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Abstract

We study the densest subgraph problem and
give algorithms via multiplicative weights update
and area convexity that converge in O

(
logm
ϵ2

)
and O

(
logm

ϵ

)
iterations, respectively, both with

nearly-linear time per iteration. Compared with
the work by Bahmani et al. (2014), our MWU
algorithm uses a very different and much simpler
procedure for recovering the dense subgraph from
the fractional solution and does not employ a bi-
nary search. Compared with the work by Boob
et al. (2019), our algorithm via area convexity
improves the iteration complexity by a factor ∆—
the maximum degree in the graph, and matches
the fastest theoretical runtime currently known via
flows (Chekuri et al., 2022) in total time. Next,
we study the dense subgraph decomposition prob-
lem and give the first practical iterative algorithm
with linear convergence rate O

(
mn log 1

ϵ

)
via

accelerated random coordinate descent. This sig-
nificantly improves over O

(
m

√
mn∆
ϵ

)
time of

the FISTA-based algorithm by Harb et al. (2022).
In the high precision regime ϵ ≪ 1

n where we
can even recover the exact solution, our algorithm
has a total runtime of O (mn log n), matching the
exact algorithm via parametric flows (Gallo et al.,
1989). Empirically, we show that this algorithm is
very practical and scales to very large graphs, and
its performance is competitive with widely used
methods that have significantly weaker theoretical
guarantees.
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1. Introduction
In this work, we study the densest subgraph problem (DSG)
and its generalization to finding dense subgraph decompo-
sitions of graphs. In the densest subgraph problem, we are
given a graph G = (V,E) and the goal is to find a sub-
graph of maximum density |E(S)| / |S|, where |E(S)| is
the number of edges in the graph induced by S (for weighted
graphs, we consider the total weight of the edges). Densest
subgraphs and related dense subgraph discovery problems
have seen numerous applications in machine learning and
data mining, including DNA motif detection, fraud detec-
tion, and distance query computation (see (Lee et al., 2010;
Gionis & Tsourakakis, 2015; Faragó & R. Mojaveri, 2019;
Tsourakakis & Chen; Lanciano et al., 2023) for more com-
prehensive surveys).

The densest subgraph problem and its generalizations are
fundamental graph optimization problems with a long his-
tory in algorithm design. A classical result due to Goldberg
(1984) showed that DSG can be solved in polynomial time
via a reduction to maximum flow. Specifically, Goldberg
(1984) showed that, given a guess D for the maximum den-
sity, one can either find a subgraph with density at least
D or certify that no such subgraph exists by computing a
maximum s-t flow in a suitably defined network. This ap-
proach together with binary search allows us to compute an
optimal solution using a logarithmic number of maximum
flow computations. Gallo et al. (1989) designed a more
efficient algorithm for DSG via a reduction to parametric
maximum flows that solve a sequence of related maximum
flow instances more efficiently than the binary search ap-
proach. This led to an algorithm for DSG with running
time O

(
nm log

(
n2/m

))
, where n and m are the number

of nodes and edges in the input graph, respectively. Based
on the near-linear time algorithm for computing minimum-
cost flows by Chen et al. (2022), Harb et al. (2022) gave an
algorithm that computes an optimal dense decomposition in
O
(
m1+o(1)

)
time. The recent work of Chekuri et al. (2022)

designed a maximum flow based algorithm that computes an
(1− ϵ)-approximate solution in time O

(
m log2(m)

ϵ

)
. To the

best of our knowledge, these are the fastest running times
for exact and approximate algorithms, respectively.
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The maximum/minimum-cost flow based approaches pro-
vide a rich theoretical framework for developing algorithms
with provable guarantees for DSG and related problems. Al-
though these algorithms have strong theoretical guarantees,
their practical performance and scalability is more limited
and they do not scale to very large graphs (Boob et al., 2020).
Moreover, these algorithms are inherently sequential and
they cannot leverage parallel and distributed computation
(Bahmani et al., 2012; 2014).

The aforementioned limitations of the flow-based algorithms
have motivated the development of iterative algorithms
based on linear and convex programming formulations. This
line of work has led to the development of iterative algo-
rithms based on continuous optimization frameworks such
as multiplicative weights update (Bahmani et al., 2014),
Frank-Wolfe (Danisch et al., 2017; Harb et al., 2023), and
accelerated gradient descent (Harb et al., 2022). These
frameworks have also inspired Greedy algorithms that are
combinatorial and very efficient in practice: the Greedy
peeling algorithm (Charikar, 2000) that makes a single pass
over the graph but it achieves only a 1/2 approximation,
and a variant of it called Greedy++ (Boob et al., 2020) that
makes multiple passes but it achieves a 1− ϵ approximation
for any target approximation error ϵ. Subsequent work es-
tablished theoretical convergence guarantees for Greedy++
(Chekuri et al., 2022) and showed that it is equivalent to a
Frank-Wolfe algorithm (Harb et al., 2023).

Despite the wide range of algorithms designed to solve DSG
and its generalizations, there still remain important direc-
tions for improvement in theory and in practice. The Greedy
peeling and Greedy++ algorithms are very efficient in prac-
tice, but they are also inherently sequential and their theo-
retical guarantees are weaker than the iterative algorithms
based on continuous optimization. On the other hand, the
practical applicability of the latter algorithms is significantly
more limited. The algorithm of Bahmani et al. (2014) uses
more complex subroutines, including a binary search over
the optimal solution value and an involved procedure for
constructing the primal solution (the dense subgraph). The
algorithm of Boob et al. (2019) only provides (an approx-
imation to) the solution value, and not the solution itself.
Moreover, the number of iterations of these algorithms also
depends polynomially in the maximum degree of the graph
and/or the number of edges, which can be prohibitive for
large graphs with nodes of very high degree. An important
direction is to obtain algorithms with stronger theoretical
convergence guarantees that enjoy fast convergence with
simple iterations that are easily parallelizable and very effi-
cient in theory and in practice.

Another limitation is that the iterative algorithms only con-
struct approximate solutions and they require poly(1/ϵ)
iterations to achieve a 1− ϵ approximation. As a result, the

running time can be prohibitively large for obtaining very
good approximation guarantees. An important direction is
to obtain scalable and practical iterative algorithms with a
much more beneficial log(1/ϵ) dependence on the approx-
imation error. Such algorithms would allow for obtaining
exact solutions (by setting ϵ polynomially small in the size
of the graph, and thus incurring only a logarithmic factor
in the running time). Currently, the only exact algorithms
known are based on maximum/minimum-cost flow and they
are prohibitive in practice as discussed above.

The aforementioned directions are the main motivation be-
hind this work, and we make several contributions towards
resolving them as we outline below.

1.1. Contributions

Building on the algorithm of Bahmani et al. (2014), we give
an iterative algorithm based on the multiplicative weights up-
date framework (MWU, Arora et al. (2012)) that converges
in O

(
logm
ϵ2

)
iterations. Each iteration of our algorithm can

be implemented very efficiently in nearly-linear time, and it
can be easily parallelized by processing each vertex and its
incident edges in parallel on separate machines. Through a
combination of the techniques in the work of Bahmani et al.
(2014) as well as novel insights and techniques we intro-
duce, we are able to preserve all of the strengths of the result
of Bahmani et al. (2014): compared to other approaches,
the number of iterations is independent of the maximum
degree ∆ of the graph (in contrast, all other approaches
incur an extra ∆ factor); the algorithm can be applied to
many different settings, including to streaming, parallel, and
distributed computation (Bahmani et al., 2012; 2014; Su
& Vu, 2019), as well as differentially private algorithms
(Dhulipala et al., 2022). Simultaneously, we significantly
strengthen and simplify the prior approach, and remove its
main limitations: we design a very different algorithm for
constructing a primal solution (the dense subgraph) from
the fractional solution to a modified dual problem that the
MWU algorithm constructs; we give an end-to-end algo-
rithm for implementing each iteration that does not employ
a binary search. Due to the wide range of applications of
this framework mentioned earlier, we expect that our im-
proved approach will lead to improvements in all of these
diverse settings and for other related problems and beyond.

Our second contribution builds on our MWU algorithm and
the area convexity technique introduced by Sherman (2017)
for flow problems and extensions and further utilized by
Boob et al. (2019) for solving packing and covering LPs
and the densest subgraph problem. By replacing the entropy
regularizer with an area convex regularizer, we design an
iterative algorithm with an improved iteration complexity
of O

(
logm

ϵ

)
and a nearly-linear time per iteration. Our

algorithm improves upon the result of Boob et al. (2019) by
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a factor ∆ (the maximum degree in the graph), both in the
number of iterations and overall running time. Furthermore,
we show how to construct the primal solution (the dense
subgraph), whereas Boob et al. (2019) can only output the
value of the solution. Similarly to prior work based on the
area convexity technique (Sherman, 2017; Boob et al., 2019),
each iteration of is more complex and less practical than our
MWU-based approach. However, the result is theoretically
interesting for at least two reasons: it shows that the 1

ϵ2

barrier for entropy-based MWU algorithms can be overcome
without incurring a polynomial factor loss in the iteration
complexity; and the overall running time matches that of
the flow-based algorithm of Chekuri et al. (2022), which
achieves the fastest theoretical running time currently known
for densest subgraph but is inherently sequential. In contrast
to flow-based algorithms, area convexity is closely related
to practical (extra)gradient methods (Jambulapati & Tian,
2023) and has found successful applications beyond DSG,
including solving structured LPs (Boob et al., 2019), optimal
transport (Jambulapati et al., 2019) and matching (Assadi
et al., 2022). Improvements in DSG could potentially be
used as an example to derive new iterative frameworks for
other continuous and combinatorial problems.

Finally, by adapting the approach of Ene & Nguyen (2015);
Ene et al. (2017) for minimizing submodular functions with
a decomposable structure, we obtain the first practical iter-
ative algorithms for DSG and generalizations with a log 1

ϵ
dependency on the approximation error ϵ. Similarly to Harb
et al. (2022), our algorithms solve a convex programming
formulation that captures DSG and its generalization to
finding a dense subgraph decomposition (we defer the def-
initions to Section 2). The objective function of the con-
vex program is smooth with smoothness parameter propor-
tional to the maximum degree ∆, but importantly it is not
strongly convex. Harb et al. (2022) used the accelerated
FISTA algorithm to solve the convex program, and obtained
a running time of O

(
m

√
mn∆
ϵ

)
. In contrast, we adapt the

coordinate descent algorithm and its accelerated version
developed by Ene & Nguyen (2015) for submodular min-
imization. Our accelerated algorithm achieves a running
time of O

(
mn log 1

ϵ

)
in expectation. Crucially, we achieve

an exponentially improved dependence on 1/ϵ (i.e., a linear
convergence rate) despite the lack of strong convexity in the
objective, by leveraging the combinatorial structure as in
Ene & Nguyen (2015); Ene et al. (2017). Additionally, the
objective has constant smoothness in each coordinate (in
contrast to the ∆ global smoothness), leading to further im-
provements in the running time. In the high precision regime
ϵ ≪ 1

n where we can even recover the exact solution, our
accelerated algorithm has a total runtime of O (mn log n),
matching the algorithm via parametric flows by Gallo et al.
(1989). Although this does not match the state of the art
algorithm via minimum-cost flows by Harb et al. (2022),

in contrast to these flow-based algorithms, our algorithms
are very simple and easy to implement. Our experimen-
tal evaluation shows that our algorithms are very practical
and scalable to very large graphs, and are competitive with
the highly practical Greedy++ algorithm while enjoying
significantly stronger theoretical guarantees.

We show comparisons of runtime between existing methods
and our algorithms in Table 1.

2. Preliminaries
Let G = (V,E) be an undirected, unweighted graph where
|V | = n and |E| = m. For simplicity, we take V =
{1, . . . , n}. For a set S ⊆ V , let E(S) be the set of edges
in the graph induced by S. For a node u ∈ V , let deg u be
the number of neighbors of u. We let ∆ = maxu∈V deg u,
i.e the maximum degree of a node in V . We use [k] to
denote the set of integers from 1 to k, and OPT to denote
the maximum density of a subgraph.

Charikar’s LP for DSG The LP for finding a densest
subgraph was introduced by Charikar (2000) as follows

max
x≥0

∑
e=uv∈E

min {xu, xv} st.
∑
u∈V

xu ≤ 1. (1)

Charikar (2000) showed that given a feasible solution x to
LP (1) with objective D, we can construct a set S ⊆ V such
that the density of S is at least D. The construction takes
O(n log n + m) time: first, sort (xv)v∈V in a decreasing
order then select the prefix set S that maximizes |E(S)|

|S| . For
this reason, we can find a (1− ϵ) approximately densest
subgraph by finding a (1− ϵ) approximate solution to (1).

Dual LP The dual of LP (1) can be written as follows

min
D,z≥0

D st.
∑

e∈E,u∈e

zeu ≤ D, ∀u ∈ V (2)

zeu + zev ≥ 1, ∀e = uv ∈ E.

Width-reduced dual LP We use the width reduction tech-
nique introduced in Bahmani et al. (2014) to improve the
guaranteed runtime. Since there is always an optimal solu-
tion z for the dual that satisfies z ≤ q for q ≥ 1, adding this
explicit constraint to the LP as in (3) does not change the
objective of the optimal solutions.

minD st.
∑

e∈E,u∈e

zeu ≤ D, ∀u ∈ V (3)

zeu + zev ≥ 1, ∀e = uv ∈ E

0 ≤ zeu ≤ q, ∀e, u ∈ e ∈ E.

By parameterizing D, Bahmani et al. (2014) showed that we
can solve the feasibility version of LP (3) in O

(
m logm

ϵ2

)
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Table 1. Comparison between existing algorithms for computing approximate densest subgraphs/densest subgraph decomposition. m,n,∆
are the number of edges and vertices and the maximum degree in the graph. OPT is the maximum density of a subgraph.

Algorithm No. of Iter. Per iter. Note

Greedy++ (Boob et al., 2020) O
(
∆ logm
OPTϵ2

)
O(m log n)

Frank-Wolfe (Danisch et al., 2017) O
(
m∆
ϵ2

)
O(m)

Chekuri et al. (2022) (flow-based) O
(
logm

ϵ

)
O(m logm) Based on blocking flows

Gallo et al. (1989) (flow-based, exact) O
(
nm log

(
n2/m

))
(total) Based on push-relabel

Harb et al. (2022) (flow-based, exact) O(m1+o(1)) (total)
Based on min-cost flow algorithm by
Chen et al. (2022)

Bahmani et al. (2014) O
(
logm
ϵ2

)
O(m) New and simpler construction of the

solution; Remove binary search
Algorithm 1 (ours) O

(
logm
ϵ2

)
O(m log∆)

Boob et al. (2019) (solution value only) O
(
∆ logm

ϵ

)
O(m log 1

ϵ
) Improve a factor ∆ and construct

solution
Algorithm 3 (ours) O

(
logm

ϵ

)
O
(
m log∆ log 1

ϵ

)
Harb et al. (2022) (additive error) O

(√
mn∆
ϵ

)
O(m) Improve total time by a factor at least

√
∆

ϵ log n
ϵAlgorithm 5 (ours) (in expectation) O

(
mn log n

ϵ

)
O(1)

time and achieve the same total time via binary search for the
optimal objective. However, the downside of using the with-
reduced LP (3) is that it corresponds to a different primal
than the LP (1). Thus it is not immediate how one can find
an integral solution to the DSG problem from a solution to
(3). Note that, Bahmani et al. (2014) used q = 2—that is
0 ≤ zeu ≤ 2, ∀e, u ∈ e ∈ E, which is different from
the natural choice of q = 1. This value of q > 1 plays
an important role in their intricate rounding scheme, which
involves discretization of the solution and a line sweep. In
contrast, we will show an algorithm that solves (3) for q = 1
and also retains the simple rounding procedure by Charikar
(2000). Henceforth, we will refer to (3) with q = 1.

Dense subgraph decomposition and quadratic pro-
gram The dense subgraph decomposition problem (Tatti
& Gionis, 2015) extends DSG in that the output is a partition
S1∪· · ·∪Sk of the graph, where for i ≥ 1, Si is the maximal
set that maximizes

∣∣E (∪i−1
j=1Sj ∪ S

)
− E

(
∪i−1
j=1Sj

)∣∣ / |S|.
By this, one can simply recover the maximal densest sub-
graph by outputting S1. Harb et al. (2022; 2023) showed
that this problem can be solved via the following quadratic
program

min
∑
u∈V

b2u st. bu =
∑

e∈E,u∈e

zeu, ∀u ∈ V (4)

zeu + zev ≥ 1, ∀e = uv ∈ E

0 ≤ zeu ≤ 1, ∀e, u ∈ e ∈ E.

Harb et al. (2022) also showed that there exists a unique
optimal solution b∗ to (4). More precisely, for the dense

decomposition S1 ∪ · · · ∪ Sk, and u ∈ Si, we have

b∗u =
|E(∪i

j=1Sj)−E(∪i−1
j=1Sj)|

|Si| . One can solve (4) by convex
optimization tools such as Frank-Wolfe algorithm (Danisch
et al., 2017; Harb et al., 2023) or the accelerated FISTA
algorithm (Harb et al., 2022; Beck & Teboulle, 2009). Harb
et al. (2022) also introduced a rounding scheme called frac-
tional peeling to obtain an approximately densest subgraph
decomposition (see definition 5.1).

3. Algorithm via Multiplicative Weights
Update

In this section we present our algorithm to find a (1 − ϵ)
approximate solution to LP (1). First, we give an overview
of our approach. The approach falls into the framework of
MWU (Arora et al., 2012). Instead of directly working with
the dual LP (2), we will work with the width-reduced LP
(3) with q = 1. We introduce dual variables p ∈ ∆m which
correspond to the constraints zeu+zev ≥ 1 for e = uv ∈ E.
In each iteration of the algorithm, given the values of p, we
maintain a solution z that satisfies the combined constraint∑

e∈E pe (zeu + zev) ≥ 1. Note that, we can always make
equality happens without increasing the objective. This
reduces to solving the following LP

min
z∈[0,1]2m

max
u∈V

∑
e∈E,u∈e

zeu (5)

∑
e∈E

pe (zeu + zev) = 1 (6)
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The average solution for z ensures that the constraints of
LP (3) are satisfied approximately. To update p, we use
MWU. Using the value of p in the best iteration, we can
construct a feasible solution to the primal LP (1) with ob-
jective at least (1− ϵ)OPT. This solution allows us to use
Charikar’s rounding procedure to obtain an approximately
densest subgraph (see Section 2).

What differs from (Bahmani et al., 2014) is that we di-
rectly solve problem (5) instead of parametrizing D =
maxu∈V

∑
e∈E,u∈e zeu and solving the feasibility version

of (5). There are two reasons why this is a better approach.
First, being able to exactly optimize LP (5) allows us to use
complementary slackness and recover the primal solution
in a simple way. We show that this primal solution satis-
fies Charikar’s LP (1) and thus allows us to use Charikar’s
simple rounding procedure. In this way, we completely
remove the involved rounding procedure in Bahmani et al.
(2014). Second, there is no longer need for using binary
search which could be a concern for the runtime in practice.

3.1. Algorithm for solving problem (3)

Algorithm 1 Multiplicative Weights Update for solving (3)

Let T = 2 lnm
ϵ2

, η = ϵ

Initialize p(1) =
(

1
m
, . . . , 1

m

)
, G(0) = 0 ∈ Rm

for t = 1 . . . T
Let z(t) be an optimal solution to (5) for p = p(t)

Let g(t)e = 1−
(
z
(t)
eu + z

(t)
ev

)
for all e ∈ E

Let G(t) =
∑t

τ=1 g
(τ)

Let p(t+1) = ∇smaxη(G
(t)), ie, p(t+1)

e = exp(ηG
(t)
e )∑

e′ exp(ηG
(t)

e′ )

Output 1
T

∑T
t=1 z

(t)

In this section, we give our algorithm solving LP (3), shown
in Algorithm 1. The algorithm is based on the multiplicative
weights framework and it uses as a subroutine an algorithm
that, given p ∈ ∆m, it returns an optimal solution z to the
LP (5). We show how to efficiently implement this sub-
routine in the next section. The following lemma and its
corollary show that the output of Algorithm 1 is approxi-
mately optimal for (3).
Lemma 3.1. Let z∗ be an optimal solution to LP (3). Algo-
rithm 1 outputs z = 1

T

∑T
t=1 z

(t) that satisfies

max
u∈V

∑
e∈E,u∈e

zeu ≤ max
u∈V

∑
e∈E,u∈e

z∗eu

and for all e = uv ∈ E

zeu + zev ≥ 1− ϵ.

Corollary 3.2. Let D(t) = maxu∈V

∑
e∈E,u∈e z

(t)
eu and

D∗ = maxu∈V

∑
e∈E,u∈e z

∗
eu. There is t ∈ [T ] such that

D(t) ≥ (1− ϵ)D∗.

3.2. Algorithm for solving problem (5)

In this section, we give an efficient algorithm that, given p ∈
∆m, it returns an optimal solution z to the LP (5). We write
the constraint (6) of the LP as

∑
u∈V

∑
e∈E,u∈e pezeu =

1. The intuition to solve LP (5) follows from Bahmani
et al. (2014): given a guess D for the optimal objective, we
can now think of LP (5) as solving a feasibility knapsack
problem, for which the strategy is greedily packing the items,
i.e, setting zeu = 1, in the decreasing order of pe.

Returning to LP (5), we proceed by first sorting for each u
all of the edges incident to u in the decreasing order of pe.
For two edges e and e′ incident to u, we write e ≺u e′ if e
precedes e′ in this order. We show the following lemma

Lemma 3.3. Let D∗ be the optimal objective of LP (5). Let
z∗ be such that z∗eu = min

{
1, D∗ −

∑
e′≺ue : u∈e′ ze′u

}
.

Then z∗ is an optimal solution to LP (5).

We consider D as a variable we need to solve for and assign
value of z according to Lemma 3.3. In this way for any value
D ∈ [0,∆], for each u, the first min {⌊D⌋, deg u} edges in
the decreasing order of p incident to u have zeu = 1, the
next edge (if exists) has value zeu = R := D − ⌊D⌋ and
the remaining edges have value zeu = 0. Also note that for
a solution, we have∑

u∈V

∑
e∈E,u∈e

pezeu = 1. (7)

Thus we can proceed by testing all values of ⌊D⌋ ∈ [∆].
For each value of ⌊D⌋, R is determined by solving Equation
(7). We choose the smallest ⌊D⌋ such that 0 ≤ R < 1.

We summarize this procedure in Algorithm 2.

Algorithm 2 Solver for (5)
Input: p ∈ ∆m

For each u ∈ V , the edges incident to u in non-increasing order
according to pe
for ⌊D⌋ ∈ [0,∆] :

for u ∈ V , let zeu = min{1, ⌊D⌋ −
∑

e′≺ue : u∈e′ ze′u}. Let
E(u) be the set of e incident to u such that zeu = 1 and E(u) be
the remaining edges.

Let p(u) = max
{
pe : e ∈ E(u)

}
(or 0 if E(u) = ∅)

Let R =
1−

∑
u∈V

∑
e∈E(u) pe∑

u∈V p(u)

if 0 ≤ R < 1 :
return ⌊D⌋+R, z

Lemma 3.4. Algorithm 2 outputs an optimal solution for
LP (5) in time O(m log∆).

Proof. The correctness of the algorithm is ensured by the
fact that we output the first (smallest) D that gives an as-
signment according to Lemma 3.3. Sorting the edges for
each node u takes O (deg u log deg u) time, hence the total
sorting time is O(m log∆). The assignment of z also takes
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at most O (m) since during the course of the algorithm,
each zeu is used for computing the value of R at most once.
Therefore the total runtime is O(m log∆).

3.3. Constructing the solution

Finally, we show a way to construct a solution to the primal
LP (1). Let τ be the iteration t that has the biggest value
of D(t) = maxv∈V

∑
e∈E,u∈e z

(t)
eu . From Corollary 3.2,

we have D(τ) ≥ (1 − ϵ)D∗ = (1 − ϵ)OPT. The primal
program corresponding to the dual LP (5) is as follows

max
x,α≥0,W

W −
∑
e=uv

(αeu + αev) (8)

p(τ)e W ≤ min{xu + αeu, xv + αev} ∀e = uv∑
v

xv ≤ 1.

Recall that the solution z(τ) of (5) is obtained as fol-
lows. We sort the edges in the decreasing order ac-
cording to p

(τ)
e . When considering e = uv, we set

z
(τ)
eu = min

{
1, D(τ) −

∑
e′≺e : u∈e′ z

(τ)
e′u

}
. Let X ={

u :
∑

e z
(τ)
eu = D(τ)

}
. For u ∈ X , let e(u) be the edge

with smallest p(τ)e among the edges with z
(τ)
eu > 0, let

W = 1∑
u∈X p

(τ)

e(u)

. Set

xu = p
(τ)
e(u)W

αeu = p(τ)e W − xu ≥ 0 ∀e : p(τ)e ≥ p
(τ)
e(u)

αeu = 0 ∀e : p(τ)e < p
(τ)
e(u)

For u /∈ X , set xu = 0;αeu = p
(τ)
e W ∀e ∋ u. We can

verify that (W,x, α) is an optimal solution to LP (8) by
complementary slackness and x is an (1− ϵ)-approximate
solution to (1) by strong duality.

Lemma 3.5. (W,x, α) is an optimal solution to LP (8).

Lemma 3.6. x is a (1− ϵ)-approximate solution to (1).

Remark 3.7. As we can see here, the new insight is that,
more generally, as long as we have p ∈ ∆m for which we
know that the objective of the LP (5) is at least D, we can
obtain a subgraph with density at least D.

3.4. Final runtime

Combining subroutines from Section 3.1-3.3, we obtain the
following result.

Theorem 3.8. There exists an algorithm that outputs a
subgraph of density≥ (1− ϵ)OPT in O

(
logm
ϵ2

)
iterations,

each of which can be implemented in O (m log∆) time for

a total O
(

m log∆ logm
ϵ2

)
time.

4. Algorithm via Area Convexity
In this section, by building on the approaches based on
area convexity (Sherman, 2017; Boob et al., 2019), we ob-
tain an algorithm with an improved iteration complexity of
O( logm

ϵ ), and the same nearly-linear time per iteration. Our
algorithm improves upon the result of Boob et al. (2019) by
a factor ∆ (the maximum degree in the graph), in both the
number of iterations and overall running time. This improve-
ment comes from the following reasons where we depart
from Boob et al. (2019). First, taking inspiration from Bah-
mani et al. (2014) and the width reduction technique, we
parametrize D = maxu∈V

∑
e∋u zeu, but keeping the con-

straints ∀u,
∑

e∋u zeu ≤ D as the domain of z instead of
the constraints in the feasibility LP. This reduces the width
of the LP from ∆ to 2. Now the question becomes whether
we can solve each subproblem (ie., implement the oracle)
efficiently. To do so, we replace the area convex regularizer
of Boob et al. (2019) with the choice in Sherman (2017) and
subsequent works (Jambulapati et al., 2019; Jambulapati
& Tian, 2023). This choice simplifies the regularizer to a
quadratic function (with respect to z) and allows to optimize
for each vertex separately. We also take inspiration from the
oracle implementation for MWU (Algorithm 2) and show
that we can implement the oracle in this case in Õ(m) time.
Finally, we show that the rounding procedure used for Al-
gorithm 1 can also be used to obtain an integral solution,
which was not known in Boob et al. (2019).

4.1. Reduction to saddle point optimization

First, we show that we can solve LP (3) for q = 1 via a
reduction to a saddle point problem. By parameterizing
the variable D, we convert solving LP (3) to the following
feasibility LP

∃?z ∈ C(D) st. zeu + zev ≥ 1, ∀e = uv ∈ E (9)

where C(D) =

{
z ∈ [0, 1]

2m
: ∀u,

∑
e∋u

zeu ≤ D

}
.

For simplicity, we write the domain as C when it is clear
what value D is being used. Let us also denote the constraint

matrix by B ∈ Rm×2m and let A :=

[
0 BT

−B 0

]
. In

Lemma B.4 (from (Boob et al., 2019)), we show that this
feasibility problem can be reformulated as the following
saddle point problem

min
z∈C,y∈∆m

max
z∈C,y∈∆m

∑
e

ye (zeu + zev)− ye (zeu + zev)

= yTBz − yTBz =
[
zT yT

]
A

[
z
y

]
. (10)
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By approximately solving (10), we obtain (z, y) such that
either z is an approximate solution to Problem (9) or y can
certify that Problem (9) is infeasible.

4.2. Algorithm for solving problem (10)

Algorithm 3 Solver for (10) using oracle Φ (Algorithm 4)

Initialize w(0) = (z(0), y(0)) ∈ C × ∆m where z(0) = 0 and
y(0) = 1

m
for t = 0, . . . , T − 1

w(t+1) = w(t) + Φ̃
(
Aw(t)

)
where Φ̃(a) = Φ(a+ 2AΦ(a)).

Algorithm 4 Algorithm for oracle Φ (Definition 4.1)

Input: x = (s, r), s ∈ R2m, r ∈ Rm

Initialize z(0) = 0
Let H(z, y) = ϕ(z, y)− ⟨z, s⟩ − ⟨y, r⟩
for t = 0, . . . , T

y(t+1) = argminy∈∆m H(z(t), y)

z(t+1) = argminz∈C H(z, y(t+1))

return
(
z(T+1), y(T+1)

)
Next, we describe the algorithm via the general area convex-
ity technique by Sherman (2017) for solving problem (10).
In order to use this technique, one key point is to choose a
regularizer function which is area convex with respect to A
and has a small range (width). The following regularizer
function enjoys these properties

ϕ(z, y) = 6
√
3

(∑
e∈E

ye
(
z2eu + z2ev

)
+ 6ye log ye − 2

)
.

(11)

Let us now assume access to a δ-approximate minimization
oracle Φ for solving subproblems regularized by ϕ in the
following sense.

Definition 4.1. (Sherman, 2017) A δ-approximate mini-
mization oracle Φ for ϕ takes input x ∈ R3m and output
w∗ ∈ C ×∆m such that

⟨w∗, x⟩ − ϕ(w∗) + δ ≥ sup
w∈C×∆m

⟨w, x⟩ − ϕ(w) := ϕ∗(x).

Once we have this oracle, we can use Sherman’s algorithm
(Algorithm 3) to approximately solve problem (10). The
convergence guarantee is given in Lemma 4.2.

Lemma 4.2. For the choice of ϕ in (11), Algorithm 3 outputs
wT that satisfies w(T )

T ∈ C ×∆m and

sup
w∈C×∆m

wA
w(T )

T
≤ δ +O

(
logm

T

)
.

Oracle implementation. We now show that the oracle
can be implemented efficiently via alternating minimization

(Algorithm 4). We show that Algorithm 4 enjoys linear
convergence and can be implemented efficiently in the fol-
lowing Lemmas.
Lemma 4.3. Let (zOPT, yOPT) ∈
argmin(z,y)∈C×∆m

H(z, y). For T =

O

(
log

(H(z(0),y(1))−H(zOPT,yOPT))
δ

)
,
(
z(T+1), y(T+1)

)
satisfies

H(z(T+1), y(T+1))−H (zOPT, yOPT) ≤ δ.

Lemma 4.4. Each iteration of Algorithm 4 can be imple-
mented in O(m log∆).

4.3. Constructing the solution

Putting together the reduction from Section 4.1 and the
algorithm from Section 4.2, we obtain an algorithm that
returns an approximate solution z to the feasibility Problem
(9) or it returns that (9) is infeasible. By combining this
algorithm with binary search over D, we obtain the result in
the following theorem. We note that we can use the binary
search approach of Bahmani et al. (2014) to avoid incurring
any extra overhead in the running time.
Theorem 4.5. There exists an algorithm that outputs z
and D̃ = max

∑
e∋u zeu such that zeu + zev ≥ 1 for all

e = uv ∈ E and where D∗(1− ϵ) ≤ D̃ ≤ D∗(1 + ϵ) and
D∗ = OPT is the optimal value of D in LP (3).

Finally, to reconstruct the integral solution, let D = D̃(1−
2ϵ) and (z, y) be an ϵ-approximate solution for problem
(10) on domain C(D) output by Algorithm 3. We show the
following lemma:
Lemma 4.6. The objective of the following LP

min
z∈[0,1]2m

D st.
∑
e∋u

zeu ≤ D;
∑
e∈E

ye (zeu + zev) = 1.

is strictly more than D > (1− 3ϵ)OPT.

Due to this lemma and Remark 3.7, we can now follow the
procedure in Section 3.3 and reconstruct the primal solution
and obtain an (1− 3ϵ)-approximately densest subgraph.

4.4. Final runtime

Theorem 4.7. There exists an algorithm that outputs a
subgraph of density≥ (1− ϵ)OPT in O

(
logm

ϵ

)
iterations,

each of which can be implemented in O
(
m log∆ log 1

ϵ

)
time for a total O

(
m
ϵ logm log∆ log 1

ϵ

)
time.

5. Algorithm via Random Coordinate Descent
In this section, we give an algorithm for finding an approxi-
mate dense decomposition. First, we recall the definition of
an ϵ-approximate dense decomposition.
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Definition 5.1. (Harb et al., 2022) We say a parti-
tion T1, . . . , Tr is an ϵ-approximate dense decomposi-
tion to S1, . . . , Sk (the true decomposition) if, for all
i, j and Si ∩ Tj ̸= ∅ then |E(Tj)|+|E(Tj ,∪h<jTh)|

|Tj | ≥
|E(Si)|+|E(Si,∪h<jSh)|

|Si| − ϵ.

We adapt the accelerated random coordinate descent of Ene
& Nguyen (2015) to find a fractional solution to (4) and then
use the fractional peeling procedure by Harb et al. (2022) to
obtain the decomposition.

5.1. Continuous formulation

We first write (4) in the following equivalent way. For
each e ∈ E, let Fe : 2V → R be such that Fe(S) = 1 if
e ⊆ S, Fe(S) = 0 otherwise. We have Fe is a supermodular
function since Fe(S) + Fe(T ) ≤ Fe(S ∪ T ) + Fe(S ∩ T )
for all S, T ⊆ V . The base contrapolymatroid of Fe is

B(Fe) = {ze ∈ Rn : ze(S) ≥ Fe(S) ∀S ⊆ V, ze(V ) = 1}

We show in Appendix C that (4) is equivalent to

min
z:ze∈B(Fe),∀e∈E

f(z) :=

∥∥∥∥∥∑
e∈E

ze

∥∥∥∥∥
2

2

(12)

Problem (12) has exactly the same form as the continuous
formulation for decomposable submodular minimization
studied in Nishihara et al. (2014); Ene & Nguyen (2015), ex-
cept that now we minimize over the base contrapolymatroid
of a supermodular function instead of the base polytope of
a submodular function. We provide further details about
this connection in Appendix C. This connection allows us
to adapt the Accelerated Coordinate Descent algorithm by
Ene & Nguyen (2015) to solve (4).

5.2. Accelerated Random Coordinate Descent

For an edge e = uv ∈ E, Harb et al. (2022) show that
projection onto B(Fe) can be done via the following op-
erator proje. For simplicity, we only consider the relevant
component seu and sev of s (the remaining components are
all 0). The projected solution onto B(Fe), proje((seu sev)),
is given by

(
seu−sev+1

2
sev−seu+1

2

)
if |seu − sev| ≤ 1

(1 0) if seu − sev > 1

(0 1) otherwise.

Note that with proje, for x, y ∈ Rn and η > 0, we can
solve the following problem in O(1) time.

arg min
s∈B(Fe)

(
⟨∇ef(x), (seu sev)⟩+ η ∥s− y∥22

)
=proje

(
(yeu yev)−

1

2η
∇ef(x)

)
.

where we use∇ef ∈ R2 to denote the gradient with respect
to the component eu and ev. We present the Accelerated
Random Coordinate Descent Algorithm in Algorithm 5.
The algorithm and its convergence analysis stay close to the
analysis in Ene & Nguyen (2015), which we omit.

Algorithm 5 Accelerated Random Coordinate Descent

Initialize z(0) ∈ P
for k = 1 . . .K = O

(
log n

ϵ

)
:

y(k,0) = z(k−1) ∈ P , θ(k,0) = 1
m
, w(k,0) = 0

for t = 1 . . . T = O (mn):
select a set R(t) of edges, each e ∈ E with probability 1

m

for e ∈ R(t) :
x(k,t) = θ(k,t−1)2w(k,t−1) + y(k,t−1)

y(k,t) = argmins∈B(Fe)

(〈
∇ef(x

(k,t)), (seu sev)
〉
+

2mθ(k,t−1)
∥∥∥(seu sev)− (y

(k,t−1)
eu y

(k,t−1)
ev )

∥∥∥2
2

)
w(k,t) = w(k,t−1) − 1−mθ(k,t−1)

θ(k,t−1)2

(
y(k,t) − y(k,t−1)

)
θ(k,t) =

√
θ(k,t−1)4+4θ(k,t−1)2−θ(k,t−1)2

2

z(k) = θ(k,T−1)2w(k,T ) + y(k,T )

return z(K)

The runtime of Algorithm 5 is given in the next lemma.

Lemma 5.2. Algorithm 5 produces in expected time
O
(
mn log n

ϵ

)
a solution z such that E [f(z)− f(z∗)] ≤ ϵ.

5.3. Fractional peeling

The fractional peeling procedure in Harb et al. (2022) takes
an ϵ approximate solution (z, b) for the program (4) in the
sense that ∥b− b∗∥2 ≤ ϵ and returns an ϵ

√
n- approximate

dense decomposition. The procedure is as follows:

For the first partition T1, starting with b′ = b and G(0) = G,
in each iteration t, we select the vertex u with the smallest
value b′u and update b′v ← b′v − zev for all v adjacent to u in
G(t−1) and G(t) ← G(t−1) − u. We return the graph G(t)

with the maximum density. For the subsequent partition Tt,
we update for all e = uv such that u ∈ T1 ∪ · · · ∪ Tt−1 and
v ∈ G \ (T1 ∪ · · · ∪ Tt−1): zeu ← 0 and zev ← 1. Remove
T1 ∪ · · · ∪ Tt−1 from G and repeat the above procedure for
the remaining graph.

Harb et al. (2022) show the following result.

Lemma 5.3. For (z, b) satisfying ∥b− b∗∥2 ≤ ϵ, the frac-
tional peeling procedure described above output ϵ

√
n- ap-

proximate dense decomposition in Õ(mn) time.

5.4. Final runtime

Combining the guarantees of Algorithm 5 and the fractional
peeling procedure, we obtain the following result.
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(a) Iteration/Best Density

(b) Time/Best Density

(c) Iteration/Load norm
(∑

u∈V b2u
)1/2

Figure 1. Experiment results on orkut and com-Amazon. In the
legends: acdm, rcdm, fastfist, greedypp respectively represent
Algorithm 5, Algorithm 7, FISTA-based algorithm by Harb et al.
(2022) and Greedy++ (Boob et al., 2020)

Theorem 5.4. Algorithm 5 and the fractional peeling pro-
cedure (Harb et al., 2022) output an ϵ-approximate dense
decomposition in O

(
mn log n

ϵ

)
time in expectation.

6. Experiments
In this section, we compare the performance of existing
algorithms and Algorithm 5. We also consider the version
of Algorithm 5 without acceleration, Algorithm 7 shown in
the appendix. On the other hand, due to the involved sub-
routines, we do not compare the performance of Algorithm
1 and 3. We follow the experimental set up in prior works,
including Boob et al. (2020) and Harb et al. (2022).

Benchmark. We consider three algorithms: Frank-Wolfe
(Danisch et al., 2017), implemented by Harb et al. (2022),
Greedy++ (Boob et al., 2020) and FISTA for DSG (Harb
et al., 2022).

Implementation. We use the implementation of all bench-
mark algorithms provided by Harb et al. (2022). The imple-
mentation of our algorithms also uses the same code base
by Harb et al. (2022). For practical purposes, we modify
Algorithms 5 and 7 by replacing the inner loop with making
passes over random permutations of the edges instead of
random sampling edges. We also restart Algorithm 5 after
each pass that increases the function value. We show the
pseudocode for these variants in Algorithms 6 in the ap-

pendix and in Option 2 of Algorithm 7. For all algorithms,
we initialize at the solution by the Greedy peeling algorithm
(Charikar, 2000).

Datasets. The algorithms are compared on eight different
datasets, summarized in Table 2 (appendix).

For a fair comparison, for all algorithms considered, we
define an iteration as a run of m edge updates, and each
update can be implemented in a constant time.

We plot the best density obtained by each algorithm over the
iterations in Figure 1a. In Figure 1b, we plot the best density
over wall clock time. Finally, Figure 1c shows the function
value (L2-norm of the load vector)

(∑
u∈V b2u

)1/2
over the

iterations. Due to space limit, we only show plots for two
datasets: com-Amazon and orkut. We also exclude Frank-
Wolfe in the plots due to its significantly worse performance
in all instances. We defer the remaining plots and plots that
include Frank-Wolfe to the appendix.

Discussion. We can observe that Algorithms 5 and 7 are
practical and can run on relatively fast large instances (for
example, orkut has more than 3 million vertices and 100
million edges). Figure 1c shows that both Algorithms 5 and
7 outperform the others at minimizing the function value.
Especially in comparison with FISTA, both Algorithms 5
and 7 are significantly better.

Boob et al. (2020) observed that in most instances, the
Greedy peeling algorithm by Charikar (2000) already finds
a near-optimal densest subgraph. Greedy++ inherits this fea-
ture of Greedy and generally has a very good performance
across instances. Algorithms 5 and 7 with initialization
by the Greedy algorithm have competitive performances
with Greedy++ and FISTA both in terms of the number of
iterations and time.

7. Conclusion
In this paper, we present several algorithms for the DSG
problems. We show new algorithms via multiplicative
weights update and area convexity with improved running
times. We also give the first practical algorithm with a linear
convergence rate via random coordinate descent. Obtaining
a practical implementation of our multiplicative weights
update algorithm in the streaming and distributed settings,
and using our results to improve algorithms for DSG prob-
lems in other settings such as differential privacy are among
potential future works.
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A. Additional Proofs from Section 3
A.1. Multiplicative Weights Update analysis tool: smax function

We analyze our MWU algorithm via the smax function, defined as follows. For x ∈ Rn and η ∈ R+, we define

smaxη(x) =
1

η
ln

(
n∑

i=1

exp (ηxi)

)
.

smaxη(x) can be seen as a smooth approximation of max(x)
def
= maxi xi ≤ maxi |xi| = ∥x∥∞, in the following sense

∥x∥∞ ≤ smaxη(x) ≤
lnn

η
+ ∥x∥∞ ,

and smaxη is η-smooth with respect to ∥·∥∞: ∀x, u,

smaxη(x+ u) ≤ smaxη(x) + ⟨∇smaxη(x), u⟩+
η

2
∥u∥2∞ .

The gradient of smaxη is a probability distribution in ∆n =
{
p ∈ Rn

≥0 : p1 + · · ·+ pn = 1
}

:

(∇smaxη(x))i =
exp(ηxi)∑
j exp(ηxj)

.

A.2. Proof of Lemma 3.1

Proof. Note that z∗ can be decreased so that z∗eu + z∗ev = 1, ∀e = uv ∈ E, without increasing the objective. Hence, we
can have

∑
e∈E p

(t)
e (z∗eu + z∗ev) =

∑
e∈E p

(t)
e = 1. This means z∗ satisfies the constraint of LP (5), thus for all t, since z(t)

is an optimal solution to (5) with p(t), we have

max
v∈V

∑
e∈E,u∈e

z(t)eu ≤ max
v∈V

∑
e∈E,u∈e

z∗eu,

which implies

max
v∈V

∑
e∈E,u∈e

zeu = max
v∈V

1

T

T∑
t=1

∑
e∈E,u∈e

z(t)eu

≤ 1

T

T∑
t=1

max
v∈V

∑
e∈E,u∈e

z(t)eu

≤ max
v∈V

∑
e∈E,u∈e

z∗eu.

Moreover, since smaxη is η-smooth wrt ∥·∥∞, we have

smaxη(G
(t))− smaxη(G

(t−1)) ≤
〈
∇smaxη(G

(t−1)), g(t)
〉
+

η

2

∥∥∥g(t)∥∥∥2
∞

=
∑
e∈E

p(t)e

(
1−

(
z(t)eu + z(t)ev

))
+

η

2

∥∥∥g(t)∥∥∥2
∞

=
η

2

∥∥∥g(t)∥∥∥2
∞

,

where we use g(t) = 1−
(
z
(t)
eu + z

(t)
ev

)
and∇smaxη(G

(t−1)) = p(t). Note that g(t)e = 1−
(
z
(t)
eu + z

(t)
ev

)
∈ [−1, 1] .Thus

smaxη(G
(T )) ≤ smaxη(G

(0))︸ ︷︷ ︸
= lnm

η

+
T∑

t=1

η

2

∥∥∥g(t)∥∥∥2
∞︸ ︷︷ ︸

≤1

≤ lnm

η
+

η

2
T.

12
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Thus we have

max
(
G(T )

)
≤ smaxη(G

(T )) ≤ lnm

η
+

η

2
T

and hence

max
(
(1− (zeu + zev))e∈E

)
≤ 1

T

lnm

η
+

η

2
.

By the choice η = ϵ and T = 2 lnm
ϵη = 2 lnm

ϵ2 , we obtain 1
T

lnm
η + η

2 ≤ ϵ, i.e.,

1− (zeu + zev) ≤ ϵ ∀e = uv.

A.3. Proof of Corollary 3.2

Proof. Assume the contradiction: for all t ∈ [T ] we have D(t) < (1− ϵ)D∗, which means maxv∈V

∑
e∈E,u∈e z

(t)
eu <

(1− ϵ)D∗. Then

max
v∈V

∑
e∈E,u∈e

zeu = max
v∈V

1

T

T∑
t=1

∑
e∈E,u∈e

z(t)eu

≤ 1

T

T∑
t=1

max
v∈V

∑
e∈E,u∈e

z(t)eu

< (1− ϵ)D∗.

On the other hand, we have for all e = uv, zeu + zev ≥ 1− ϵ. We let z̃eu = zeu

zeu+zev
. In this way we have z̃eu + z̃ev = 1

and z̃eu ≤ zeu

1−ϵ . Therefore z̃ satisfies the constraint of (3). Furthermore

max
v∈V

∑
e∈E,u∈e

z̃eu ≤
1

1− ϵ
max
v∈V

∑
e∈E,u∈e

zeu < D∗.

which means z̃ has a better objective than z∗, contradiction.

A.4. Proof of Lemma 3.3

Proof. First, z∗ satisfies
∑

e∈E,u∈e z
∗
eu ≤ D∗ for all u. Assume that z̃ is an optimal solution to (5). For each u we show

that ∑
e∈E,u∈e

pez
∗
eu ≥

∑
e∈E,u∈e

pez̃eu. (13)

Indeed, if deg u ≤ ⌊D∗⌋ we have z∗eu = 1 for all e ∋ u. Hence (13) holds. Otherwise we have∑
e∈E,u∈e

z∗eu = D∗ ≥
∑

e∈E,u∈e

z̃eu.

Furthermore z∗ satisfies z∗eu ≥ z∗e′u if pe ≥ pe′ , hence
∑

e∈E,u∈e pez
∗
eu maximizes

∑
e∈E,u∈e pezeu subject to∑

e∈E,u∈e zeu ≤ D∗. Thus (13) holds. Therefore∑
u∈V

∑
e∈E,u∈e

pez
∗
eu ≥

∑
u∈V

∑
e∈E,u∈e

pez̃eu = 1.

If
∑

u∈V

∑
e∈E,u∈e pez

∗
eu > 1, we can decrease the value of z for all the vertices where

∑
e∈E,u∈e z

∗
eu = D∗ thus obtains

a solution with strictly better objective than D∗, which is a contradiction. Therefore z∗ is an optimal solution.

13
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A.5. Proof of Lemma 3.5

Proof. We verify by complementary slackness.

1) We have
∑

v xv = 1.

2)
∑

e∋u z
(τ)
eu < D(τ) ⇔ u /∈ X ⇔ xu = 0.

3) For all u /∈ X we have z
(τ)
eu = 1 for all e ∋ u and αeu = p

(τ)
e W . For u ∈ X such that z(τ)eu = 0, we have p

(τ)
e ≤ p

(τ)
e(u),

so αeu = 0. For u ∈ X , z(τ)eu = z
(τ)
e(u)u, we have also α

(τ)
eu = 0. For u ∈ X such that z(τ)eu > 0, we also guarantee

p
(τ)
e W + α

(τ)
eu = xu. p(τ)e W < xu + αeu happens only when p

(τ)
e < p

(τ)
e(u) which gives zeu = 0.

A.6. Proof of Lemma 3.6

Proof. By strong duality we have

W −
∑
e=uv

(αeu + αev) = D(τ).

We know that D(τ) ≥ (1− ϵ)D∗ = (1− ϵ)OPT. Hence
∑

e

(
p
(τ)
e W − (αeu + αev)

)
= W −

∑
e=uv (αeu + αev) ≥

(1− ϵ)OPT. On the other hand, since

p(τ)e W − (αeu + αev) ≤ p(τ)e W − αeu ≤ xu,

p(τ)e W − (αeu + αev) ≤ p(τ)e W − αev ≤ xv.

We have
∑

e=uv min{xu, xv} ≥
∑

e=uv(p
(τ)
e W − (αeu + αev)) ≥ (1− ϵ)OPT, as needed.

B. Additional Proofs from Section 4
B.1. Area convexity functions review

We first review the notion of area convexity introduced by Sherman (2017).

Definition B.1. A function ϕ is area convex with respect to an anti-symmetric matrix A on a convex set K if for every
x, y, z ∈ K,

ϕ

(
x+ y + z

3

)
≤ 1

3
(ϕ (x) + ϕ (y) + ϕ (z))− 1

3
√
3
(x− y)

T
A (y − z) .

To show that a function is area convex, Boob et al. (2019) employ operator ⪰i. For a symmetric matrix A and an

anti-symmetric matrix B, we say A ⪰i B iff
[

A −BT

B A

]
is PSD. The following two lemmas are from Boob et al. (2019).

Lemma B.2. (Lemma 4.5 in Boob et al. (2019)) Let A be a R2×2 symmetric matrix. A ⪰i

[
0 −1
1 0

]
iff A ⪰ 0 and

detA ≥ 1.

Lemma B.3. (Lemma 4.6 in Boob et al. (2019)) Let ϕ be twice differentiable on the interior of convex set K, i.e int(K).
If ∇2ϕ(x) ⪰i A for all x ∈ int(K) then ϕ is area convex with respect to 1

3A on int(K). If moreover, ϕ is continuous on
cl(K) then ϕ is area convex with respect to 1

3A on cl(K).

B.2. Reduction to the saddle point problem

Lemma B.4. (Lemma 4.3 in Boob et al. (2019)) Suppose z ∈ C, y ∈ ∆m satisfy

max
z∈C,y∈∆m

∑
e

ye (zeu + zev)− ye (zeu + zev) ≤ ϵ,

then either of the following happens:

14
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1. z is an ϵ-approximate solution to the feasibility problem,

2. y satisfies for all z ∈ C,
∑

e ye (zeu + zev) < 1.

Proof. Suppose that z is not an ϵ-approximate solution to the problem. This means there exists e = uv such that
zeu + zev < 1− ϵ, which implies

min
y∈∆m

ye (zeu + zev) < 1− ϵ

Since

max
z∈C,y∈∆m

∑
e

ye (zeu + zev)− ye (zeu + zev)

=max
z∈C

∑
e

ye (zeu + zev)− min
y∈∆m

ye (zeu + zev) ≤ ϵ,

we can conclude that

max
z∈C

∑
e

ye (zeu + zev) < 1.

B.3. Properties of the regularizer

We recall the choice of the regularizer function

ϕ(z, y) = 6
√
3

(∑
e∈E

ye
(
z2eu + z2ev

)
+ 6ye log ye − 2

)
.

Our goal is to show that ϕ is area convex with respect to A and has a small range.

Lemma B.5. 1
6
√
3
ϕ is area convex with respect to 1

3A. Furthermore −6
√
3 (6 logm+ 2) ≤ ϕ(z, y) ≤ 0.

Proof. By Lemma B.3, it suffices to show that

∇2ϕ(z, y) ⪰i A.

Let f⃗e denote the vector with all 0’s and one 1 at the index of ye, f⃗eu denote the vector with all 0’s and one 1 at the index of
zev and f⃗u for u. Consider two variables ye and zeu, we have

∇2ye
((
z2eu + 3 log ye

))
=

[ 3
ye

2zeu
2zeu 2ye

]
⪰i

[
0 −1
1 0

]
where the last inequality comes from Lemma B.2 and that

det

[ 3
ye

2zeu
2zeu 2ye

]
= 6− 4z2eu > 1,

which holds because 0 ≤ zeu ≤ 1. By Lemma 4.10 in Boob et al. (2019)

∇2ye
((
z2eu + 3 log ye

)
+
(
z2ev + 3 log ye

))
⪰i

(
f⃗ef⃗

T
eu − f⃗euf⃗

T
e

)
+
(
f⃗ef⃗

T
ev − f⃗ev f⃗

T
e

)
.

Sum up the RHS we get exactly A.
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For the lower bound

1

6
√
3
ϕ(z, y) =

∑
e

ye
(
z2eu + z2ev

)
+ 6

∑
e

ye log ye − 2

≥6
∑
e

ye log ye︸ ︷︷ ︸
convexity

−2 ≥ 6m
1

m
log

1

m
− 2 = −6 logm− 2.

For the upper bound

1

6
√
3
ϕ(z, y) ≤ 2

∑
e

ye − 2 = 0.

B.4. Proof of Lemma 4.2

Proof. The proof of this Lemma directly follows from Theorem 1.3 in Sherman (2017) and that

ϕ∗(w(0)) = sup
w∈C×∆m

〈
w,w(0)

〉
− ϕ(w)

= sup
w∈C×∆m

1− ϕ(w)

≤ 1 + 6
√
3 (6 logm+ 2) .

B.5. Proof of Lemma 4.3

Proof. The proof of Lemma 4.3 follows from the general framework for analyzing alternating minimization by Beck (2015).
The proof detail below follows from Jambulapati et al. (2019).

For simplicity, let us recall the definition of H in Algorithm 4, after scaling by 1
6
√
3

. Given x = (s, r) is the input, we have

H(z, y) :=
∑

e=uv∈E

ye
(
z2eu + z2ev

)
+ 6

∑
e

ye log ye

− 1

6
√
3

( ∑
e=uv∈E

(zeuseu + zevsev + yere)
)
.

Let∇2
zz be the Hessian with all but the zz block zeroed out. We use∇y and∇z to denote the gradient with only the y and z

components kept.

Let Y (t+1) =
{
y ∈ ∆m : y ≥ 1

2y
(t+1)

}
. We will first show that for all z, z ∈ C and y ∈ Y (t+1)

∇2H(z, y) ⪰ 1

6
∇2

zzH(z, y(t+1)) (14)

Since we do not have any cross term between e and e′ for any e ̸= e′ we can consider edge separately. For the same reason,
we can also separate zeu and zev for each edge e. The non-zero term after taking the Hessian for edge e and vertex u is

∇2ye
((
z2eu + 3 log ye

))
=

[ 3
ye

2zeu
2zeu 2ye

]
;

∇2
zzy

(t+1)
e

((
z2eu + 3 log y(t+1)

e

))
=

[
0 0

0 2y
(t+1)
e

]
.
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For all a, b ∈ R [
a b

]
∇2ye

((
z2eu + 3 log ye

)) [ a
b

]
=

3

ye
a2 + 2yeb

2 + 4zeuab;[
a b

]
∇2

zzy
(t+1)
e

((
z2eu + 3 log y(t+1)

e

))[ a
b

]
=2y(t+1)

e b2.

Since zeu, zeu ≤ 1

3

ye
a2 + 2yeb

2 + 4zeuab ≥
3

ye
a2 + 2yeb

2 − 4 |ab|

≥ 2

3
yeb

2

≥ 1

3
y(t+1)
e b2 for all y ≥ 1

2
y(t+1)

=
1

6
× 2y(t+1)

e b2.

Hence for all y ≥ 1
2y

(t+1)

∇2ye
(
z2eu + 3 log ye

)
⪰ ∇2

zzy
(t+1)
e

(
z2eu + 3 log y(t+1)

e

)
which gives us (14).

Now we show that or all y∗ ∈ Y (t+1) and z∗ ∈ C

H(z(t), y(t+1))−H(z(t+1), y(t+1)) ≥ 1

6

(
H(z(t), y(t+1))−H(z∗, y∗)

)
.

Let z̃ = 5
6z

(t) + 1
6z

∗. By the definition of z(t+1) we have

H(z(t+1), y(t+1)) ≤ H(z̃, y(t+1).)

By the optimality of y(t+1) and the convexity of H〈
∇yH(z(t), y(t+1)), y(t+1) − y∗

〉
≤ 0

which gives us 〈
∇zH(z(t), y(t+1)), z(t) − z̃

〉
=
1

6

〈
∇zH(z(t), y(t+1)), z(t) − z∗

〉
≥1

6

〈
∇zH(z(t), y(t+1)), z(t) − z∗

〉
+

1

6

〈
∇yH(z(t), y(t+1)), y(t+1) − y∗

〉
=
1

6

〈
∇H(z(t), y(t+1)), w(t+ 1

2 ) − w∗
〉

where w(t+ 1
2 ) = (z(t), y(t+1)), w∗ = (z∗, y∗). Also define zα = (1− α) z(t) + αz∗, z̃α = (1− α) z(t) + αz̃, yα =

(1− α) y(t+1) + αy∗. With a slight abuse of notion, we also use∇2
zz to also mean the Hessian with respect to the variable

z. Using Taylor expansion

H(z(t), y(t+1))−H(z̃, y(t+1)) =
〈
∇zH(z(t), y(t+1)), z(t) − z̃

〉
−
∫ 1

0

∫ β

0

(
z̃ − z(t)

)T
∇2

zzH(z̃α, y
(t+1))

(
z̃ − z(t)

)
dαdβ

≥1

6

〈
∇H(z(t), y(t+1)), w(t+ 1

2 ) − w∗
〉
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− 1

36

∫ 1

0

∫ β

0

(
z∗ − z(t)

)T
∇2

zzH(z̃α, y
(t+1))

(
z∗ − z(t)

)
dαdβ

≥1

6

〈
∇H(z(t), y(t+1)), w(t+ 1

2 ) − w∗
〉

− 1

6

∫ 1

0

∫ β

0

(
w∗ − w(t+ 1

2 )
)T
∇2H(zα, yα)

(
w∗ − w(t+ 1

2 )
)
dαdβ

=
1

6

(
H(z(t), y(t+1))−H(z∗, y∗)

)
.

Hence

H(z(t), y(t+1))−H(z(t+1), y(t+1)) ≥H(z(t), y(t+1))−H(z̃, y(t+1))

≥1

6

(
H(z(t), y(t+1))−H(z∗, y∗)

)
.

Take z∗ = 1
2

(
z(t) + zOPT

)
, y∗ = 1

2

(
y(t+1) + yOPT

)
H(z(t), y(t+1))−H(z(t+1), y(t+2)) ≥H(z(t), y(t+1))−H(z(t+1), y(t+1))

≥1

6

(
H(z(t), y(t+1))−H(z∗, y∗)

)
≥1

6

(
H(z(t), y(t+1))−

(
1

2
H(z(t), y(t+1)) +

1

2
H (zOPT, yOPT)

))
(by convexity of H)

=
1

12

(
H(z(t), y(t+1))−H (zOPT, yOPT)

)
which means

H(z(t+1), y(t+2))−H (zOPT, yOPT) ≤
11

12

(
H(z(t), y(t+1))−H (zOPT, yOPT)

)
.

Therefore

H(z(T+1), y(T+1))−H (zOPT, yOPT) ≤
(
11

12

)T (
H(z(0), y(1))−H (zOPT, yOPT)

)
.

This gives us the convergence rate.

B.6. Proof of Lemma 4.4

Proof. For the first minimization, we have y(t+1) = argminy∈∆m H(z(t), y) = argmaxy∈∆m

〈
L(t), y

〉
−
∑

e ye log ye,

where L
(t)
e = − 1

6

((
z
(t)2
eu + z

(t)2
ev

)
− 1

6
√
3
re

)
. The solution is simply∇smax(L(t)) (definition in Section A.1), which can

be computed in O(m).

The second minimization z(t+1) = argminz∈C H(z, y(t+1)). Here we build on the insights from the oracle implementation
for MWU and reduce the problem to computing for each u separately

min
z∈[0,1]deg(u)

∑
e∋u

z2euy
(t+1)
e − 1

6
√
3
zeuseu st.

∑
e∋u

zeu ≤ D

Let s̃ = 1
6
√
3
s and take the Lagrangian, we have

min
z∈[0,1]deg(u)

max
λ≥0

∑
e∋u

(
z2euy

(t+1)
e − zeus̃eu + λzeu

)
− λD

⇔ max
λ≥0

min
z∈[0,1]deg(u)

∑
e∋u

(
z2euy

(t+1)
e − zeus̃eu + λzeu

)
− λD
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For λ ≥ 0, we obtain for each e ∋ u

zeu = max

{
0,min

{
1,

s̃eu − λ

2y
(t+1)
e

}}
Now we need to solve for λ

max
λ≥0

∑
e∋u

(
z2euy

(t+1)
e − zeus̃eu + λzeu

)
− λD

=max
λ≥0
−λD +

∑
z:0≤s̃eu−λ≤2y

(t+1)
e

− (s̃eu − λ)
2

4y
(t+1)
e

+
∑

z:s̃eu−λ>2y
(t+1)
e

(
y(t+1)
e − s̃eu + λ

)
.

Again, we take the inspiration from Algorithm 2 and see that we can also perform a search for λ. Here each e ∋ u belongs to
one of the three category, s̃eu−λ < 0 or 0 ≤ s̃eu−λ ≤ 2y

(t+1)
e or s̃eu−λ > 2y

(t+1)
e . To solve the above problem, we must

determine which category each e belongs to. To do this, we can sort 2deg u numbers
{
max

{
2y

(t+1)
e − s̃eu, 0

}
, s̃eu

}
e∋u

and find the optimal value of λ on each interval. When testing λ increasingly, the category of each zeu only changes at most
twice. For this we can use a data structure (eg. Fibonacci heap) to determine which zeu changes category when λ jumps to
the next interval. This means the total time to find zeu for all e ∋ u is at most O(deg u log deg u). Summing the total over
all vertex u, we have solving the second minimization problem each iteration takes O(m log∆) time.

B.7. Proof of Lemma 4.6

Proof. Observe that the following LP is infeasible for z ∈ [0, 1]2m∑
e∋u

zeu ≤ D, ∀u ∈ V

zeu + zev ≥ 1− ϵ ∀e = uv ∈ E.

Because otherwise, similar to lemma 3.2, we must have D ≥ D∗(1− ϵ), while we have D = D̃(1− 2ϵ) ≤ D∗(1 + ϵ)(1−
2ϵ) < D∗(1− ϵ), contradiction. Thus we have that

max
z∈C(D)

∑
e

ye (zeu + zev) ≤ϵ+ min
y∈∆m

∑
e

ye (zeu + zev) < ϵ+ 1− ϵ = 1.

This gives us the claim in the lemma.

C. Additional Proofs from Section 5
C.1. Continuous formulation

We recall with the quadratic program for finding a dense decomposition

min f(z) :=
∑
u∈V

b2u st. bu =
∑

e∈E,u∈e

zeu, ∀u ∈ V (15)

zeu + zev ≥ 1, ∀e = uv ∈ E

0 ≤ zeu ≤ 1, ∀e, u ∈ e ∈ E.

Now, we show how to reformulate this problem as (12). Recall that we define for e ∈ E, Fe(S) = 1 if e ⊆ S, Fe(S) = 0
otherwise and the base contrapolymatroid

B(Fe) = {ze ∈ Rn, ze(S) ≥ Fe(S) ∀S ⊆ V, ze(V ) = Fe(V ) = 1}
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Specifically, for ze ∈ B(Fe), we have

zeu + zev = 1, for e = uv

zew = 0, ∀w ̸= u, v

In this view, it is immediate to see that we can rewrite the above problem as

min
ze∈B(Fe),∀e∈E

∥∥∥∥∥∑
e∈E

ze

∥∥∥∥∥
2

2

(16)

Following the framework by Ene & Nguyen (2015), let us write

A = [In . . . In]︸ ︷︷ ︸
n times

; P = Πe∈EB(Fe) ⊆ Rmn

The problem can then be written as

min
z∈P

1

2
∥Az∥22 (17)

The objective function is 2-smooth with respect to each coordinate. However, it is not strongly convex. In order to show an
algorithm with linear convergence, our goal is to prove a property similar to strong convexity.

Definition C.1 (Restricted strong convexity (Ene & Nguyen, 2015)). For z ∈ P , let z∗ = argminp {∥p− z∥2 : Ap = b∗}
where b∗ is the unique optimal solution to (4). We say that 1

2 ∥Az∥22 is restricted ℓ-strongly convex if for all y ∈ P

∥A(z − z∗)∥22 ≥ ℓ ∥z − z∗∥22 .

Lemma C.2. Let ℓ∗ = sup
{
ℓ : 1

2 ∥Az∥
2
2 is restricted ℓ-strongly convex

}
. We have ℓ∗ ≥ 4

n2 .

Proof. The proof essentially follow from Ene et al. (2017). For b =
∑

e ze we construct the following directed graph on
G = (V,E) and capacities c. For e = uv ∈ E, c(uv) = zeu, c(vu) = zev. If an arc has capacity 0 we just delete the arc
from the graph.

We transform z to y that satisfies Ay = b∗. We initialize y = z. Let N = {v : (Ay) (v) > b∗(v)} and P =
{v : (Ay) (v) < b∗(v)}. Once we have N = P = ∅, we have Ay = b∗.
Claim C.3. If N ̸= ∅ there exists a directed path of positive capacity between N and P .

Proof. Let b = Ay. Let S be the set of vertices reachable from N on a directed path of positive capacity. For a contradiction,
assume S ∩ P = ∅. For all e = uv ⊆ S we have zeu + zev = 1. Also there is no out-going edge from S (ie, if there is a
edge e = uv such that u ∈ S with v /∈ S, we have zeu = 0). By this observation we have

b(S) = |S|

On the other hand, since N ⊆ S, we have b(S) = b(N) + b(N \ S) > b∗(S) + b∗(N \ S) = b∗(S) ≥ |S|. So we can
conclude that S ∩ P ̸= ∅.

In every step of the algorithm we take the shortest directed path p of positive capacity from N to P and update y. Let ϵ be
the minimum capacity of an arc on p. For an arc (u, v), we update zeu = zeu − ϵ and zev = zev + ϵ. By doing this, the set
of shortest paths of the same length as p strictly shrinks, until the length of the shortest paths in the graph increases. For this
reason, we know that the algorithm must terminate, which is when we have N = P = ∅ and Ay = b∗.

Every path update changes ∥y∥∞ at most ϵ and ∥y∥1 at most nϵ. At the same time
∑

v∈N b(v)− b∗(v) decreases by ϵ and∑
v∈P b∗(v)− b(v) decreases by ϵ and b(v)− b∗(v) = 0 for the remaining nodes. Hence ∥Ay − b∗∥1 decreases by 2ϵ

∥z − z∗∥∞ ≤
1

2
∥Az − b∗∥1 =

1

2
∥A(z − z∗)∥1 ,
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∥z − z∗∥1 ≤
n

2
∥A(z − z∗)∥1 .

Hence we have

∥z − z∗∥22 ≤ ∥z − z∗∥∞ ∥z − z∗∥1

≤n

4
∥A(z − z∗)∥21 ≤

n2

4
∥A(z − z∗)∥22 .

C.2. Practical implementation of Accelerated Coordinate Descent

The implementation of Algorithm 5 that we use in our experiments is shown in Algorithm 6. The main implementation
details are that we select the coordinates via a random permutation and we restart when the function value increases.

Algorithm 6 Practical Accelerated Coordinate Descent

Initialize z(0) ∈ P , bu =
∑

e∋u z
(0)
eu , for all u, f =

∑
u∈V b2u, flast = 0

for k = 1 . . .K:
for t = 1 . . . T :

if t = 1 and f > flast: y(k,0) = z(k−1) ∈ P , w(k,0) = 0, θ(k,1) = 1
m

// restart when the function value increases

else: θ(k,t) =
√

θ(k,t−1)4+4θ(k,t−1)2−θ(k,t−1)2

2

pick a permutation R(t) of [m]

for e ∈ R(t) :
x(k,t) = θ(k,t)2w(k,t−1) + y(k,t−1)

y(k,t) = argmins∈B(Fe)

(〈
∇ef(x

(k,t)), (seu sev)
〉
+ 2mθ(k,t)

∥∥∥(seu sev)− (y
(k,t−1)
eu y

(k,t−1)
ev )

∥∥∥2
2

)
w(k,t) = w(k,t−1) − 1−mθ(k,t−1)

θ(k,t−1)2

(
y(k,t) − y(k,t−1)

)
flast = f

update bu =
∑

e∋u θ(k,t)2w
(k,t)
e + y

(k,t)
e ; f =

∑
u∈V b2u

z(k) = θ(k,T )2w(k,T ) + y(k,T )

return z(K)

C.3. Random Coordinate Descent for solving (4)

We also consider random coordinate descent algorithm (the version of Algorithm 5 without acceleration).

Algorithm 7 Random Coordinate Descent

Initialize z(0) ∈ P
for t = 1 . . . T

Option 1: Sample a set R of m edges from E uniformly at random with replacement
Option 2: Pick a random permutation R of E
for e ∈ R:

Update z(k) = argmins∈B(Fe)

(〈
∇ef(z

(t−1)), (seu sev)
〉
+
∥∥∥(seu sev)− (z

(t−1)
eu z

(t−1)
ev )

∥∥∥2
2

)
return z(T )

We state without proof the following theorem which is similar to the Algorithm 5, whose proof also follows similarly from
Ene & Nguyen (2015).

Theorem C.4. Algorithm 7 (option 1) and the fractional peeling procedure (Harb et al., 2022) output an ϵ-approximate
dense decomposition in O

(
mn2 log n

ϵ

)
time in expectation.
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D. Additional Experiment Results
D.1. Data summary

We use eight datasets to be consistent with previous works, eg. Boob et al. (2020); Harb et al. (2022): cit-Patents,
com-Amazon, com-Enron, dblp-author, roadNet-CA, roadNet-PA, wiki-topcats from SNAP collection Leskovec & Krevl
(2014) and orkut from Konect collection Kunegis (2013). We remark, however, that road networks datasets (roadNet-CA,
roadNet-PA) are expected to be close to planar graphs, and therefore have very low maximum density.

Table 2. Summary of datasets
Dataset No. vertices No. edges

cit-Patents 3774768 16518947
com-Amazon 334863 925872
com-Enron 36692 367662
dblp-author 317080 1049866
roadNet-CA 1965206 5533214
roadNet-PA 1088092 3083796
wiki-topcats 1791489 25444207
orkut 3072441 117185083

D.2. Additional plots

(a) wiki-topcats (b) roadNet-PA (c) roadNet-CA

(d) cit-Patent (e) com-Enron (f) dblp-author

Figure 2. Iteration/Best Density
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(a) wiki-topcats (b) roadNet-PA (c) roadNet-CA

(d) cit-Patent (e) com-Enron (f) dblp-author

Figure 3. Iteration/Best Density zoomed in the first 10 iterations

(a) wiki-topcats (b) roadNet-PA (c) roadNet-CA

(d) cit-Patent (e) com-Enron (f) dblp-author

Figure 4. Time/Best Density
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(a) wiki-topcats (b) roadNet-PA (c) roadNet-CA

(d) cit-Patent (e) com-Enron (f) dblp-author

Figure 5. Time/Best Density zoomed in the first iterations

(a) wiki-topcats (b) roadNet-PA (c) roadNet-CA

(d) cit-Patent (e) com-Enron (f) dblp-author

Figure 6. Iteration/Load norm
(∑

u∈V b2u
)1/2. We exclude Frank-Wolfe from this plot as it performs significantly worse than the other

algorithms
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