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Abstract— We propose a short-term wind forecasting frame-
work that enables model-based control systems to preemptively
adapt ahead of atmospheric variations in improving turbine
efficiency and reducing structural loads and failures. Our
approach relies on a combination of linear stochastic estimation
and Kalman filtering algorithms to assimilate and process real-
time nacelle-mounted anemometer and surface air-pressure
readings with the predictions of a stochastic reduced-order
model of the hub-height velocity field. Our results serve as
a proof of concept for a wind forecasting strategy based on
ground-level pressure sensor measurements.

Index Terms— Kalman filter, optimal estimation, stochasti-
cally forced Navier-Stokes, wake modeling, wind energy.

I. INTRODUCTION

Adjustments to the turbine blade pitch, generator torque,
and nacelle direction (yaw) are conventional strategies for
increasing energy production and lowering operation and
maintenance costs by countering the effects of atmospheric
variability on wind plants. However, in the absence of
effective short-term forecasting tools, almost all modern-day
plants rely on data collected at or just behind the wind turbine
to adjust their settings, and consequently could lag optimal
operation conditions. This motivates the development of
short-term wind forecasting tools for estimating changes to
the rotor effective velocity due to atmospheric variations.

Efforts have been made to use data-assimilation for esti-
mating the direction and speed of wind. These have primar-
ily relied on predictions of 2D models of the hub-height
velocity field corrected by the entrainment of downwind
velocity measurements (e.g., [1]–[3]. The practicality of such
approaches is, however, challenged by: (i) dimensional and
dynamic complexities [1], [2]; and (ii) lack of robustness
and generalizability in the case of data-driven estimation [4],
[5]. To address these challenges, we propose an estima-
tion framework that relies on the sequential self-correcting
property of the Kalman filter in assimilating measurements
from ground-level air-pressure sensors that are distributed
across the farm and predictions of a particular class of
low-complexity physics-based models, i.e., the stochastically
forced linearized Navier-Stokes (NS) equations [6]–[9].
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Engineering wake models provide analytical expressions
for the long-time geometric expansion of turbine wakes
under steady atmospheric conditions [10], [11]. As such
static models do not account for atmospheric turbulence,
they fall short of capturing the time-varying features of the
waked velocity field, and thus, misrepresent wake recovery.
To overcome these shortcomings, contributions have been
made to add a degree of dynamics, e.g., the dynamic wake-
meandering model [12] or the dynamic extension of the
Park model [13]. In [14], the stochastic dynamical model-
ing framework of [7], [15]–[17] was utilized for shaping
a stochastic source of excitation into the linearized NS
equations around the Gaussian wake profile [18], [19]. This
approach results in fluctuation dynamics that are statistically
consistent (at the level of second-order statistics) with a
high-fidelity large-eddy simulation (LES). It also provides
a solution to Kalman filtering in the presence of colored-in-
time process noise with unknown dynamics [20].

In this paper, we build on the predictive capability of said
stochastic models and devise Kalman filters that account for
changes in hub-height velocity fluctuations by assimilating
model-based predictions with measured variations in air-
pressure from the ground. We consider a 2D model of hub-
height velocity and utilize a data-driven projection scheme
to map the resulting pressure at hub height to the ground
when updating the posterior estimate (Fig. 1). We use LES-
generated flow fields [21] within a cascade of 2 turbines to
compare the performances of the linearized Kalman filter
(LKF), the extended Kalman filter (EKF), and the unscented
Kalman filter (UKF).

The paper is organized as follows. In Sec. II, we formulate
the problem and present our approach. In Sec. III, we
summarize our method in constructing a prior linear-time
invariant (LTI) model that is statistically consistent with
high-fidelity LES. In Sec. IV, we provide details of Kalman
filtering algorithms. In Sec. V, we compare the performance
of various Kalman filters in estimating hub-height velocity
variations based on ground pressure measurements. We pro-
vide concluding remarks in Sec. VI.

II. PROBLEM FORMULATION AND APPROACH

The dynamics of the flow field impinging on a wind farm
is given by the nonlinear NS and continuity equations

∂t u = f(u, P )

0 = ∇ · u
(1)

where t is time, u(x, t) consists of the three components of
the velocity field with x = [x y z ]T denoting the vector of
spatial coordinates in streamwise (x), wall-normal (y), and
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Fig. 1. The computational (top) and sensing (bottom) planes within our
estimation framework. Blue dots indicate the training points in stochastic
modeling, while red dots represent sensor locations. The estimation point
is denoted by the red star in the wake of the leading turbine.

spanwise (z) directions, P is the pressure, and ∇ is the gra-
dient operator. Given a set of partially available steady-state
correlations of the velocity field, we are interested in con-
structing an estimator that: (i) in the absence of innovations,
provides statistical consistency with the original nonlinear
model (1); and (ii) tracks velocity variations at the hub-
height of wind turbines based on real-time measurements
from ground-level air-pressure sensors and nacelle-mounted
anemometers. The first feature is motivated by the desire
to account for colored-in-time process noise and the second
aims to support a recently proposed sensing technology [22]
for short-term wind forecasting that is cheaper than Doppler
LiDAR. To these ends, we propose a Kalman filter-based
estimation framework that relies on two pillars:
• Stochastic dynamical modeling of the hub-height veloc-

ity field using the linearized NS equations;
• Data-driven inference of hub-height pressure from

ground-level pressure measurements.
The first addresses the necessity for models of reduced
complexity for short-term forecasting and is based on the
predictive capability of the stochastically forced linearized
NS equations around static solutions of engineering wake
models [14], [23]. The process noise that drives the linearized
dynamics is identified via convex optimization to ensure
second-order statistical consistency with high-fidelity LES
of the wind farm flow [20]. The second pillar is based on
the construction of a data-driven kernel transfer function
for projecting hub-height pressure to the ground (Fig. 1).
Building on these elements, we compare the performance of
various Kalman filtering algorithms.

III. STOCHASTIC DYNAMICAL MODELING

In this section, we provide details of the 2D model we use
for flow estimation. Let the total wind velocity u in the 2D
horizontal plane at hub-height be composed of a static base
flow ū and zero-mean fluctuations v, i.e., u = ū + v, where
v = [u w ]T consists of the streamwise u and spanwise
w velocity components. We consider a base flow that only
consists of a streamwise component given by the engineering
wake model of Bastankhah and Porté-Agel [18],

U(x, z) = U∞ − U∞

(
1 −

√
1− CT

8σ2
x

)
e
−
( z

2σx

)2
(2)

which describes the waked velocity behind a turbine that is
aligned with the free-stream velocity U∞ (no yaw). Here, all
length scales have been non-dimensionalized by the turbine
diameter, CT is the thrust coefficient, and σx := k⋆x +
0.2

√
β, where k⋆ is the wake growth rate and β = (1 +√

1− CT )/(2
√
1− CT ). We then use linear superposition

to capture velocity deficits in regions where turbine wakes
overlap and assume the dynamics of fluctuations v are given
by the stochastically forced linearized NS equations around
the resulting velocity profile. A standard conversion for elim-
inating pressure p and finite-dimensional approximation of
the differential operators yields the state-space representation

v̇(t) = Av(t) + B d(t) (3)

where velocity has been non-dimensionalized by the free-
stream U∞ and the state vector v contains velocity fluctua-
tions over the 2D spatial domain; see [14, Appendix A] for
details on dynamic matrices A and B. Here, d is a zero-
mean stochastic process that triggers a statistical response
from the linear dynamics and provides a degree of freedom
for shaping the statistics of v.

The performance of Kalman filters is influenced by the
statistics of disturbance models we use to account for
uncertainty [24], [25]. Recently, it has been shown that
white-in-time process noise falls short in reproducing the
statistical signature of the wind velocity especially in the
wake of operating turbines [23], [26]. Alternatively, one may
follow [26] in utilizing the optimization-based framework of
Refs. [7], [16], [17] to identify the statistics of the colored-
in-time input that ensure certain, more dominant, second-
order statistics of the velocity field are matched. Access
to wind speed data in the wind energy industry has grown
remarkably in the past decades and such statistics could be
computed from the result of high-fidelity simulations or field
measurements. Herein, we specifically assume knowledge of
a subset of second-order statistics of hub-height velocity
upwind of the wind farm and in the wake region up to
4 diameters behind the turbines (Fig. 1). These velocity
correlations correspond to entries on the diagonal of the
steady-state covariance matrix V := limt→∞ E[v(t)vT (t)],
which solves the Lyapunov-like equation [16], [27],

AV + VA∗ = −BH∗ − H B∗ (4)

where the matrix H quantifies the cross-correlation between
the input and the state [17, Appendix B], i.e., H :=
lim
t→∞

E [v(t)d∗(t)] +BΩ/2. Coincidentally, it is this matrix
that contains information on the coloring filter for generating
the stochastic input d [16].

Matrix H and the input matrix B can be obtained from
the solution of the covariance completion problem

minimize
V, Z

− log det (V) + α ∥Z∥∗

subject to AV + VA∗ + Z = 0

Vi,j = Gi,j , ∀ {i, j} ∈ I.
(5)

This convex optimization problem solves for Hermitian ma-
trices V and Z subject to two linear constrains that ensure
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Fig. 2. Streamwise velocity variance calculated from LES results (left) and model (6) (right). The spatial positions of velocity correlations used to train
the stochastic model are indicated by red dots, while turbine rotors are highlighted by thick red lines. The wind blows from left to right.

consistency with the assumed linear model via satisfaction
of the Lyapunov-like equation (4) and the partially known
velocity correlations; entries of G corresponding to the set of
indices I represent partially available second-order statistics
of the output v. The objective function provides a weighted
trade-off through determination of α > 0 between the
solution to a maximum-entropy problem, which uses the
logarithmic barrier function to ensure positive definiteness
of matrix V, and a nuclear norm regularizer, which is used
as a convex proxy for the rank function (see, e.g., [28]). It
is desirable to regulate the rank of matrix Z as it bounds the
number of independent input channels or columns in matrix
B. Without this regularization, a full-rank matrix B permits
colored-in-time input d to excite all degrees of freedom and
completely overwrite the linearized dynamics A [16].

The solution Z to problem (5) can be decomposed into
matrices B and H (cf. Eq. (4)) via spectral decomposition
techniques, which in turn can be used to construct linear
coloring filters that realize the input signal d. Alternatively,
the coloring filter can be absorbed in the LTI dynamics (3) in
a standard manner yielding the dynamically modified state-
space representation

v̇(t) = (A−BKf )v(t) + Bw(t). (6)

Here, w is white noise and Kf is a parameter of the col-
oring filter with parameterization offered in [16, Sec. II.B].
Additional details on the choice of velocity correlations for
best recovery, and the robustness of predictions to turbine
yawing effects can be found in Refs. [14], [23].

Figure 2 demonstrates the performance of model (6) in
recovering streamwise intensity at the hub-height of a turbine
cascade. Red dots denote the location of the available corre-
lations in the training dataset. In the absence of innovations,
the identified colored process noise model ensures statistical
consistency with an LES that leverages blade momentum
element theory [21]. The close agreement of the predictions
of our model and the result of LES in regions beyond the
training dataset warrant its use for Kalman filtering.

IV. KALMAN FILTERING ALGORITHMS

We use Kalman filters to update our model-based predic-
tions of the hub-height velocity field in accordance with real-
time readings of ground-level pressure sensors and nacelle-
mounted anemometers that are affected by atmospheric vari-
ations. While the stochastic modeling step for obtaining the
prior LTI model (6) is conducted in continuous time, we

implement discrete-time analogues of conventional Kalman
filters, namely, the LKF, the EKF, and the UKF, in our
numerical experiments. These variants differ in handling the
nonlinear measurement equation

φ(t) :=

[
pg(t)

vnacelle(t)

]
=

[
HghP(v(t))

E v(t)

]
:= C(v(t)),

(7)

which establishes a nonlinear relation between hub-height
velocity fluctuations v from model (6) and pressure on the
ground pg. Here, E is a matrix with the same number of
rows as the number of nacelle-mounted anemometers. Each
row of E has a 1 at the entry corresponding to the location
of an anemometer and is otherwise zero. Moreover, Hpg is a
transfer kernel that projects hub-height pressure to the ground
(Sec. IV) and P(·) denotes the pressure Poisson equation

p = −∆−1

[(
∂u

∂x

)2

+ 2
∂u

∂z

∂w

∂x
+

(
∂w

∂z

)2
]
. (8)

The LKF employs the linearization of Eq. (7) around the
initial state v̂0; at each iteration k, the pressure on the ground
is calculated from the velocity estimate at hub-height via

pg,k = Hgh

(
∂P
∂v

∣∣
v̂0

)T

v̂k

= Hgh


∂û0

∂x

∂

∂x
+

∂ŵ0

∂x

∂

∂z

∂û0

∂z

∂

∂x
+

∂ŵ0

∂z

∂

∂z


T [

ûk

ŵk

] (9)

and follows the standard form of the optimal state estima-
tor [29, Sec. 5.1], whereas the EKF and UKF respect the non-
linear evolution (7) by either iteratively linearizing around
the current state estimate or averaging over an ensemble
of trajectories resulting from a deterministic set of sigma
points [29, Sec. 14].

For uncorrelated, white, zero-mean process wk and mea-
surement noise ηk with respective covariances Ω ≻ 0 and
R ≻ 0, Algorithm 1 summarizes the steps of the EKF
in obtaining an estimate of the hub-height fluctuation field
v̂k. Here, F := eAf∆t and G := (eAf∆t − I)A−1

f B with
Af := A − BKf (cf. Eq. (6)), I as the identity matrix,
and ∆t as the time step, Lk is the Kalman gain, Ψk :=
E[(vk − v̂k)(vk − v̂k)

T ] is the covariance of the estimation
error with E(·) denoting the expected value, Ck is the finite-
dimensional approximation of the linearized measurement
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equation (Eq. (7)) around the Kalman filter estimate, i.e.,

Ck =

Hgh
∂P
∂v

∣∣
v̂k

E

 (10)

=

2Hgh

[
∂ûk

∂x

∂

∂x
+

∂ŵk

∂x

∂

∂z

∂ûk

∂z

∂

∂x
+

∂ŵk

∂z

∂

∂z

]
E


such that φk = [ pg,k vnacelle ]

T = Ckvk, and IC is a set of
indices corresponding to the measurements that are retained
in the sensing architecture. We note that sensors may not be
placed at all spatial locations throughout the farm and the set
IC allows for a selection of a subset of all possible spatial
locations for the placement of sensors.

Algorithm 1 Extended Kalman Filter
input: F , G, Ω, R and Ic
initialize: v̂+

0 and Ψ+
v,0

for k = 1, 2, . . .

• linearize the output operator around the current
estimate v̂+

k−1 based on Eq. (10)
• retain the rows in Ck corresponding to Ic
Rk = Icard(Ic)

Ψ−
v,k = F Ψ+

v,k−1F
T + GΩGT

v̂−
k = F v̂+

k−1

Lk = Ψ−
v,k C

T
k

(
Ck Ψ

−
v,kC

T
k + R

)−1

v̂+
k = v̂−

k + Lk

(
φk − C(v̂−

k )
)

Ψ+
v,k = (I−LkCk)Ψ

−
v,k (I−LkCk)

T
+ LkRLT

k

endfor
output: v̂+

k and Ψ+
v,k as the posterior estimates of the

velocity field and the covariance of the error

While the EKF is the most widely used nonlinear state
estimation method, it comes with errors due to linearization.
One way to mitigate this issue is to use the UKF, which
does not involve linearization of the C(·) operator, but instead
comes with the added computational cost of marching a large
number (typically, double the number of states) of sigma
points and averaging over the ensemble of estimation errors.
In Sec. V, we also present the result of the UKF algorithm,
but refrain from a comprehensive presentation for brevity;
see [29, Sec. 14.3] for details.

Pressure projection via linear stochastic estimation

The existence of coherent motions in wall-bounded flows
can result in strong two-point correlations of flow quantities,
e.g., pressure and velocity, between points that are near
the wall and away from it [30]. This motivates the use
of linear stochastic estimators for projecting wall-separated
measurements to the near-wall region (and vice versa) using
normalized variants of such two-point correlations [31]. In
this vein, near-wall pressure fluctuations have been shown

(a)

z

(b)

z

x

Fig. 3. Snapshots showing the ground-level pressure field from LES (left)
and the projection of LES-based hub-height pressure resulting from Eq. (11)
(right) at the same time instant. Turbine rotors are marked by red lines and
the wind blows from left to right.

to maintain higher levels of correlation with wall-separated
regions [31]. Assuming a correlation between pressure at
hub-height ph and on the ground, an estimate of ground-level
pressure pg can be provided through the linear transformation

pg(x, z) = Hgh(x, z) ph(x, z). (11)

The pressure at hub-height is assumed to be computed using
Eq. (8) and the prediction of the linear stochastic model (6),
and Hgh is the normalized two-point correlation,

Hgh(x, z) :=
⟨ph(x, z) pg(x, z)⟩
⟨ph(x, z) ph(x, z)⟩

that is trained using a time-resolved pressure field resulting
from high-fidelity simulations or field measurements. In this
definition, ⟨·⟩ is an expectation operator computed over a suf-
ficiently long time window to ensure statistical convergence
in Hgh. Figure 3 compares the ground-level pressure across
a two-turbine farm resulting from LES (Fig. 3(a)) with the
projection of hub-height pressure using Eq. (11) (Fig. 3(b)).
It is evident that the projected pressure field captures the
dominant pressure variations on the ground, which justifies
the use of linear stochastic estimation for our purposes.

V. NUMERICAL EXPERIMENTS

We present results for flow fluctuation estimation in a
wind farm with two turbines using the proposed estimation
framework. We consider a horizontal domain at hub-height
with x ∈ [0 9] and z ∈ [−2, 2] and turbines of unit
diameter located at (x, z) = (3, 0) and (7, 0) (Fig. 1).
Following the LES that generated the training dataset, the
farm is impacted by turbulent flow with Reynolds number
108; see [14, Sec. 5.1] for details. We use a uniform grid
with ∆x = ∆z = 0.25 and a second-order central difference
scheme to discretize the computational grid and differential
operators in the linearized NS equations, which leads to
v ∈ R1462×1 in model (6). The modification to the linearized
dynamic generator is obtained via the modeling framework
summarized in Sec. III to achieve consistency with LES
in matching velocity correlations at locations highlighted
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Fig. 4. (a) Relative error in estimating the velocity variance (Eq. (12))
at (x, z) = (4, 0): LKF (red), EKF (blue), and UKF (black). (b,c) Spatial
variation of errrel (Eq. (12)) at t = 1536 sec over the 2D domain obtained
by EKF (b) and UKF (c). Turbine rotors are marked by red lines, and the
wind blows from left to right.

in Fig. 2. To quantify performance, we propose two error
metrics: the first is a running relative error in matching the
variance of streamwise velocity at hub-height, i.e.,

errrel(x, t) =

∣∣∣∫ t

0

(
u2
LES(x, τ) − û2(x, τ)

)
dτ
∣∣∣∫ t

0
u2
LES(x, τ)dτ

(12)

and the second is the error in matching the streamwise
velocity normalized by the local base flow U , i.e.,

errnorm(x, t) =
|uLES(x, t)− û(x, t)|

U(x)
. (13)

Normalization by the base flow gives more weight to dynam-
ically significant regions of the flow (e.g., within the turbine
wakes) that may be more difficult to estimate.

Figure 4(a) shows the relative statistical error errrel at
(x, z) = (4, 0) behind the leading turbine as a function
of time for all the Kalman filters. For both EKF and UKF,
the relative error goes through transient spikes while overall
decreasing. This is not the case for the LKF for which errrel
remains above 60%. Due to this high error, we exclude
results of the LKF from the remainder of this section.
Figures 4(b,c) compare the statistical errors obtained using
the EKF and the UKF at t = 1536 sec over the 2D
domain. While the UKF generally outperforms the EKF in
capturing the velocity variance, the EKF performs reasonably
well in the wake region behind the first turbine, which is
of importance in forecasting the wind that will impinge
on the second row of turbines. It is noteworthy that the
EKF achieves this level of accuracy in significantly less

(a) (b)

û

(c) (d)

er
r n

o
rm

time (s) time (s)
Fig. 5. Top row: Fluctuations in streamwise velocity at (x, z) = (4, 0)
obtained from LES (blue) and Kalman filters (orange). Bottom row: Changes
in the normalized error errnorm when estimating streamwise velocity
fluctuations at (x, z) = (4, 0). (a,c) EKF results and (b,d) UKF results.
The black dashed lines indicate the 3σ error boundaries.

(a)

z

(b)

z

x

Fig. 6. Colormaps of the normalized error (Eq. (13)) at t = 1536 seconds
across the 2D domain using (a) EKF; and (b) UKF algorithms. Turbine
rotors are marked by red lines, and the wind blows from left to right.

computational time (4 minutes vs approximately 2 hours).
We note that the sharp transition between regions with low
and high errrel in Figs. 4(b,c) highlights the significance
of stochastic modeling phase and the locations from which
training data were collected (cf. Fig. 2).

Figures 5(a,b) show the time evolution of EKF- and UKF-
based velocity estimates (blue color) plotted against the LES
data (orange color) at (x, z) = (4, 0). In Figs. 5(c,d) the
normalized errors (Eq. (13)) have been plotted for the EKF
and UKF together with the 3σ error bounds. While these
plots demonstrate an advantage in using the UKF, they are
also indicative of reasonably good estimation levels and
quick recovery to sudden changes when using the EKF.
Finally, Fig. 6 shows the contour map of the normalized
error (Eq. (13)) at t = 1536 seconds over the 2D domain
at hub height. As expected, the UKF outperforms the EKF
in most of the domain, especially in the wake region, where
turbulence intensity is higher.
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VI. CONCLUDING REMARKS

We study the efficacy of various Kalman filtering algo-
rithms in estimating changes in hub-height wind velocity
due to LES-generated atmospheric variations. Our estima-
tion algorithms rely on a stochastic dynamical model of
hub-height velocity and a projection strategy for mapping
pressure changes from the hub-height to the ground. For the
first, we use the stochastically forced linearized NS equations
around 2D velocity profiles provided by static engineer-
ing wake models. The input stochastic excitation, which
represents the process noise in Kalman filters, is designed
via inverse modeling to match statistical signatures of the
LES-based velocity field at hub-height. Assuming access to
ground pressure throughout the entire domain, we evaluated
the performance of the LKF, EKF, and UKF algorithms in
estimating the wind velocity and its variance relative to the
result of LES. Our results serve as a proof of concept for
short-term wind forecasting based on ground-level pressure
sensor measurements as an alternative to those that rely on
LiDAR scanners. Despite the superior performance of the
UKF, given its high computational cost, the EKF can be
considered as a potential candidate for further development
of such forecasting tools. Our ongoing work focuses on
identifying regions of the farm that are most important
for the placement of pressure sensors via optimal sensor
selection (e.g. [32], [33]) and studying the performance of
our forecasting tool under varying nominal wind speeds
where robust Kalman filtering techniques (e.g., [34]) could
provide additional generalizability.
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