tasks.
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