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ABSTRACT

In many prediction problems, the predictive model affects the dis-
tribution of the prediction target. This phenomenon is known as
performativity and is often caused by the behavior of individuals
with vested interests in the outcome of the predictive model. Al-
though performativity is generally problematic because it manifests
as distribution shifts, we develop algorithmic fairness practices that
leverage performativity to achieve stronger group fairness guaran-
tees in social classification problems (compared to what is achiev-
able in non-performative settings). In particular, we leverage the
policymaker’s ability to steer the population to remedy inequities
in the long term. A crucial benefit of this approach is that it is
possible to resolve the incompatibilities between conflicting group
fairness definitions.
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1 INTRODUCTION

Automated decision-making and support systems that rely on pre-
dictive models are often used to make consequential decisions in
criminal justice [7, 59], lending [54], and healthcare [16], but their
long-term impacts on the population are poorly understood. Most
prior work on algorithmic fairness assumes a static population and
focuses on allocative equality [12]. For example, consider the com-
mon fairness definition equalized odds [28]. It requires a predictive
model to incur false positives and false negatives at equal rates
across demographic groups; ie. it requires the model to allocate
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errors equally between groups. It does not consider long-term im-
pacts of errors across demographic groups: for example, it may be
easier for members of an advantaged group to overturn an error (as
compared to members of a disadvantaged group), so errors are more
consequential for the disadvantaged group. In the long term, this
can exacerbate inequalities in the population in ways that simply
enforcing equalized odds cannot address.

Motivated by concerns about the long-term impacts of predictive
models, there is a line of work that embeds predictive models as
policies in dynamic models of populations and studies how predic-
tive models steer the population [13, 29, 34, 63]. Following this line
of work, we study the enforcement of group fairness in the long
term. Our contributions are as follows.

(1) We formulate a new long-term group fairness constraint
inspired by algorithmic reform/reparation [15, 24], as well
as long-term versions of the three traditional group fairness
constraints.

(2) We show that as long as the policymaker has enough flexibil-
ity in the way they remedy historical inequities, it is possible
for them to steer populations towards a reformed state while
maintaining group fairness. As a consequence, this shows
that it is possible, in the long term, to simultaneously satisfy
traditionally conflicting group fairness constraints.

(3) We provide a reduction framework for computationally en-
forcing long-term group fairness. The convergence rates and
generalization guarantees of this framework are provided.

As mentioned, a key consequence of our results is that in the long
term, it is possible to simultaneously remedy historical disparities
and satisfy multiple group fairness definitions that are traditionally
incompatible. This is in contrast to previous research on compatible
group fairness. The common theme of previous work is that of
avoidance, i.e. practitioners should alter policies so that the different
notions of fairness are fully satisfied at separate times or relaxed
versions of group fairness are satisfied simultaneously. Instead,
our focus is on resolution of incompatibility of group fairness, i.e.
practitioners should implement policies that eliminate the inequity
that leads to the impossibility of enforcing multiple forms of group
fairness.

1.1 Related Work

We first cover the prior work on resolving group fairness incompat-
ibilities, this is a non-exhaustive list and a thorough survey is given
in [57]. The study of incompatibilities in group fairness was initi-
ated simultaneously by the impossibility results in the works [9, 36].
In the years since then, researchers have sought to extend these
results and modify fairness practices to partially resolve them. The
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work [3] covers impossibility results for several group fairness met-
rics derived from confusion matrices in the context of recidivism.
Beyond just group fairness, trade-offs between optimal accuracy,
fairness, and resource allocation for different groups have also been
explored [17, 56]. The line of work [6, 37, 43] studies algorithmic
fairness in ML systems with human elements, although ultimately
the aggregate decision making process (human plus machine) is
still burdened by impossibility theorems. Another avenue of ap-
proach is to relax the sufficiency and separation requirements to
compatibility [8, 25, 41, 51, 56], although direct trade-offs between
fairness notions remain, and often such relaxations do not guar-
antee a desired level of fairness. Philosophically, our work aligns
with the recent idea of substantive fairness, which argues that poli-
cies should aim to eliminate historical inequities, treating causes
of disparity rather than symptoms of disparity [15, 24]. One of the
main contributions of this work is to formalize substantive fairness
into an algorithmic framework and study the feasibility of erasing
historical disparities with ML systems.

Concern amongst the fairness community regarding the long-
term impacts of predictive models has grown, originating with a
line of work that models fair policies and populations as a dynami-
cal system[13, 29, 34]. The long-term fairness framework that we
study is based on the recently developed idea of performative pre-
diction, a line of work that studies model-induced distribution shift
[5, 32, 45, 46, 53]. Closely related lines of work on the enforcement
of fairness in performative settings include [18, 58, 63, 64]. The
first designs a Markov chain oriented framework of performative
fairness, the second solves the problem of estimating down stream
fairness impacts of policies, the third studies fairness in strategic
environments though not with a goal of compatible group fairness.
In general, these generally consider a stateful performative predic-
tion setting and cast the task of steering the underlying dynamical
system as an optimal control or reinforcement learning problem. In
contrast, our problem setting prioritizes the discrimination at the
steady state and is not concerned with intermediate time steps.

Although it predates performative prediction, strategic classifica-
tion [27] is a common example of performative prediction. As such,
attention has been paid to the study of fairness in strategic settings.
The authors of [19] show that traditional fairness interventions in
strategic settings can actually exacerbate discrimination. A similar
perspective on traditional fairness constraints in strategic settings
is given in [39]. In [65] the effect of fairness interventions on the in-
centive for strategic manipulation is studied. The work [31] shows
that cost discrimination in strategic classification will cause viola-
tions of group fairness constraints in the long term. The authors
of [40] also study cost discrimination in strategic classification,
showing that subsidies for the disadvantaged group can alleviate
discrimination concerns. The common goal for each of these works
(and others in this area) is to study how strategic interventions
make discrimination worse if either no fairness intervention is used
or if a *traditional® fairness intervention (that does not account
for strategic agents) is used. The key difference between this line
of work and our work is that this line of work considers strategic
behavior as a problem to be overcome, while we leverage strate-
gic behavior for greater fairness achievement than is possible in
non-strategic environments.
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The running example of performative prediction/ a strategic set-
ting in this paper is labor market models; the study of such models
has a rich history in economics and long precedes the idea of per-
formative prediction. A comprehensive survey of this field is given
in [20]. The works [2, 55] presented initial labor market models
and analyzed the equilibrium of these models at the worker level.
In [55], discrimination in labor markets due to exogenous groups
is studied, while [2] surprisingly shows that even markets with
endogenous groups will have discriminatory equilibrium. Later, the
authors [10] formulated these ideas in the celebrated Coate and
Loury model of labor markets. Extensions on this model are numer-
ous; the authors of [50] and [49] develop a model where wages are
set by inter-employer competition and groups of workers actually
benefit from discrimination of others. The line of work [11, 21-23]
studies the efficacy of color-blind policies in preventing discrimina-
tion. We will primarily work with our own models of labor markets,
inspired by [60, 62].

Our primary goal is to study the feasibility of (fairly) equating
response distributions between two groups in the long term. This is
closely related to the goal of incentivizing agents to improve some
desirable quality. The authors of [47] show that this involves causal
modeling, and our work is no exception: various labor market
models will play the role of the causal model in our study. The
works [48, 62] focus on improving the agents’ overall welfare; they
show that there is often a trade-off between the learner and the
agents’ utilities. Performative power [26] measures the ability of the
learner to steer the agents in performative prediction. As we shall
see, the firm in the aforementioned labor market models possess
enough performative power to equate ex post response distributions
despite ex ante disparities between the two groups. Finally, the
causal strategic labor market model that we develop is an example
of an outcome performativity problem. outcome performativity is
introduced in [35] along with efficient omniprediction algorithms
for outcome performativity problems. In general, the novelty of
our work is our focus on a) driving improvement with the goal of
equating disparate groups and b) doing so without discriminating
against the advantaged group.

2  GROUP FAIRNESS IN PERFORMATIVE
POLICY LEARNING

Consider a binary classification problem in which samples corre-
spond to a population of individuals invested in learned policies
(often referred to as strategic agents) characterized by Z = (X,Y) €
X x {0, 1} and a protected attribute denoted G. This setting is char-
acterized as a problem in performative prediction. Performative
prediction is a distribution shift setting, where the implementa-
tion of a policy f : X X G — {0,1} triggers responses from the
individuals invested in the policy, leading to a new distribution of
data D(f,G) € A(Z x G). Throughout, we will assume that group
proportions remain constant (say P(G = g) = 4) for any policy f.
Under this assumption, we can write

D(f,6) =) 4gD(f,G)G=g% Y A4D(f.9) (1)

In performative prediction, The policy maker’s goal is to make a
policy that maximizes their expected reward, taking into account
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the strategic response of the individuals to their decisions:

maxpegr EPR(f) 2 )" MBp p(rg) [r(F(-9:2)],  (22)

where ¥ is a policy class, D(f,g) is the distribution map that
encodes the long-term impacts of the policy on the subset of the
population with sensitive trait value G = g, r(f (-, 9); z) is the policy
maker’s reward function that measures their reward from applying
a policy f to an agent z (this agent also has group membership
g), and Ay is the proportion of the population with sensitive trait
value G = g. The objective function in (2.2) is often called the
performative (expected) utility and measures the ex post reward
of policies. Throughout this paper, we will mark random variables
drawn from an ex post distribution as Z’ = (X’,Y").

A recurring instance of performative policy learning in this work
is the hiring firm’s problem in Coate-Loury-type models of labor
markets [20].

ExAMPLE 2.1 (CONTINUOUS LABOR MARKET EXAMPLE [61]). Con-
sider an employer that wants to hire skilled workers who reside in one
of two identifiable groups G € {A,D}; G ~ Ber[A]. The workers are
represented as (S, X, Y, G) quintuples. S € R is a worker’s (latent) base
skill level, Y € {0,1} a workers productivity and X € R be a noisy
productivity assessment (e.g. the outcome of an interview). Through-
out, it is assumed that conditioned on S, productivity is independent
of G and that

YS £ Ber[o(S)].

The productivity assessment X is independent of G given Y and
specified by a conditional CDF

IX|y) =P{X<x|Y=y}

that decreases in y (at a fixed x). We note that this also specifies the
generation of X as

O(X |s) 2 o(s)I(X1) + (1 - a(s))I(X]0).

Intuitively, the assumption that I(X | y) decreases in y at a fixed x,
requires the productivity assessment to be “unbiased” (in the sense of
a statistical test). Under this unbiased assumption, the optimal hiring
policy for the firm is of the form f (x,0,9) = 1x>¢,. Letu(f,y) be the
firm’s received utility from hiring (f (x) = 1) or not hiring (f (x) = 0)
a worker with productivity y. The firm’s expected utility for policy
f:Rx{A D} — {0,1} is E[u(f(X,g), Y)], so the firm’s utility
maximization problem is

max Z AGE[u(f(X,9), Y)].

As in [10], we allow the workers to improve their skills (at a cost) in
response to the firm’s policy. Let w > 0 be the wage paid to hired
workers and cy(s,s”) > 0 be the sensitive trait dependent cost to
workers of improving their skills from s to s’. We assume c is non-
increasing in s and non-decreasing ins’. The expected utility a worker
with group membership G = g receives from increasing their skill
level from s tos is

uw(fos.5'.9) = o wf(x,9)d®(x | s') = cg(s,5),

so a strategic worker changes their skill level to maximize their ex-
pected utility. We encode the ex-post workers’ skill level, skill level
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assessment, and productivity as
S’ £ argmaxguw(f,s,s’, g),
X' |8 ~d(x |5,
Y' | S’ ~ Ber[a(S")]

Note that the (conditional) distribution of a worker’s skill level assess-
ment, given their skill level, remains the same before and after the
worker changes their skill level. To account for the strategic behav-
ior of the workers, the firm solves the performative policy learning
problem:

maXf Z AgEZ'ND(f,g) [u(f(X/,g), Y/)]

The workers do not respond instantly to the employer’s hiring
policy; it takes them a while. Thus, we interpret D (f, G) as the long
term distribution of the workers’ skill levels and assessments in
response to the employer’s hiring policy. More concretely, imagine
a labor market in which the workers slowly turn over: new workers
enter the workforce and old workers retire constantly. As workers
enter the workforce, they make their human capital investment
decisions in response to the employer’s (contemporaneous) hiring
policy. Over a long period, the labor force population will converge

to D(f, G).

2.1 Standard fairness constraints are
insufficient in performative prediction

The standard way to enforce fairness in policy learning problems is
to equalize certain fairness metrics between demographic groups
(indicated by a demographic attribute G € G). This is often done
by imposing fairness constraints on the policy learning problem.
In general, fairness constraints fall into one of three types:

(demographic parity DP) f(X) 1L G,
(separation) fX)LG|Y,
(sufficiency) Y U G| f(X).

To see each of the traditional group fairness constraints in action,
consider example 2.1. Enforcing separation requires identical ex-
ante hiring rates between workers from the advantaged and dis-
advantaged groups with the same skill level, while enforcing suffi-
ciency requires the ex-ante (distribution of) skill levels of the hired
workers from the majority and minority groups to be the same. Fi-
nally, enforcing demographic parity simply requires that the ex-ante
hiring rites for individuals be the same across the groups.

In the long-term setting, there are two main issues with such
group fairness constraints. First, they only focus on the policy and
not its long-term impacts on the population: the policy f appears in
all three constraints, but the distribution map D(f, G) that encodes
the long-term impacts of f is absent. In other words, group fairness
constraints enforce equal treatment, but ignore the long-term im-
pacts of equal treatment on the population. Consider example 2.1,
only ex-ante quantities of the workers are considered. This leads
us to consider constraints that focus on the long-term impacts of
the policy on the population. Instead of enforcing ex-ante equal
treatment, we seek ex-post equality of certain fairness metrics.

Second, traditional group fairness constraints are also plagued by
incompatibilities. Despite the intuitive nature of DP, separation and
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sufficiency, [9, 36] prove that it is generally impossible for a policy
to simultaneously satisfy two of DP, separation and sufficiency.

THEOREM 2.2 (CHOULDECHOVA [9], KLEINBERG ET AL. [36]). It is
impossible to find a joint distribution on (f(X), Y, G) that satisfies
two of DP, separation, and sufficiency, unless one of the following
hold:

O PfX)=Y)=1
@Yyurg

This result is generally interpreted as an impossibility result: it
is impossible to simultaneously satisfy separation and sufficiency.
Although there are two cases in which separation and sufficiency
are compatible, they are considered pathological. The first case,
perfect prediction, is generally unachievable because the Bayes
error rate in most practical prediction problems is non-zero. The
second case, independent responses, is also considered pathological
because the policymaker has no control over the distribution of
responses. However, in performative settings, the policymaker can
steer the population so that response distributions are equal, sug-
gesting that it is possible to resolve the incompatibilities between
separation and sufficiency in performative settings by enforcing
group-independent responses ex-post. In the next section, we build
on this observation to resolve the incompatibility between separa-
tion, sufficiency, and demographic parity in performative settings.

2.2 Equality of Outcomes

The preceding developments suggest that the goal of a fairness-
conscious policymaker should be to eliminate disparities between
demographic groups in the long term (instead of myopically enforc-
ing group fairness regardless of the long term impacts). Because we
are interested in equating the different demographic groups ex-post
(where an individual from each group ends up) rather than equating
the different demographic groups ex-ante (where an individual from
each group comes from), we refer to this constraint as equality of
outcomes.

DEFINITION 2.3 (EQUALITY OF OUTCOMES). A policy f satisfies
equality of outcomes with respect to metric m(f,g) if and only if
m(f,g) is constant over each possible value of the sensitive trait g.

We emphasize that fairness metrics m(-, -) are not metrics in
the distance sense, but rather a quantity that measures a long-term
outcome of interest for strategic individuals. Since we are interested
in ex-post fairness, each metric will measure quantities associated
with the ex-post distribution (D (f, G)). Finally, for simplicity of
presentation, we will present each metric for the case of binary
classification (i.e. both f(X’,g) are in Y’ € {0, 1}). The extension
to the multiclass or continuous case is straightforward.

The goal of algorithmic reform in example 2.1 is to equalize
the disparities in human capital investment among minority and
majority workers. Choosing the fairness metric in definition 2.3 to
be worker productivity, we can encode this goal as an instance of
definition 2.3.

DEFINITION 2.4 (EQUALITY OF RESPONSES). A policy f satisfies
equality of responses if it satisfies equality of outcomes with respect
to the metric myes(f,9) = Ep(£,9)[Y']-
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Equal responses is a concept of fairness unique to the long-term
setting (and is our interpretation of the aim of algorithmic re-
form/reparation); we note that it does not imply the long-term
analog of group fairness defined next. We opt to refer to equality
of outcomes with respect to any metric containing the policy f as
equality of treatment.

DEFINITION 2.5 (EQUALITY OF TREATMENT). A policy f satisfies
equality of treatment if f meets all the following criteria.
(1) The policy f satisfies equality of outcomes with respect to

metric mpar(f,9) = Ep (1.9 L (X', 9)].
(2) The policy f satisfies equality of outcomes with respect to both

metrics
_ Ep(fq) [H{Y =0}1{f (X", 9) = 1}]
mppr(f. g) = o= 7]
(. g) = Ep(f.q9 1Y = 1}1{f(X’.g) = 0}]
e Ep(rg V]
(3) The policy f satisfies equality of outcomes with respect to both
metrics
ey, = Z2U LY = DI (X9 = 1)]
g Ep(rg [f (X 9)]
Ep(fg [H{Y =0}1{f (X", g) = 0}]
mnpv(f.g) = 79

Ep(rgll-f(X"9)]

We we wish to emphasize that requirements one, two and three
are simply the long term analogs of demographic parity, separation
and sufficiency respectively. Thus, the enforcement of equality of
treatment implies the long-term enforcement of multiple fairness
constraints that are incompatible in the short term.

Of course, our ultimate goal is for policymakers to implement
policies that satisfy equality of responses and equality of treatment
simultaneously. We point out that these goals are not necessarily
disjoint. As previous impossibility theorems have shown, in most
cases satisfying equality of responses is a prerequisite to satisfy-
ing equality of treatment. We show in the following proposition
that satisfying equality of treatment and equality of responses is
equivalent to enforcing the independence of the joint distribution
(Y, f(X’,G)) and G.

PROPOSITION 2.6. A policy f satisfies equality of treatment and
equality of responses if and only if the joint distribution (Y, f(X’, G))
is independent of G.

As mentioned, equality of responses is a mathematical formaliza-
tion of the line of work on algorithmic reform/reparation [15, 24].
This line of work “escapes” from incompatibilities between group
fairness definitions by questioning the goal of satisfying those defi-
nitions. It argues that the underlying goal of enforcing fairness is
to remedy injustices. From this perspective, traditional algorithmic
fairness definitions are merely a flawed indicator of the true goal,
so it is inconsequential if they are incompatible. We encode the goal
of reform or reparation mathematically as closing or eliminating
disparities in the responses of interest among demographic groups.
Furthermore, we study the enforcement of equality of responses
and equality of treatment simultaneously. In our formulation, this
implies the attainment of algorithmic reform/reparation without
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discrimination. In [15, 24], it is often argued that reform can only
be achieved by discriminating against the advantaged group. In
contrast to this, our analysis will show that it is often possible to
achieve reform (equality of responses) fairly (equality of treatment).

3 FEASIBILITY OF EQUALITY OF OUTCOMES

A crucial and non-trivial question remains. Is it feasible to enforce
equality of treatment and equality of responses simultaneously?
Note that this requires the same policy to equate ex-post responses
and to satisfy equality of outcomes with respect to each long-term
group fairness metric. If we deploy one policy to steer the pop-
ulation so that the response distributions are equal and another
policy to satisfy the equality of treatment constraints, the second
policy may steer the population away from equated responses, and
we end up in a cycle that achieves neither goal. Unfortunately, the
goal of equal responses and equal treatment may not be possible,
even in performative settings; i.e. there may not be a policy that
achieves both the treatment and the response goals. This is because
the distribution map D (6, G) depends on the sensitive attributes
(e.g. because it encodes inequities in the ex-ante distribution or
inequities in the agent response map). Thus, equating the responses
ex-post requires disparate treatment of the group (i.e. the policy-
maker cannot simply implement the same policy for each group).
On the other hand, equality of treatment forbids a disparate alloca-
tion of ex-post errors between groups. In this section, we study the
feasibility of enforcing equality of treatment (and thus equality of
responses) in labor market models.

3.1 Impossibility Results

We start by establishing impossibility results to elucidate prob-
lem structures that preclude equality of treatment and equality
of responses in labor market models. We consider two types of
disparities: human capital investment cost disparities and ex-ante
skill disparities. In order to introduce ex-ante skill disparities, we
define the notion of stochastic dominance.

DEFINITION 3.1 (STOCHASTIC DOMINANCE). Consider two real
valued random variables A and B. Then A stochastically dominates
Bifforallx € R,P(A < x) <P(B < x).

We return to the continuous labor market model 2.1 in which
an employer hires workers from two demographic groups. In order
to keep the example as equitable as possible (so that it is as easy as
possible for the employers to achieve equality of treatment), recall
that we assume that the skill assessment process is fair (X 1L G | Y)
and the same wage is paid to hired workers from both groups. Thus,
the only ex-ante differences allowed between workers in the two
groups are the ex-ante distribution of their skill levels and the cost
of human capital investment.

THEOREM 3.2. Assume the following:

(1) The worker cost function is of the formc(s', s, g) = 679 (s"—s)2,
and ming(cgy) is large enough to enforce strong convexity of
the agents optimization problem

(2) Exactly one of two forms of market discrimination is present:

(a) There is a difference in ex-ante skill levels (specifically S|G =
A stochastically dominates S|G = D).
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(b) The is a difference in the cost of human capital investment
of the formcp < c¢p.

Then, under either form of discrimination, group-blind policies that
ignore the demographic attribute of the workers G cannot achieve
equality of responses. Furthermore, hiring policies that satisfy equality
of outcomes with respect to mppr(f, g) and mpng(f, g) are necessarily
group-blind.

3.2 Alternative performative models

We present the preceding negative results to emphasize that simul-
taneously achieving equality of responses and equality of treatment
with respect to various fairness metrics is not trivial. To overcome
the difference ex-ante between workers in the two groups, employ-
ers must offer additional incentives to the ex-ante least skilled group
to close the skill gap and achieve equal responses. Unfortunately,
this prevents them from treating workers from the two groups
equally because employers only have a single degree of freedom
(the hiring threshold ). This suggests that it may be possible for em-
ployers with more degrees of freedom to equalize ex-post response
distributions with an (ex-post) fair hiring policy.

In this section, we introduce two models, the first is a generic
model of causal strategic classification inspired by the work [60].
The second is a modification of the causal strategic classification
model to better model labor markets. The causal strategic clas-
sification model provides a simplified framework for theoretical
questions on feasibility and generalization, while also demonstrat-
ing that our fairness framework is applicable to a wide variety of
learning settings.

EXAMPLE 3.3 (CAUSAL STRATEGIC CLASSIFICATION [60]). Consider
a learning setting, in which samples correspond to strategic agents that
posses features and a sensitive trait (X, G) € RY%{A, D}. Conditioned
on sensitive trait membership G, features X are generated from the
ex-ante distribution

x16 £ ps.

Conditioned on the features X, the agent responses Y € {0,1} are
generated via the Bernoulli variable

YIX 2 Ber[o(BTX))].

Note that this implies Y 1 G|X. The learner wishes to accurately
classify the agents using the features and sensitive trait. As such, the
learner deploys predictions f (X, G) € {0, 1} generated with the model

FX,G)IX, G £ Ber[o(65)].

In response to model choice 04, an agent (with trait g and ex-ante
features x) is allowed to take some action a to improve their standing
with the learner (at cost Cy(a)). The agents act rationally, optimizing
their utility:

a(6y) = argmax i [05]7 [x + Mygxpa'] = Cg(a’)

Upon selecting action a(8y) the agent’s features are ex-post x’ =
x + Ma(0y). The matrix M is an effort conversion matrix, encoding
the improvement of the feature x; from the action a; for each i, j €

[d] x [K].
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At the population level, the ex-post feature distribution X’ for the
group g is given by

P; d T (Py; 09, M, Cg); where T(x; 04, M,Cy) = x + Ma(6y).
Conditioned on G and X ex-post responses are generated by
Y'|X" £ Ber[o(B7X),
and ex-post predictions are generated by

FX,G)IX,G £ Bero(01X")].

To prevent arbitrary inflation of all agent outcomes, the learner is
subject to regularization penalty ||9||§. From the above, the learners
ex-post risk is

R(8) = Tgeg 44[P(f(X'.G) £ Y'|G = g) + [164115].

To better model a labor market, we modify example 3.3. The
learning setting will correspond to a labor market and the strategic
agents will correspond to workers. The key difference is that, rather
than features, workers now have a profile of latent skills, and each
skill contributes to the productivity of a worker. Consequently, firms
now view a noisy measurement of each skill based on a factor model.
This provides workers with multiple ways of investing in their
human capital and firms with flexibility in their hiring policies. As
we shall see, this additional flexibility is crucial for the enforcement
of equality of treatment.

ExXAMPLE 3.4 (MODIFIED LABOR MARKET MODEL). Consider the
causal strategic classification set up (example 3.3). In the context of
a labor market, the learner corresponds to a hiring firm, and each
strategic agent is a worker. Workers are encoded by pairs (S,G) €
R? x {A, D}, with S corresponding to a latent skill profile; as before

S A GandwesayS|G=g d Py. The productivity of the workers in
the group g is generated by Y|G = g ~ Ber[a(f7S)];S ~ Py. Rather
than observing latent skill profiles, the hiring firm views interview
outcomes generated by X = AS +¢, with A € RP*4 g matrix of factor
loadings. This skill assessment model is motivated by item response
theory (IRT) models of test outcomes [42]. The results of the interviews
are used to make hiring decisions through policy f(X,G)|X,G ~
Ber[a(05X)].

A worker in group g with an initial skill profile s can take action
(possibly training, studying, or additional education) in response to
04 through the causal strategic classification response mechanism

a(8y) = argmax gk [AT 0917 [s + Myxra’] - C(d, g).

The ex-post skill profiles are S’ = S + Ma(6,), S ~ Py, which propa-
gates to the ex-post interviews X', productivity Y’ and hiring decisions
f(X’,g). The firm seeks to maximize some (regularized) ex-post re-

ward/profit

R(0) = > gE[r(S', X", 00)IG = g] - 116,11
geG

3.3 Feasibility of Equality of Treatment in
Alternative Models
In contrast to the models in example 2.1, in the causal strategic clas-

sification setting (and the alternative labor market mode)l, the set
of policies that enforces equality of treatments (and thus equality of
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responses by 2.6) is non-empty. In fact, it contains a stratified man-
ifold of dimension O(d), so the set is quite large in some sense. We
will study this set in two scenarios: correcting ex-ante feature/skill
disparities and correcting cost-of-improvement disparities. For the
purposes of a theoretical analysis, we operate under some simplify-
ing assumptions.

ASSUMPTION 3.5.
(1) The agent (worker) cost is quadratic: C(a,g) = %Ha“%, the
effort matrix M is of the form M = diag[B]; B € {0,1}¢.

(2) The ex ante features (latent skill profiles) and interview out-

come distributions are Gaussian. In Example 3.3 X|G

N (ug,I) while in example 3.4 S|G d N(ug,I) and €
N(0,I).

[[SPIEY

The quadratic cost assumption is standard in the strategic
learning literature, [32, 33, 60]. The effort matrix is of the form
diag[B]; B € {0, 1}, if each skill is improved by a distinct action
and only some skills can be improved. Each assumption (including
normality) is primarily for mathematical convenience; we expect
that feasibility will hold under a wide class of choices for C(a), A, M
and measures on S, €.

Under assumption 3.5, the feasibility of equality of treatment
can be studied by analyzing two disjoint constraint sets, one that
pertains to parameters that correspond to “manipulable” features
and another that pertains to “nonmanipulable” features, which we
now define.

DEFINITION 3.6 (MANIPULABLE FEATURES). Given an effort matrix
M = diag|B]; B € {0, 1}4, and a general feature vectorv € RP, we
let vy, = {v; € v; 1{M,-=1}} and v, = {v; € v; l{Ml-:o}} be the
manipulable and nonmanipulable features, respectively.

Additionally, we will assign 2d,, 2d,, as the dimensions of the
parameter spaces (0,4, 0m.p), (04,4, 0u.D)-

THEOREM 3.7. Consider the learning setting of example 3.3 with the
minor assumption that the vectors {(4am, —D,m)> (Bm, —Pm)} are
not co-linear, and the vectors {(pa u, —pDu)> (Bm, —Pm)} are not co-
linear. Suppose that one of the two following forms of discrimination
is present:

(1) Ex-ante distribution discrimination: c4 = cp = 1, but,uATﬁ >

HpA.
(2) Cost of improvement discrimination: g = up = 0 butcy <
CD.
Then under (1) or (2) there exist stratified manifolds Mgy, My
such that dim[My] = dy — 2, and dim[M,,] = dm — 2 and any
learner decision 8 = (04, 0p) that satisfies (64 m,0p,m) € Mm and
(0au: Op,u) € My also satisfies equality of treatment and equality
of responses.

CoROLLARY 3.8. Consider the modified labor market model (ex-
ample 3.4). Assume that worker discrimination of the form (1) or (2)
is present. Then if dy, = dy, ~ d /2 there exists a stratified manifold
M of dimension O(d) such that any 0 = (04,0p) € M satisfies
equality of treatment.

Theorem 3.7 and corollary 3.8 state that in the causal strategic
classification model/modified labor market model, the set of policies
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that enforce long-term fairness and correct differences in worker
skills or costs contains a manifold of dimension O(d). Here, d is
interpreted as the “number of skills" a worker can possess. This
result clarifies the importance of flexibility in human capital invest-
ment. If d is not large enough, then the feasible subsets of Theorem
3.7 will be either too small to provide policy makers flexibility or
even empty in extreme cases. The assumptions of theorem 3.7 also
provide an important form of policy maker flexibility; the existence
of skills that are immune to performative effects implies the exis-
tence of policy parameters that can be adjusted to change error
rates between groups without impacting downstream responses.

Open questions on the feasibility of equality of treatment in
labor markets with multiple forms of discrimination or continuous
outcomes remain. The assumption that only one form of discrimi-
nation is present (cost of education discrimination or ex-ante skill
discrimination) is necessary for our analysis but not necessary for
feasibility (see Figure 1 for a numerical example). The discrete na-
ture of worker productivity and firm hiring decisions is also not
strictly necessary; for example. The argument of theorem 3.7 im-
mediately implies feasibility (assuming Gaussian features) in the
Causal Strategic Least Squares model posited in [60]. This model
is both the inspiration for our labor market model and can also
be interpreted in the context of a labor market with continuous
worker productivity.

4 A REDUCTION ALGORITHM FOR
EQUALITY OF OUTCOMES

In practice, a policy maker often does not have complete knowledge
of the ex-ante and ex-post distributions but instead only observes
some samples from the ex-ante distribution and has some model for
how individuals respond to their policy. We turn to the question of
implementing equality of outcomes under such conditions, provid-
ing a reduction algorithm (inspired by Agarwal et al. [1]) adapted
to the performative setting. By proposition 2.6 a policy maker can
implement equality of treatment and equality of responses by en-
forcing the independence of the joint distribution (Y’, f(X’, G))
and G. We propose that the policymaker enforce this through a
series of moment inequality constraints:

Mu(f) <c,

u(f)ij =Bl (f(X),Y)|G = gj].

Throughout this section, we will work with the causal strategic
classification setting (example 3.3) in the two group setting. In
this model, equal responses and equal treatment can be enforced
through a series of 6 moment constraints.

ExaMPLE 4.1. Consider the causal strategic classification example
3.3 with two possible groups {A, D}. In this setting, the condition
(Y, f(X’,G)) 1L G is equivalent to the constraint:

1 -1 0 0 0 0 E[Y’|A]

-1 1 0 0 0 0 E[Y’|D]

0 0 1 -1 0 ol BFX.0M] |_,
o 0 -1 1 0 o]|E[fX.6D] |=°®
0o 0 o o0 1 -1||E[fxX.6)YA]

0 0 o0 o0 -1 1/\EB[f(X.G)Y'ID]
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while the ex-post risk is given by

EPR(0) = Yye(an} [P (fg) (f(X',9) # Y') + 1641151

The case of multi-class classification or multiple sensitive traits
is relatively similar. For multiclass classification, enforcement of
the independence requirement will require the addition of higher-
order moment constraints, and moment constraints may simply be
repeated for each possible sensitive trait combination in the case of
multiple sensitive traits.

Recall that the policy maker is vested in minimizing some ex-
post risk, therefore, in aggregate, the policymaker must solve a
constrained optimization problem in f. The primal problem is

L(f:2) = minpegmaxyso EPR(S) + AT(Mu(f) = ). (4.)

In practice, the policymaker only observes samples {Z;}1; from the
ex-ante distribution. We will assume that the policymaker has access
to some correctly specified model of D (f, g) at the sample level. For
example, a hiring firm in a labor market would need to be aware of
each worker’s cost-adjusted utility optimization problem. Using ex-
ante samples {Z;}?; and knowledge of D(f), the policymaker can
obtain the natural empirical estimates of EPR(f) and u(f) (denoted
EDPR( f) and fi(f)). As an example of obtaining estimates for EPR( f)
and p(f) from D(f) we return to the modified labor market model.

ExXAMPLE 4.2 (EQUALITY OF OUTCOMES ESTIMATES IN CAUSAL
STRATEGIC CLASSIFICATION). Recall the setting of Example 3.3. Con-
sider an agent with sensitive trait G = g and ex-ante features x,
upon viewing policy 0,4, the agent invests in their own features via
x" = x + Ma(8y,g). Given an ex-ante sample of skill features from
group g, {x;}}_, areasonable choice of estimates for EPR(f) and y(f)
are

E[Y'|G =gl = 1 37, o (BT (xi + Ma(y, 9))),

E[f(X",G)[G = g] = 1 £, o(0] (xi + Ma(0y, 9))),

E[f(X",G)Y'|G = g] = £ I, o(AT (xi+Ma(6y, 9)))o (07 (xi+Ma(0g,9))),

EPR(0,) = 1 2, 0(0] (xi+Mga(6,.9))) (1-0 (BT (xi+Mya(6y,9))))

+(1 - o0 (xi + Mya(05,9))) (0 (7 (x; + Mya(0,.9))).

After attaining estimates fi(f) and fﬁ{( f), equation 4.1 can be
replaced with said estimates. Furthermore, for convergence reasons,
a L1 norm constraint is placed on the dual variable A. Finally, due
to statistical error, a relaxation ¢ = ¢ + v is allowed on the moment
constraint. If the learner instead opts to solve the dual problem (the
justification for this is expanded upon in Appendix A), the final
result is

L(f;2) = maxyzo,, <5 Minger EPR(N)+AT (MA(F)=6). (42)

From here, the iterates of the dual variables are obtained using
mirror ascent on the dual variable with the potential function
¢(A) = —Aln(A), which algorithm 1 lays out explicitly.
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Algorithm 1 Reduction for Equality of Outcomes

n

g fairness

Require: Error tolerance e, step size r, samples {Z;}
constraints M, ¢, p, initial iterate v
1: fort=0,1,...do
ekt

2: Scale dual: Ak,t — BW

3: Get policymakers best decision: f; «— argmin . 7:@(]0) +
AL (Mi(f) - )
if (A4, f;) is an e-saddle point then
return (A, f;)
else
Update iterates: vp41 < 0 + e (MA(f;) — €)
end if
end for

Two elements of the algorithm 1, are nontrivial: (i) the e-saddle
point stopping criteria; (ii) the attainment of the best decision of
the policy makers f;.

The e-approximate saddle point stopping criteria: A primal
dual pair (f, A¢) is a e-saddle point if the following hold:

L(ﬁ,/lt) < minngL-L(f, At) + e

L(ft: ) = maxyso; 2, <B L1 4) — €

Checking the first criteria reduces to a problem in attainment of the
policy makers best decision f;[1]. The second requirement requires
solving a linear program with an L1 inequality constraint, a well-
studied problem [4].

Obtaining of the policymakers best decision f;: Attaining
the best long-term policy for risk function Eﬁ{(f) + AtT (Mp(f)—¢)
is generally a nontrivial problem. Previous works have established
methods for obtaining the best policy f under the assumption that
the policy maker knows the map D(f) [30, 38, 62]. Such methods
are generally specific to a particular D, and since our focus is on
fairness, we will assume that the policymaker has access to some
oracle which produces such an f. This is a strong assumption, and
our methodology is limited to performative maps that allow for
such an oracle.

4.1 Algorithm 1 in the Modified Labor Market
Model

As an application of Algorithm 1, we study the problem of enforcing
equality of outcomes and equality of responses in the modified
labor market (example 3.4) when both ex-ante distributions and
cost of education are different between each group. We assume
that A = I, so that the firm has an unbiased estimate of each
skill. Figure 1 demonstrates the performance of algorithm 1 on
a held-out test set of workers. Prior work on long-term fairness
studied the impact of enforcing standard fairness constraints in the
long term, and, as such, we utilize this as a base line. Algorithm 1
is compared to policies that equalize one ex-ante fairness metric,
including false positive rate, false negative rate, demographic parity,
and sufficiency.

Figure 1 (a) and (b) demonstrate that in the long term, the pol-
icy deployed by Algorithm 1 enforces both sufficiency and sep-
aration. Figure 2 (a) shows that this same policy satisfies equal-
ity of responses and (long-term) parity. Finally, Figure 2 (b) also
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demonstrates that enforcing equality of treatment and equality of
responses will equate the accuracy of a policy between the two
groups. Due to statistical error (exacerbated by the opaque nature
of worker skills), perfect fairness is not achieved on the test set.
We emphasize that this is not due to an issue of feasibility, figure
3 demonstrates that algorithm 1 can attain nearly zero fairness
violation on the training set.

5 SUMMARY AND DISCUSSION

In this paper, we studied fairness in performative settings in which
the policymaker has the ability to steer the population. We showed
that it is possible for the policymaker to remedy existing inequities
in the population. In particular, we showed that by equating the
distribution of responses Y between groups in classification prob-
lems, it is possible for the policymaker to simultaneously satisfy
multiple notions of group fairness that are generally incompatible
in non-performative settings. However, we also showed that this
is not always possible: if the policymaker does not have enough
flexibility in how they can equalize base rates, then it is unfor-
tunately impossible, even in performative settings, to resolve the
longstanding incompatibilities between group fairness definitions.
Another limitation of our approach is that the policymaker must be
aware of the long-term impacts of their policies on the population.
Although this requirement is necessary, it limits the applicability of
the approach. One possible direction for future work is to develop
methods that help the policymaker estimate the effects of their
policies on the population. Such methods can be combined with our
approach to steer sociotechnical systems towards more equitable
states.

Our work is also aligned with the goals of algorithmic re-
form/reparations. By considering reform/reparations mathemati-
cally, we show that it is somewhat possible to achieve the goals
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of reform without unequal treatment. This is especially desirable
in application domains in which unequal treatment is illegal or
impractical. For example, consider the problem of underrepresen-
tation of women in the tech sector, especially in technical roles
[14]. The authors of Davis et al. [15] suggest that employers in the
tech sector should adopt a “reparative” approach to equalize the
representation of men and women, even if this entails explicitly
discriminating against men. They justify explicit discrimination by
appealing to the historical injustices that led to the dearth of women
in the tech sector and the need to remedy such injustices. Although
a discriminatory approach is likely to be limited by various labor
laws, our results suggest that it may be possible to equalize the
representation of men and women while treating men and women
fairly. We hope that our results lead to more serious consideration
of “reparative” approaches in algorithmic decision making.

ACKNOWLEDGMENTS

This paper is based upon work supported by the National Science
Foundation (NSF) under grants no. 2027737 and 2113373.

REFERENCES

[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna
Wallach. 2018. A Reductions Approach to Fair Classification. In Proceedings of
the 35th International Conference on Machine Learning. PMLR, 60-69.

[2] Kenneth Arrow. 1971. The Theory of Discrimination. Labor Economics vol 4
(1971).

[3] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.
2017. Fairness in Criminal Justice Risk Assessments: The State of the Art.
arXiv:1703.09207 [stat] (March 2017). arXiv:1703.09207 [stat]

[4] Stephen P. Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cam-
bridge University Press, Cambridge, UK ; New York.

[5] Gavin Brown, Shlomi Hod, and Iden Kalemaj. 2022. Performative Prediction in a
Stateful World. In International Conference on Artificial Intelligence and Statistics.

[6] Ran Canetti, Aloni Cohen, Nishanth Dikkala, Govind Ramnarayan, Sarah Schef-
fler, and Adam Smith. 2019. From Soft Classifiers to Hard Decisions: How fair
can we be? arXiv:1810.02003 [cs.LG]

[7] Ben Casselman and Dana Goldstein. 2015. The New Science of Sen-
tencing. https://www.themarshallproject.org/2015/08/04/the-new-science-of-
sentencing.

[8] L.Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. 2019. Clas-
sification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees.
In Proceedings of the Conference on Fairness, Accountability, and Transparency
(Atlanta, GA, USA) (FAT™ °19). Association for Computing Machinery, New York,
NY, USA, 319-328. https://doi.org/10.1145/3287560.3287586

[9] Alexandra Chouldechova. 2017. Fair Prediction with Disparate Impact: A Study

of Bias in Recidivism Prediction Instruments. Big Data 5, 2 (June 2017), 153-163.

https://doi.org/10.1089/big.2016.0047

Stephen Coate and Glenn C. Loury. 1993. Will Affirmative-Action Policies Elimi-

nate Negative Stereotypes? The American Economic Review 83, 5 (1993), 1220-1240.

jstor:2117558

[11] Ashley C Craig and Jr Fryer, Roland G. 2017. Complementary Bias: A Model of
Two-Sided Statistical Discrimination. Working Paper 23811. National Bureau of
Economic Research.

[12] Kate Crawford. 2017. The Trouble with Bias.

[13] Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, D. Scul-
ley, and Yoni Halpern. 2020. Fairness Is Not Static: Deeper Understanding of Long
Term Fairness via Simulation Studies. In Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency (FAT* °20). Association for Computing Ma-
chinery, New York, NY, USA, 525-534. https://doi.org/10.1145/3351095.3372878

[14] Jeffrey Dastin. 2018. Amazon Scraps Secret Al Recruiting Tool That Showed Bias
against Women. Reuters (Oct. 2018).

[15] J. L. Davis, A. Williams, and M. W. Yang. 2021. Algorithmic reparation. Big Data
and Society (2021).

[16] Rahul C. Deo. 2015. Machine Learning in Medicine. Circulation 132, 20 (Nov.

2015), 1920-1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

Kate Donahue and Jon Kleinberg. 2020. Fairness and utilization in allocating

resources with uncertain demand. In Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency (FAT* "20). ACM. https://doi.org/10.1145/

3351095.3372847

[10

[17

624

(18]

(19]

[20

[21

[22

[23

[24]

[25

™
2

[27

[28

[29]

[32

[33

&
=)

[35

[36

[37

[38

W
20,

[40

[41

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

Andrew Estornell, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik. 2023.
Group-Fair Classification with Strategic Agents (FAccT ’23). Association for
Computing Machinery, New York, NY, USA, 389-399. https://doi.org/10.1145/
3593013.3594006

Andrew Estornell, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik. 2023.
Group-Fair Classification with Strategic Agents. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency (Chicago, IL, USA)
(FAccT °23). Association for Computing Machinery, New York, NY, USA, 389-399.
https://doi.org/10.1145/3593013.3594006

Hanming Fang and Andrea Moro. 2011. Chapter 5 - Theories of Statistical
Discrimination and Affirmative Action: A Survey. Handbook of Social Economics,
Vol. 1. North-Holland, 133-200. https://doi.org/10.1016/B978-0-444-53187-2.
00005-X

Roland G. Fryar and Glenn C. Loury. 2005. Affirmative Action in Winner-Take-All
Markets. The Journal of Economic Inequality (2005).

Roland G. Fryar and Glenn C. Loury. 2013. Valuing Diversity. Journal of Political
Economy (2013).

Roland G. Fryar, Glenn C. Loury, and Tolga Yuret. 2008. An Economic Analysis of
Color-Blind Affirmative Action. The Journal of Law, Economics, and Organization.
(2008).

Ben Green. 2022. Escaping the Impossibility of Fairness: From Formal to Sub-
stantive Algorithmic Fairness. Philosophy and Technology 35, 4 (Oct. 2022).
https://doi.org/10.1007/s13347-022-00584-6

Limor Gultchin, Vincent Cohen-Addad, Sophie Giffard-Roisin, Varun Kanade,
and Frederik Mallmann-Trenn. 2022. Beyond Impossibility: Balancing Sufficiency,
Separation and Accuracy. arXiv:2205.12327 [cs.LG]

Moritz Hardt, Meena Jagadeesan, and Celestine Mendler-Diinner. 2022. Perfor-
mative Power. arXiv:2203.17232 [cs, econ] (March 2022). arXiv:2203.17232 [cs,
econ]

Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. 2016.
Strategic Classification. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science (ITCS ’16). Association for Computing Machinery,
New York, NY, USA, 111-122. https://doi.org/10.1145/2840728.2840730

Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of Opportunity in
Supervised Learning. In Proceedings of the 30th International Conference on Neural
Information Processing Systems (NIPS’16). Curran Associates Inc., Red Hook, NY,
USA, 3323-3331.

Hoda Heidari, Vedant Nanda, and Krishna Gummadi. 2019. On the Long-term
Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segrega-
tion through Social Learning. In Proceedings of the 36th International Conference
on Machine Learning. PMLR, 2692-2701.

Guy Horowitz and Nir Rosenfeld. 2023. A Tale of Two Shifts: Causal Strategic
Classification. https://arxiv.org/pdf/2302.06280.pdf (2023).

Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. 2019. The Disparate
Effects of Strategic Manipulation. In Proceedings of the Conference on Fairness, Ac-
countability, and Transparency (FAT™ °19). Association for Computing Machinery,
New York, NY, USA, 259-268. https://doi.org/10.1145/3287560.3287597
Zachary Izzo, Lexing Ying, and James Zou. 2021. How to Learn When Data
Reacts to Your Model: Performative Gradient Descent. In Proceedings of the 38th
International Conference on Machine Learning. PMLR, 4641-4650.

Meena Jagadeesan, Nikhil Garg, and Jacob Steinhardt. 2023. Supply-Side Equilib-
ria in Recommender Systems. In Thirty-Seventh Conference on Neural Information
Processing Systems.

Sampath Kannan, Aaron Roth, and Juba Ziani. 2019. Downstream Effects of
Affirmative Action. In Proceedings of the Conference on Fairness, Accountability,
and Transparency. ACM, Atlanta GA USA, 240-248. https://doi.org/10.1145/
3287560.3287578

Michael P. Kim and Juan C. Perdomo. 2023. Making Decisions under Outcome
Performativity. arXiv:2210.01745 [cs, stat]

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent
Trade-Offs in the Fair Determination of Risk Scores. In Proceedings of the 8th
Conference on Innovations in Theoretical Computer Science (ITCS). Berkeley, CA.
arXiv:1609.05807

Claire Lazar Reich and Suhas Vijaykumar. 2021. A Possibility in Algorithmic
Fairness: Can Calibration and Equal Error Rates Be Reconciled? Schloss Dagstuhl
- Leibniz-Zentrum fur Informatik. https://doi.org/10.4230/LIPICS.FORC.2021.4
Sagi Levanon and Nir Rosenfeld. 2021. Strategic Classification Made Practical.
In Proceedings of the 38th International Conference on Machine Learning. PMLR,
6243-6253.

Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. 2018.
Delayed Impact of Fair Machine Learning. arXiv:1803.04383 [cs, stat] (March
2018). arXiv:1803.04383 [cs, stat]

Lydia T. Liu, Ashia Wilson, Nika Haghtalab, Adam Tauman Kalai, Christian
Borgs, and Jennifer Chayes. 2020. The Disparate Equilibria of Algorithmic
Decision Making when Individuals Invest Rationally. In ACM Conference on
Fairness, Accountability, and Transparency in Machine Learning.

Michael Lohaus, Michael Perrot, and Ulrike Von Luxburg. 2020. Too Relaxed to
Be Fair. In Proceedings of the 37th International Conference on Machine Learning


https://arxiv.org/abs/1703.09207
https://arxiv.org/abs/1810.02003
https://doi.org/10.1145/3287560.3287586
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1145/3351095.3372878
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1145/3351095.3372847
https://doi.org/10.1145/3351095.3372847
https://doi.org/10.1145/3593013.3594006
https://doi.org/10.1145/3593013.3594006
https://doi.org/10.1145/3593013.3594006
https://doi.org/10.1016/B978-0-444-53187-2.00005-X
https://doi.org/10.1016/B978-0-444-53187-2.00005-X
https://doi.org/10.1007/s13347-022-00584-6
https://arxiv.org/abs/2205.12327
https://arxiv.org/abs/2203.17232
https://doi.org/10.1145/2840728.2840730
https://doi.org/10.1145/3287560.3287597
https://doi.org/10.1145/3287560.3287578
https://doi.org/10.1145/3287560.3287578
https://arxiv.org/abs/2210.01745
https://arxiv.org/abs/1609.05807
https://doi.org/10.4230/LIPICS.FORC.2021.4
https://arxiv.org/abs/1803.04383

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

[42]

[43

[44

[45

S
&

[47]

[48

[49]

[51]

[52

[53]

[54]

[55

[56]

[57]
[58]

[59

[60]

(61

[62]

[63]

=
S

[65

(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé IIl and Aarti Singh
(Eds.). PMLR, 6360-6369. https://proceedings.mlr.press/v119/lohaus20a.html

F. M. Lord. 1980. Applications of Item Response Theory To Practical Testing Problems.
Routledge, New York. https://doi.org/10.4324/9780203056615

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. 2018. Learning
Adversarially Fair and Transferable Representations. arXiv:1802.06309 [cs, stat]
(Feb. 2018). arXiv:1802.06309 [cs, stat]

Andreas Maurer. 2016. A vector-contraction inequality for Rademacher complex-
ities. arXiv:1605.00251 [cs.LG]

Celestine Mendler-Diinner, Frances Ding, and Yixin Wang. 2022. Anticipating
Performativity by Predicting from Predictions. In Advances in Neural Information
Processing Systems.

Celestine Mendler-Diinner, Juan C. Perdomo, Tijana Zrnic, and Moritz Hardt.
2020. Stochastic Optimization for Performative Prediction. In Proceedings of the
34th International Conference on Neural Information Processing Systems (NIPS’20).
Curran Associates Inc., Red Hook, NY, USA, 4929-4939.

John Miller, Smitha Milli, and Moritz Hardt. 2020. Strategic Classification Is Causal
Modeling in Disguise. arXiv:1910.10362 [cs, stat] (Feb. 2020). arXiv:1910.10362 [cs,
stat]

Smitha Milli, John Miller, Anca D. Dragan, and Moritz Hardt. 2019. The Social
Cost of Strategic Classification. In Proceedings of the Conference on Fairness, Ac-
countability, and Transparency (FAT* °19). Association for Computing Machinery,
New York, NY, USA, 230-239. https://doi.org/10.1145/3287560.3287576
Andrea Moro and Peter Norman. 2003. Affirmative Action in a Competitive
Economy. Journal of Public Economics 87, 3-4 (March 2003), 567-594. https:
//doi.org/10.1016/S0047-2727(01)00121-9

Andrea Moro and Peter Norman. 2004. A General Equilibrium Model of Statistical
Discrimination. Journal of Economic Theory 114, 1 (Jan. 2004), 1-30. https:
//doi.org/10.1016/S0022-0531(03)00165-0

Kirtan Padh, Diego Antognini, Emma Lejal Glaude, Boi Faltings, and Claudiu
Musat. 2021. Addressing Fairness in Classification with a Model-Agnostic Multi-
Objective Algorithm. arXiv:2009.04441 [cs.LG]

Randall D. Penfield and Gregory Camilli. 2006. 5 Differential Item Functioning and
Item Bias. In Handbook of Statistics, C. R. Rao and S. Sinharay (Eds.). Psychomet-
rics, Vol. 26. Elsevier, 125-167. https://doi.org/10.1016/S0169-7161(06)26005-X
Juan Perdomo, Tijana Zrnic, Celestine Mendler-Diinner, and Moritz Hardt. 2020.
Performative Prediction. In Proceedings of the 37th International Conference on
Machine Learning. PMLR, 7599-7609.

Case-Kevin Petrasic, Benjamin Saul, James Greig, and Katherine Lamberth. 2017.
Algorithms and Bias: What Lenders Need to Know. White & Case LLP.
Edmund Phelps. 1972. The Statistical Theory of Racism and Sexism. The American
Economic Review (1972).

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Wein-
berger. 2017. On Fairness and Calibration. In Advances in Neural Infor-
mation Processing Systems, 1. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran
Associates, Inc.  https://proceedings.neurips.cc/paper_files/paper/2017/file/
b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf

Manish Raghavan. 2023. What Should We Do when Our Ideas of Fairness Conflict?
Commun. ACM 67, 1 (dec 2023), 88-97. https://doi.org/10.1145/3587930
Miriam Rateike, Isabel Valera, and Patrick Forré. 2023. Designing Long-term
Group Fair Policies in Dynamical Systems. arXiv:2311.12447 [cs.Al]

Cynthia Rudin. 2013. Predictive Policing: Using Machine Learning to Detect
Patterns of Crime. Wired (Aug. 2013).

Yonadav Shavit, Benjamin Edelman, and Brian Axelrod. 2020. Causal Strategic
Linear Regression. In International Conference on Machine Learning.

Seamus Somerstep, Yuekai Sun, and Ya’acov Ritov. 2023. Learning in Re-
verse Causal Strategic Environments with Ramifications on Two Sided Mar-
kets. In NeurIPS 2023 Workshop on Algorithmic Fairness through the Lens of Time
(AFT2023).

Seamus Somerstep, Yuekai Sun, and Yaacov Ritov. 2024. Learning in reverse
causal strategic environments with ramifications on two sided markets. In The
Twelfth International Conference on Learning Representations. https://openreview.
net/forum?id=vEfmVS5ywF

Tongxin Yin, Reilly Raab, Mingyan Liu, and Yang Liu. 2023. Long-Term Fairness
with Unknown Dynamics. In Thirty-Seventh Conference on Neural Information
Processing Systems.

Sebastian Zezulka and Konstantin Genin. 2023. Performativity and Prospective
Fairness. arXiv:2310.08349 [cs.CY]

Xueru Zhang, Mohammad Mahdi Khalili, Kun Jin, Parinaz Naghizadeh, and
Mingyan Liu. 2022. Fairness Interventions as (Dis)Incentives for Strategic Manip-
ulation. In Proceedings of the 39th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).
PMLR, 26239-26264. https://proceedings.mlr.press/v162/zhang22l.html

625

Somerstep, Ritov, and Sun

A THEORETICAL PROPERTIES OF
ALGORITHM 1

In our development of the ex-post reduction algorithm (1), we opted
to solve the Dual problem rather than the primal problem, to achieve
a fair policy. This is only justifiable if strong duality of problem
4.1 holds. Unfortunately, moment constraints of the form 4.1 are
often not convex and thus strong duality may not hold. To fix this
issue (as is often done in other reduction methods), we can slightly
generalize algorithm 1 to allow for randomized policies Q € A(F),
that first select a policy f at random (with P(Q = f) = Q(f)), then
make a prediction.

As long as group membership is independent of the policy se-
lected, i.e. for any Q € A(F) the events 1{G = g} and 1{Q = f}
are independent, one can show that z(Q) and EPR are linear in Q.

ProPOSITION A.1. Suppose that all Q € A(F) satisfy Q 1L G.
Then the following holds for all Q € A(F):

(1) 1(Q) = T er QNP
(2) EPR(Q) = X pes Q(f)EPR(f)

The implication of proposition A.1 is that both the ex-post risk
and fairness constraints are linear in Q; this in turn will give us
strong duality. In terms of Q the policymaker’s primal problem is

£(Q32) = mingep max; o EPR(Q) + AT (Mp(Q) —¢). (A1)

Because this problem is linear in Q and A, the domains of Q and
A are convex, and the equality of treatments constraint is feasi-
ble (theorem 3.7) the solution to A.1 will be the unique saddle
point (Q*, 1), which algorithm 1 (appropriately modified to in-
clude randomization) will converge to. Specifically, if { f,g}tT:1 and
Atthl are the iterates of algorithm 1, then the empirical measure
Or = % Zthl f; and the mean Ay = %Zle Ar will eventually
converge to an appropriate saddle point.

PROPOSITION A.2 (AGARWAL ET AL. [1]THEOREM 1). Let Q1 =
% Zthl fio AT = % Zthl A+ be the empirical distribution (resp. av-
erage) of the primal (resp. dual) iterates of algorithm 1. Let p =
sup ¢ [IMp(f) — clloo, K be the total number of moment constraints,

andn; = \flog(K) + 1/pt. Then (A7, Q) is an et saddle point with

er = 2pB+/(log(K) +1)/T

Besides loss of precision due to optimization error, questions
on the statistical error of policies produced by algorithm 1 remain.
Unlike the case of optimization error, the statistical error analysis
is not identical to the analysis in [1]. This is due to the presence
of performativity, which can affect the uniform convergence of
any estimator. For concreteness, we consider the causal strategic
classification example, recovering the classic parametric rate.

ASSUMPTION A.3.

(1) The learning setting is example 3.3 with Mu(6) — ¢ of the form
in example 4.1, and EP\R(H), 1(0) of the form in example 4.2.

(2) The parameter space® C R is compact and ||X||co is bounded
above with probability one. Furthermore, the response Ma(0)
is bounded.

THEOREM A.4. Let nyg, np denote the number of samples observed
by the policymaker from each group. Suppose (O, 1) is an e-saddle
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point of 4.2 with v = O(min(ng, np)~1/2) and ¢ = 06. Let Q* mini-
mize EPR(Q) subject to Mu(Q) < c. Then with probability at least
1 — 76 the distribution Q satisfies

EPR(Q) < EPR(Q*) + 2¢ + O(min(na, np)~"/?)

1+2¢ + (j(min(nA, nD)_l/Z)

IMp(Q)lleo <
where O hides square root dependence on In(1/6).

In practice, randomization is often an unnecessary complication,
and for simplicity, experiments are performed utilizing the non-
randomized version of algorithm 1.

B COATE AND LOURY RESULT

In this section we cover a similar impossibility theorem to 2.2 for
the Coate and Loury model.

ExaMPpLE B.1 (COATE-LOURY LABOR MARKET MODEL [10]). Con-
sider an employer that wishes to hire skilled workers which reside in
one of two identifiable groups G € {A,D}; G ~ Ber[A]. The workers
are represented as (X,Y,G) tuples. Here Y|G = g € {0,1} drawn
from a Bernoulli(ny) distribution represents the qualification/skill of
a worker, and X € [0, 1] some noisy signal (possible the outcome of
an skill assessment) drawn from CDF ®(X|Y). We will assume that
O(X|Y = 1) stochastically dominates ®(X|Y = 0), and additionally
that X 1L G|Y. As such the hiring firm opts to deploy hiring policy
f(x,0.9) = 1x>¢,. The performative aspect of the model is that post
deployment of any hiring policy 04, the workers select their qualifica-
tion level in response to the employer’s policy. If w > 0 is the wage
paid to a worker and Cy is the (random and drawn from CDF Eg)
cost of attaining qualification, then for a worker from group g with
observed cost cg the utility of each selecting each option of skill y is

9 . /[Gg 1 wd®(x | 1) —c5 worker selects y = 1,
u ,Y,Cq) = ’
w(0g, 1, ¢cg) /[97’1] wdd(x | 0)

Each worker acts rationally and selects the y that maximizes their
utility, at the sample level the performative map for a worker with
sensitive trait g is

if the worker remains unskilled,

Y — argmaxy ¢ (o1 uw(f. Y.y),
XY ~®(x|Y).

In aggregate, the proportion of qualified workers (in a given group) is
updated via

74(04) = Eg(w(P(X > 64]Y = 1) = P(X > 6, = 0))).

The workers’ do not respond instantly to the employer’s hiring policy;
it takes them a while. Thus we interpret D(f) as the long term
distribution of the workers’ skill levels and assessments in response to
the employer’s hiring policy. More concretely, imagine a labor market
in which the workers slowly turn over: new workers enter the workforce
and old workers retire constantly. As workers enter the workforce, they
make their human capital investment decisions in response to the
employer’s (contemporaneous) hiring policy. Over a long period, the
labor force will converge to D(f). To account for the long-term effects
of their hiring policy on the labor market, the employer solves the
performative policy learning problem:

R(0) = 2geG Ag[p+P(X > 04 |y =1)

626

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

74(6g) = p-P(X > 04 | y = 0)(1 = 14(6,))],
where py and p_ are the firm’s utilities for hiring a qualified and
unqualified worker respectively.

ProrosITION B.2. Consider the discrete labor market example B.1,
recall the mechanism of discrimination:

(1) Wages are independent of group membership.

(2) There is no differential item functioning (DIF). [52] in the skill

assessment (X 1L G| Y)

(3) Cost of education is discriminatory, i.e. E4(c) % Ep(c).
Thus, the only source of discrimination is the cost of education. Sup-
pose that this discrimination is of the following form: the cost random
variables C4, Cp are unbounded and Cp stochastically dominates
Ca, so that group D is strictly disadvantaged through the cost of
education. Then, for any hiring policy 0 = (64, 60p) that satisfies
equality of treatments (and thus equality of outcomes), it holds that
ma(84) = mp(0p) = 0.

ProoF. Let TPR, FPR denote the true positive and false positive
rate of a classifier. Note that 774(6y) = G4(w(TPR(6,) — FPR(6,))).
Note that ex-post separation would require that TPR(64) =
TPR(0p) and FPR(64) = FPR(6p). However by the assumption
thatc > 0 = Ga(c) > Gp(c), any policy (04, 0p) that satis-
fies ex post separation and w(TPR(84) — FPR(64)) > 0 satisfies
Ga(w(TPR(04) —FPR(6,4))) > Gp(w(TPR(6p) —FPR(8p))) thus
any policy that satisfies ex post equality must satisfy 7(04) =
7(0p) = 0. O

C SECTION 2 AND SECTION 3 PROOFS

C.1 section 2 proofs

ProrosiTiON C.1. A policy f satisfies equality of treatment and
equality of responses if and only if the joint distribution (Y, f(X’, G))
is independent of G.

PROOF OF PROPOSITION 2.6: Suppose a policy f satisfies
fairness definitions 2.4 and 2.5. We have

P(f(X).Y'IG) = p(fF (XY, G)p(Y'|G)
defs 2.4+2.5
(fiz)  =p(fFXOHY)p(Y") = $(f(X),Y")
On the other hand suppose ¢(f(X’), Y'|G = g) = ¢(f(X’),Y’) for
g € |G|. Trivially we must have f(X’) 1L G and Y’ 1L G. For sep-
aration note that p(f(X")|Y’,G) = ¢(f(X"),Y'|G)/(p(Y’'|G)) =
d(f(X"),Y)/(p(Y")) = p(f(X’)|Y’). Sufficiency will follow from

an essentially identical argument. O

C.2 Proof of Theorem 3.7

LEmMA C.2. Under assumption 3.5 an agent in group g selects
tion a(6y,g) = = Mb,.
action a(8y, 9) g M0

Proor. Each agent solves
c
9
a(fy) = argmax, cgab) [xg + Ma'] - ?||a'||§.

We can check the first order optimality condition to see that a(6y)
must solve
MT0y - cga(8y) = 0
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By assumption M is diagonal and thus symmetric, so MT = M and
éM Oy = a(fy). ]

Lemma C3. Any policy 8 = (04,0p) that satisfies
QTX' ﬁTX’) AU G also satisfies equality of treatment and
equallty ofoutcomes

Proor. This can be seen by applying, the tower property of
conditional expectation, conditioning on X, then use the assump-
tion that (GgTXé, ﬁTXé) 1l G. For example, to see that equality of
responses holds note that we have:

E[Y'|G = A] = B4 E[Y'|G = A, X"] = By [0(BTX")|G = A]

=Ey[0(p'X")|G = D] = E[Y'|G = D]
Equality of treatment will follow from the exact same argument

applied to the quantities Y’ and Y'Y (see also example 4.1).
i

We now provide the explicit structure of the stratified manifolds
in theorem 3.7, and corresponding proofs. For notational conve-
nience, let Aff(k) (resp. S(k)) be the set of k-dimensional affine sub-
spaces (resp. k-dimensional hyperspheres) of a context-dependent
ambient space, and O(k) the group of k X k orthogonal matrices.

THEOREM C.4 (THEOREM 3.7 EX-ANTE SKILL DISCRIMINATION).
Consider the learning setting of Example 3.3. Supposecy = cp =1,
the vectors {(pa,m» —D,m)> (Bm> —Pm)} are not co-linear and the
vectors { (Ua,u> —D.u)> (Bm, —Pm)} are not co-linear. Then there exist
sets Im C R%dm gnd Zu € R2du of the form:

Zm = Vyeu,, ZmU); Zm(U) € Af(dm - 2)

Un = (U < O P J 4 Ny, -
A,m’ D,m
Zu =Vyeu,Zu(U); Zu(U) € Aff(dy - 2)
Uy, ={U € O(dy) : ( Py 'B% ) L Null[l;,,-UT]}
'uAu’ D,u

such that for any learner decision 0 = (64,0p) which satisfies
(0a,m:0D,m) € Zm and (04, 0py) € Zu also satisfies equality
of treatment.

Proor. We have that any policy 0 = (64, 0p) that satisfies or
(QQTX!;, ﬁTXg’) AUl G also satisfies equality of treatment. By Lemma
C.2 (QQTXé, ﬁTXé) are generated in the manner ﬁTXé =pT (Xg +
M¢6y,) and HgTXé = 0; (Xg+M0y). Under the normality assumption in
3.5, the ex-post joint distribution of the (pre-discretized) responses
and predictions conditioned on sensitive trait is

(03 X5, BT X;) ~ N(jig, 5)
fig = (egT(llg +M€g),ﬁT(Hg +M0y))
. _ (negnz e;ﬁ)
9=\ 6lp 1182
As mentioned, equality of responses plus equality of treat-
ment will be upheld by any policy that satisfies (GXX;‘, X ") d

(QEX T ATX 7,)- Thus, the equality of treatment constraint set can
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be studied by setting jis = jip and $4 = Sp, the resulting con-
straints are:

0°M0s = 05 MOp
OAMB+ T pa = OLMB+ B pp
Oana = Ohup (C1)
16al1> = 110plI®
0%p = oLp

The next observation is that we can decompose this feasibility
requirement into two, one which pertains to parameters that cor-
respond to “manipulable” features, and another which pertains
to “non-manipulable” features. For a general vector v let v,,(;) =
0il{p,=1) and vy (;) = vil{pg=0)- The constraint C.2 will be satisfied
by any (64, 0p) that satisfies both the following:

Omall> = 116mpll®
QL,Aﬁm - ar{z,Dﬂm = Bup - P ua (C.2)
QL,A/’m,A = QL,Dﬂm,D
0u.all® = 1l6upl®
Gl{Aﬂu - Qf,pﬁu = —pTup + B pa (C3)
eg,Ar”u,A = 95} pHu,D

This can be seen by making note of the following identities:
1811z = 116ml[2 + 16117, 670 = 07,0 + 6L0, 6TMO = [|0mll?,
and 67 Mo = 6 v,,,. The forms of constraints C.3, C.4 are nearly
identical so we only provide an analysis of the “manipulable” con-
straints (constraint C.3). On-wards let 2d;,, be the dimension of the
parameter space (6.4, Om.D)

We begin with the quadratic constraint ||9m,A||2 = ||9m,D||2~
The key observation is that this is satisfied if and only if there exists
U € O(dm) such that 0,, 4 = U6y, p. Thus, for a fixed U € O(dp)

we can write the constraint set as

ﬁm _ﬁm 9 4 bo
ZU) : (Oma,0mp) st- 1| fma  —HmD (em’ ) =l o
1 -ur m.D 04,
Any choice of matrix U is satisfactory. However, in order to exclude
any U that results in dim[Z(U)] = 0, we only select U such that
(Bm>—Pm)T L Null[I, -UT] and (.4, —m,p)T L Null[1,-UT]
Together, the constraint set is a union of d;, — 2 dimensional sub-
spaces:
Z =UyeuZU)

U ={U € O(dp) : ( P =Pm ) L Null[I,-UT]}
HA,m> —HD,m

PROOF OF COROLLARY 3.8 (EX-ANTE SKILL DISCRIMINATION).
Note that now the joint distribution of (QTX s ﬂTS;) satisfies

(03 X5, B7S7) ~ N (fig, 3g)

fig = (63 Mg + MAT09), BT (1 + MAT 6y))
T AT
pIATG,
1112 +1

5 _ 07 AAT 0, + 1164112
9 ﬁTATQg
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The constraint ||9A||§ = ||9D||% is satisfied for any U € O(q) and
pair 0 such that 84 = Ufp, thus for every U there is a g-dimensional
plane that satisfies the constraint ||9A||§ =1|6p| |§ We begin with
the initial stratified manifold Z" = Uyeg, Null[l - U T]. By the

above, any € Z’ satisfies ||04]|%> = ||0p]|?. Let V{; € Z satisty

f
span{ 0

T:0>0eR¥; 0= (AT04, ATOp), the remaining constraints (in
terms of é) are identical to those in the proof of 3.7. Thus, by theorem
3.7 there is a manifold M c R24 such that any 0 € M satisfies all
remaining constraints necessary for equality of treatment. Thus,
any € M(U) 2 T~} (M) N Vl/] satisfies equality of treatment, and
by the full rank property of A restricted to V/;, M(U) is a manifold
of dimension at least O(d). O

AOT) v;v € Vl’]}} =~ R24}. Under the transformation

THEOREM C.5 (THEOREM 3.7 COST DISCRIMINATION). Consider
the causal strategic classification setting (example 3.3). Suppose ji4 =
pup =0 andca # cp. There exist sets Zm A, Zm,D> Lu,A» LuD Of
the form:

_ Am | QAm _
ZmA =Yk e Sy k) Sk k) € Sdm = 2)

_ Dm | Um _
ZDm = Yk €K S ) S ko) € S(dm = 2)

A, . QA

ZA,u = U(kl,kz)E‘K S(k:kz)’s(kzkz) € S(du - 2)
D, . gD,

Zpu =Yk X Sxok) S ks € S(du—2)

CA
o kel
K ={(kp,kz) eER* xR:k; > ————}
min(|| Bull, l1Bml1)
such that for any policy 0 = (04,m, 04,4, OD,m> Op,u) Which satisfies
0 € Zma X Zm,p X Zua X Zup also satisfies ex-post equality.
Proor. Bylemma C.2 (99T X5 ﬂTX_(;) are generated in the manner
BTX; = BT (X + %Meg) and 6] X; = 0] (X, + éMGg +e).
Under the normality assumption in 3.5, the ex-post joint distribu-
tion of the (pre-discretized) outcomes and predictions conditioned
on sensitive trait is

(03 X0, BT X;) ~ N(jig, 5)

. 1
fig = (=04 My, — BT M6,)
Cg €g

A e;ﬁ)
Zg‘(egﬁ 18112

By the above lemma equality of treatments will be satisfied by any
policy that satisfies (9£XA, ﬁTXA) d (QEXI'), ﬂTXI')). Thus, using a
nearly identical argument as the proof for the first part of theorem
C.5 the equality of treatments constraint set can be studied by
setting fig = fip and X4 = Xp, the resulting constraints are:

1 1

—0Tmo, = —o0TMo

cA ATPA cD DD

1 1

—oTMp = —0IM C4

" B pps B (C4)
10411 = 16p]I?
0 = 05
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Again, we can decompose this feasibility requirement into four
constraints, each which pertains to parameters that correspond to
“manipulable"/“non-manipulable” and a sensitive trait value . The
constraint C.5 will be satisfied by any (84, 0p) that satisfies all four
the following for any pair (kj, k2):

CA
[10mall® = -Zk3
¢D
T _ A
gmjAﬂm = akz (C~5)
10mpll> = K
0 pBm = k2 (C.6)
10uall®> = ki
Op sfu = ke (&)
CA
6upll* = c—kf
T _ cA
eu,D,Bu = gkz (C.8)

We have again used each of the following identities ||8]|2 = ||0pm |2+
1164112, 670 = 6L v, + 6T 0y, 6T MO = ||60m]1%, and 67 Mo = 6L 0,,.
Consider the first constraint set C.5; the constraint ||0p, 4| |2 = ﬁ—gk%
is a hypersphere (of dimension d;, 4 — 1) with radius z—gk%. The

. T ca T _Bm ca_ky .
nstrain =& — bm_ _ ca i
constraint 6, ,fm = ¢ k2 OmATIBT = b TIBAT 15 2

hyperplane. It is easy to see that the intersection between these
two geometric objects is either empty, (if |z—g ||/§_2||| > lg—gk% ) or

is a hypersphere of dimension dp, 4 — 2 (if |§—g ﬁ| < %k%).
Note that an identical argument can be applied to each of the other
constraint sets, C.6, C.7, C.8. Each of these sets will be non-empy

A,

°D
solong as [kl > g, Tz - o
PROOF OF COROLLARY 3.8 (COST DISCRIMINATION). Note  that
now the joint distribution of (QgT Xé, ,BTS_C’}) satisfies
(65X, B7S;) ~ N(jig, Zg)

- 1 1
fig = (QgTA(C—MATHg), ﬁT(C—MATHg))

9 9

5, - (egT AATTQgT+ 1164112 /3TA2T99

FTATO,  JIBIP +1
The constraint ||9A||% = ||9D||§ is satisfied for any U € O(q) and
pair 0 such that 84 = U8p, thus for every U there is a g-dimensional
plane that satisfies the constraint ||9A||§ =|6p]| |§ We begin with
the initial stratified manifold Z’ = Uueo, Null[I — UT], using the
above, any 0 € Z’ satisfies ||04]|* = ||0p||%. Let V; € Z satisfy
AT
span{( 0
T:0—0¢ RZd; 6= (ATQA, ATGD), the remaining constraints
(in terms of é) are identical to those in the proof of C.5. Thus,
by theorem C.5 there is a manifold M c R such that any e
M satisfies all remaining constraints necessary for equality of
treatment. Thus, any 0 € M(U) 2 T~1(M) N V[, satisfies equality

/{)T) v;0 € Vl’]}} = RZd}. Under the transformation
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of treatment, and by the full rank property of A restricted to V/,,
M(U) is a manifold of dimension at least O(d). O

C.3 Proof of impossibility results

PROOF OF THEOREM 3.2: Under the unbiasedness assumption on
test signals, the optimal hiring policy for the firm will be of the
form f(x,g) = 1{x > 64}. Consider a firm that uses a group blind
threshold policies of the form f(x, g) = 1{x > 6} to hire workers,
where 0 € R is the threshold value for both groups. The workers’
expected utility for increasing skills from s to s* is

uw(f,s s, 9) = wF (0 | s*) — c(s, s*), (C.9)

where F(0 | s*) 2 P{X > 0 | S = s*} is the survival function of the
skill level assessment.
In the labor market example, the worker (in group g) response

s'(s, fg) = arg maxguw(f,s,s*, g)
is generally non-decreasing. For example, suppose c4 = cp = ¢ and
c(s,s*) = £[s" = s]2, where [ -]+ 2 max{0, -} is the ReLU function,
then the derivative of the worker response is

as’ (S,f, g) _ 3s<9s*0(y, 5*)|s*:s’ (s.f.9)

c=wiF(t]5 (5. £.9)

9s a?*uw(f’ y’S*)|s*:s’(s,f,g) ¢

0 m > 0 as long as c is large enough. In general, We

are uncsoncerned with settings in which s’(s, f,g) is not non-
decreasing in s this would be both unintuitive and unrealistic. Under
the assumption that S|A stochastically dominates S|D, the non-
decreasingness of s’ (s, f, g) in s implies S’ |A is stochastically domi-
nates S”|D, which precludes equal ex post responses (in particular
E[Y’|A] > E[Y’|D]).

On the other hand, suppose that S|A d S|Dbutcy < cp, keeping
the assumption that policies are group blind. Note that

Wa?*F(t|5*)|s*=s’(s,f,c) -

[5'(s. fr) — s+
This implies that if c4, cp are large enough with ¢4 < cp two
workers from each group with sy = sp will have s'(s, f,cq) >
s’ (s, f, cp) implying S’|A stochastically dominates S’|D, which pre-
cludes equal ex post responses.

Finally, the fact that only group blind policies will satisfy equality
of outcomes with respect to mppr(f,g) and mpnr(f, g) follows
immediately from the market assumption that X’ is independent
of Ggiven Y’. m|

9
—s'(s, f,c) =
oS 550

D APPENDIX A PROOFS

D.1 Proof of Proposition A.1

ProOF. We prove the statement on p(Q), the proof for EPR(Q)
is identical. We have:

1ij(Q) = E(xr y),0,6hi (Q(X'), Y)IG = g;]

By the law of total (conditional) expectation this is equivalent to

1ij(Q) = )" P(Q = PEx ), 0lhi(Q(X),Y)IG
feF

=95,Q=fIP(Q = fIG = g))

629

Somerstep, Ritov, and Sun

By assumption P(Q = fIG = gj) P(Q
also that E(x» y)~p(0),0[hi(Q(X"),Y)IG = g;

Ex yn~o(p) [hi(f(X), Y)IG = g;] = pij(f). Thus

1 (Q) = Y PQ=Ppij(f) = Y, PQ=Puij(f) = ), Q(Pmij(f)
feF feF feF

f). Note
= fl

Q

O

D.2 Proof of Generalization Error

PROPOSITION D.1 (AGARWAL ET AL. [1] LEMMA 3). Suppose that
the constraint Mji(Q) < ¢ is feasible. Then if Q is a e-saddle point of
equation 4.2 the following holds:

1+ 2¢

IMA(Q) — élle <

PROPOSITION D.2 (AGARWAL ET AL. [1] LEMMA 2). IfQ is an e-
saddle point, then for all Q such that M{i(Q) < c the distribution Q
satisfies

EPR(Q) < EPR(Q) + 2.

The technical tool we use to study the generalization properties
of algorithm 1 is the Rademacher complexity, which we now define.

DEeFINITION D.3. Let F be a class of functions f : X — [0, 1] and
€; be i.i.d. Rademacher random variables. the Rademacher complexity
of F is defined as

n

sup  Besup |- > ef (xi)l

R 1
Rn(F) =
xl,...,anX fET n i=1

The primary obstacle to proving a generalization bound will
be to establish bounds on the Rademacher complexity of the func-
tion classes 41;(8), EPR(0). Beyond this the analysis is a standard
application of the arguments in [1].

Lemma D4. Let X = {x € R%;||x|| < C}, let Hy = {0Tx;x €
X,0 € ©}.

3

f1(0) = Y o(07 (xi + Ma(6))),

i=

—_

n
fo= ) o(B" (xi + Ma(0))),

i=1

n

fis = > (07 (xi + Ma(0))) o (BT (x; + Ma(6))).
i=1
Then the following hold:
(1) With probability at least 1 — § for all 0 € ©,

5(0) - (0)] 5 2R (Hoy25up 107 Ma0) /(N +y| Z0r ~ O™
(2) With probability at least 1 — § for all 0 € ©
52(0)420) < ZBIC/V+2 sup 18" Mat)] Ny 2 ~ O

(3) With probability at least 1 — S forall 0 € ©
l3(6) — p3(0)| <
2V2||BIIC/Nn +2V2 sup | BT Ma(6)|/ Vi + 2V2R, (Hp)
0c0
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D) _ 5012,

+2V2 sup |07 Ma(0)|/(v/n) +
0cO 2n

ProOF. (1) Let % be the class of functions f : s — o(87 (x+

Ma(0))) € [0,1]. By a standard concentration inequality,
with probability at least 1 — § for all § € ©,

) In(2/9)
11(0) = 1 ()] < 2R (F5) +)
Thus it remains to find an appropriate bound for R, (Fy).

Note that

n

Ra(Fg)=  sup Belsuplt > eo(6” (xi + Ma(0))]]

X1yeenXn€X pco N i=1
T n
alegrands 1 T T
< sup Eg[sup|= Z €i0" xi + €;0° Ma(0)|]
xl,...,anX 0e® n i=1
n

< sup Eg[sup |- Z

1
xl,...,anX 0eO n i=1

1
€07 x;|] + Ee, [sup | =0T Ma(6)|]
gco

< Ru(Hp) + sup |07 Ma(0)|/Vn
0€0
(2) By an identical argument to the case of y; we have that with
probability at least 1 — & for all 8 € © we have

n
120 () < sup  Ecl~ > eifxil+sup |6 Ma(6)|/vn
X1yeenXn€X n i=1 e)
The first term is trivially bounded above by the empirical
Rademacher complexity of the function class {wlx;x €
X, ||wl|2 < ||Bll2} which is bounded above by ||3||C/vn
(3) Let By be the function class by : x — o(7 (x + Ma(0))) €
[0,1], and let Iy be the function class 7y : x — (S (x +
Ma(0)))o (6T (x + Ma(6))) € [0,1]. Note that this second
function class can be thought of as the composition of the
(1-Lipschitz on [0, 1] X [0, 1]) function ¢/ (x, y) = xy and the
vector valued function v(x) = (c(B7 (x +Ma(6))), o (8T (x +
Ma(0)))). Thus by corollary 4 of [44] we have

Rn(llg) < V2[Rn(Bg) + Ru(Fp)]

From here we simply plug in the upper bounds for R, (By)

and Ry (Fp) attained in part 1 and 2 and the standard con-
centration inequality used throughout.

The fact that each quantity (1,2,3) is ~ O(n~1/2) follows from

the well-known result that R, (Hp) ~ O(n~Y/2) if x and 0 are

bounded. O

PROOF OF THEOREM A 4.

Note that [[Mu(Q)lleo < [IM(2(Q) = p(QDleo + [IMA(Q)]lco-
By proposition D.1 (and choice of v) it holds that ||Ma(Q)||e <
142¢ By the form of M, [|M(4(Q) — p(Q))leo < 211A(Q) = p(Q)|]o.
Then by lemma D.4 and a union bound, with probability at least
1 — 66, it holds that ||3(Q) — ,u(QA)||oo < O(min(ng, nD)_l/z) +
8 [ In(2/6)

2min(na,np)

Additionally, by our choice of v, [|M((Q*))]| < é, so by propo-
sition D.2 EPR(Q) < EPR(Q%) + 2. By the argument of part 3 of
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lemma D.4 (and the additive nature of Rademacher complexity),
with probability at least 1 — §

|EPR(Q) — EPR(Q)| < O(min(ny, nD)—l/Z) + \/E
2min(ng, np)

|EPR(Q*) — EPR(Q")| < O(min(na, np)~1/2) + \/E
2min(ng, np)

Thus with probability at least 1 — § it holds that EPR(Q) <
EPR(Q*)+2e+0O(min(ny, nD)’1/2)+21[%.Aﬁnzﬂunion
bound completes the proof.

O

E EXPERIMENTS

E.1 Experimental Details

All experiments were done on Google Colab using only a CPU. The
chosen parameters for data generation are f = 119, pa = 0.5 * 119,
pp = 0.1+ 110, ca = 3llallZ cp = PllallZ, = = Iox10. A = Tox1o
with ex-ante skills generated from N (g, %) distributions. Each base
line was also implemented using a reduction method. Step size 7;
was selected according to the convergence theory, B was selected to
achieve at least 10™° fairness violation on the training set. Training
and test sizes of 500 samples were used, with a random seed of 0
for the training set and a random seed of 1 for the test set.

E.2 Additional Experiments

1071 Rty SR
102 kY
1073 \\

10—4 \\

log(||Mg||2)

107

>

1077

10° 10t 10? 10° 10?
log(B)

Figure 3: Equality of treatment + Equality of responses on
training set
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