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with saturation at high species richness. This functional response was essential to the
interdependent effects of disturbance and ecosystem size in our model. Disturbance
more strongly regulated FCL in smaller ecosystems, where species richness was low.
Similarly, increasing ecosystem size enhanced FCL under strong, but not weak, distur-
bance regimes. Our study suggests that internal food web structure should deepen our
understanding of how FCL changes over environments.

Keywords: biodiversity, food web, mathematical modeling, motif, network analysis,
trophic interactions

Introduction

Food webs have interested ecologists for at least 100 years (Elcon 1927). The food
chain length (FCL), which is defined as the maximum trophic position within a
food web minus one (Post 2002), is a crucial aspect of food webs because FCL rep-
resents a vertical dimension of biodiversity (i.e. diversity over trophic levels, Wang
and Brose 2018) and is associated with top—down effects, primary productions, and
toxin contamination in predators (Kidd et al. 1995, Pace et al. 1999, Wang and Brose
2018). Three environmental factors are proposed as drivers of FCL: resource avail-
ability (Oksanen et al. 1981), disturbances (Pimm and Lawton 1977), and ecosys-
tem sizes (Post et al. 2000). Previous studies, however, show inconsistent results on
whether these three drivers change FCL (Briand and Cohen 1987, Jake et al. 2007,
Takimoto et al. 2008, Doi et al. 2009, Sabo et al. 2009, 2010, McHugh et al. 2010,

NORDIC SOCIETY OIKOS

) ) © 2024 Nordic Society Oikos. Published by John Wiley & Sons Ltd
www.oikosjournal.org

Page 1 of 16



Takimoto and Post 2013), resulting in a long-lasting debate
on the environmental determinants of FCL.

The ongoing debate regarding context dependency in FCL
suggests the existence of missing modulators between envi-
ronmental drivers and FCL. This potential shortcoming may
be tied to the current common approach in FCL research, i.e.
stable isotopes. Traditionally, empirical FCLs were assessed
by measuring the feeding links connecting the basal and apex
species within a food web (e.g. Briand and Cohen 1987);
however, this method (the so-called ‘connectance food web’)
is sensitive to issues arising from uneven and biased taxonomic
resolutions within the food web nodes (Winemiller 2007,
Pringle and Hutchinson 2020). The stable isotope approach
elegantly addressed this problem by integrating trophic inter-
actions in food webs (Layman et al. 2012); the stable isotope
ratios of ‘top’ (i.e. top predator) and ‘bottom‘(primary pro-
ducers or consumers) species approximates the vertical struc-
ture of the food web and the energy flow therein. Importantly,
it naturally accounts for the inherent complexity of predator—
prey interactions, such as omnivory. These distinctive features
rendered stable isotopes a promising tool to quantify FCL in
natural systems (Post et al. 2000, Post 2002, Jake et al. 2007,
Layman et al. 2007, Takimoto et al. 2008, Sabo et al. 2010,
Sullivan et al. 2015).

While we acknowledge the major advantage of stable iso-
topes in FCL research, however, it does not explicitly analyze
the internal food web structure that may lead to the emergent
relationships between FCL and environmental factors (Fig. 1).
In addition, existing experiments and theoretical frameworks
often oversimplify natural food webs, typically with three- to
four-species communities (Pimm and Lawton 1977, Hastings
1979, Diehl and Feissel 2001, Takimoto et al. 2012, Ward
and McCann 2017, Doi and Hillebrand 2019), or assuming
only chain networks (Liao et al. 2016, Jonsson 2017, Terui
and Nishijima 2019, Wang et al. 2021). Although there are
a few noteworthy exceptions (Martinez and Lawton 1995,
Neutel et al. 2007, Kondoh and Ninomiya 2009, Guo et al.
2023), it remains unclear how the internal structure of food
webs alters the relationship between FCL and external envi-
ronmental drivers. Here, we employ the classic ‘connectance
food web’ approach to shed light on the role of food web
structure in shaping the relationship between FCL and exter-
nal environmental drivers.

A parallel line of research has documented how species
richness and motifs, i.e. three-species subnetworks within
a food web (Milo et al. 2002), alter the stability of food
webs, which should be linked to the maintenance of long
food chains. As such, a reasonable first step is to explore
the processes through which these internal factors mediate
the impacts of environmental controls on FCL (Fig. 1b—c).
Increasing species richness enhances FCL if an inserted spe-
cies either occupies a higher trophic position than resident
species or increases the trophic position(s) of resident top
predator(s) (Post and Takimoto 2007) (see the Supporting
information for the analysis of how ‘species richness
increases FCL in the random graph). Decades of “diversity—
stability” debates (McCann 2000), however, revealed that
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Figure 1. Schematic representations of research questions showing
whether and how food chain length (FCL; a), species richness (b)),
food web motifs (three-species chain, omnivory, apparent competi-
tion, and exploitative competition; (c), and the environmental driv-
ers (resource availability, disturbance, and ecosystem size; (d) relate
to one another . FCL is defined in three ways depending on how
trophic positions are defined. If trophic levels are defined by one
plus the longest-path length from basal species (FCL long), the FCL
of the food web in (a) is three. If trophic positions are given by one
plus the mean of the prey species” trophic positions (FCL mean), its
FCL is between two and three. FCL short measures trophic posi-
tions as one plus the shortest-path length from basal species; FCL
short of the top food web is two. In the main text, we focused on
FCL mean. See the Supporting information for FCL definitions.

random species assembly destabilizes food webs (Gardner
and Ashby 1970, May 1972, Allesina and Tang 2012), and
the non-randomness of assembly rules is the critical prop-
erty of persistent food webs. Previous studies show that the
following four motifs are dominant in empirical food webs
(Stouffer et al. 2007, Borrelli 2015, Monteiro and Faria
2016) and relate to the persistence of food webs (Stouffer
and Bascompte 2010, Monteiro and Faria 2016, Cirtwill
and Wootton 2022): three-species chain, omnivory, appar-
ent competition, and exploitative (or direct) competition
(Fig. 1c). Notably, these motifs differ in their FCL; the chain
motif is longer than the two competition motifs, and the
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length of the omnivory motif is between the chain and the
competition.

In this study, we investigate whether and how species rich-
ness (or, technically, ‘operational species richness’, defined
in Subsection Definitions and terminologies) and food web
motifs modulate the relationship between FCL and the three
environmental drivers (i.e. resource availability, disturbances,
and ecosystem sizes). We begin with the analysis of an empir-
ical food web database (Cohen 2010) to assess the association
between FCL and internal food web properties (operational
species richness and food web motifs). With simulations of
species-rich food webs, we further elaborated on how the
association alters the relationship between the three environ-
mental drivers and FCL. Our analysis suggests that species
richness modulates environmental effects on FCL because of
a nonlinear relationship between species richness and FCL.
This may explain the inconsistent patterns between the envi-
ronmental drivers and FCL in previous studies.

Material and methods
Definitions and terminologies

In this study, we refer to the number of nodes in a food web
as ‘operational species richness’ because the number of nodes
does not always correspond to the number of biological spe-
cies (species richness). In empirical food webs, each node may
include multiple biological species that share trophic status
(i.e. trophic species) (Pringle and Hutchinson 2020) or are
taxonomically close due to the limited resolutions. The issue
of taxonomic resolution in food webs has been discussed in
previous studies (Sugihara et al. 1997, Yodzis and Winemiller
1999). Alternatively, a single species can be subdivided into
multiple nodes if the species has size- or stage-dependent
trophic interactions. Individuals of such species should be
assigned to different nodes to reflect their variations in diet
(Cohen et al. 1993, Huxham et al. 1995); otherwise, infor-
mation in a food web is lost (Luczkovich et al. 2003). The
nodes in our simulations do not necessarily represent the
biological species for the same reasons, and our model does
not include the traits that define either species’ boundaries
(e.g. reproductive isolation) or size-dependent trophic inter-
actions. We, therefore, use the term operational species rich-
ness in this manuscript. Similarly, ‘species’ in this manuscript
refers to a unit of entity (i.e. node) in a food web.

We defined FCL as the maximum trophic position within
a food web minus one (Post 2002). However, multiple defi-
nitions of trophic positions have been used in the literature.
We used three of those defined in connectance (or binary)
food webs: mean, short, and long trophic positions (hereafter,
FCL mean, short, and long for corresponding FCLs). The
mean trophic position is given by the mean trophic position
of prey species plus one, while the short and long trophic
positions are defined as the shortest- and longest-path length
from the basal species plus one, respectively. These definitions
can lead to different FCLs of the identical food web (e.g.
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Fig. 1a). We used these three definitions to analyze factors
that consistently affect FCL. The main text, however, focuses
on the results of FCL mean. See the Supporting information
for the results with the two other definitions.

In FCL mean, a trophic position of a predator species
can reflect how much each prey species is eaten by the focal
predator, although such information is not always available in
empirical data. The other two definitions of FCL require only
binary food webs, which contain the presence and absence of
prey—predator interactions among species. FCL short can be
measured in all food webs, while FCL long can be used only
in acyclic food webs (e.g. food webs without cannibalism and
mutual predations). See also the Supporting information for
further details on FCL measures.

Empirical database

We analyzed 213 empirical food webs (from WEBI1 to
WEB213) in the database of Cohen (2010). This database
contains adjacency matrices of food webs across many eco-
system classes (Supporting information). This enabled us
to calculate FCL, species richness, and the proportion of
different three-species motifs in empirical food webs. Our
analysis focused on the following three-species motifs: chain,
omnivory, apparent competition, and exploitative competi-
tion. We focused on these motifs because they were dominant
in the empirical food webs, as reported in a previous study
(Camacho et al. 2007). Most of the food webs (203 out of
213) in the database were acyclic; FCL long was measured
only for acyclic food webs while FCL short and mean were
measured in all food webs. See also the Supporting informa-
tion for more details.

Common issues in the database of Cohen (2010) are 1)
the low taxonomic resolution and 2) binary prey—preda-
tor interactions. To address these typical issues in the
food web database, we analyzed additional 11 food webs
(Christian and Luczkovich 1999, Angelini and Agostinho
2005, Bascompte et al. 2005, Angelini et al. 2006, 2010,
2013, Cruz-Escalona et al. 2007, Angelini and Vaz-Velho
2011, Torres et al. 2013) obtained from another database
(Ortega et al. 2023) in the Supporting information, where
higher taxonomic resolution and quantitative pre-predator
information is available.

Mathematical model

Generating food webs

While the empirical database provides the important links
among FCL, species richness, and motifs, it does not con-
tain data for resource availability, disturbances, or ecosystem
sizes. This limited our ability to understand how environ-
mental factors control FCL through the internal structures of
food webs. To complement this limitation, we simulated the
community dynamics of an N-species food web model that
enabled us to analyze how the environmental drivers affect
FCL through species richness and food web motifs. In pre-
vious studies, multiple algorithms are proposed to produce
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N-species food webs that mimic empirical food webs (Cohen
and Newman 1985, Caldarelli et al. 1998, Williams and
Martinez 2000, Cattin et al. 2004, Rossberg et al. 2005,
2006, Stouffer et al. 2005, 2006, Allesina et al. 2008, Kondoh
and Ninomiya 2009). We used the modified preferential prey
model (Johnson et al. 2014) for three reasons. First, this algo-
rithm generates only acyclic food webs. As explained in sec-
tion Definitions and terminologies, we can use only acyclic
food webs when we measure FCL long. Although the original
model in Johnson et al. (2014) allows cannibalism, we modi-
fied the model to preclude cannibalism from our simulated
food webs. Second, this model explicitly predetermines the
number of basal species in a food web. The predetermined
number of basal species is necessary for our study because,
without such a restriction, food webs may have limited vari-
ation in FCL due to the stochastic predominance of basal
species. Although (generalized) cascade models (Cohen and
Newman 1985, Stouffer et al. 2005) can generate acyclic food
webs, this algorithm cannot fix the number of basal species
in these models. Finally, the modified preferential prey model
generates food webs given the definition of trophic positions.
A similar model proposed by Kondoh and Ninomiya (2009)
satisfies the conditions of acyclic models and the fixed num-
ber of basal species; however, this model cannot incorporate
the difference in the definitions of trophic positions. We used
the preferential prey model to generate food webs for these
reasons.

In the preferential prey model, we first need to determine
the maximum number of species V, the maximum number
of basal species B, and the expected number of trophic links /.
In this study, we set (V, B, )) =(32, 4, 113) with the following
rationale. /V = 32 is sufficiently large to generate variations in
realized operational species richness, yet the computational
costs of stochastic simulations are reasonably small. B = 4 was
used to avoid the entire loss of the basal species, which causes
the global extinction of the food web. In addition, excessive
numbers of basal species limit the observable variation in
FCL because fewer species are expected to attain high trophic
positions. In such cases, statistical analyses would be difficult.
/=113 was chosen to meet the connectance /N* ~ 0.11, fol-
lowing statistics in Dunne et al. (2002).

Second, after setting parameters of (N, B, /), species i =
1,..., B are assigned as basal species with a trophic position
of one. For each non-basal species i = B + 1,..., N, its prey
species are assigned as follows. Non-basal species 7 randomly
chooses its first prey species from j = 1,... B, ... ,i—1. If spe-
cies 7 has multiple prey species, additional prey species are
stochastically assigned. Non-basal species 7 tends to choose
additional prey species whose trophic positions are close to
species 7s initial prey (species j), but this tendency is tuned
by parameter 7 (7" — 0 represents species 7 consuming
only species whose trophic positions are identical to species
J> while 7 — o represents species Z choosing prey species
regardless of the prey’s trophic positions); see Johnson et al.
(2014) for more details. We set 7 = 1 in the main text. In the
original preferential prey model, species’ trophic positions are

determined by the mean of preys’ trophic positions plus one.
We extended this model to define species’ trophic positions
using the longest- or shortest-path length from the basal spe-
cies. We sampled 30 food webs in each of the three defini-
tions of the trophic positions to account for the stochasticity
of the preferential prey model.

Stochastic simulations of the ecological dynamics

Although the preferential prey model generates N-species
food webs, the coexistence of N-species is not guaranteed.
The model provides initial static food webs, which are subse-
quently “pruned” into realized food webs of coexisting spe-
cies (i.e. subgraphs of the N-species food web) considering
ecological dynamics. Hereafter, species richness and fractions
of food web motifs in our simulations refer to those in real-
ized food webs, whose values vary greatly among simulation
replicates. To obtain the realized food webs, we simulated the
ecological dynamics by extending the theory of island bioge-
ography (MacArthur and Wilson 1967). In the original the-
ory of island biography, species colonization and extinction
rates in a patch are constant. Gravel et al. (2011) extends this
theory so that the colonization and extinction rates depend
on the presence of prey and predator species in the patch,
respectively. Saravia et al. (2022) showed that this model-
ing framework could reproduce the frequency of motifs and
trophic positions that are statistically indistinguishable from
empirical food webs. From this result, we assume that the
extended theory of island biogeography model does not bias
FCL and the food web motifs in realized food webs.

Our rationale for employing the theoretical framework
of island biogeography is to make simulated results readily
comparable to empirical food webs, which typically contain
only the presence/absence information of constituent spe-
cies. While previous studies implement population dynamics
(Otto et al. 2007, Kondoh and Ninomiya 2009), implement-
ing population dynamics did not alter the results in the main
text (Supporting information).

In our model, we consider the presence (P,=1) and
absence (P,=0) of species i in a single patch (i.e. ‘island’)
with species migration from the external permanent species
pool (i.e. “mainland”). The colonization—extinction process is
defined by the following reactions:

Pp=0—D ,p—1 (1)
p=1—&0p =0, (1b)

where f; is the colonization rate and g, is the extinction
rate. These rates depend on the presence of other species
P=(R...,Py) and environments. If species 7 is a basal
species (1 < i < B), the colonization rate depends on the
resource availability, the ecosystem size, and the presence of
other basal species:

Page 4 of 16

d ‘v “¥T0T '90L0009T

:sdny wory

mofos,

QSUAOIT SUOWWO)) dANEAI) d[qedridde oy £q pauIoA0S a1e SA[INIE Y s JO SN 10J AIeIqIT AUI[UQ AJ[IAL UO (SUOTIIPUODI-PUB-SULId) WO K[IM" AIRIqI[AUT[U0//:sdNY) SUONIPUO) pue SWId T, oY) S “[$70T/T1/£7] U0 Areiqr auruQ A[IA\ “D BuIjoIe)) YUON JO ANSIoATUN) AQ TEE0TNIO/T [ 11°01/10p/wod Ao[im K.



fi(P) = (1= E)a; exp

where 4, is the maximum colonization rate of basal species
i in the absence of other basal species (i.e. no competitors
for resource), and R quantifies the resource availability in the
patch. The resource availability R defines how rapidly the
colonization rate decreases as the number of other basal spe-
cies increases.

For non-basal species 7 (B + 1 <i < N), on the other hand,
the colonization rate depends on the presence of prey species:

B =a-ny P

.W, i:B+1,...,N, (3)
p; T K,

where 4, is the maximum colonization rate of non-basal
species 7, p, is the number of species 7’s prey species in the
patch, K gives the number of prey species that defines the
half-max colonization rate, and 4, is the Hill coefficient that
determines the shape of the function. The ecosystem size in
this model is realized by the maximum colonization rates (4,
and b4) because species would migrate more frequently into
a larger patch than a smaller one (i.e. the target effect). In
Supporting information, we implemented alternative ecosys-
tem size’s effect as decreasing the extinction rate due to preda-
tion ¢, instead of increasing colonization rates (#,and 4)). This
idea can be justified when population abundances are fixed
regardless of the system size. In such cases, population densi-
ties decrease over ecosystem size, resulting in lower encounter
rates between prey and predators (Ward and McCann 2017).
See the Supporting information qualitatively similar results
to the main text with this implementation.

The extinction rate is composed of predation, lack of
prey, and disturbances (e):

where ¢, and 4, represent maximum extinction rates of species
i due to abundant predators and scarce prey, respectively; ¢,
is the number of species 7’s predator in the patch; L, gives the
number of predator species that defines the half-max extinc-
tion rate due to the predation pressure; M, gives the number
of prey species that defines the half-max extinction rate due
to the lack of prey; and 4, and 4, are the Hill coefficients.
For top predators, extinction due to predators never occurs
(¢,=0), while the basal species has &,=0 as they do not have
any prey species. The default values and the descriptions of
the parameters are listed in Table 1. In the main text, we
focused on the effect of two environmental drivers: distur-
bance and ecosystem size. This is because our preliminary
results (Supporting information) suggested that resource
availability showed no correlations. Although species would
differ in their parameter values (e.g. colonization rates 2, and
b, and sensitivity to disturbance ¢) in nature, we fixed the
parameter values across the species to focus on the effects of
network structures of food webs. We replicated the simula-
tions 20 times for each combination of a 32-species food web
structure and a parameter set, because each replicate can real-
ize different food webs depending on the colonization and
extinction events. In total, we analyzed 30 food web struc-
tures X 20 replicates X 72 parameter sets (variations in 4,
and ¢, see Table 1) =43200 data in each definition of FCL.
The stochastic dynamics were implemented by Gillespie
algorithm using the GillespieSSA library (Pineda-Krch 2008)
ver. 0.6.2 in R ver. 4.2.1 (www.r-project.org). For each run
of the simulations, all species are absent in the patch at the
beginning: P(0) = 0. We continued the simulations until
time 1000. The master equation of the system describes the
dynamics of the probability distribution of P as follows:

ZPr

where Pr(f’) represents the probability density of pres-

10,(5,(B)] ~ Pr(P Zq) (5)

~ e M ence—absence vector P, S, is an operator to switch
2,(P)=D|¢ e td, e |, (4)  the presence of species i to the absence and vice versa
q;° + L7 M +p;? without  changing  other  species  presence—absence
Table 1. Summary of parameters.
Symbol Value Description
N 32 Maximum number of species
B 4 Maximum number of basal species
/ 113 Expected number of trophic links
a, €{0.25,0.5,0.75, ..., 2.0} Maximum colonization rate of basal species
R 4 Resource availability
b, a, Maximum colonization rate of non-basal species
K; 1 Number of prey species giving the half-max colonization rate
G 0.3 Maximum extinction rate because of predation
L, 2 Number of predator species giving the half-max extinction rate by
predation
d, 0 (basal) or 10 (non-basal) Maximum extinction rate due to the lack of prey
M, 0.05 Number of prey species giving the half-max extinction rate by lack of prey
e €{0.1,0.2,0.3, ..., 0.9} Extinction rate because of disturbances
h (j=1,23) 1 Hill coefficients to determine the forms of functions.
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information, ie.S,(P)=(B...,2_,1- P, D, ...,Py), and

o,(P) = Pf(P)+(1—P)g,(P) represents the switching rate
of species 7 from presence to absence and vice versa. Intuitively,
the first term of Eq. 5 represents the rate at which the species
composition becomes P and the second term indicates the
rate at which species composition changes from P .

After removing species with no prey from the realized
food webs at the end of the simulations, FCL was measured
(Supporting information), and the fractions of 13 motifs
were calculated using the igraph library (Csardi and Nepusz
20006) ver. 1.3.5 in R. If all species go extinct, we regarded
FCL as —1 because FCL is zero when only basal species exist.

Sensitivity analysis

While we fixed parameter values of (V, B, /, 7) in the main
text, these parameter values affect the structure of entire food
webs. To ensure the robustness of the results in the main
text, we ran additional 7200 simulations in which param-
eters were randomly sampled from the following sets with
equal probability: V € {16, 24, 32, 40, 48}, B € {2, 4, 6,
8}, /N* € {0.9, 0.1, 0.11, 0.12, 0.13}, and 7 € {0.1, 0.5, 1,
2, 10}. We varied the maximum operational species richness
N within the range where the computational cost is not too
huge. The range of the maximum number of basal species was
chosen so that at least half of the species in a food web were
non-basal species; otherwise, FCL would remain short. The
range of connectance /N was based on Dunne et al. (2002);
the mean and standard deviations of connectance in empiri-
cal food webs were 0.11 and 0.09, respectively. The range of
T was determined to generate a large variation of the entire
food web structure following the results in Johnson et al.
(2014). In this sensitivity analysis, we also randomly sampled
the frequency of disturbance and ecosystem size while fix-
ing resource availability and other parameter values (Table 1).
These simulations allow us to validate 1) whether operational
species richness and the fraction of chain motifs correlate
with FCL, and 2) whether operational species richness mod-
ulates how environmental drivers affect FCL in diverse food
web structures. The sensitivity analysis was performed in all
three definitions of FCL.

Statistical analysis

Statistical analysis of empirical data

We used regression analysis to examine how operational spe-
cies richness and the fraction of the three-species chain motif
affect long, short, and mean FCLs (Results). We assumed these
two variables had any of the following three functional forms:
linear, saturating, or quadratic. These functional forms were
determined from the scatter plots against FCL (Fig. 2-3); FCL
positively correlates with the operational species richness and
the fraction of the chain motifs, respectively. Because long FCL
was not observed in communities with high operational spe-
cies richness or with many chain motifs, the model selection
included two non-linear functional forms, a saturating and

a quadratic functional form. The saturating functional form
indicates that FCL does not change at a high richness or a high
fraction of the chain motif, while the quadratic form suggests
that FCL can decrease there. We generated fifteen nonlinear
models for each definition of FCL; i.e. either species richness
or the fraction of the chain motif affects FCL in either of the
three functional forms, respectively (2 X 3=06), or both of the
two factors affect FCL in any of the three, respectively (3 X
3=9). The three functional forms are written as in Eq. 6a—c.

FCL ~ ax —1, (6a)
FCL ~ a{1 — exp(—bx)} -1, (6b)
FCL ~ —ax” + bx —1 (6¢)

where x is either operational species richness or the fraction
of the chain motifs in a food web, and coeflicients # and 4 are
assumed positive because of positive correlations between FCL
and operational species richness or the fraction of chain motifs
(Fig. 2-3). The constant terms of the three models are fixed as
—1 given our definition of FCL. In the saturating functional
form (Eq. 6b), parameter # controls how much x (i.c. either
species richness or the fraction of chain motifs) increases FCL
because FCL converges to @ — 1 in the limit of x — 0.
In the quadratic function (Eq. 6¢), the maximum increase of
FCL by x is either 6*/(4a) (if b < 2a) or — a + b (otherwise).
We used the 7/s() function with algorithm “port” in R to
fit these models to the data from the empirical database. The
lower boundaries of the coefficients were set to zeros so that
the linear and saturating functions were increasing functions
and the quadratic function was concave), while the upper
boundaries were either maximum FCL in the data plus one
(for a in the saturating function) or 10 (for the other coefhi-
cients). The upper boundaries of the coeflicients were justified
as follows. For « in the saturating function, this upper bound-
ary allowed the saturating function to fit the maximum FCL
in the data: for the rest of the parameters, the upper bound-
aries were chosen so that the n/s() function could search
broad parameter ranges but it converged. We chose the best
models by calculating Akaike information criterion (AIC) of
the regression models using the A/C() function in R. See the
Supporting information for the AAIC, and the best models

and the coeflicient values.

Statistical analysis of simulation data

We repeated a similar regression analysis for our simulation
data. We grouped simulated data according to the 30 food
web structures, which were used as random effects in non-
linear mixed effect models. We included the random effects
in all coeflicients in (Eq. 6a—c) because FCLs in different
food webs may respond differently to changes in operational
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Figure 2. Correlations in empirical food webs. Spearman correlation coeflicients between food chain length (FCL) and species richness (a—c)
or the fractions of food web motifs (chain: (d-f), omnivory: (g-i), apparent competition: (j-1), and exploitative competition: (m—o)) in the
empirical food webs are shown. The correlation results were obtained from the cor() function in R and we removed data of operational spe-
cies richness < 3 because we cannot define the motifs there. We measured three types of FCL depending on how we define trophic positions.
In the left column (FCL long), we define trophic positions as one plus the longest-path length from the basal species. In the center column
(FCL mean), species’ trophic levels are given by one plus mean of prey species’ trophic positions. In the right column (FCL short), trophic
positions are given by one plus the shortest-path length from the basal species. The p-value of the correlation test is also shown in each panel.

species richness and the fraction of chain motifs. We fit-
ted the nonlinear mixed effect models to the data with the
nime() function in the nlme library (Pinheiro et al. 2023) ver.

3.1-162 in R. The best model was chosen by AIC (see the
Supporting information for AAIC).
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The linear quantile mixed models (Supporting informa-
tion) were used to quantify how disturbance and ecosystem
size affected FCL and species richness, using the lgmm()
function in the lqmm library (Geraci and Bottai 2014) ver.
1.5.8 in R. We implemented the random effects of 30 entire
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Figure 3. Correlations in food web simulations. As in Fig. 2, correlation plots between food chin length (FCL) and species richness or the
fraction of food web motifs are shown. Because of the large number of simulation data, p-values are always small and omitted. The darker,
bluer, or greener areas represent more data than gray areas. .
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food web structures on the slopes and the coefficients of the
models. This analysis was intended to see whether the effects
of disturbance on FCL differed depending on ecosystem size,
and vice versa. Wilcoxon signed-rank test was also used to
compare the logarithm of slopes of the linear quantile mixed
models over disturbance or ecosystem size.

Results
Operational species richness non-linearly increases FCL

We first investigated whether operational species richness and
the fractions of different food web motifs correlated with FCL
to identify candidates for internal modulators. Operational
species richness and three-species chain motifs positively cor-
related with FCL in all three definitions (Fig. 2a—f). The two
competition motifs (i.e. apparent competition and exploit-
ative competition), on the other hand, were negatively or
non-significantly correlated with FCL (Fig. 2j-o). The cor-
relations between FCL and the omnivory motif depended
on the definition of trophic positions. Although omnivory
increased FCL long (Fig. 2g), the correlation was weaker or
non-significant with FCL mean (Fig. 2h) or short (Fig. 2i).
These patterns were replicated in our simulated food webs
(Fig. 3). The correlative analysis suggested that operational
species richness and the chain motif may play key roles in
modulating the environment—FCL relationships. We pro-
ceeded with further analyses to see how they related to FCL
and the potential environmental drivers.

The functional forms between FCL and internal food web
structures (operational species richness and motifs) deter-
mine how environments dictate FCL. We compared three
functional forms: linear, saturating, and quadratic functions
(Fig. 2-3). The best models (see the Supporting information
for FCL long and short, respectively) described the effect of
operational species richness in the saturating functions both
in empirical data and our simulations (Fig. 4a—b). This indi-
cated that FCL changed disproportionately at low opera-
tional species richness, with little change at high operational
species richness. This pattern did not change because of the
difference in the entire food web structure; i.e. each 32-spe-
cies food web in the simulations showed similar patterns
over realized operational species richness (dashed lines in
Fig. 4b). The saturating functional form may be maintained
in broad networks; it appeared in baseline models without
species assembly (Supporting information). Quadratic mod-
els were selected as the best models for describing the func-
tional relationships between FCL (except for FCL short, see
the Supporting information) and the fraction of the chain
motifs (Fig. 4c—d).

The coefficients of best models (Supporting information)
indicated that operational species richness had larger maxi-
mum effects on FCL than chain motif; i.e. the coefficient
a in Eq. 6b for operational species richness ranged from
2.85 (empirical FCL short) to 6.61 (simulated FCL long),
while the maximum increase in FCL due to the chain motifs
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ranged from 1.23 (simulated FCL short) to 2.15 (empirical
FCL long). However, species richness increased FCL lictle
at high species richness because of the saturating function.
If a fraction of the chain motifs changes independently in
operational species-rich food webs, the chain motifs may
disproportionately influence FCL. To explore this possibil-
ity, we delved into how the fractions of the food web motifs
changed over species richness. At high operational species
richness, the fraction of the chain motif was lower than
expected in random graphs where each interaction between
species is realized with probability 0.11. The fractions of the
chain motifs in the empirical and simulation food webs were
lower than the expected value +2 X expected standard devia-
tion (ESD) in the random graphs (Fig. 4e—f). In the random
graph, the expected fractions of the motifs were constant but
their ESD decreased over operational species richness (see
the Supporting information for mathematical details). These
results imply that some regulation mechanisms hindered the
persistence of chain motifs in species-rich food webs, limiting
the motif effect on FCL. Therefore, we predict that key envi-
ronmental drivers of FCL are those that change operational
species richness from low to intermediate levels.

We repeated our analysis with empirical food webs at
higher resolution (Supporting information). Although the
amount of such food web data was small (11 food webs),
operational species richness positively correlated with FCL,
and the saturating functional form of operational species
richness predicted empirical FCL.

Operational species richness modulates
environmental effects on FCL

Our simulation shed light on how environmental factors —
resource availability, disturbance, and ecosystem size — dic-
tate FCL through changes in species richness. In the main
text, we focused on the effects of disturbance and ecosystem
size because our preliminary results suggested very weak
correlations between resource availability and FCL (see the
Supporting information for the analysis including resource
availability). Figure 5a shows that the effect of disturbance
was contingent on ecosystem size and vice versa. For exam-
ple, disturbance strongly regulated FCL in small ecosystems,
but such disturbance-induced regulation was weak in large
ecosystems (Fig. 5c, Supporting information; one-sided
Wilcoxon signed-rank test p < 107, 7" = 465). Similarly,
enlarging ecosystem size resulted in enhancing FCL under
strong disturbance but such increase in FCL was smaller
under weak disturbance (Fig. 5e, Supporting information;
one-sided Wilcoxon signed-rank test p < 107¢, 7'= 465). See
the Supporting information for comparison of the slopes in
the linear quantile mixed models.

The non-linear FCL-richness association underlay the
emergent dual regulation of FCL. As expected, operational
species richness decreased over disturbance while increasing
over ecosystem size (Fig. 5b). In contrast to the FCL pattern,
disturbance regulated operational species richness regardless of
the ecosystem size, and vice versa (Fig. 5d, f). The decoupling

d ‘v “¥T0T '90L0009T

mofosuy:sdny wory

QSUAOIT SUOWWO)) dANEAI) d[qedridde oy £q pauIoA0S a1e SA[INIE Y s JO SN 10J AIeIqIT AUI[UQ AJ[IAL UO (SUOTIIPUODI-PUB-SULId) WO K[IM" AIRIqI[AUT[U0//:sdNY) SUONIPUO) pue SWId T, oY) S “[$70T/T1/£7] U0 Areiqr auruQ A[IA\ “D BuIjoIe)) YUON JO ANSIoATUN) AQ TEE0TNIO/T [ 11°01/10p/wod Ao[im K.



(a)

Empirical data

54 [
[ 4
3
£ 5 &2
|
O
TIY
1- T T
50 100
Richness
(c)
5.
L 4
4.

FCL mean

000 025 050 075 1.00

Chain

(e)

1.001

0.75+ count

12

£ 9
Sos0
O | == 6

0.251 3

0.001 . .

0 50 100
Richness

(b)

Simulation
6.
c 4l count
©
s 3000
€ 2000
| 2
O 1000
I
O.
0 10 20 30
Richness
6.
[ B count
©
(]
S 2000
|
S 1000
e
1.00]
0.75+ count
1250
-% 1000
S o050 750
(© 2 it 500
0.251 250
0.001 . . .
10 20 30
Richness

Figure 4. Species richness and the chain mortifs relate to food chain length (FCL). Relationships among operational species richness, the frac-
tion of the three-species chain motifs, and FCL mean are shown (left: empirical data, right: our simulation data). (a—b) Operational species
richness had saturating effects on FCL. The green curves represent the best models (Supporting information) while fixing the fraction of the
chain motif as the mean value. (c—d) The fraction of the chain motif had quadratic effects on FCL. Similarly, the green curves represent the
best models (Supporting information) while fixing operational species richness as the mean value. Notably, the green curves in (b) and (d)
represent only the fixed effects, and the black dashed lines include random effects. (e—f) The fractions of the chain motifs over operational
species richness are shown. The dashed line represents the mean fraction of the chain motifs in the random graph, and the solid curves rep-
resent mean * 2 X expected standard deviation (ESD) in the random graph. See the Supporting information for more mathematical details.

of FCL and richness patterns over environmental gradients
can be explained by the saturating form of the FCL-richness
relationship. For example, when operational species richness
exceeded 15, changes in species richness did not translate into
FCL changes due to the saturating functional form. Thus,
operational species richness modulated how disturbance and
ecosystem size affected FCL. These patterns were consistent
regardless of the definition of FCL (Supporting information).

We also performed a sensitivity analysis to see whether
our findings were robust against the variation of food web

structure: the maximum operational species richness 2V, the
maximum number of basal species B, expected connectance
in N-species food web, and the pattern of omnivory 7. FCL
again positively correlated with operational species rich-
ness and the fraction of the chain motifs (Fig. 6a). Figure
6b—c compared the simulation data in the sensitivity analy-
sis with the best model for these data suggested by AAIC
(Supporting information): FCL=4.18 X (1 — exp(—0.14 X
richness)) + 1.69 X chain — 1. The operational species richness
still showed the saturating effect on FCL, and the estimated
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hain length (FCL). (a-b) Median values of FCL mean (a) and opera-

tional species richness (b) in our simulations over two environmental factors (disturbance and ecosystem size) are shown. On one hand,
operational species richness consistently decreased over disturbance but increased over ecosystem size. On the other hand, the two environ-
mental drivers had little effect on FCL at high operational species richness (>15), where disturbance is weak or ecosystem size is large. (c)
Disturbance decreased FCL more in a smaller ecosystem (orange) than in a larger one (blue). These values correspond to the solid-line boxes
in (a). (d) Disturbance decreased operational richness regardless of ecosystem size. (e) Ecosystem size increased FCL more under strong

disturbances (blue) than weak ones (orange). These values correspond

to the dashed-line boxes in (a). (f) Operational richness increased over

ecosystem size regardless of the frequency of disturbances. In (c) — (f), the solid lines represent median values of the fixed effects, the dashed
lines include the random effects of different 32-species food web structures, and the shaded areas show 25-75% quantile of the fixed effects.
See the Supporting information for comparison of the slopes in the linear quantile mixed models.

parameter values indicated that the operational species rich-
ness had a larger maximum effect on FCL than the fraction of
the chain motifs. The patterns of FCL and operational species
richness across the environmental drivers (Fig. 6d—e, respec-
tively) were similar to Fig. 5a-b; the effect of the disturbance
on FCL was contingent on the ecosystem size, and vice versa.
Such consistency also appeared in the two other definitions of
FCL (Supporting information). Therefore, operational spe-
cies richness is a robust modulator between the environmen-
tal drivers and FCL.

Discussion

Our mechanistic exploration highlighted the innate com-
plexity of FCL responses to environmental drivers, offering a
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potential explanation for the mixed results in previous studies
(Sabo et al. 2009, 2010, Takimoto and Post 2013, Warfe et al.
2013, Young et al. 2013). In particular, the effects of eco-
system size and disturbance were contingent on each other.
While previous studies (Sabo et al. 2010, Pomeranz et al.
2023) suggest the context-dependent effects through the rela-
tionships among potential environmental drivers, our theory
does not require such relationships. Instead, the context
dependency in our model arose from the nonlinear relation-
ship between FCL and operational species richness (Fig. 4b,
5a—b). This nonlinear pattern is confirmed by empirical food
web data (Fig. 4a), and is consistent with previous studies
(Martinez and Lawton 1995, Vander Zanden et al. 1999).
Hence, our results suggest the prevalence of ‘apparent’ inter-
actions between multiple environmental drivers, implying
that the observed contingency may be a natural outcome of
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Figure 6. Sensitivity analysis in food chain length (FCL) mean. The summary of the sensitivity analysis is shown. (a) Spearman correlation
coeflicients between the sampled parameters and realized network metrics are shown. Here, ‘Eco_size’ represents ecosystem size. FCL posi-
tively correlates with operational species richness and the fraction of chain motifs in realized food webs. (b—c) Operational species richness
and the fraction of chain motifs are fitted to the saturating and quadratic functions, respectively. The green curves represent the best model
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complex food webs. The gradient of operational species rich-
ness across environments would be key to resolving inconsis-
tencies in previous FCL studies.

The lack of resource effects (see the Supporting informa-
tion for information on including resource availability in
the main text model, and for an alternative model) seems
counterintuitive because some previous studies report the
importance of resource availability (Post and Takimoto 2007,
Doi et al. 2009, Kondoh and Ninomiya 2009, Takimoto and
Post 2013, Ward and McCann 2017, Terui and Nishijima
2019). This mismatch may be attributable to the difference
in the number of operational species considered. Some of
the above studies analyzed simple systems composed of three
or four species (Post and Takimoto 2007, Doi et al. 2009,
Ward and McCann 2017, Terui and Nishijima 2019) unlike
our theoretical model (32 species). These studies suggest
that FCLs lengthen with increasing resource availability at
lower ranges (Post and Takimoto 2007, Ward and McCann
2017, Terui and Nishijima 2019), although excessive produc-
tivity may shorten FCL if intraguild predation exists (Post
and Takimoto 2007, Ward and McCann 2017). It is pos-
sible that this prediction is only applicable to simplified food
webs with a few species. Another, but not mutually exclusive
explanation is that the effect of resource availability could be
simply weaker than other environmental drivers. Although
Kondoh and Ninomiya (2009) analyzed the effect of resource
availability in N-species communities, their model does not
include ecological processes driven by ecosystem size and dis-
turbance. Our model complemented these components (see
the Supporting information for the abundance-based model),
finding the lack of noticeable effects of resource availability.
These differences may account for the contrasting results of
resource availability between our study and studies of other
researchers.

Like any theoretical research, our results must be viewed
with some caution. First, they might be a unique attribute of
the particular food web model we employed. However, we
are confident that this is not the case. The saturating effect on
FCL appeared regardless of the assembly rules we considered,
including random graphs and cascade models (Cohen and
Newman 1985, Supporting information). Thus, this satu-
rating response of FCL to operational species richness may
apply to a broad range of networks. While we did not con-
sider food web models that produce cyclic food webs (e.g. the
niche model Williams and Martinez 2000), it is difficult to
envision that cycles qualitatively alter our results because the
saturating effect appeared even in random graphs. In support
of this view, the saturating function accurately predicted FCL
in more recent food web data with the higher taxonomic reso-
lution and cyclic food webs (Supporting information). These
addressed the potential limitation of Cohen’s larger database,
i.e. inaccurate estimates of trophic positions due to the low
taxonomic resolution. This fact suggests the robustness and
generality of our findings, since the non-linear relationship
was responsible for the contingent effects of environmental
drivers on FCL. Second, we did not account for variations in
species’ traits other than their trophic positions in a food web.
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In nature, species may differ in their colonization rates, sensi-
tivities to disturbances, or competitive abilities. Nevertheless,
we could reproduce empirical patterns of how FCL changes
over the gradients of food web structures. Hence, introduc-
ing more complexity to our model will unlikely overturn our
conclusions.

Our findings may also provide important insights into the
stability—diversity debate (McCann 2000). “May’s paradox”
of community stability has sparked a discussion of how com-
plex webs of interacting species are maintained despite their
inherent instability (Gardner and Ashby 1970, May 1972,
Allesina and Tang 2012), and previous studies suggest that
the non-random species interaction is the key factor promot-
ing stable coexistence (Thébault and Fontaine 2010, Mougi
and Kondoh 2012, Garcfa-Callejas et al. 2023). The present
study suggests another non-randomness related to commu-
nity stability: expanding the “ertical” dimension of biodiver-
sity (Wang and Brose 2018), or increasing FCL, is more likely
to lead to community collapse than increasing “horizontal”
biodiversity or adding species to the already-occupied tro-
phic positions. The chain motif is distinctive because species
within the chain motif occupy broader trophic positions than
others (Supporting information). Increasing chain motifs
means that species occupy open and higher trophic positions,
resulting in longer FCL. However, Fig. 4e—f indicates that
chain motifs were unlikely to be prevalent in species-rich
communities; instead, colonized species likely occupied tro-
phic positions similar to resident species, forming competi-
tive motifs with the saturating increase in FCL (Fig. 4a—d).
It is reasonable to observe the saturating effect of operational
species richness on FCL (Fig. 4). This finding may open up
an opportunity to link the ongoing diversity—stability debate
to FCL research.

Our findings do not mean to downplay the role of stable
isotopes in FCL research; instead, they suggest the impor-
tance of combining multiple methods to gain deeper insights.
Although stable isotopes are applicable to a variety of natu-
ral systems, they treat internal food web structure as a ‘black
box’. Emerging molecular techniques, such as (meta-)bar-
coding of environmental DNA, can investigate the food
web structure (Taberlet et al. 2018, Pringle and Hutchinson
2020). Recent studies use such techniques to assess species’
diet (Deagle et al. 2009), to reconstruct food web structure
(D'Alessandro and Mariani 2021), or to estimate interspecific
interaction strength (Ushio et al. 2023). These analyses have
the potential to unveil detailed internal food web structures,
including species richness and fractions of food web motifs.

In conclusion, this manuscript sheds light on the role of
internal food web structure in producing the context-depen-
dency of FCL controls. Uncovering food web structure in
nature may prove challenging. However, recent technologi-
cal advancements have created opportunities to address this
issue. In this regard, our theoretical framework serves as a
conceptual foundation for future studies that utilize emerging
methodologies to investigate food webs: how operational spe-
cies richness and, to a lesser extent, food web motifs modu-
late the associations between FCL and environmental drivers.
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By incorporating the intrinsic complexity of food webs into
FCL research, we can potentially resolve contradictory results
observed in various ecosystems.

Speculation

Recently, Guo et al. (2023) show alternative nonlinear pat-
terns of how FCL changes across the three environmental
drivers; while FCL increases over ecosystem size, it oscillates
over resource availability and disturbance. This complex pat-
tern comes from the colonization—competition tradeoff of
basal species in their model. The diversity of basal species
shows zig-zag patterns across the environmental gradients,
leading to oscillating patterns of non-basal species and FCL.
Although our patterns of FCL across the environments differ
from those in Guo et al. (2023), species richness in Guo et al.
(2023) seems to increase FCL in a saturating form because
changes in richness affect FCL little when FCL is long; see
Supporting information in Guo et al. (2023). We specu-
late that species richness robustly affects FCL in a saturat-
ing form, but that how environments affect species richness
depends on the biological details (e.g. colonization—competi-
tion tradeoffs). If this is the case, the patterns of FCL across
environments can be diverse; however, the changes in spe-
cies richness can explain the patterns. This could be a future
research direction.
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