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Role of Mixup in Topological Persistence Based
Knowledge Distillation for Wearable Sensor Data

Eun Som Jeon, Hongjun Choi, Matthew P. Buman, and Pavan Turaga

Abstract— The analysis of wearable sensor data has enabled many suc-
cesses in several applications. To represent the high-sampling rate time-
series with sufficient detail, the use of topological data analysis (TDA)
has been considered, and it is found that TDA can complement other
time-series features. Nonetheless, due to the large time consumption
and high computational resource requirements of extracting topological
features through TDA, it is difficult to deploy topological knowledge in
machine learning and various applications. In order to tackle this prob-
lem, knowledge distillation (KD) can be adopted, which is a technique
facilitating model compression and transfer learning to generate a smaller
model by transferring knowledge from a larger network. By leveraging
multiple teachers in KD, both time-series and topological features can be
transferred, and finally, a superior student using only time-series data is
distilled. On the other hand, mixup has been popularly used as a robust
data augmentation technique to enhance model performance during training. Mixup and KD employ similar learning
strategies. In KD, the student model learns from the smoothed distribution generated by the teacher model, while mixup
creates smoothed labels by blending two labels. Hence, this common smoothness serves as the connecting link that
establishes a connection between these two methods. Even though it has been widely studied to understand the interplay
between mixup and KD, most of them are focused on image based analysis only, and it still remains to be understood
how mixup behaves in the context of KD for incorporating multimodal data, such as both time-series and topological
knowledge using wearable sensor data. In this paper, we analyze the role of mixup in KD with time-series as well as
topological persistence, employing multiple teachers. We present a comprehensive analysis of various methods in KD
and mixup, supported by empirical results on wearable sensor data. We observe that applying mixup to training a student
in KD improves performance. We suggest a general set of recommendations to obtain an enhanced student.

Index Terms— Knowledge distillation, wearable sensor data, time-series, topological persistence

I. INTRODUCTION

WEARABLE sensor data analysis has enabled many

application by utilizing the power of deep learning.

However, there are common challenges, such as inter- and

intra-person variability, sensor-level noises, dependency on

the sampling rate of the sensors, resulting in performance

degradation and difficulties for deployment with machine

learning. To mitigate these problems, topological data analysis

(TDA) methods have been utilized on wearable sensor data

analysis [1]–[3], which have resulted in many robust ways to

capture detailed time-series information, and can be increas-

ingly applied to many different areas. TDA methods allow

for capturing and preserving shape-related information and
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have the potential to make sensor data processing pipelines

more robust to different types of time-series corruptions [4]–

[6]. Topological features can be represented in many ways [7],

[8], a common approach is referred to as the persistence image

(PI) – which can aid in easily deploy topological persistence

in machine learning owing to it 2D image-like form. Prior

research has found that persistence images provide additional

information that complements the raw time-series data to

improve performance in time-series classification problems on

wearable sensor data [2], [3], [9]. Applications of topological

methods also have touched upon many areas particularly in

sensor data analysis [10]–[12].

Although TDA has shown great promise, leveraging topo-

logical features by TDA on edge-devices including wearable

devices, particularly implementing them on small form factor

and memory limited devices, is difficult because of large

computational resources and time consumption requirements

to extract the topological features [4], [13]. Also, previous

studies implement separate models in test-time simultaneously

to utilize topological as well as time-series data to improve

performance [2], which can increase the complexity of a

model. Based on this insight, new methods to create a unified

model for maximizing efficiency and integration of topological
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features is required.

To address these issues, knowledge distillation (KD) can be

adopted as a solution, which generates a small and superior

model by transferring knowledge from a large network model.

Furthermore, it enables to leverage multimodal data to distill

a robust single model. With KD, a teacher trained with

topological features can be utilized to provide more diverse

information to a student while complementing time-series

features. With multiple teachers trained with the raw time-

series and topological representations, a single and superior

student, using the time-series data alone, can be distilled [3].

In KD, the temperature hyperparameter plays a key role in

learning process, which controls the smoothness of distribution

and determines the difficulty level of the distillation process.

In this context, recently, many studies have delved into the

impact of mixup augmentation in KD [14]–[18]. Particularly,

for image analysis, Choi et al. [15] explored the interplay of

mixup with KD and revealed that smoothness serves as the

connecting link to understand the effect of mixup in KD. For

more details, in KD, the student learns from the smoothed

distribution provided by the teacher model, and this distribu-

tion is further smoothed by increasing the temperature value.

Similarly, mixup generates new smooth labels by blending

two given inputs and ground truth labels, which are then

further smoothed by strongly interpolated samples (e.g., a

high alpha value in the beta distribution). Thus, their behave

as a connecting link for promoting smoothness in learning

process, which can generate synergetic effects to distill a

robust lightweight model [15], [17].

There are different augmentation methods such as regular-

ization effect [19], model invariance [20], and feature learning

[21]. However, these techniques are more focus on alleviating

noises or data point issues in rotation, which are different

from mixup [22] blending multiple samples. Further, even if

other augmentations (e.g. cutmix [23] and adversarial training

[24]) are effective, mixup offers different benefits in much

lower computational overhead and provides solid foundations,

particularly in the context of knowledge distillation [25]–[27].

Even though the interplay between two techniques, mixup

and KD, is significantly crucial in performance improvement,

the majority of previous studies have primarily concentrated

on image-based analysis. To the best of our knowledge,

the impact of mixup and KD in the context of both time-

series and topological representations on wearable sensor data

remains unexplored. Furthermore, the behavior of mixup for

multiple teachers and different strategies in KD have not been

investigated.

In this paper, we study the behavior of mixup in KD

with multimodalities using both time-series and topological

representations for wearable sensor data analysis. We imple-

ment different KD approaches for utilizing time-series as well

as topological persistence to train a student. We investigate

whether the mixup method can enhance the performance

of topological persistence-based KD using various teachers.

Additionally, we compare the performance of using mixup in

KD to determine if leveraging both representations yields more

benefits than relying solely on time-series data.

The contributions of this paper are summarized below:

• We analyze the interplay between mixup and KD for

wearable sensor data, and compare different strategies

in KD with single-teacher and multiple-teacher based

distillation, leveraging time-series as well as topological

persistence.

• We study the effects of mixup on training both teacher

and student models. We aim to identify which training

strategy for utilizing mixup in KD provides the most

benefit in the activity classification task and explore

whether the effects of mixup are comparable to those

of other time domain augmentation methods in KD.

• Through the analysis of multiple strategies for employ-

ing mixup with multiple teachers, we propose improved

learning approaches by regulating smoothness through

temperature and the number of mixup pairs.

The rest of the paper is organized as follows. In section II,

we describe mixup and KD techniques with persistence image.

In section III, we explain strategies to leverage topological

persistence with mixup in KD. In section IV, we present our

experimental results and analysis. In section VI, we discuss

our findings and conclusions.

II. BACKGROUND

A. Mixup Augmentation

Mixup augmentation [28] is used commonly in deep-

learning techniques to alleviate issues of memorization and

sensitivity to adversarial examples. Two examples drawn at

random from training data are mixed by linear interpolation

[28]. Let the training data be D = {(x1, y1), ..., (xn, yn)},

where n is the number of samples. Input data is x ∈ X ⊆ R
d

and its corresponding label is y ∈ Y = {1, 2, ...,K}. The

sampling process for mixup can be written as follows:

x̃ij(λ) = λxi + (1− λ)xj ,

ỹij(λ) = λyi + (1− λ)yj ,
(1)

where λ ∈ [0, 1] follows the distribution Pλ where λ ∼
Beta(α, α). λ is to specify the extent of mixing. The hyper-

parameter α controls the strength of interpolation between

feature-target pairs. α generates strongly interpolated samples.

To train a function f , the following mixup loss function is

minimized:

Lmix(f) =
1

n2

n
∑

i=1

n
∑

j=1

Eλ∼Pλ
[LCE(f(x̃ij(λ)), ỹij(λ))], (2)

where LCE is a standard cross-entropy loss function.

Many different variants of mixup have been studied [23],

[29], [30]. Intrinsically, these methods have similarities in that

they mix the input data (e.g. images) and labels proportionally

to extend the training distribution. The benefits of mixup with

time-series data were explored in previous studies [31]–[33].

In this study, we use the conventional mixup to explore the

effects on knowledge distillation [28] for time-series data.

B. Persistence Image

TDA has been applied in various fields [4], [34]–[36], which

can characterize the shape of raw data. One important tool
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in TDA is persistent homology, which provides a multiscale

description with topological features. When applied to point

clouds, these features are often described as cavities char-

acterized by points, triangles, and edges by filtration [8],

[37]. The extension to time-series data is via sub level-set

filtrations, where level-sets are tracked. The birth and death

times of topological features can be represented as a multiset

of points in a persistence diagram (PD). Since the number

and locations of the points in PDs vary depending on the

underlying data, it is difficult to use them directly in machine

learning pipelines. To project the features on the stable vector

representation, a persistence image can be used, mapping the

scatter points based on their persistence value (life time) [4].

Firstly, PD is mapped to an integrable function ρ : R →
R

2, called a persistence surface (PS), which is defined as a

weighted sum of Gaussian functions. A PI can be created by

integrating PS on a grid box that is defined by discretization.

The values of PI represent the persistence points of the PD.

The example of PD and PI are shown in Fig. 1. Even though

TDA can provide additional information to the raw time-series

to improve performance, it is challenging to run the method

on a resource constrained devices, because extracting PIs by

TDA requires a large amount of time and memory. To solve

this problem, in this paper, we adopt knowledge distillation

that distills a single student utilizing the raw time-series data

alone as an input.

Fig. 1: time-series data and its corresponding PD and PI.

Higher persistence in PD is represented with brighter color

in PI.

C. Knowledge Distillation

Knowledge distillation trains a smaller (student) model from

a larger (teacher) model [38], [39]. The student model is

trained by minimizing the difference between its outputs and

soft labels, called relaxed knowledge, from a teacher, which

improves performance beyond using hard labels (labeled data)

alone. The loss function of standard knowledge distillation

[39] is:

L = (1− τ)LCE(σ(ts), yg) + τLKD(fT , fS), (3)

where ts is logits of a student model fS , fT is a teacher model,

yg is a ground truth label, σ(·) is a softmax function, LKD(·)
is KD loss function, and τ is hyper-parameter; 0 < τ < 1. The

difference between the outputs of the student and the teacher

is mitigated by employing Kullback-Leibler divergence loss

function, which is described as follows:

LKD(fT , fS) =
T 2

n

n
∑

i=1

KL(σ(
fT (xi)

T
), σ(

fS(xi)

T
)), (4)

where KL(·) measures Kullback-Leibler divergence loss, T
is a hyper-parameter, temperature, to smooth the outputs. To

obtain the best performance, in this paper, we utilize a teacher

trained by early stopping the training process in KD [40].

Not only logits, but also features from intermediate layers

can be utilized to knowledge transfer, which is called feature-

based distillation [41]. Attention transfer (AT) has been widely

used, which uses attention maps extracted by a sum of squared

attention mapping function [42]. Tung et al. [43] extracts

similarities within a mini-batch of samples from a teacher and

a student, where those maps have to be matched in distillation

process. Even though various techniques have been utilized to

improve the performance, they typically address single-modal

issues with a single teacher.

Multiple teachers can be utilized to provide more and

diverse knowledge to a single student [3], [41], [44], [45].

Using a uni-modal data with different teachers, a student can

establish its own knowledge by integrating diverse knowledge

from the teachers [46]. However, in some cases, data samples

or labels used for training a teacher cannot be leveraged to

train or test a student [41]. Jeon et al. [3] utilize multiple

teachers to train a single student by transferring features from

both the persistence image and the raw time-series data. Even

though two teachers have different architectural designs and

use different types of inputs, their logit information can be

transferred with KD loss that can be written as:

LKDm(fT1
, fT2

, fS) = ηLKD(fT1
, fS)

+ (1− η)LKD(fT2
, fS),

(5)

where η is a hyper-parameter to control the effects from

different teachers, and fT1
and fT2

are teacher models trained

with time-series data and PIs, respectively. Then, the total loss

function can be written as:

Lm = (1− τ)LCE(σ(ts), yg) + τLKDm(fT1
, fT2

, fS). (6)

For further improvement in KD, mixup augmentation meth-

ods have been widely studied. Specifically, mixup and KD

share a common thread in serving smoothness during the train-

ing process. To accommodate synergetic effects, the interest

in the interplay between mixup and KD grows, which has

been analyzed in many studies [14]–[18]. However, most of

the studies were conducted with image data only. It is still

required to be explored with time-series and multimodalities

using different representations. Based on these insights, we

investigate the effects of mixup in KD for time-series on

wearable sensor data by utilizing a single or multiple teachers.

Also, we present compatible or incompatible views through an

empirical analysis.

III. ANALYSIS STRATEGIES FOR MIXUP IN KD

To analyze the effect of mixup in persistence based KD, we

utilize different approaches that are explained in this section.

A. Leveraging Topological Persistence

1) Leveraging A Single Teacher: With the process of stan-

dard knowledge distillation, a single teacher trained with PIs

can be used to transfer knowledge to a student, as illustrated in
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Fig. 2: Strategies to leverage topological persistence in KD.

(a) utilizes a single teacher trained with PIs. (b) uses different

teachers trained with PIs and the raw time-series data, respec-

tively.

Fig. 2(a). PIs are generated by TDA from the raw time-series

data. PIs are 2D images, so the teacher model consists of a

2D kernel of CNNs. To train a student with time-series (1D)

data, 1D CNNs can be used. Logit of the teacher and student

is leveraged to transfer knowledge.

2) Leveraging Multiple Teachers: Multiple teachers can be

used to train a single student. For instance, two teachers,

trained with time-series and PIs, can transfer knowledge

simultaneously, as described in Fig. 2(b). The student utilizes

time-series alone as an input. In this way, the student can

obtain benefits from both of these different features, but it still

requires only time-series implementation at test time. Since

two teachers are trained with different modalities and have

different architectural designs, it is difficult to create a unified

model and knowledge gap making performance degradation

can be produced [41]. To mitigate this issue, we adopt an

annealing strategy that trains a student by initializing weight

values from a model learned from scratch [3].

B. Mixup Strategy in KD

We set different strategies to utilize mixup in KD, as

described in Fig. 3. Details are explained as follows.

• Mixup for learning from scratch: To investigate the

effects of mixup on time-series, we compare mixup- and

non-mixup trained models.

• Mixup in KD: To explore the connecting link between

mixup and KD, we train a student model with mixup and

different temperatures, using various methods in KD.

• Mixup-trained teacher and student: We apply mixup

not only to a student but also to teachers to figure out the

effects of the augmentation method in KD. With different

combinations of applying mixup, we investigate which

strategy is effective in KD.

• Distillation with different temperature and partial

mixup: To analyze the effects of smoothness from tem-

perature on mixup in KD, a student is trained with the

augmentation method and different temperature parame-

ters. In this way, we figure out how much temperature

impacts the performance of mixup in KD. Also, to ana-

lyze the smoothness of mixup, we utilize partial mixup

(PMU) that uses only a few mixup pairs in a batch, as

addressed in the previous study [15]. The method uses

small amounts of mixup pairs to control the strength of

smoothness, which alleviates excessive smoothness.

• Mixup for different teachers: Two teachers generate

different knowledge and effects for a student in dis-

tillation. To explore the effects of mixup for different

modalities, we apply different hyper-parameters to teach-

ers. The training objective for the student in KD with

multiple teachers and different mixup hyper-parameters

is as follows:

minE(x,y)∼D [

Eλ1∼Pλ1
[η{(1− τ)Lmix(fS) + τLKD(fT1

, fS)}]+

Eλ2∼Pλ2
[(1− η){(1− τ)Lmix(fS) + τLKD(fT2

, fS)}]
]

,

(7)

where λ1 and λ2 are to specify the extent of mixing,

whose α parameters are different.

In Table I, we provide the floating point operations per

second (FLOPs) with networks and processing time for an

epoch with batch size of 64 in training process for strategies

in Fig. 3. The processing time is measured on a desktop with

a 3.50 GHz CPU (Intel® Xeon(R) CPU E5-1650 v3), 48 GB

memory, and NVIDIA TITAN Xp (3840 NVIDIA® CUDA®

cores and 12 GB memory) graphic card. As explained in the

table, Strategy (e) takes the longest time and larger complexity

compared to other strategies. Through the training, all of

strategies distill the same sized single student even though

each strategy is different. In test-time, a single student model

is implemented alone, which corresponds to the Student.

More details of settings and experimental results for each

strategy are explained in section IV.

IV. EXPERIMENTS

In this section, we describe datasets and implementation

details. We utilize various strategies of KD and mixup to

investigate the effects on wearable sensor data analysis. We

analyze optimized solutions and describe ablations.

A. Dataset Description and Implementation Details

1) Dataset Description: We analyze the strategies with wear-

able sensor data on GENEActiv and PAMAP2 datasets. These

datasets consist with diverse window size and number of
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Fig. 3: Approaches for incorporating mixup in KD.

TABLE I: Details of efficiency for different training strategies

with mixup and KD, which are explained in Fig. 3. Teachers

are WRN16-3 and Student is WRN16-1.

Strategy
GFLOPs Processing

Teacher Student Time (sec)

(a) –

0.71

4.54
(b)

6.02
8.19

(c)
(d) 8.50

Strategy
GFLOPs Processing

Teacher1 Teacher2 Student Time (sec)

(e) 6.02 57.55 0.71 22.48

channels obtained from multiple sensors on different activities.

Thus, experiments on these datasets aid in showing various

evaluations under different conditions, which helps to explain

generalizability and applicability of methods.

GENEActiv. GENEActiv dataset [47] was collected by

GENEActiv sensor, using waterproof, a light-weight and writ-

worn tri-axial accelerometer. The sampling frequency was 100

Hz. By referring to the previous study [3], [48], we select 14

daily activities for analysis, such as walking, standing, and

sitting. Each class has over 9 hundred samples with 500 time

steps of window size, corresponding to 5 seconds with full-

non-overlapping sliding windows. The number of subjects for

training and testing is 130 and 43, respectively, and the number

of samples is around 16k and 6k, respectively.

PAMAP2. PAMAP2 dataset [49] was recorded from heart

rate, temperature, accelerometers, gyroscopes, and magne-

tometers, which include 3 Colibri wireless inertial measure-

ment units (IMU). The sampling frequency was 100 Hz for

9 subjects. The recordings are downsampled to 33.3Hz by

referring to the previous study [48], [50]. A window size for a

sample is 100 time steps or 3 seconds with 22 time steps for

segmenting the sequences, which allows semi-non-overlapping

sliding windows with 78% overlapping [49]. We use 12 daily

activities including lying, sitting, walking, etc. For evaluation

in experiments, we use leave-one-subject-out combinations.

2) Implementation Details: We use the Scikit-TDA python

library [51] and the Ripser package to produce PDs and

extract PIs [2]. For GENEActiv, the standard deviation for

the Gaussian kernel is set to 0.25 and the birth-time range of

PI is [-10, 10], respectively, as do the same in the previous

studies [2], [3]. For PAMAP2, the parameter for Gaussian

kernel is 0.015 and the range for PI is [-1, 1], respectively.

Each PI is generated from each channel and the values are

normalized by its maximum intensity value. The size of PI is

set to 64×64. For training models, we set the total number of

epochs as 200, SGD with momentum of 0.9, a weight decay

of 1×10−4, and batch size for 64. To train a model with time-

series data (1D data), 1D convolutional layers are utilized. The

initial learning rate is 0.05 that decreases by 0.2 at 10 epochs

and drops by 0.1 every [ e3 ] where e is the total number of

epochs. A model using image representation for PIs consists

of 2D convolutional layers. The initial learning rate is 0.1 that

drops by 0.5 at 10 epochs and by 0.2 at every 40 epochs.

We measure the performance with WideResNet (WRN) [52]

that is popularly utlized in the validation of KD [3], [40],

[48]. For default settings, we set τ , η, and T as 0.7, 0.7,

and 4 for GENEActiv, and 0.99, 0.3, and 4 for PAMAP2,

referring to the previous study [3], [48] and to consider best

performance. We run 3 times and report the averaged accuracy

and standard deviation. As a baseline, we implement standard

KD [39], attention transfer (AT) [53], and similarity-preserving

knowledge distillation (SP) [43], which utilize logit as well as

feature from intermediate layers for distillation. Parameters

for AT and SP are set as 1500 and 1000 for GENEActiv, and

3500 and 700 for PAMAP2, respectively. A simple knowledge

distillation (SimKD) [54] and DIST [55] leveraging intra- and

inter-class relations for knowledge transfer are also used as

baselines. Also, multi-teacher based approaches such as AVER

[46], EBKD [56], and CA-MKD [45], Base [3] are used for

baselines. Since two teachers are incorporated with different

dimensional layers, only logits are used for distillation of
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baselines. When mixup is applied, α is 0.1 for both datasets.

B. Preliminary: Effects of Topological Persistence in KD

In this section, as preliminaries, we conduct experiments

with a single and multiple teacher based distillation methods.

For multiple teacher based methods, we train models with

time-series as well as PIs by leveraging topological persis-

tence. Teachers and students are trained with the various KD

strategies explained in the previous section. Note, “TS” and

“Ann.” denote using time-series data to train a student model

and using two teachers in KD and an annealing strategy [3],

respectively. Teacher1 and Teacher2 are teachers trained with

time-series and persistence images, respectively.

TABLE II: Accuracy (%) with various knowledge distillation

methods on GENEActiv.

Teacher1
(1D CNNs)

Teacher2
(2D CNNs)

Student
(1D CNNs)

TS PI TS+PI
KD KD Base Ann.

WRN16-1 WRN16-1

WRN16-1
(0.06M

67.66)

69.71
±0.38

67.83
±0.17

69.09
±0.37

70.15
±0.03

(0.06M, (0.2M,
67.66) 58.64)

WRN16-3 WRN16-3
69.50
±0.10

68.79
±0.73

69.24
±0.62

70.71
±0.12

(0.5M, (1.6M,
68.89) 59.80)

WRN28-1 WRN28-1
68.32
±0.63

68.51
±0.01

69.55
±0.41

70.44
±0.10

(0.1M, (0.4M,
68.63) 59.45)

WRN28-3 WRN28-3
68.01
±0.69

68.46
±0.28

69.42
±0.58

69.97
±0.06

(1.1M, (3.3M,
69.23) 59.69)

TABLE III: Accuracy (%) for related methods on GENEActiv

with 7 classes. For KD, teachers are WRN16-3 and students

are WRN16-1.

Method
Window length

1000 500

T
S

Student 89.29±0.32 86.83±0.15

SVM [57] 86.29 85.86
Choi et al. [58] 89.43 87.86
KD 89.88±0.07 88.16±0.15

AT 90.32±0.09 87.60±0.22

SP 88.47±0.19 87.69±0.18

DIST 90.20±0.39 87.05±0.31

SimKD 90.47±0.32 88.16±0.37

T
S

+
P

I

AVER 90.06±0.33 87.05±0.37

EBKD 89.82±0.14 87.66±0.28

CA-MKD 90.13±0.34 88.04±0.26

Ann. 90.71±0.15 88.26±0.24

As described in Table II, for GENEActiv, Ann. using

multiple teachers shows the best in all cases. Among different

combinations, WRN16-3 teachers distill a superior student.

To compare with previous studies, we tested a combination of

teachers (WRN16-3) and students (WRN16-1) on GENEActiv

utilizing different window length for 7 classes, where the

combination showed the best in past studies [3], [40], [48]. As

shown in Table III, Ann. outperforms previous methods. Also,

as summarized in Table IV and V, for PAMAP2, Ann. outper-

forms methods using a single teacher and previous methods.

WRN16-3 teachers for Ann. produce best performance. This

represent that considering coherent characteristics of a student

TABLE IV: Accuracy (%) with various knowledge distillation

methods on PAMAP2.

Teacher1
(1D CNNs)

Teacher2
(2D CNNs)

Student
(1D CNNs)

TS PI TS+PI
KD KD Base Ann.

WRN16-1 WRN16-1

WRN16-1
(0.06M,

82.99)

85.96
±2.19

85.04
±2.58

85.91
±2.32

86.09
±2.33

(0.06M, (0.2M,
85.27) 86.93)

WRN16-3 WRN16-3
86.50
±2.21

86.68
±2.19

86.18
±2.37

87.12
±2.26

(0.5M, (1.6M,
85.80) 87.23)

WRN28-1 WRN28-1
84.92
±2.45

85.08
±2.44

85.54
±2.26

85.89
±2.26

(0.1M, (0.4M,
84.81) 87.45)

WRN28-3 WRN28-3
86.26
±2.40

85.39
±2.35

86.04
±2.34

86.33
±2.30

(1.1M, (3.3M,
84.46) 87.88)

TABLE V: Accuracy (%) for related methods on PAMAP2.

For KD, teachers are WRN16-3 and students are WRN16-1.

Method Accuracy

T
S

Student 82.81±2.51

Chen and Xue [59] 83.06
Ha et al. [60] 73.79
Ha and Choi [61] 74.21
Catal et al. [62] 85.25
Kim et al. [63] 81.57
KD 86.38±2.25

AT 84.44±2.22

SP 84.89±2.10

T
S

+
P

I

AVER 86.00±2.45

EBKD 85.62±2.37

CA-MKD 85.02±2.64

Base 86.18±2.37

Ann. 87.12±2.26

is important to improve performance. Specifically, training a

student from weights of learning from scratch helps to alleviate

the knowledge gap that makes it difficult to transfer knowledge

to a student from multiple teachers. These results show that

topological features implement time-series to improve the

performance.

TABLE VI: Accuracy (%) for different structure of teachers

on GENEActiv.

Method
Architecture Difference

Depth Width

WRN WRN WRN WRN
Teacher1 16-1 28-1 28-1 28-3

(1D CNNs) (0.06M, (0.2M, (0.1M, (1.1M,
67.66) 68.63) 68.63) 69.23)

WRN WRN WRN WRN
Teacher2 28-1 16-1 28-3 28-1

(2D CNNs) (0.1M, (0.2M, (3.3M, (0.4M,
59.45) 58.64) 59.69) 59.45)

Student WRN16-1
(1D CNNs) (0.06M, 67.66±0.45)

Base
68.71 67.89 68.26 69.09
±0.36 ±0.27 ±0.13 ±0.59

Ann.
69.95 70.34 70.28 69.95
±0.05 ±0.14 ±0.08 ±0.07

Leveraging heterogeneous teachers. We conducted experi-

ments with heterogenous structure of teachers. As illustrated in

Fig. VI, one better teacher does not guarantee a better student,

which corroborates the previous studies [40]. Even though
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teachers have heterogeneous structures, they complement each

other to improve the performance, which is shown with better

performance than a model learned from scratch (Student).

C. Effect of Mixup in KD

In this section, we explore effects of mixup for learning

from scratch and KD, which provides smoothness in training

process. To analyze the interplay of mixup and KD, we utilize

response based KD methods, including Base and Ann., which

does not require to use additional weights and aids in more

prominently showing the effects of interplay with mixup.

Firstly, we train a model from scratch with mixup. Secondly,

we train a student in KD with mixup. Also, to see the effects

of smoothness by temperature in KD, we train students with

different temperatures.

Fig. 4: Results of various models trained from scratch with or

without mixup.

We trained various models from scratch with mixup, as

illustrated in Fig. 4. In all cases, models trained with mixup

show better performance. In Fig. 5, we show the results of

various models trained with KD and mixup. WRN16-1 is used

as a student. Mixup is applied to train a student in KD. In

overall cases, with mixup generates better results. However,

in some cases, the performance is worse than without mixup.

This implies that mixup affects differently in KD compared to

learning from scratch. Specifically, significant characteristics

of input data, such as peaky points within a sample, can be

softened because of blending different data for mixup, which

was similar to results of injecting smoothness as addressed in

previous study [48]. In all cases, Ann. shows better perfor-

mance when mixup is added. This represents that topological

features can complement time-series features to improve the

performance. In details, persistence image representation can

aid to preserve significant information, which generates syner-

getic effect with time-series features for classification. We also

trained models with different temperature hyper-parameters

that can generate a smoothness effect for knowledge transfer.

As shown in Fig. 6, when T =12, all cases show the best.

Therefore, temperature can significantly affect to performance

in KD.

We plot t-SNE with a WRN16-3 teacher and WRN16-1

student and measure the V-Score [64] of outputs from the

penultimate layers in Fig. 7. V-score is a metric to evaluate

clustering, implying that a higher value is better clustering.

For GENEActiv, classes from 0 to 5 are walking or running

at different speeds. Class 7, 8, and 9 are activities related

to hand motions such as brushing teeth and driving a car.

Fig. 5: Results of various models trained with KD and mixup.

TS and PI are results of students trained with KD. M. denotes

using mixup.

Fig. 6: Results of various models with different temperature

in KD.

Class 12 and 13 are walking up and down stairs, respectively.

When a student is trained with mixup, it generates a higher

V-Score, compared to Student that is trained from scratch and

results with conventional KD. Also, more distance between

classes can be observed, which is measured with the V-

Score and shown with the distance of the center point of

the classes, particularly the gap between class 7, 8, and 9. In

addition, some compacted points became more sparse, which

is illustrated with class 12. For temperature, a high value of

temperature provides more smoothness (soft knowledge) in

KD, which can increase V-Score. When T is 12, the result

shows the best, where the result is similar to the one of KD

with mixup. When T is 1, the result is worse than learning

from scratch. Thus, smoothness can affect the performance

of KD at large. Based on these results, we can observe that

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3517653

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on December 23,2024 at 22:54:02 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 7: t-SNE plots of output for various models on GENEActiv. A teacher is WRN16-3 and a student is WRN16-1, which

are trained with time-series data. “Student” is a model learned from scratch.

injecting smoothness plays a key role in KD. That is, both

mixup and temperature can significantly affect performance

in distillation with generating soft knowledge, which can

generate a synergistic effect to improve performance.

Augmentations in KD. Additionally, we conducted exper-

iments with different augmentation methods (cutout [65] and

cutmix [23]) in KD. The hyperparameter of cutout is 0.2.

As explained in Table VII, all augmentations show improved

results for learning from scratch. However, with KD, mixup

only achieves improvement while other augmentations show

degradation. This corroborates the benefits of mixup in KD,

explored in prior studies [14]–[18], [25]–[27].

TABLE VII: Accuracy (%) for different augmentations meth-

ods on GENEActiv. LS denotes learning from scratch.

Method Student Mixup Cutout Cutmix

LS 67.66±0.45
68.04±0.63 68.67±0.64 68.70±0.94

(0.38↑) (1.01↑) (1.04↑)
KD

69.71±0.38
69.82±0.24 65.79±0.63 65.75±0.65

(WRN16-1) (0.11↑) (3.92↓) (3.96↓)
KD

68.32±0.63
68.84±0.23 65.03±0.81 66.18±0.44

(WRN28-1) (0.52↑) (3.29↓) (2.14↓)

D. Teacher-Student with Mixup

To explore the effect of mixup-trained teachers as well as

students, we set various combinations of using the augmenta-

tions in KD. Note, “T”, “S”, “mT” and “mS” denote a teacher

model, a student model, a mixup-trained teacher model, and

using mixup to train a student model. As explained in previous

sections, WRN16-3 teachers generated a superior student

compared to other combinations. On the other hand, WRN28-

1 model learned from scratch showed less improvement with

Fig. 8: Results of various approaches in KD, trained with

mixup. Brackets denote (Teacher, Student).
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mixup than other capacity of models. For further analysis with

mixup in KD, we use WRN16-3 and WRN28-1 for teachers

and WRN16-1 for a student to consider different depth and

width combinations of teacher-student networks and different

effects on mixup in KD. As shown in Fig. 8, Ann. shows

the best among different approaches in KD. Students distilled

by using PI alone and Base show worse performance than the

one learned from scratch without using mixup. For Ann., when

teachers are trained without mixup and a student is trained with

mixup (T, mS), the student outperforms learning from scratch

and other combinations of teacher-student trained with/without

mixup. These results represent that reducing knowledge gap

with an annealing strategy (Ann.) is effective for applying

mixup in KD to train a student with multiple teachers. Also,

soft knowledge of topological persistence provided by mixup

indeed aid to train a student. In addition, this result corrobo-

rates the fact that the effects of mixup are similar to those of

time domain augmentation methods, such as Gaussian noise,

providing smoothness in KD, as analyzed in the previous study

[48].

E. Analysis of the Effects of Smoothness

1) Analysis of Temperature with Mixup-trained Student: In

previous sections, we observed that both temperature and

mixup inject smoothness into KD training process. To in-

vestigate the compatibility of smoothness with temperature

and mixup, we evaluate KD with time-series data (TS+KD)

and Ann. with different temperature parameters. The results

of GENEActiv is illustrated in Fig. 9. For TS+KD, when T
is 1, with mixup improves the performance, implying that

injecting smoothness can aid for training a student in KD. For

both KD with time-series and Ann, in without mixup cases,

it shows the best when T is 4 for WRN16-3 teacher and T
is 12 for WRN16-3 teacher. With mixup, it shows the best

when T is 12 for WRN16-3 teacher and T is 4 for WRN28-

1 teacher, which are different from without mixup. In Fig.

10, for PAMAP2, KD with time-series data without mixup

performs the best when T is 12. However, other results show

their best when T is 4. For both datasets, some accuracy results

of KD with time-series and mixup are lower than those without

mixup. This represents that excessive smoothness can hinder

the training process in KD. For Ann. with mixup outperforms

without mixup in all cases. This implies that Ann. has better

compatibility for utilizing mixup in KD and can allow more

smoothness to improve performance than training with time-

series alone.

2) Partial Mixup: To control the effects of smoothness

on training procedures, we use PMU to alleviate excessive

smoothness, which can degrade performance. We utilize dif-

ferent amounts of mixup pairs such as 0%, 10%, 50%, and

100%, where 0% means mixup is not applied and 100%
denotes all samples of mixup pairs are used for training

(FMU). Mixup is applied when a student is trained. As

described in Table VIII, when teacher models are WRN16-

3, less amounts of mixup pairs can distill a better student.

When teacher models are WRN28-1, 50% of PMU shows

the best. In Table IX, for PAMAP2, FMU shows the best.

Fig. 9: Results of various models with different temperature

and mixup in KD on GENEActiv. Mixup is applied when a

student is trained.

Fig. 10: Results of various models with different temperature

and mixup in KD on PAMAP2. Mixup is applied when a

student is trained.

However, for WRN28-1, PMU with 10% of Ann. distills the

best student. These results show that fewer mixup pairs can

generate better performance. Also, if complexity of a dataset is

high, mixup pairs contributes more to improving performance.

On the other hand, KD with time-series data and Ann. have

different optimal proportions of mixup pairs. This may be

because Ann. uses both representations, including both time-

series with 1D data and topological representations with 2D

data, for training. Mixup influences different representations

differently, so utilizing two teachers can provide more diverse

relaxed knowledge for distillation, which is different from

using one single teacher.

F. Mixup for Different Teachers

Since two teachers can provide different effects on dis-

tillation, we use different hyper-parameters for mixup to
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TABLE VIII: Accuracy (%) with various mixup pair propor-

tions on GENEActiv.

Teachers Method No mixup
PMU
0.1

PMU
0.5

FMU

WRN16-3
TS+KD

69.50 69.20 69.11 68.94
±0.10 ±0.06 ±0.27 ±0.15

Ann.
70.71 71.13 70.73 71.07
±0.12 ±0.14 ±0.06 ±0.01

WRN28-1
TS+KD

68.32 69.17 69.05 68.84
±0.63 ±0.36 ±0.15 ±0.23

Ann.
70.44 70.75 70.82 70.68
±0.10 ±0.02 ±0.05 ±0.10

TABLE IX: Accuracy (%) with various mixup pair proportions

on PAMAP2.

Teachers Method No mixup
PMU
0.1

PMU
0.5

FMU

WRN16-3
TS+KD

86.50 86.75 86.05 87.34

±2.21 ±2.10 ±2.27 ±2.03

Ann.
87.12 87.63 87.54 87.98

±2.26 ±2.35 ±2.34 ±2.21

WRN28-1
TS+KD

84.92 85.42 85.36 85.58

±2.45 ±2.30 ±2.48 ±2.26

Ann.
85.89 86.69 86.47 86.35
±2.26 ±2.20 ±2.29 ±2.39

knowledge transfer from two teachers when a student is trained

in KD. We utilize Ann. that shows the best in most of the

cases presented in the previous sections. Note, α1 and α2

are hyper-parameters of mixup for Teacher1 and Teacher2.

As summarized in Table X and XI, applying different mixup

hyper-parameters can distill a better student.

TABLE X: Accuracy (%) with various hyper-parameter pairs

of mixup for teachers on GENEActiv. Ann. is used for KD.

α1 α2

Teachers
WRN16-3 WRN28-1

0.1 0.1 70.72±0.06 70.88±0.04

0.1 0.15 70.93±0.11 70.79±0.12

0.15 0.1 70.99±0.03 70.88±0.18

0.15 0.15 70.96±0.16 71.16±0.05

0.15 0.2 71.07±0.14 71.01±0.16

0.2 0.15 71.22±0.12 71.00±0.07

0.2 0.2 71.17±0.22 70.93±0.21

TABLE XI: Accuracy (%) with various hyper-parameter pairs

of mixup for teachers on PAMAP2. Ann. is used for KD.

α1 α2

Teachers
WRN16-3 WRN28-1

0.1 0.1 87.98±2.21 86.35±2.39

0.1 0.15 87.99±2.29 86.72±2.41

0.15 0.1 87.94±2.26 86.00±2.43

0.15 0.15 87.67±2.21 86.70±2.35

As depicted in Table XII and XIII, we evaluate with differ-

ent teachers having different architectural designs of depth and

width for networks. Mix. denotes applying mixup for training

a student. α of mixup is 0.1. When α is applied differently

for teachers (diff. α), (α1, α2) is (0.15, 0.2) for GENEActiv

and (0.1, 0.15) for PAMAP2. In all cases, applying different

mixup hyper-parameters can distill a better student.

TABLE XII: Accuracy (%) with various knowledge distillation

methods and different hyper-parameter of mixup for teachers

on GENEActiv.

Teacher1
(1D CNNs)

Teacher2
(2D CNNs)

Student
(1D CNNs)

TS+PI

Base Ann.
Ann. Ann.

+Mix. +Mix. (diff. α)

WRN16-1 WRN28-1

WRN16-1
(0.06M

67.66)

68.71
±0.36

69.95
±0.05

70.67
±0.05

70.92
±0.24

(0.06M, (0.4M,
67.66) 59.45)

WRN28-1 WRN28-3
68.26
±0.13

70.28
±0.08

70.74
±0.15

70.86
±0.13

(0.1M, (3.3M,
68.63) 59.69)

WRN40-1 WRN28-3
68.90
±0.50

70.49
±0.05

70.91
±0.05

71.21
±0.06

(0.2M, (3.3M,
69.05) 59.69)

TABLE XIII: Accuracy (%) with various knowledge distillation

methods and different hyper-parameter of mixup for teachers

on PAMAP2.

Teacher1
(1D CNNs)

Teacher2
(2D CNNs)

Student
(1D CNNs)

TS+PI

Base Ann.
Ann. Ann.

+Mix. +Mix. (diff. α)

WRN16-1 WRN28-1

WRN16-1
(0.06M

82.99)

85.78
±2.29

85.33
±2.22

86.47
±2.35

87.09
±2.16

(0.06M, (0.4M,
85.27) 87.45)

WRN28-3 WRN28-1
85.69
±2.41

85.59
±2.28

87.06
±2.17

87.80
±2.09

(1.1M, (0.4M,
84.46) 87.45)

WRN16-3 WRN28-1
85.48
±2.37

85.82
±2.26

86.80
±2.23

87.29
±2.20

(0.5M, (0.4M,
85.80) 87.45)

To figure out if using different mixup hyper-parameters

can complement the partial mixup method, we apply different

proportions of mixup pairs for training a student with different

mixup hyper-parameters. In Table XIV, FMU shows the best

for both cases of teachers. With small proportions of mixup

pairs, a large degradation of performance is shown, where

the results are lower than training without mixup. When the

complexity of the dataset is low and the size of the model is

small, partial mixup can yield an adverse effect on training

a student, which may produce pairs of inputs that are not

expressive enough to learn. In Table XV, 50% of mixup pairs

show the best. These results imply that using the proper mixup

pair proportion for training a student is important to improve

their performance in KD. Also, considering the effects on

different relaxed knowledge of a mixup from two teachers

can generate a better student.

G. Analysis of Optimized Solution

1) Parametric Plots: A solution space comparison for two

models can give a valuable understanding of their behavior in

training or testing and how these models are related. One of

the useful tools for the analysis is the parametric plot that has

been widely studied [66]–[68].

In Fig. 11, we plot classification accuracy for with function

ψ((1 − κ)z∗a + κz∗b ) for κ ∈ [-2, 2], where z∗a and z∗b are

different solutions. Teachers are WRN16-3 and students are
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TABLE XIV: Accuracy (%) with various hyper-parameter pairs

of mixup on GENEActiv. Ann. is used for KD.

α1 α2 Mixup
Teachers

WRN16-3 WRN28-1

0.15 0.2 FMU 71.07±0.14 71.01±0.16

0.15 0.2 PMU(50%) 70.57±0.17 70.46±0.10

0.15 0.2 PMU(10%) 70.55±0.14 70.73±0.24

0.2 0.15 FMU 71.22±0.12 71.00±0.07

0.2 0.15 PMU(50%) 70.37±0.05 70.42±0.03

0.2 0.15 PMU(10%) 70.64±0.04 70.38±0.23

TABLE XV: Accuracy (%) with various hyper-parameter pairs

of mixup on PAMAP2. Ann. is used for KD.

α1 α2 Mixup
Teachers

WRN16-3 WRN28-1

0.1 0.15 FMU 87.99±2.29 86.72±2.41

0.1 0.15 PMU(50%) 88.13±2.19 86.73±2.23

0.1 0.15 PMU(10%) 87.88±2.29 86.68±2.26

Fig. 11: Parametric plots with accuracy (%) for various pairs

of models on GENEActiv. Brackets denote solutions (z∗a, z∗b ).

κ = 0 implies to z∗a and κ = 1 to z∗b . “Student” is a model

learned from scratch.

WRN16-1, which produced the best overall performance in the

previous sections. In Fig. 11(a), when κ is 0.5, the accuracy of

training and testing is lower than 30%, which represents that

the solution spaces of learning from scratch and KD with time-

series data are different, whereas the result in Fig. 11(b) shows

approximately 70% at κ = 0.5. This implies that the solution

space of Ann. is similar to that of Student. As illustrated in

Fig. 11(c), it shows more flattened results. The result at around

κ = 1.0 shows a more gentle slope than the one at κ = 0, which

indicates that using mixup to train a student in KD leads to

get benefits for failure prediction and mitigates reliable over-

fitting. When a mixup trained teacher is used, the student’s

solution space is similar to that of a non-mixup trained teacher.

Based on (c) and (d), we can observe that utilizing mixup

trained students (T, mS) leads to a better solution space that

is relatively less susceptible to perturbations than using mixup

trained teachers (mT, S).

2) Mixup Hyper-parameter α: To explore the performance

on α of mixup and its sensitivity, we train various models with

learning from scratch, KD, and Ann. using different settings of

α, which is described in Table XVI. The optimal α parameters

for models trained with time-series and topological persistence

are different. When α value is between the optimal one of TS

and PI (α ∈ [0.1, 0.4]), Ann. performs better than training

with the other value (α = 0.05). Therefore, setting the proper

α leads to getting the best performance, and an intermediate

α can generate the best performance when different teachers

are applied.

TABLE XVI: Test accuracy (%) under different settings of α

on GENEActiv. WRN16-1 is used for learning from scratch

and a student.

Method
Mixup α

0.05 0.1 0.2 0.4

S
cr

at
ch TS

67.99 68.04 69.28 69.35

±0.41 ±0.63 ±0.19 ±0.52

PI
59.23 59.08 59.71 59.47
±0.41 ±0.77 ±0.58 ±0.19

K
D

(1
6

-3
) TS

69.02 68.94 69.15 69.39

±0.22 ±0.15 ±0.13 ±0.21

PI
67.31 68.08 66.77 68.02
±0.28 ±0.44 ±0.66 ±0.35

Ann.
70.63 70.72 71.17 71.35

±0.03 ±0.06 ±0.22 ±0.14

K
D

(2
8

-1
) TS

68.95 68.84 68.74 69.16

±0.44 ±0.23 ±0.39 ±0.55

PI
67.77 68.06 67.92 67.83
±0.50 ±0.34 ±0.49 ±0.28

Ann.
70.81 70.88 70.93 70.76
±0.26 ±0.04 ±0.21 ±0.19

V. DISCUSSION

We explored the interplay between mixup and KD on

diverse strategies with multimodal representations including

topological features for wearable sensor data analysis. To

achieve more improved synergistic effects, partial mixup can

be utilized, which prevents excessive smoothing effects that

generate degradation. As an extended research, these strategies

introduced in this paper are applicable to diverse computer

vision tasks [69], [70], such as image recognition, object

tracking and detection, and segmentation. For example, when

a model for image recognition is trained with our strategy,

the trained model can be utilized as a backbone model in a

framework for many different computer vision tasks. Also,

this study can be explored on vision based or different types

of sensor signal, using motion capture or ECG, based human

activity recognition. These can be more investigated as a future

work.

VI. CONCLUSION

In this paper, we explored the role of mixup in topological

based KD with different approaches. We confirmed that mixup
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and temperature in KD have a connecting link that imposes

smoothness for training process. Excessive smoothness pro-

duced inferior supervision that hinders training a student in

KD. We observed that utilizing topological features can com-

plement time-series to improve the end performance. Also, us-

ing topological persistence showed better compatibility when

using mixup in KD.

Further, two teachers transfer different statistical knowledge

so that their optimal parameters for augmentation in distillation

can be different, where teachers are trained with time-series

and topological features, respectively. We would like to extend

a framework using multiple teachers to find optimal hyper-

parameters of mixup and partial mixup adaptively, considering

different statistical characteristics of teachers. In addition, our

findings provide insights for developing further advanced dis-

tillation methods for various fields including wearable sensor

data analysis and computer vision tasks.
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