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Electron transfer is at the heart of many fundamental physical, chemical, and biochemical processes essential
for life. The exact simulation of these reactions is often hindered by the large number of degrees of freedom
and by the essential role of quantum effects. Here, we experimentally simulate a paradigmatic model of molecular
electron transfer using a multispecies trapped-ion crystal, where the donor-acceptor gap, the electronic and
vibronic couplings, and the bath relaxation dynamics can all be controlled independently. By manipulating both
the ground-state and optical qubits, we observe the real-time dynamics of the spin excitation, measuring the
transfer rate in several regimes of adiabaticity and relaxation dynamics. Our results provide a testing ground for
increasingly rich models of molecular excitation transfer processes that are relevant for molecular electronics and

light-harvesting systems.

INTRODUCTION

Quantum devices hold the promise to provide an advantage in di-
rectly simulating many-body quantum systems (1). Chemical reac-
tion dynamics provides a wide range of target applications. Fully
realistic digitization of the real-time dynamics of molecules on
fault-tolerant quantum computers, however, requires qubit numbers
and circuit depths that exceed the current state of the art (2). A
promising alternative approach is to develop programmable analog
quantum simulators (3-5) that map the dynamical degrees of free-
dom of molecules directly onto the quantum hardware, therefore
providing a more direct but problem-specific quantum advantage.

One outstanding challenge is modeling the real-time electron
transfer (ET) dynamics in molecular systems embedded in biological
environments. In these systems, the energy differences between the
electronic states, molecular vibrational energies, and their mutual
couplings are all of the same order of magnitude. This requires
simulating electronic excitations while taking into account a large
number of nuclear degrees of freedom. In addition, reactions at low
temperatures in many molecular systems, ranging from myoglobin
ligand recombination (6) to charge transport in DNA strands (7),
suggest that quantum effects play a key role.

In many regimes, the reaction dynamics can be treated using
imaginary-time path-integral methods (8-10). It has also proven
expedient to treat the nuclear and electronic degrees of freedom
using a mix of quantum and classical dynamics (11), but the limits
of this approach are not always clear. When quantum coherences
between the electronic and vibrational degrees of freedom (12, 13)
are relevant, such approaches are only approximate. Methods based
on the hierarchical equations of motion approach (14), tensor net-
works (15-17), and real-time path-integral evaluations (18, 19) have
also made progress in those regimes.
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Recently, the high degree of control and tunability of program-
mable quantum platforms such as trapped ions, superconducting
qubits, and photonic simulators have been used to experimentally
simulate models of vibrationally assisted energy transfer (20), conical
intersections (21-23), noise-assisted excitation transfer (24, 25),
ET driven by polarized light (26), and molecular vibrational dy-
namics (27).

In this work, we show that a trapped-ion quantum simulator
with independent control of unitary and dissipative processes can
successfully simulate a paradigmatic ET model. This is achieved
by manipulating two different atomic ion species and using both
ground-state and optical qubits, combining spin and spin-motion
coherent manipulation with sympathetic cooling (28, 29) of a col-
lective bosonic mode. This programmable open quantum system
enables the measurement of the time-resolved dynamics of the
system in contact with an engineered bosonic bath, accessing non-
perturbative regimes, where electronic and vibrational excitations,
their mutual coupling, and the relaxation rate are all of the same
order of magnitude.

RESULTS

An effective model that describes ET is the celebrated spin-boson
model (30). Here, the electronic degrees of freedom are mapped
onto a two-level system coupled to a bath of harmonic vibrations
encoded in a collection of bosonic modes. This model involves one
two-level system, encoding the electron donor and acceptor states,
and a reaction coordinate encoded in a single bosonic mode, which
is, in turn, itself coupled to a continuous bath of harmonic oscilla-
tors (31, 32). Despite its simplicity, this model allows experimental
access to paradigmatic ET regimes by measuring the real-time
dynamics of the two-level system and extracting the transfer rate
as a function of its coupling to the bosonic mode, the electronic
donor-acceptor coupling, their energy difference, and the relaxation
rate. The central system is described by the following Hamiltonian
(31, 33, 34), which is a variant of the Rabi model (35) in quan-
tum optics (h=1)

AE
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where o, , are the Pauli matrices and a’(a) is the creation (annihila-
tion) operator of the bosonic mode at frequency w. The reaction
coordinate is expressed in terms of the position operator as
y=y,(a"+a) /2, with yy = 4/1/2me and m being the particle
mass. In this model, when V,, = 0, the energy spectrum is described
by two harmonic wells assigned to the donor and acceptor states,
|D) =|1), and |A) =||),, separated by a relative energy shift AE
(aka exothermicity). The electronic coupling V, mixes the states
associated with the donor and acceptor surfaces. The spin-boson
coupling g displaces the two coupled surfaces along the reaction
coordinate, as shown in Fig. 1B. In ET, this is akin to the nuclear
coupling that gives rise to the activation energy of a typical ET reac-
tion, which is the core of the Marcus theory (36) in chemistry and
polaron theory in solid state physics (37).

Crucially, the full ET Hamiltonian Hyp = H, + Hy, + Hy, must
also include bath degrees of freedom Hj, generally modeled as a
large collection of harmonic oscillators, and a linear coupling Hy,
between the bath and the system’s bosonic degree of freedom (31).
The bath correlation functions and their effect on the system can be
described by a continuous spectral density function J(»). One way
to create an analog for the structured bath spectral densities of bio-
logical environments using trapped ions is to use multiple phononic
modes naturally hosted in an ion crystal (38, 39). Here, we take a
different approach by exploiting the fact that, under certain condi-
tions, a harmonic environment with a continuous spectral density
can be obtained by cooling a spectator ion (40). In section S6, we
prove that sympathetic cooling can effectively simulate an ohmic
spectral density J(®) ~ ®, a common choice in the ET literature. The
cooling process can be described by a master equation in terms of
Lindbladian superoperators L, [p], where ¢ is a generic jump operator

0 _ _
S - i[H,, p] +yGi+ DL, [p] +y7L o]

ot )

3)

o) =epet ety

Here, p is the density matrix of the spin-boson system, y is the
motional relaxation rate, and 7 is the phonon population deter-
mined by the temperature of the bath k; T = @ /log(1+1/n).

The dynamics of the spin and the bosonic observables predicted
by Eq. 2 are essentially indistinguishable from those of the system in
Eq. 1 in contact with an ohmic bath, provided that the damping is
weak (Y < 0) and the bath thermal energy is larger than the relax-
ation rate (yf < 1, withp = 1/ kyzT) (40). As shown in the following,
these conditions can be realized experimentally with a trapped-ion
system, where the dynamics is determined by five parameters
(o, AE, V,, g,and y) that can all be tuned independently. Notably, all
the timescales associated with these parameters are faster than the
spin and motional decoherence associated with experimental im-
perfections (see dashed and solid lines in Fig. 1C and section S3),
allowing the full characterization of both the transient dynamics and
the steady state of the system under Eq. 2.

The experimental setup consists of one '”'Yb* ion and one '7*Yb*
ion confined in a linear Paul trap. The two-level system is encoded
in the two hyperfine clock states of the '”'Yb" ground-state qubit,
251/2’F= 1, mp =0> =11). and |ZSI/2,F=0, mp=0) =|l]),, sepa-
rated by a frequency of @,¢ /21 = 12.642 GHz (see Fig. 1A). The bo-
sonic mode in Eq. 1 is encoded in the radial tilt collective mode at
frequency wy, / 2n = 3.207 MHz (see Materials and Methods).

We engineer H, in Eq. 1 in a driven rotating frame: Two nt /2
pulses are used to map the z spin basis of Eq. 1 onto the y basis.
In this configuration, two laser tones resonant with the qubit fre-
quency realize the AE and V, terms. Two additional laser tones at
frequencies +p = + (g, +8) from the qubit resonance realize the
spin-phonon coupling and the harmonic terms in Eq. 1, where

= — o is the detuning with respect to the tilt mode (41). All the
terms in H, are engineered using a 355-nm pulsed laser addressing
the '7'Yb* ground-state qubit via stimulated Raman transitions
(see Fig. 1A and section S1).

Simulating an independently tunable bath dissipation is achieved
by driving the narrow transition from the ground state |g) = ’281 /2>

to the optical metastable state [0)= |2D3/2 of a *Yb* ion. Two
tones of a 435-nm laser combined with a 935-nm repumper are used

1) l9)
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Fig. 1. Simulating ET model with tunable dissipation. (A) ""'Yb™-'72Yb" ion crystal confined in a harmonic potential with Coulomb interactions defining normal modes
of motion. The ground-state qubit of '”'Yb* encodes the spin degree of freedom and is coherently manipulated by two counterpropagating 355-nm Raman beams
(purple arrows, with green arrows showing the light polarization). The optical qubit of '72Yb™ is addressed with a 435-nm laser (blue arrow) and, together with a 935-nm
repumper (brown line in the inset), is used for sympathetic cooling. Insets: simplified level schemes for 71yb* and 72Yb™. (B) Donor (red) and acceptor (blue) surfaces
defined by Eq. 1 with parameters(V,, g, AE) = (0.06,1.6,0.6)® shown as a function of the reaction coordinate y with their respective noninteracting harmonic wave functions.
The bath is represented by vibrational modes with a finite linewidth y. The color hue reflects the weights of the spin population at each position y. (C) Donor population
dynamics governed by unitary (red circles) and dissipative (blue triangles) processes with (VX,g, AE) = (0.18,1,1)® compared to the numerical results: The dashed lines
with y = 0 (red) and y = 0.014 (blue) are calculated from Eq. 2, whereas their corresponding solid lines also include spin decoherence (y, = 0.0013w) and motional
dephasing (y,, = 0.0013w) (see section S3). Error bars are the statistical SEM.
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to perform sympathetic cooling (42) on the tilt mode with a cooling
ratey / 2w, which is tunable over the 50- to 500-Hz range (see Fig. 1A).
This setting is well suited to achieve efficient sympathetic cooling
because the fractional mass imbalance of the two ions is very small,
and the |g) —|o) transition linewidth allows for large Rabi fre-
quencies at modest laser power while providing negligible cross-
talk with the qubit states of '”'Yb™.

The experimental protocol (see Fig. 2) consists of the following
steps: (i) After Doppler cooling, Raman-resolved sideband cooling
is applied to both the radial center-of-mass and tilt modes. The re-
sulting initial tilt mode phonon population is in the 77, ~ (0.1t00.3)
range, which is comparable to 7 defined in Eq. 2 and characterized
independently by measuring the phonon steady state of the purely
dissipative evolution without coherent driving (see fig. S1D). (ii)
Then, by applying a /2 pulse followed by a displacement operator
D(-g/2w), we initialize the system in the donor vibronic state
ID)(D| ® p_, where p_= Y, e™/®T |n_) (n_| is a thermal state
with temperature ky T~ ® /log(1+1/7) and [n) =D( ig/Zw) |n)
are displaced Fock states. (iii) We simultaneously apply the laser
tones to generate the ET dynamics described by Eq. 2. All the pa-
rameters that determine the unitary and the dissipative evolutions
are calibrated independently (see section S2). (iv) At the end of the
evolution, after a final n/2 pulse, we use state-dependent fluores-
cence to measure the probability of the system being in the donor
state P, = ((GZ)+ 1) /2 or the average phonon population (7n) of
the tilt mode.

The average number of phonons 7 in the (0.1 to 0.3) range fulfills
the condition kg T' < ® while making sure that the constrainty < kz T
is also satisfied. In this highly quantum regime, the transfer is domi-
nated by the discrete level structure of the vibrational mode, and the
temperature has a limited effect on the transfer rate. This corresponds
to the low-temperature, tunneling-dominated regime of ET.

A crucial parameter for the ET dynamics is the Marcus reorgani-
zation energy A = g% / @, which is the amount of energy required
to displace a wave packet by g / ® from the center of the donor sur-
face without transferring to the acceptor surface (see Fig. 1B). The

Optical pumping U™ 2)
Raman pulsed Di—a/2w Udn/2)
sideband cooling (—9/2w) \ M/easure
17yt J Doppler H ” I_
cooling
1)1 ®p 1} lim ————
IDXDI®p | !
IDXD|®p-i
112y p+ Doppler L
cooling
< Lsim >
Time >

Fig. 2. Experimental protocol. After Doppler cooling, Raman sideband cooling,
and optical pumping, the initial vibronic state|D) (D| ® p_is prepared by ax /2
pulse along the x axis and by displacing the motional state via a spin-dependent
force. Before the final measurement, another n / 2 pulse along the x axis rotates the
final spin state back into the qubit basis.
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reorganization energy, in turn, determines the classical activation
energy U = (AE +\)* / 4}, which is the barrier a wave packet local-
ized in the donor surface would have to overcome to enter the ac-
ceptor surface when the electronic coupling V, is negligible.

We individuate and investigate two regimes (33): a nonadiabatic
and a strongly adiabatic transfer regime. In the former, the electronic
coupling V, is a small perturbation with respect to the other energy
scales in the Hamiltonian in Eq. 1 and is comparable or smaller than
the relaxation rate (V; S¥). When V, is also much less than A /4,
namely, the activation energy at AE = 0, the bosonic wave packet is
largely localized on either the donor or the acceptor surface, and the
ET can be described by the Fermi golden rule (FGR) leading to
characteristic isolated peaks in the transfer rate spectrum. Conversely,
in the strongly adiabatic regime, the electronic coupling becomes
comparable with the activation energy (V, ~\/4) and greater
than the relaxation rate (V, > y), changing the shapes of the do-
nor and acceptor surfaces. In this regime, the transfer rate is less
sensitive to the electronic coupling V, and cannot be predicted by
the FGR. Increasing V, lowers the barrier, and the eigenmodes of
Hamiltonian in Eq. 1 become closer to delocalized wave packets on
the two nonadiabatic surfaces. In this case, one can observe oscilla-
tions between the donor and acceptor states before the steady state
is reached (see, for example, Fig. 1C). This regime is realized in
a type IT or type III mixed valence compound (43). We note that the
adiabatic and nonadiabatic regimes are sometimes also called
“coherent” and “incoherent,” respectively. However, in this work, we
chose the terminology used in chemical kinetics.

Nonadiabatic regime

In the nonadiabatic, low-temperature regime, the transfer is domi-
nated by the vibrational mode structure: Both the unitary and dis-
sipative dynamics are frozen unless the donor-acceptor energy
difference nearly matches the vibrational energy at AE = { w, with {
being an integer greater than zero. This vibrationally assisted dy-
namics (20) results in well-resolved resonances (see Fig. 3). Deep in
the nonadiabatic regime, when |V,| <A /4, the eigenstates of the
Hamiltonian H, in Eq. 1 are close to uncoupled donor and acceptor vi-
bronic states represented in Fig. 1B, namely, | D) |n_) and | A) |n, ), re-
spectively. In this case, the V, 6, term can be treated as a perturbation
to the Hamiltonian H, = H, — V,0,. As a result, the transfer under-
goes resonant transitions between the uncoupled donor and accep-
tor vibronic states, following the FGR (30, 33, 44)

kT =2n |Vx|2 ZPn,FCn,,mS(ED,n, _EA,n+>

n_,n,

4

where p, is the initial phonon populations in the donor state,
and FC, , =[(n_|n,)|* is the Franck-Condon factor, namely, the
overlap between the two displaced Fock wave functions. A larger
displacement g /® along the reaction coordinate leads to more
vibrational states with a non-negligible overlap, therefore increasing
the number of observable transfer resonances.

In this regime, the effect of the bath can be taken into ac-
count by replacing the delta functions in Eq. 4 with normalized
Lorentzian distributions with full width at half maximum vy,

namely, 6<ED,H7 _EAm) - (y/2m)/ [(EDM —Eun, )2 + (y2/4)].

In Fig. 3A, we show the transfer rates extracted from the dy-
namics of the donor population Pj,(t), shown in Fig. 3B (experimental
data) and Fig. 3C (theory) as density plots as a function of AE
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Fig. 3. Nonadiabatic transfer regime. (A) Transfer rate k; in units of the relaxation rate y as a function of the donor-acceptor energy gap AE for(VX, g,v) = (0.056,1.4,0.06)o.
The blue points result from an exponential fit of the measured P, (t) dynamics, with the error bars being the standard errors of the fit. The dark blue solid curve is obtained
from the fit of the dynamics predicted by Eq. 2. The FGR prediction (dark red solid line) is calculated using Eq. 4. (B and C) Experimental (B) and numerical (C) density plots
of the time-resolved dynamics of P, (t) as a function of both AE and the number of vibrational oscillations wt/2x. The detuning from the tilt mode is set to & / (2r) = —5kHz,
and the numerical results include a motional dephasing of y,,, = 0.001®. (D) Transfer rate k; in units of the relaxation rate y as a function of the donor-acceptor energy gap
AE for(VX, g, y) = (0.046,0.521,0.025)w. (E and F) Experimental (E) and numerical (F) density plots of the time-resolved dynamics of P, (t) as a function of both AE and the
number of vibrational oscillations wt/2x, with & / (2n) = —10 kHz. The numerical results include a motional dephasing y,,, = 0.0005® (see section S3).

and the number of vibrational oscillations w¢/2x. The transfer rates
extracted from an exponential decay fit of P,(t) agree with the nu-
merical predictions from the Lindblad master equation in Eq. 2, ex-
hibiting distinct peaks at AE = {. In Fig. 3 (A to C), the chosen
parameters place the system in the nonadiabatic regime (V,, = 0.056®
and A /4 = 0.49w), which is confirmed by the qualitative agreement
between the FGR prediction (dark red solid line), the experimental
results, and the exact theory. Here, because ¢ = 1.40, we can observe
transfer resonances involving vibrational states up to n = 4 within
our experimental resolution (see section S3).

In Fig. 3 (D to F), we decrease the spin-motion coupling to
g =0.521n and the motional relaxation rate to y = 0.0250 while
keeping the values of the other parameters approximately the same
as in Fig. 3 (A to C). In this case, by lowering the spin-motion cou-
pling strength, the Franck-Condon coefficients FC, , are greater
for smaller n compared to Fig. 3 (A to C). Therefore, fewer vibra-
tional excitations are involved in the transfer through the effective

vibronic coupling strength V. /FC, , , resulting in the reduction

in the number of observed resonances compared to Fig. 3 (A to C). In
addition, the data in Fig. 3 (D to F) show that the FGR predictions
in Eq. 4 further underestimate both the experimental and numerical
results as the system is approaching the nonperturbative regime.
Lastly, the decrease in the motional relaxation rate makes the width
of the resonances sharper across the spectrum, confirming its con-
nection with the broadening of the vibrational modes.

Soetal., Sci. Adv. 10, eads8011 (2024) 20 December 2024

Strongly adiabatic regime

When the electronic coupling V, is comparable to the activation
barrier A / 4 and larger than the relaxation rate y, the dynamics cannot
be simply described in terms of weakly coupled wave function local-
ized on the donor and acceptor site. In this regime, the population
evolution features an initial coherent oscillation between the donor
and acceptor states before the eventual equilibration in the acceptor
state, as shown in Fig. 4 (B and C). Here, the density plots of the
experimental and theoretical Pp(¢) are plotted as a function of AE,
showing good agreement. In this regime, the evolution cannot be
fitted with an exponential function as in the nonadiabatic case.
Therefore, to extract the effective transfer rate, we use the inverse
lifetime of the donor population as proposed in refs. (33, 44)

o [ tPp(t)dt
T [ Pptydt

In Fig. 4A, the transfer rates are extracted using Eq. 5 by interpo-
lating and integrating both the experimental data and the numerical
results (see Materials and Methods). We show the transfer rates ex-
tracted from the data for two sets of parameters that have nearly
equal spin-phonon coupling g and electronic coupling V, but differ-
ent relaxation rates y. We report the results in units of y, showing
that the transfer rate is proportional to the relaxation rate (k; x ).
In this regime, Y becomes the limiting factor for the rate at which the
donor state population irreversibly transfers into the acceptor state.

)

40f9

$20T ‘€T 10quuiadd( uo $10°00udIds mmm//:sdpy woly papeojumo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

Aoz B 5 C 4 Pp(t)
t 1.0
0.20 25 25 H
' 0.8
20 20
2015 &S 0 &
& =15 15 0.6
377 3
0.10 10} 10 0.4
0.05 5 = Egik 5 . 02
) | |
0 - FE— O r— F——— n P—— uo‘
1 2 3 4 5 1 2 3 4 5
AE/w AE/w AE/w

Fig. 4. Adiabatic transfer regime. (A) Transfer rate k; measured with (Vx,g,y) = (0.18,0.95,0.020)w (red triangles) and (Vx,g,y) =(0.21,1.08,0.038)w (blue circles). The
solid curves are the transfer rates calculated from Eq. 2 using the definition in Eq. 5 and including spin decoherence (y, = 0.0025w) and motional dephasing (y,,, = 0.0013w).
The transfer rates overlap when scaled in units of the relaxation rate y. The error bars are calculated using bootstrapping (see Materials and Methods). (B) Experimental
donor population evolution Py (t) versus energy gap AE and the number of vibrational oscillations ot/2n with the same parameters as the red triangles in (A). Here, the
detuning from the tilt mode is set to § / 2n = —4 kHz. (C) Corresponding numerical results with the same parameters as (B).

This result can be explained intuitively by considering a simplified two-
vibronic-state model (33) consisting of the initial donor state [D)0_)
and a single acceptor vibronic state| A ) |v, ) with the coupling strength

Vey/FCo_,, and a decay rate vy, where v = AE / w. In this simplified

case, the transfer rate in Eq. 5 can be evaluated analytically as

2

1+ _w
ow Vir/ECo_u,
k¥ = vy Z (6)
141 2

2\ V4 /Fc[,_“

When V., /ECy_, >, k(%"’ ~ vy. Although this approximation

rightly predicts the proportionality between k- and y in the strongly
adiabatic regime, it fails to accurately predict the transfer rates when
more than one vibronic acceptor state is involved.

A few comments are in order: (i) For AE < 2w, the transfer rate k.
does not exhibit distinct resonances as opposed to the transfer rate in
the nonadiabatic regime. (ii) For AE > 2w, the characteristic peaked
structure of the nonadiabatic regime is recovered, which can be ex-
plained by the localization of the initial state in the upper hybridized
surface, as suggested by ref. (33). (iii) For AE > 3w, the envelope of
the transfer rate shows a decrease as a function of AE. This is some-
times called the “inverted regime” of ET, where, at both high and low
temperatures, the reaction counterintuitively becomes slower despite
the transfer becoming more exothermic. This can be explained by the
decreasing Franck-Condon factor FC,_,, as a function of AE and
can also be observed in the nonadiabatic regime (see Fig. 3).

Optimal transfer

When AE is set on a resonance, sweeping V, /v allows one to pinpoint
an optimal transfer regime (44). In Fig. 5, we report the transfer rate
measured as a function of V, /v, setting AE = 2w. The data exhibit a
distinct optimal transfer rate at V, /y ~ 3.3, in good agreement with
the numerical predictions based on Eq. 2. It is worth noting that, for
small V, /y, the transfer rate varies quadratically as predicted by Eq. 4.
Beyond the optimum, the transfer rate is less sensitive to V, /y. This
robustness has been suggested to be important for fast transfer in
photosynthetic complexes (44, 45). In particular, the presence of an

Soetal., Sci. Adv. 10, eads8011 (2024) 20 December 2024

optimal relaxation rate underscores the crucial role of dephasing in
transport phenomena that was previously pointed out in solid-state
(46) and atomic systems (25), as well as in biomolecules (47-50).

DISCUSSION

Our experiment demonstrates the remarkable flexibility of the
trapped-ion platform to perform direct analog quantum simula-
tions of models relevant to chemical physics, including an engi-
neered environment. These simulations are performed through
careful tuning of both the Hamiltonian of the trapped-ion system
and its engineered reservoir by using seven simultaneous laser
tones and two different atomic species. This toolbox allowed us
to investigate relevant regimes of a paradigmatic ET model with
tunable dissipation at low temperatures, where the interplay of
quantum effects and interactions with the environment is crucial

0.10
0.08}

0.06}

kr/y

0.04[

0.02}

0.00

10
Vily

Fig. 5. Optimal transfer. Transfer rate k; as a function of V, /vy, with (AE,g,y) =
(2,0.80,0.1M® and detuning & /2 = —4 kHz. The numerical results (solid curve)
include spin decoherence (v, = 0.0013®) and motional dephasing (y,, = 0.0013w).
The optimal transfer is located at V, /y ~ 3.3, in agreement with the theoretical
prediction of Eq. 2. Error bars are calculated using bootstrapping (see Materials
and Methods).
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in determining the dynamics. The observed time-resolved dynam-
ics of the donor-acceptor population and the measured transfer rate
in both the nonadiabatic and adiabatic regimes agree with the nu-
merics with independently calibrated parameters and identify an
optimal transfer regime that has been suggested to be relevant for
ET in photosynthetic complexes (44).

Our experiment opens up unexplored avenues for simulating
condensed-phase chemical quantum dynamics. The trapped-ion
simulator allows native encoding of the bosonic degrees of freedom
and their tunable dissipation without the need for digitization, lead-
ing to linear scaling with both the number of electronic states and
that of bosonic modes. In this context, existing classical numerical
methods used to solve these models are more computationally ex-
pensive when the reorganization energy is of the same order or
larger than the electronic coupling (A 2 V,) (5, 17). To access such a
parameter range, it is necessary to experimentally realize nonper-
turbative spin-phonon couplings g 2 ®. Crucially, the approach
used here based on sympathetic cooling gives rise to the dynamics
of the corresponding spin-boson model with a Lorentzian spectral
density at all orders in g under the assumptions used in this work
(y < o,yp < 1) (40, 51). Therefore, this approach will enable the
realization of structured spectral density functions (40) and the
simulation of colored baths and non-Markovian dynamics (52, 53)
by using multiple ions as coolants to control the individual cooling
rates and the temperature of multiple bosonic modes.

To investigate the role of coherence and Frenkel-type exciton
delocalization (54) in the energy transfer processes in biomolecules
and photosynthetic complexes (55, 56), a necessary extension is the
encoding of multiple electronic excited states. This can be achieved
using more than two atomic levels (a qudit) coupled to phonons (34)
provided by the ion crystal. Alternatively, multiple electronic states
(sites) can be physically mapped to qubit ions and individually ad-
dressed to tailor their energy landscape and their individual cou-
plings to the phonon bath. At the same time, the site qubits will have
to be connected via a long-range spin-hopping Hamiltonian that can
be realized with Molmer-Serensen Ising interactions (57). In addi-
tion, the trapped-ion platform naturally offers the possibility to
include tunable anharmonic couplings among different bosonic
modes (58) that can be used to study the effects of anharmonicity on
energy transfer (59), a crucial but often overlooked feature of real-
istic molecular systems that hinders the applicability of existing
numerical methods.

The native long-range character of the spin-spin interactions
and the presence of collective bosonic modes with tunable dissipation
and anharmonic couplings will allow the simulation of out-of-
equilibrium chemical dynamics that are challenging to address with
classical methods. Our experiment is therefore a stepping-stone
toward the use of quantum devices to provide insights into open
questions in chemical and biological physics and to shed light on
the underlying principles of biochemical processes.

During the preparation of this manuscript, we became aware of
a complementary work (60), which simulates the dephased spin-
boson model using randomized unitary spin-dependent forces.

MATERIALS AND METHODS

Experimental system

The experimental system is based on a blade trap, where each blade
features five segmented electrodes. We mounted the gold-coated
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fused silica blades on an alumina holder. Alumina is chosen for its
high thermal conductivity and low outgassing rate. The blades are
positioned in a 60°/30° angle configuration to enable high optical
access along the vertical direction for high-resolution imaging
[0.6 numerical aperture (NA)] and along the in-plane direction
orthogonal to the trap axis (0.3 NA). This configuration also breaks
rotational symmetry, which allows for well-defined trap principal
axes. Each electrode is biased via a gold fuzz button, which is, in
turn, connected to a Kapton-insulated wire via customized Macor
holders. To shunt the radio frequency (rf) pickup voltages on the
static dc blades, we use ultrahigh vacuum-compatible silver-filled
epoxy to glue 800-pF capacitors to each static segment on one side
and wire bond the other side to a ground strip present on the blades.
We use a helical resonator with a resonant frequency of 27.9 MHz
and a quality factor Q = 198 to drive the rf blades, achieving a radial
center-of-mass trap frequency of 3.363 MHz at V., =420 V. The
heating rate on the radial center-of-mass mode is measured to be
0.4 quanta/ms, whereas the tilt mode features a lower heating rate
(7 ~ 0.03 quanta/ms).
A 370-nm laser red detuned from the 251/2 - ZPI/2

passing through 3.704- and 14.748-GHz electro-optic modulators is
used to produce Doppler cooling light for both isotopes '”'Yb* and
72Yb* . 'This beam is placed in-plane at 45° with respect to the ion
chain for projection along all three trap principal axes. In addition,
two axial 370-nm beams are used for detection and optical pumping
of 'Yb*. They are also superimposed with two 935-nm repumper
beams for both Yb™ isotopes.

A pulsed 355-nm laser is used to resonantly address the '”'Yb*
ground-state qubit via two-photon Raman processes. The same laser
is used to generate the spin-phonon coupling. The counterpropagat-
ing Raman beams have elliptical shapes with vertical and horizontal
waists w, = 5 pm and w, = 150 pm and are in lin 1 lin polarization
configuration to maximize the coupling between the two hyperfine
clock states.

A 435-nm diode laser locked to an ultralow expansion cavity
is used to address the 281/2 - 2D3/2 transition (or |g) —|o)) in
172yb* (61, 62). The beam is aligned at 45° with respect to the mag-
netic field and horizontally polarized to maximize the coupling to
the two Am; =0 transitions (m; = £1/2— m;, = £1/2) sepa-
rated by 8.23 MHz. The cooling is achieved by continuously driving
the red sideband of m; = +1/2 — m; = +1/2 transitions while
also using a 935-nm repumper laser that allows the transition be-
tween |o) and 3’D[?’/Z] 12 =|e). Two tones on the 935-nm laser

separated by 113 MHz address both 7'Yb* and '*Yb™. To avoid
optical pumping into either of them; = +1 /2 ground states during
continuous sideband cooling, we use two laser tones on the 435-nm
laser to address both the m; = +1/2 — m; = £1/2 transitions
simultaneously. The effective cooling rate is highly dependent on the
power of the 935-nm laser, and it is the main turning knob to tune
the cooling rate y.

transition

Experimental sequence

The experimental procedure is summarized in Fig. 2. Our setup
consists of a '”'Yb* ion acting as the qubit and a ”*Yb* ion acting as
the coolant. Initially, we use the standard Doppler cooling technique
on both ions to prepare the temperature of the trapped dual-species
chain near the Doppler limit. We then perform the Raman-resolved
sideband cooling protocol on the radial center-of-mass and tilt
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modes, followed by an optical pumping pulse, to prepare the system
in|1),(ll, ® p, where p = Y, e~"/*sT |n) (n] is the thermal phonon
density matrix of the tilt mode and k3T = o/ log(l +1 /ﬁo) is the
associated temperature. The initial tilt mode average phonon 7, is
set to range between 0.1 and 0.3, which is similar to the bath tem-
perature 7. To transform the system from the qubit basis ¢, to the 5,
basis, we apply a global rotation U, (x/2) = exp( —ic,n/4). The state
of the system becomes| D) (D| ® p, where| D) = |1), here.

We then prepare the motional population from p to p_ with
an optical dipole force from two Raman beatnotes, ®, = oy — p
and o, = wy¢ + B, which have the same Rabi coupling strength of
Qdisplace — ¢ /2 with nQ = g and ¢, = ¢, = 1. We point out that
this is the same drive that generates the spin-phonon term in Eq. 1
but with half the Rabi coupling strength. This results in a spin-
dependent displacement of the motional state

displace
eff T]Q

displace = G)’ (aei& + aTe_iﬁt) (7)
where 8 = p — oy,. Under this operation, the system evolves as
U(6)=DIa(d)]I1), (1], + DI-a(t)][1), (L], =D [a(t)] | D)(D |+ D[
a(t)] |A)(A|, where D is the displacement operator in position-
momentum phase space and a(t) = oy (1 — e~ ) with oy = nQdisplacey
28 =g /45 (57). Hence, the applied pulse duration is f;yj,cc =7/
to get the displacement of a(tdisplace) =g/28=—-g/2wontop.

With the system being in the desired initial state |[D) (D| ® p_,
we address the '7'Yb™ with the four Raman beatnotes to generate an
effective Hamiltonian that maps to the ET unitary model in Eq. 1 (see
section S1). Simultaneously, we apply the continuous resolved side-
band cooling protocol on the ”2Yb*’s narrow linewidth optical transi-
tion to sympathetically cool the tilt mode of the system at the rate y
and effectively realize an engineered phonon dissipation. By varying
the simulation time ¢, we can measure the time-dependent evolu-
tion of the system. Before the measurement, we rotate the system back
to the qubit basis with another global rotation U, (1/2).

To measure the average spin excitation, we use spin-dependent
fluorescence, where only the spin in state | ), now representing | D)
after the m /2 global rotation, scatters photons. We use an objective
lens with an NA of 0.6 to collect the scattered photons into the photo-
multiplier tube. The average state discrimination fidelity between | D)
and| A )is 99.5%.

Alternatively, we can measure the average phonon excitation
(a%a) by performing an optical pumping pulse to reset the spin state
of the system to |]), followed by a resonant Raman blue sideband
(BSB) transition drive, HPB = i(nQ/2)(ac™ —a’c*), before the
average spin excitation measurement. The phonon-number distri-
bution that represents the diagonal elements of the final phonon
density matrix of the system, p,,, can be extracted by fitting the spin
evolution under the resonant Raman BSB transition drive with

Py (1) = % Zp(n)[l—e’“mtcos(\/n_-i-lnﬁtﬂ (8)

where p(n) denotes the phonon-number state population, a,, is a param-
eter to capture the decoherence rate of the spin-phonon evolution, and ¢
is the drive time (35). Hence, we can compute {a’a) = Tr(pm aTa).

Transfer rate data analysis
In the nonadiabatic regime, the transfer dynamics can be well de-
scribed by an exponential decay (see figs. S3, A and B). Because of
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the finite bath temperature 7 ~ 0.1 to 0.3, the spin population trans-
fer is not complete from | D) to| A ). Therefore, the transfer rates are
extracted from an exponential function with the rates and final
populations as the fitting parameters. The uncertainties of the rates
are the corresponding standard errors of the fits.

On the other hand, the spin evolutions in the adiabatic regime
feature complex oscillatory decays that a simple analytical model
cannot describe (see figs. S3, C and D). For this reason, we use the
inverse lifetime of the donor population in Eq. 5 to determine the
transfer rates (33, 44). This definition considers t — oo; therefore,
there is a correction we need to consider when we use this formula
for a finite experimental time. In the case of no electronic coupling,
V. = 0, the donor population does not evolve, P,,(t) = 1, because it is
in an eigenstate of the system. However, Eq. 5 still evaluates a non-
zero transfer rate between t = 0 and t = t; as k, = —. This contri-

sim

bution to the transfer rate only goes to zero if one evaluates Eq. 5 for
t — oco. Because Pj, reaches the steady state within our experimental
resolution in a finite time ¢, ranging from 4 to 10 ms, we calculate
the transfer rates by subtracting k, as

t,

sim

j P, (t)dt

ky = —ko 9

0

tSlm

J tPp(t)dt
0

To numerically evaluate the integrals, we interpolate the evolu-
tion Pp(t) data. We also use Eq. 9 to estimate the numerical trans-
fer rates.

To estimate the errors of the transfer rate, we follow a resam-
pling procedure. We consider the experimental error of each time
step of the Pj,(t) measurements as the SD of a normal distribution
centered at the mean measured value. We then randomly sample
the distributions at each time step, and we estimate the error of the
transfer rate by taking the SD of the rates obtained from the resampled
datasets by using Eq. 9. The process is repeated for all adiabatic
transfer dynamics.

Supplementary Materials
This PDF file includes:

Supplementary sections S1 to S6

Figs. S1 to S4
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