
1

Title

COVID-19 Transmission in a Resource Dependent Community with Heterogeneous Populations:

An Agent-Based Modeling Approach

Author Information

Aaron D. Wood1 and Kevin Berry2

1Department of Economics

John H. Sykes College of Business

The University of Tampa

401 W. Kennedy Blvd., Box O

Tampa, FL USA 33606

ORCID: 0000-0002-3630-4263

2Department of Economics

University of Alaska Anchorage

3211 Providence Dr

Anchorage, AK USA 99508

ORCID: 0000-0002-6904-4349

Corresponding Author

Kevin Berry <kberry13@alaska.edu>

Cell: 907-786-4185

Keywords

4 to 6

Agent-based modeling; resource dependent community; fishery; heterogeneous populations;

virus transmission; public health; public policy

Acknowledgements

The authors would like to thank Christopher Wallace for helpful feedback on this manuscript.

Statements and Declarations

The authors have no relevant financial or non-financial interests to disclose that are relevant to

the content of this article.

Funding

This work was supported by NSF OPP/GEO #2032787 and NSF OPP GEO #1745508 and

RISE/GEO #2022876

2

Abstract

Outbreaks of COVID-19 in crowded work locations led to “superspreading” events during the

pandemic that stressed health capacity in rural communities. This led to disparate responses –

either isolating and restricting workers to facilities and potentially amplifying spread between

them, more intense community wide restrictions, or an acceptance of higher disease spread. An

extreme case is the salmon fishery in Bristol Bay, Alaska, where fishermen, factory workers, and

residents all interact during the summer fishing season. During the pandemic, policy measures

were debated, including community mask mandates, restricting workers to their boats and

factories, and even closing the valuable seasonal fishery.

We develop an agent-based SIR model (ABM) to examine COVID-19 transmission in a

resource-dependent community populated by distinct subgroups. The model includes a virus

spreading within and between three heterogenous populations who interact with other members

of their type in their home location, and with different types of agents when out in the

community. We simulate various non-pharmaceutical interventions and vaccination rates across

these groups. Results demonstrate the efficacy of non-pharmaceutical interventions and

vaccinations, as well as tradeoffs between duration and intensity and tradeoffs between groups

impacted by the outbreak. This ABM demonstrates the impact of public policy mechanisms on

health outcomes in resource-dependent communities with distinct populations.

1. Introduction

“ About eighty known died at Naknek. Adult population practically wiped out… Nurses required

to handle orphans.

Will advise later what funds are required.”

– aerogram to Dr. French, US Commissioner at Dillingham, from Alaska Packers

Association Superintendent JF Heinbockel, June 8, 1919

Bristol Bay, Alaska is home to the world’s largest wild salmon fishery, and it hosts processing

factories and seasonal fishermen that dramatically increase the population in the summer to harvest

returning fish. Bristol Bay communities also had a brutal experience with the 1918 Influenza,

which disproportionately killed Alaska Natives and punished local communities (deValpine 2015).

This experience, and the knowledge and memory held by both the community and industry, lead

to dramatic policy actions in response to the 2020 COVID-19 pandemic intended to avoid a repeat

of history. Additionally, policymakers were concerned with maintaining a successful sockeye

salmon fishery. Fishing is a major part of the economic base of Bristol Bay, and the sockeye fishery

is incredibly time sensitive – the majority of the action occurs when the anadromous salmon return

to fresh water to spawn over roughly one month in the summer (McKinley Research Group 2021).

There is also evidence that COVID-19 imposed a greater burden on remote and rural areas

(Armillei et al. 2021).

3

The fishery directly provides labor income to residents through both commercial fishing and

recreational fishing, as well as directly providing food through a subsistence fishery (McKinley

Research Group 2021). The extreme seasonality of salmon fishing in Bristol Bay means that an

influx of seasonal workers temporarily live in these isolated communities which are disconnected

from the wider road system. During their stay in the community, their spending is critical to local

businesses focused on serving this workforce. However, all of these out-of-state workers are

potential carriers of COVID-19.

The community therefore faces an extreme version of the tradeoff faced by most communities

where restrictions and lockdowns early in a pandemic save lives (Amuedo-Dorantes et al. 2021;

Cooper et al. 2023; Prakash et al. 2022) but lead to economic costs (Bognanni et al. 2020). Closing

the fishery during the pandemic would have protected public health, but it would have caused

irreparable economic harm. Keeping the fishery open brings income, and with it disease and

additional susceptible people to an isolated and medical resource-constrained community.

Potential policy responses, like isolating fishery workers together away from the community in a

factory or on a boat also potentially amplify the spread. The effect of similar superspreader events

on transmission has been studied previously, and there is evidence that non-pharmaceutical

interventions (NPI) may be more necessary and effective when targeted at these events (Althouse

et al. 2020; Sneppen et al. 2021). Factory workers live in man camp arrangements where they dine

communally and work in close contact with others. There is no way to socially distance on a 32-

foot fishing vessel with a crew of 5 people. Previous work has found that similar conditions in

meatpacking plants amplified the spread of COVID-19 (Saitone et al. 2021) and that social habits

influence the number of cases and deaths (Cristini and Trivin 2022). Work on the impact of

weather also suggests that crowded spaces amplify spread (Yakubenko 2021). We also abstract

away from the impact on absenteeism in production (Araya 2021). It is necessary to examine the

impact of NPI in a scenario where economic interactions influence spread (Murray 2020).

Oversimplified models that ignore the differences between economic agents may also miss an

important mediating force on pandemic dynamics (Nishi et al. 2020).

Prior work has examined the impact of targeted lockdowns on different age groups to examine the

overall economic cost of extreme mitigation (Acemoglu et al. 2020, 2021; Bárcena-Martin et al.

2022). This work finds targeted policies are more effective at reducing the cost of NPI. We also

respond to calls to incorporate heterogeneity by occupation and location as well as vaccine

treatments instead of NPI (Arias 2021). We expand upon previous work like Bisin and Moro (2020,

2022) to examine the impact of restricted movement in remote rural areas. These areas often face

limited healthcare resources and are particularly vulnerable to COVID-19 and other pandemics

(Savage et al. 2020).

Our paper explores potential policy responses to the pandemic and details an agent-based model

(ABM) we developed to better understand the dynamics of an infectious disease when policies are

targeted to various subgroups of the population. In general, an ABM consists of a program,

typically written in an object-oriented language, that details an agent type or types, which includes

potential traits or decision rules that govern behavior of members of a type. The ABM then uses

computational power to create individual agents from a type, simulate their behavior and

interactions with other agents of their type, other types, or both, and derive emergent, large-scale

outcomes. While ABM has become an increasingly applied tool in several disciplines, much early

4

work in ABM centered on finance and transportation, and this literature is reviewed by Axelrod

and Tesfatsion (2006) and Chen (2012). Related to the present study, other work has used ABM

to examine behavior in resource-dependent environments (Wood et al., 2016) or to predict the

efficacy of interventions in data rich environments (Tatapudi et al. 2020). These models have the

potential to predict the efficacy of interventions (Gans 2022). Other contemporary work on

COVID-19 transmission examines the impact of distancing on a population (Silva et al. 2020), or

of transmission within a facility (Cuevas 2020).

We incorporate community structural detail and different transmission rates within and between

four different locations – fishing vessels, the processing factories, households, and community

locations. We distinguish between three types of people – fishermen, factory workers, and

household members. We are able to draw these distinctions because of the unique characteristics

of the fishery – because it is a time sensitive regulated open access fishery, even residents of Bristol

Bay who engage in commercial fishing are distinct from household members, in that they are likely

to be fishing for the preponderance of the season. Additionally, we are able to examine policies

both before and after the introduction of a vaccine that reduces transmission and find that policies

have differential effects before and after introduction (Makris and Toxvaerd 2020).

2. Geographical and Mathematical Models

We develop an agent-based SIR (susceptible, infected, removed) model consisting of three types

of agents that interact within a model of distinct locations and heterogenous populations.

2.1 Heterogeneous Populations Community Model

Agents in the heterogenous populations model can be fishermen, factory workers, or household

members. Each group has a different home location during the fishing season. Fishing boats are

the home location for fishermen, processing factories are the home location for factory workers,

and households are the home location for household members. Within each home location, there

are subunits that represent individual households, fishing boats, or processing factories. These

subunits vary in size by agent type. All agents sometimes visit the community, where they come

into contact with members of other groups. The model is represented in Figure 1. We model agent

movements on a daily time scale. Every day, agents wake up in their home location. With some

probability they then either remain in that location, or they move to the community. After their

location for that day is determined, they interact with all other individuals in that location. For

example, a fisherman starts the day on their fishing boat. With some probability they either remain

there, or they go to the community. If they go to the community they then interact with any other

fishermen, factory workers, and household members who also went to the community that day. If

they remain on their fishing boat, they only interact with other members of that crew.

5

Figure 1: Community model

2.2: SIR Model

Figure 2 provides the details of the infectious disease model. Within any location we develop a

daily SIR model where we track the health status of every agent. Once it is determined who is in

any given location, we determine if there are any infected individuals in that location. We denote

individuals as being susceptible 𝑆, infected 𝐼, or removed 𝑅, which includes both those with post

infection resistance and mortality. Individuals are indexed by their type 𝑖 ∈ {𝑓, 𝑝, ℎ} where 𝑓

denotes fishermen, 𝑝 denotes processing factory workers, and ℎ denotes household members as

well as their location 𝑗 ∈ {𝑏𝑜𝑎𝑡, 𝑓𝑎𝑐𝑡𝑜𝑟𝑦, ℎ𝑜𝑚𝑒}. Simplified versions of the equations of motion

are provided in equations 1-3.

1) 𝑆̇𝑖,𝑗 = −𝛽𝑗𝑆𝑖,𝑗
𝐼𝑖∀𝑖,𝑗

𝑁

2) 𝐼𝑖̇,𝑗 = 𝛽𝑆𝑖,𝑗
𝐼𝑖∀𝑖,𝑗

𝑁
− 𝛾𝐼𝑖∀𝑖,𝑗

3) 𝑅̇𝑖,𝑗 = 𝛾𝐼𝑖∀𝑖,𝑗

Community

Factory1

Boat1

Household1

Factory2

Household2

Household3

Household4

Boat2 Boat3

H1 H1

H1

H2
H2

H2

H3

=

H3

=

H3

=

H4

=

H4

=

H4

=

F1
F1

F1 F1

F2

F2

F2
F2

F2

F2

B1

B1

B1

B2

B2

B2

B3

B3 B3

Key

agents going to the community in a period

HouseholdX household X with 3 residents BoatX boat X with 3 workers FactoryX factory X with 10 workers

Hx household member living in household X Bx fisherman working on boat X Fx factory employee working in factory X

F1
F1

F1

F1

F1 F1

F2

F2

F2

F2

6

Figure 2: Daily SIR infectious disease model in a factory

Susceptible people in group 𝑖 become infected at rate 𝛽𝑗 subject to coming into contact with

infected individuals. The probability of any individual contact being with an infected individual

depends upon the proportion of infected individuals in each location, regardless of their type 𝑖, or
𝐼𝑖∀𝑖,𝑗

𝑁
. Individuals then are removed from the infected population 𝐼𝑖∀𝑖,𝑗 at the rate 𝛾 when they either

recover and have immunity or become deceased. The typical season length is short enough that

reinfection does not occur.

3. Agent Based Model and Simulation Scenarios

3.1 Agent-Based Model

The agent-based model (ABM) consists of the community and SIR models of agent interaction

and public health policy. It provides detailed results of virus transmission in agents within and

between heterogeneous populations. The program was written in C++ and tested and debugged in

Microsoft Visual Studio 2019 Version 16. Detailed pseudocode is provided in Appendix A to

exhibit transparency in program design.

When the program begins, the user is prompted to initialize each parameter and probability

relevant to the virus, each agent type, and every public policy mechanism in the ABM. Stay-at-

home orders for each type of agent are captured by the probability that an agent of a particular type

leaves their home location and goes into the community on a given day. For instance, if the value

Key
 – How agents can move from one health state to the next

Factory1 – a factory with 10 workers, 9 of whom are in the factory

 F1 – a factory employee working in Factory1

Susceptible Infected Recovered

Factory1

F1

F1 F1

F1
F1

F1

F1 F1
F1

F1

7

for households is 28.5, a household member agent will leave their household and go into the

community twice per week in an average week (28.5% of days involve a trip out of the household).

The program also allows initial values specific to each agent type including the number of agents

in each population, the size of home locations, the number of initially infected agents, and the

number of initially vaccinated agents for each of the fishermen, factory workers, and household

members. Infected agents are randomly assigned a number between 1 and 𝛾 for how many periods

they will remain contagious before they attain removed status.

After parameters are given for each class of agent, the program asks for the number of periods

(days) and repetitions to be simulated. On each day, every individual agent of each type is placed

either in their home location or out in the community based on the probability that they go out. An

SIR model is then simulated in the community and in each factory, boat, and household that is

determined by the number of agents in each location, as well as their status as susceptible, infected,

or removed. At the end of the period, the status of each agent is updated. The simulation is repeated

to provide a distribution of results based on the random transmission and distribution of initial

cases.

3.2 Scenarios Considered

For our analysis, we developed a list of plausible scenarios to consider and ran simulations in

which we imposed various control measures. These scenarios are listed in Table 1.

Scenario Name Description

A Baseline Baseline scenario without NPI

B Stay-at-home orders Require all agents to stay in their home location the

majority of the time

C Mask mandates in

community

Reduced transmission in the community location

D Mask mandates in

community and factories

Reduced transmission in the community and factory

locations

E Vaccinations Some agents are not susceptible or infected

F All of the above Combination of B, D, and E

G Factory mobile Encourage the factory workers to leave home location

H Factory mobile and

mask mandates in

community

Encourage the factory workers to leave home location

and lower transmission rates in the community location

I Factory mobile and

mask mandates in

community and factories

Encourage factory workers to leave home locations and

lower transmission in the community location and in

factories

J Factory mobile, mask

mandates in community

and factories, and

households lockdown

Encourage factory workers to leave, lower transmission

in the community location and in factories, and

household members cannot leave home location

Table 1: Scenarios for numerical exercises and brief descriptions

8

To motivate our numerical experiments, we considered a combination of non-pharmaceutical

interventions that were common policy responses in the United States at the time, the actual

measures taken in Bristol Bay, and other plausible combinations of control measures. Our interest

lay in how the distribution of potential outcomes changed both in average outcomes and variance.

We were also interested in potential unintended consequences of different actions.

Our baseline scenario considers non NPI and assumes that behavior does not meaningfully change

during the outbreak. This is our base case against which we consider different outcomes. Our first

alternative scenario consists of home orders which require everyone to remain in their home

location but impose no restrictions on their interactions within that location. This includes both

fishermen and factory workers, who have to stay within their boat or factory, respectively. There

is precedent for this – during the 2020 season restrictions were passed that limited fishermen to

their boats and restricted their movement while in port, and processing factories severely restricted

the ability of their workers to access the local community. Our next scenario assumes mask

mandates are enforced, but only in the community area. We assume the main effect of mask

mandates is to reduce the transmission rates in the location they are used, which in this case is the

community where groups mix. We extend that reduction in transmission to factories in scenario

D. In Scenario E we introduce vaccinations and assume that inoculated agents are not able to be

infected during the simulation period. Scenario F is a combination of vaccination, masks, and stay-

at-home orders that restricts the movement between areas and lowers transmission rates.

Scenario G allows only the factory workers to leave their home location. Our motivation here is to

examine the potential counterfactual for what actually happened in Bristol Bay. By restricting large

quantities of people to a small and crowded working and living area there is the potential of an

amplification effect. By bringing large quantities of susceptible people into close contact with

infected individuals and not allowing them to distance, outbreaks in factory locations could be

worse than otherwise expected. In this case, allowing factory workers to leave their home location

could potentially shrink outbreak sizes and shorten outbreaks. We add mask mandates in scenario

H, and we impose a universal mask mandate in scenario I. Scenario J extends this one step further

and requires household members to remain in their homes and not go to the community location,

while still allowing factory workers to distance in the community while masked.

Table 2 has scenario parameter values. Consistent throughout, we assume that non-pharmaceutical

measures only impact transmission through the parameter 𝛽. In reality, there is likely a change

also in the amount of time individuals spend in public and in community locations. There is

evidence of both restricted activity and increased time in public.

Each scenario consists of a parameterization that lasts for 60 periods, and each scenario was

simulated 1000 times. Table 3 contains details about each heterogeneous group across all

scenarios, including the population of each group, the number of agents that reside in each home

location, and how many agents are infected at the beginning of the simulation. Table 4 has the

specific policy parameters for each scenario.

9

Agent Population

Home

Location

Population

Initially

Infected
γ

Fishermen 7000 5 10 14

Factory Workers 5000 200 10 14

Household Members 2226 3 0 14

Table 2: Population data for numerical exercises

R0: Basic reproduction number

in each location

Probability an agent

goes into the

community

in a period

Initially vaccinated

agents

S
ce

n
ar

io

C
o
m

m
u
n
it

y

B
o
at

s

F
ac

to
ri

es

H
o
u
se

h
o
ld

s

F
is

h
er

m
en

F
ac

to
ry

W
o
rk

er
s

H
o
u
se

h
o
ld

M
em

b
er

s

F
is

h
er

m
en

F
ac

to
ry

W
o
rk

er
s

H
o
u
se

h
o
ld

M
em

b
er

s

A 5 7 7 6 20% 20% 20% 0 0 0

B 5 7 7 6 5% 5% 5% 0 0 0

C 1 7 7 6 20% 20% 20% 0 0 0

D 1 7 1.5 6 20% 20% 20% 0 0 0

E 5 7 7 6 20% 20% 20% 4200 3000 1335

F 1 7 1.5 6 5% 5% 5% 4200 3000 1335

G 5 7 7 6 20% 50% 20% 0 0 0

H 1 7 7 6 20% 50% 20% 0 0 0

I 1 7 1.5 6 20% 50% 20% 0 0 0

J 1 7 1.5 6 20% 50% 5% 0 0 0

Table 3: Parameters for numerical exercises

3.3 Analysis

Within the above scenarios we run repeated trials to explore uncertainty around where an outbreak

might originate and the stochastic portions of transmission. We then compared average outcomes

for variables of interest.

4) 𝑦ℎ = 𝛽0 + ∑ 𝛽ℎ𝐷ℎℎ + 𝜖ℎ

We use the specification in equation (4) to regress the peak number of individuals infected, the

day the number of peak infections occur, the total number of individuals infected over the duration

of the outbreak, and the last day an individual is infected on a constant and a dummy variable for

treatments other than the baseline. The coefficient 𝛽0 is interpreted as the average value of the

variable of interest in Treatment A – Baseline. The coefficient for 𝛽ℎ is the average deviation from

the baseline case for all ℎ different treatments. The error term reflects the random component of

our simulations. Results are shown in Table 4.

Additionally, we generated a series of box and whisker plots (Figures 3 through 6) to better

demonstrate the variability across treatments. These plots demonstrate the potential riskiness of

10

strategies that may on average reduce the severity of the pandemic (measured in our variables of

interest) but can also lead to a greater variance in outcomes.

4. Results
In examining the results in Table 4, Treatment A is used as a baseline against which the other

scenarios are compared. Shown in the first row, it denotes the peak number of infected individuals,

the day with the peak number of infections, the total number of agents who become infected over

the course of the simulation period, and the day at which the outbreak ends when no mitigation

efforts are in place. The subsequent rows exhibit how the results for Treatments B through J

compare to Treatment A. A negative number in a column about individuals (columns 1 and 3)

imply fewer sick agents relative to Treatment A. A negative number in a column about time

(columns 2 and 4) imply fewer days relative to Treatment A. For example, a negative number in

column 3 relates how many fewer agents became infected on average compared to Treatment A,

while a negative number in column 4 conveys how many fewer days on average it took for the

outbreak to end. Graphical results of the outcomes in terms of peak infected individuals, day of

peak infections, total infected individuals, and end of outbreak are shown in Figures 3, 4, 5, and 6,

respectively.

Results

 Dependent variable:

 Peak Infected

Individuals

Day of Peak

Infections

Total Removed

(previously

infected or

vaccinated)

Individuals

End of

Outbreak

 (1) (2) (3) (4)

Treatment A - Baseline 13,624.060*** 22.025*** 14,226.000*** 43.366***

 (50.198) (0.155) (59.429) (0.166)

Treatment B - Stay-at-Home

Orders
-3,163.076*** 7.789*** -88.950 16.634***

 (70.991) (0.219) (84.046) (0.235)

Treatment C - Mask Mandates in

Community
-13,101.620*** -10.732*** -13,669.030*** -17.143***

 (70.991) (0.219) (84.046) (0.235)

Treatment D - Mask Mandates in

Community and Factory
-13,575.290*** -16.619*** -14,167.990*** -22.565***

 (70.991) (0.219) (84.046) (0.235)

Treatment E - Vaccinations -8,444.026*** -0.710*** -0.657 13.039***

11

 (70.991) (0.219) (84.046) (0.235)

Treatment F - All of the Above -13,557.840*** -4.748*** -5,589.906*** -10.976***
 (70.991) (0.219) (84.046) (0.235)

Treatment G - Send Factory Out 285.209*** 0.510** -0.000 -0.061
 (70.991) (0.219) (84.046) (0.235)

Treatment H - Send Factory Out

Masked
-10,302.630*** -0.357 -10,307.120*** -1.535***

 (70.991) (0.219) (84.046) (0.235)

Treatment 1 - Send Factory Out

Masked Everywhere
-13,576.390*** -17.057*** -14,170.020*** -22.659***

 (70.991) (0.219) (84.046) (0.235)

Treatment J - Send Factory Out

Masked Everywhere Household

Members Home

-13,576.780*** -17.096*** -14,170.530*** -22.771***

 (70.991) (0.219) (84.046) (0.235)

Observations 10,000 10,000 10,000 10,000

R2 0.923 0.748 0.920 0.876

Adjusted R2 0.923 0.748 0.920 0.875

Residual Std. Error (df = 9990) 1,587.398 4.892 1,879.324 5.257

F Statistic (df = 9; 9990) 13,387.760*** 3,298.647*** 12,769.230*** 7,805.958***

Note: *p<0.1; **p<0.05; ***p<0.01

Table 4: Results of ABM simulations presented using a regression model. Treatment A –

Baseline is the comparison group. All coefficients in every other treatment are deviations from

Treatment A levels for the peak number of infected individuals, the day of peak infections, the

total number of previously infected or vaccinated individuals, and the last day with an active

case.

12

Figure 3: Peak number of infections

13

Figure 4: Day of maximum number of infected individuals

14

Figure 5: Total removed (previously infected or vaccinated) individuals

15

Figure 6: End of the outbreak

In Treatment A, the entire community is rapidly infected, and the outbreak ends when the last

individual recovers or dies. In total 13,624 agents are infected at the peak, and this occurs on day

22 of the simulation. All agents become infected during the 60-day simulation, with the end of the

outbreak occurring on day 44. This is the result of assumed exponential growth in infected cases

and no endogenous behavioral response to the disease. We use this as a baseline to compare other

strategies, acknowledging there is an extensive literature on the endogenous response to COVID-

19, and that this is an upper bound on actual outcomes.

Treatment B imposes stay-at-home orders, and 3,163 fewer agents are infected at the peak, which

occurs 8 days later. While only 88 fewer agents are infected in total, the outbreak lasts 17 more

days. The peak and length of the outbreak are delayed. In our simulations the efficacy of stay-at-

home orders lies in reducing the peak number of infections and reducing stress on finite resources

at the height of the outbreak. The orders are imperfect – while trips are reduced by 75%, individuals

still move between their home locations and the community location infrequently allowing the

disease to spread. Perfectly enforced stay-at-home orders would reduce total cases further and

potentially shorten the outbreak.

Treatment C incorporates the effective imposition of masks in the community location. Masks are

assumed effective at reducing the reproductive number in the community location. This location

16

is where individuals are able to pass the disease between different agent types and home locations.

As a result 13,102 fewer agents are infected at the peak, and 13,669 fewer contract the virus over

the course of the simulation. Further, the outbreak peaks 11 days sooner and ends 17 days sooner

when compared to Treatment A. In total, that yields an outbreak of 557 individuals lasting 26 days,

demonstrating the impact of effective and required masking in public spaces during a pandemic.

Outbreaks are also more frequently localized to individual factories, boats, or households as the

disease is less able to spread between locations.

Treatment D has masking in factories in addition to the community location, and results in fewer

peak infections, fewer total infections, fewer days to the peak number of infections, and fewer days

to the outbreak than Treatment C. Treatments C and D are associated with many fewer peak and

total infections than Treatment A. Additionally, the peak outbreak occurs sooner, helping to avoid

fatigue and stress on small medical facilities in a remote, rural area.

Treatment E examines when 60% of each type of agent is vaccinated against the virus. Compared

to Treatment A, 8,444 fewer people are infected at a peak that occurs on roughly the same day,

and while roughly the same number of agents are eventually resistant to the disease in the

“removed” category, 60% of them acquired immunity to the disease from the vaccine before the

simulation began. This is important in interpreting the result in Table 4 and Figure 5. That is, while

the total number of removed individuals is roughly the same, 8,536 of them are due to vaccination,

while almost all unvaccinated individuals are eventually infected with the disease. Overall, the

outbreak lasts 13 days longer, however the system does not face the same extreme stress from high

peak infection numbers.

Treatment F combines the policy mechanisms of Treatments B, D, and E, and the results exhibit a

vast reduction in the number of peak infected individuals, with 13,558 fewer infected at a peak

that ends 5 days sooner on average than that of Treatment A. In total, 5,590 fewer agents are

removed when stay-at-home orders, mask mandates, and vaccines are combined, and the outbreak

ends 11 days sooner. The majority of individuals who do acquire immunity to the disease do so

through vaccination, rather than infection. On average, only roughly 100 people are actually

infected with the disease.

In Treatment G, factory workers are actively sent out in the community to reduce the contagion

occurring in the factories. The results are similar to Treatment A, with slightly more agents infected

at the peak of the outbreak.

Treatment H again has the factory workers more likely to be out in the community in a period, but

they are now required to engage in effective masking. 10,303 fewer agents are infected at the peak,

and 10,307 fewer agents get infected over the course of the outbreak. The peak outbreak occurs on

the same day as Treatment A, but the entire outbreak ends around 2 days sooner.

Treatment I has the factory workers masked in the community and in their home factories, and the

results have 13,576 fewer infections at a peak that occurs 17 days sooner than Treatment A. In

total, 14,170 fewer infections occur, and the outbreak is 23 days shorter.

17

Lastly, Treatment J has factory workers masked in the community and in their respective factories,

while household members are kept on stay-at-home orders. The addition of stay-at-home orders

do not change the outcome observed in Treatment I. Factory workers are a large portion of the

community, and the outbreaks in this setting predominantly occur within factories. There is not a

difference between allowing factory workers to mingle in the community or only in the factory if

household members are isolated at home.

5. Conclusions
We introduced a unique ABM program that simulates virus transmission in a small fish processing

community in Bristol Bay, Alaska. The model allows the disease to move within and between

heterogeneous groups, and we contribute a novel way of examining ABM results using regression

analysis to contrast differences more clearly between scenarios. We demonstrate how different

non-pharmaceutical methods for slowing the spread of a disease between locations and person

types can impact disease outcomes. We focus on social interactions between groups and show that

these interactions mediated by nonpharmaceutical interventions determine overall disease burden,

consistent with the existing literature (Cristini and Trivin 2022; Cooper et al. 2023). We

demonstrate that targeting different interventions leads to tradeoffs between variability in

outcomes and disease burden. Additionally, we show the impact of vaccination in changing how

people acquire resistance to infectious disease. These insights are important, as these communities

are often critically dependent upon a small group of large employers, and the ability of different

groups in society to interact allows the community to benefit from the development of their

resources.

We find that rural, remote locations benefit not only from isolating different parts of the

community, but from effective NPI and vaccination. This is consistent with peripheral areas being

more at risk of COVID-19 (Armillei et al. 2021). Vaccination paired with NPI and movement

restrictions can almost eliminate the risk of a pandemic. However, if a society places a high value

on the ability of its household members to interact with outside workers, it can achieve similar

results through vaccination and NPI alone. Our model shows that vaccination and efforts to reduce

the reproductive number that we summarize as “masking” can allow local economies in these

locations to continue to operate, and allow household members to interact with workers in ways

that ensure spillovers to local communities from economic activity.

We find tradeoffs between duration and intensity, and tradeoffs between which groups are

impacted by the pandemic. For example, we find that absent additional NPI, isolating processing

factory workers from the rest of the community can amplify outbreaks within these factories. This

can potentially still lead to stress on public health facilities, while denying the community the

economic benefits of local economic activity. This contributes to the literature as it examines inter

and intra group contagion and enables the study of the impact of various public policy measures

when applied individually or in combination to all or certain groups. This approach can be used

prescriptively or predictively to examine future outbreaks and the impact of public policy

mechanisms on health outcomes. Additionally, we provide insights that are relevant to

policymakers who may need to assuage the fears of different community groups. For instance, a

community that is protecting itself from a seasonal influx of people may be more interested in

protecting household members while limiting other NPI. Our model highlights how the unintended

18

consequences of amplifying spread within other groups without additional NPI could still stress

healthcare capacity and adversely impact household members.

References
Acemoglu D, Chernozhukov V, Werning I, Whinston MD (2020) A multi-risk SIR model with

optimally targeted lockdown. NBER Working Paper Series. Working Paper 27102.

https://doi.org/10.3386/w27102.

Acemoglu D, Chernozhukov V, Werning I, Whinston MD (2021) Optimal targeted lockdowns in

a multigroup SIR model. Am Econ Rev-Insights 3(4):487-502.

https://doi.org/10.1257/aeri.20200590.

Althouse BM, Wenger EA, Miller JC, Scarpino SV, Allard A, Hébert-Dufresne L, Hu H (2020)

Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for

intervention and control. Plos Biol 18(11):e3000897.

https://doi.org/10.1371/journal.pbio.3000897.

Amuedo-Dorantes C, Borra C, Rivera-Garrido N, Sevilla A (2021) Early adoption of non-

pharmaceutical interventions and COVID-19 mortality. Economics & Human Biology

42:101003. https://doi.org/10.1016/j.ehb.2021.101003.

Araya F (2021) Modeling the spread of COVID-19 on construction workers: An agent-based

approach. Safety Sci 133:105022. https://doi.org/10.1016/j.ssci.2020.105022.

Arias J, Fernández-Villaverde J, Ramírez JR, Shin M (2021) The causal effects of lockdown

policies on health and macroeconomic outcomes. NBER Working Paper Series. Working Paper

28617. https://doi.org/10.3386/w28617.

Armillei F, Filippucci F, Fletcher T (2021) Did Covid-19 hit harder in peripheral areas? The case

of Italian municipalities. Economics & Human Biology 42: 101018.

https://doi.org/10.1016/j.ehb.2021.101018.

Axelrod R, Tesfatsion L (2006) A guide for newcomers to agent-based modeling in the social

sciences. In: Tesfatsion L, Judd KL (eds) Handbook of computational economics, vol 2. Agent-

Based Computational Economics, Amsterdam, pp 1647-1659.

Bárcena-Martín E, Molina J, Muñoz-Fernández A, Pérez-Moreno S (2022) Vulnerability and

COVID-19 infection rates: A changing relationship during the first year of the pandemic.

Economics & Human Biology 47: 101177. https://doi.org/10.1016/j.ehb.2022.101177.

Bisin A, Moro A (2020) Learning epidemiology by doing: The empirical implications of a

spatial-SIR model with behavioral responses. NBER Working Paper Series. Working Paper

27590. https://doi.org/10.3386/w27590.

19

Bisin A, Moro A (2022) Learning epidemiology by doing: The empirical implications of a

spatial-SIR model with behavioral responses. J Urban Econ 127: Article 103368.

https://doi.org/10.1016/j.jue.2021.103368.

Bognanni M, Hanley D, Kolliner D, Mitman K (2020) Economics and epidemics: Evidence from

an estimated spatial econ-SIR model. Finance and Economics Discussions, Washington: Board

of Governors of the Federal Reserve System. Discussion Series 2020-091.

https://doi.org/10.17016/FEDS.2020.091.

Chen S-H (2012) Varieties of agents in agent-based computational economics: A historical and

an interdisciplinary perspective. J Econ Dyn Control 36(1):1-25.

https://doi.org/10.1016/j.jedc.2011.09.003.

Cooper D, Garga V, Luengo-Prado MJ, Tang J (2023) The mitigating effect of masks on the

spread of Covid-19. Economics & Human Biology 48: 101195.

https://doi.org/10.1016/j.ehb.2022.101195.

Cristini A, Trivin P (2022) Close encounters during a pandemic: Social habits and inter-

generational links in the first two waves of COVID-19. Economics & Human Biology 47:

101180. https://doi.org/10.1016/j.ehb.2022.101180.

Cuevas E (2020) An agent-based model to evaluation the COVID-19 transmission risks in

facilities. Comput Biol Med 121:103827. https://doi.org/10.1016/j.compbiomed.2020.103827.

deValpine, MG (2015) Influenza in Bristol Bay, 1919: “The saddest repudiation of a benevolent

intention”. Sage One 5(1):1-8. https://doi.org/10.1177/2158244015577418.

Gans, J (2022) The economic consequences of R̂ = 1: Towards a workable behavioral

epidemiological model of pandemics. Rev Econ Anal 14(1):3-25.

https://doi.org/10.15353/rea.v14i1.4786.

Makris M, Toxvaerd F (2020) Great expectations: Social distancing in anticipation of

pharmaceutical innovations. Cambridge Working Papers in Economics. Working Paper 2097.

https://doi.org/10.17863/CAM.62310.

McKinley Research Group (2021) The Economic Benefits of Bristol Bay Salmon.

https://www.mcdowellgroup.net/wp-content/uploads/2021/03/economic-benefits-of-bristol-bay-

salmon.pdf. Accessed 10 October 2022.

Murray EJ (2020) Epidemiology’s time of need: COVID-19 calls for epidemic-related

economics. J Econ Perspect 34(4):105-120. https://doi.org/10.1257/jep.34.4.105.

Nishi A, Dewey G, Endo A, Young SD (2020) Network interventions for managing the COVID-

19 pandemic and sustaining the economy. PNAS 117(48):30285-30294.

https://doi.org/10.1073/pnas.2014297117.

20

Prakash N, Srivastava B, Singh S, Sharma S Jain, S (2022) Effectiveness of social distancing

interventions in containing COVID-19 incidence: International evidence using Kalman filter.

Economics & Human Biology 44: 101091. https://doi.org/10.1016/j.ehb.2021.101091.

Saitone TL, Schaefer KA, Scheitrum DP (2021) COVID-19 morbidity and mortality in U.S.

meatpacking counties. Food Policy 101:102072. https://doi.org/10.1016/j.foodpol.2021.102072.

Savage DW, Fisher A, Choudhury S, Ohle R, Strasser RP, Orkin A, Mago V (2020)

Investigating the implications of COVID-19 for the rural and remote population of Northern

Ontario using a mathematical model. medRxiv. https://doi.org/10.1101/2020.09.17.20196949

Silva PCL, Batista PVC, Lima HS, Alves MA, Guimarães FG, Silva RCP (2020) COVID-ABS:

An agent-based model of COVID-19 epidemic to simulate health and economic effects of social

distancing interventions. Chaos Soliton Fract 139:110088.

https://doi.org/10.1016/j.chaos.2020.110088.

Sneppen K, Nielsen BF, Taylor RJ, Simonsen L (2021) Overdispersion in COVID-19 increases

the effectiveness of limiting nonrepetitive contacts for transmission control. PNAS

118(14):e2016623118. https://doi.org/10.1073/pnas.2016623118.

Tatapudi H, Das R, Das TK (2020) Impact assessment of full and partial stay-at-home orders,

face mask usage, and contact tracing: An agent-based simulation study of COVID-19 for an

urban region. Global Epidemiol 2:100036. https://doi.org/10.1016/j.gloepi.2020.100036.

Wood AD, Finnoff DC, Mason CF (2016) OPEC, the Seven Sisters, and oil market dominance:

An evolutionary game theory and agent-based modeling approach. J Econ Behav Organ 123(B):

66-78. https://doi.org/10.1016/j.jebo.2016.06.011.

Yakubenko S (2021) Home alone? Effect of weather-induced behaviour on spread of SARS-

CoV-2 in Germany. Economics & Human Biology 42: 100998.

https://doi.org/10.1016/j.ehb.2021.100998.

Appendix: Pseudocode

The program consists of nine components: a header file and source file for the TownspersonAgent

class, a header file and source file for the FisherpersonAgent class, a header file and source file for

the FactoryworkerAgent class, a header file and source file for the BristolBayCommunity class,

and a TestLab source file that executes the “main” program.

Because the header and source files are the same for each class of individual agent, we below

provide pseudocode for five components: a header and source file for a generic agent type, a header

and source file for the community, and a source file for the main program.

21

GenericAgent.h

Define the class GenericAgent

Declare the public components of the class

 Declare the default constructor

 Declare specific constructors

 Declare the destructor

Declare a function that returns a GenericAgent’s agent type

Declare a function that returns a GenericAgent’s ID number

Declare a function that returns a GenericAgent’s household/boat/factory number

Declare a function that returns a GenericAgent’s location

Declare a function that returns a GenericAgent’s health status

Declare a function that returns a GenericAgent’s recovered/removed date

Declare a function that returns a GenericAgent’s recovered/removed status

Declare a function that sets a GenericAgent’s agent type

Declare a function that sets a GenericAgent’s ID number

Declare a function that sets a GenericAgent’s household/boat/factory number

Declare a function that sets a GenericAgent’s location

Declare a function that sets a GenericAgent’s health status

Declare a function that sets a GenericAgent’s recovered/removed date

Declare a function that sets a GenericAgent’s recovered/removed status

Declare private variables of the class

Declare a variable that holds a GenericAgent’s agent type

Declare a variable that holds a GenericAgent’s ID number

Declare a variable that holds a GenericAgent’s household/boat/factory number

Declare a variable that holds a GenericAgent’s location

Declare a variable that holds a GenericAgent’s health status

Declare a variable that holds a GenericAgent’s recovered/removed date

Declare a variable that holds a GenericAgent’s recovered/removed status

GenericAgent.cpp

Declare inclusions and libraries, including the GenericAgent header file and maths library

functionality

Define a specific constructor, allowing it to accept initial parameter values from the user

Define a specific constructor, creating a new GenericAgent by copying an extant class member

Define the destructor

Implement a function that returns a GenericAgent’s agent type

Implement a function that returns a GenericAgent’s ID number

22

Implement a function that returns a GenericAgent’s household/boat/factory number

Implement a function that returns a GenericAgent’s location

Implement a function that returns a GenericAgent’s health status

Implement a function that returns a GenericAgent’s recovered/removed date

Implement a function that returns a GenericAgent’s recovered/removed status

Implement a function that sets a GenericAgent’s agent type

 Take in a sensible value (0, 1, or 2) from the user and set that as the agent’s type

Implement a function that sets a GenericAgent’s ID number

 Take in an integer from the user and set that as the GenericAgent’s ID number

Implement a function that sets a GenericAgent’s household/boat/factory number

Take in an integer from the user and set that as the GenericAgent’s

household/boat/factory number

Implement a function that sets a GenericAgent’s location

 Take in a sensible value (0 or 1) from the user and set that as a GenericAgent’s location

Implement a function that sets a GenericAgent’s health status

 Take in a sensible value (0 or 1) from the user and set that as a GenericAgent’s health

 status

Implement a function that sets a GenericAgent’s recovered/removed date

 Take in a sensible value (from 0 to gamma (𝛾)) and set that as a GenericAgent’s

 recovered/removed date

Implement a function that returns a GenericAgent’s recovered/removed status

 Take in a sensible value (0 or 1) from the user and set that as a GenericAgent’s

 recovered/removed status

BristolBay.h

Define the class BristolBay

Define all relevant inclusions including random number, vector, array, and time library

functionality

Include the FisherpersonAgent header file

Include the FactoryworkerAgent header file

Include the TownspersonAgent header file

Declare public components of the class

 Declare the default constructor

 Declare the destructor

Declare the function that prompts the user to input R0 for the community

Declare the function that prompts the user to input R0 for each boat

Declare the function that prompts the user to input R0 for each factory

Declare the function that prompts the user to input R0 for each household

Declare the function that prompts the user to input gamma (𝛾) for the community

Declare the function that prompts the user to input gamma (𝛾)for fisherpersons

23

Declare the function that prompts the user to input gamma (𝛾) for factory workers

Declare the function that prompts the user to input gamma (𝛾) for townspeople

Declare the function that prompts the user to input the probability that fisherpersons go

 into the community in a period

Declare the function that prompts the user to input the probability that factory workers go

 into the community in a period

Declare the function that prompts the user to input the probability that townspeople go

 into the community in a period

Declare the function that prompts the user to input the population of fisherpersons

Declare the function that prompts the user to input the number of fisherpersons per boat

Declare the function that prompts the user to input the number of fisherpersons initially

 sick

Declare the function that prompts the user to input the number of fisherpersons initially

 vaccinated

Declare the function that prompts the user to input the population of factory workers

Declare the function that prompts the user to input the number of factory workers per

 factory

Declare the function that prompts the user to input the number of factory workers initially

 sick

Declare the function that prompts the user to input the number of factory workers initially

 vaccinated

Declare the function that prompts the user to input the population of townspeople

Declare the function that prompts the user to input the number of townspeople per

 household

Declare the function that prompts the user to input the number of townspeople initially

 sick

Declare the function that prompts the user to input the number of townspeople initially

 vaccinated

Declare the function that establishes an agent as a FisherpersonAgent type

 This function accepts a FisherpersonAgent and an integer as inputs

Declare the function that establishes an ID number for a FisherpersonAgent

 This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that assigns a FisherpersonAgent to a specific boat as their home

 location

 This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that assigns a FisherpersonAgent to their location in a given period

 This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that establishes the FisherpersonAgent’s infected status

 This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that establishes if a FisherpersonAgent is or was infected at one point

 This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that establishes that a newly infected FisherpersonAgent will be sick

 for gamma (𝛾) number of periods

24

This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that reduces the number of remaining periods in which a

FisherpersonAgent is infected by one during each period

 This function accepts a FisherpersonAgent and an integer as inputs

Declare a function that sets a FisherpersonAgent as recovered/removed once the gamma

 (𝛾) period is complete

 This function accepts a FisherpersonAgent and an integer as inputs

Declare the function that establishes an agent as a FactoryworkerAgent type

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare the function that establishes an ID number for a FactoryworkerAgent

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that assigns a FactoryworkerAgent to a specific factory as their home

 location

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that assigns a FactoryworkerAgent to their location in a given period

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that establishes the FactoryworkerAgent’s infected status

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that establishes if a FactoryworkerAgent is or was infected at one

 point

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that establishes that a newly infected FactoryworkerAgent will be sick

 for gamma (𝛾) number of periods

This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that reduces the number of remaining periods in which a

FactoryworkerAgent is infected by one during each period

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare a function that sets a FactoryworkerAgent as recovered/removed once the

 gamma (𝛾) period is complete

 This function accepts a FactoryworkerAgent and an integer as inputs

Declare the function that establishes an agent as a TownspersonAgent type

 This function accepts a TownspersonAgent and an integer as inputs

Declare the function that establishes an ID number for a TownspersonAgent

 This function accepts a TownspersonAgent and an integer as inputs

Declare a function that assigns a TownspersonAgent to a specific household as their

 home location

 This function accepts a TownspersonAgent and an integer as inputs

Declare a function that assigns a TownspersonAgent to their location in a given period

 This function accepts a TownspersonAgent and an integer as inputs

Declare a function that establishes the TownspersonAgent’s infected status

 This function accepts a TownspersonAgent and an integer as inputs

Declare a function that establishes if a TownspersonAgent is or was infected at one point

 This function accepts a TownspersonAgent and an integer as inputs

Declare a function that establishes that a newly infected TownspersonAgent will be sick

 for gamma (𝛾) number of periods

25

This function accepts a TownspersonAgent and an integer as inputs

Declare a function that reduces the number of remaining periods in which a

TownspersonAgent is infected by one during each period

 This function accepts a TownspersonAgent and an integer as inputs

Declare a function that sets a TownspersonAgent as recovered/removed once the gamma

 (𝛾) period is complete

 This function accepts a TownspersonAgent and an integer as inputs

Declare private variables of the class

 Declare a variable that holds the R0 for the community

Declare a variable that holds the R0 for each boat

Declare a variable that holds the R0 for each factory

Declare a variable that holds the R0 for each household

Declare a variable that holds gamma (𝛾) for the community

Declare a variable that holds gamma (𝛾) for fisherpersons

Declare a variable that holds gamma (𝛾) for factory workers

Declare a variable that holds gamma (𝛾) for townspeople

Declare a variable that holds the probability that factory workers go into the community

 in a period

Declare a variable that holds the probability that fisherpersons go into the community in a

 period

Declare a variable that holds the probability that townspeople go into the community in a

 period

Declare a variable that holds the population of fisherpersons

Declare a variable that holds the number of fisherpersons per boat

Declare a variable that holds the number of fisherpersons initially sick

Declare a variable that holds the number of fisherpersons initially vaccinated

Declare a variable that holds the population of factory workers

Declare a variable that holds the number of factory workers per factory

Declare a variable that holds the number of factory workers initially sick

Declare a variable that holds the number of factory workers initially vaccinated

Declare a variable that holds the population of townspeople

Declare a variable that holds the number of townspeople per household

Declare a variable that holds the number of townspeople initially sick

Declare a variable that holds the number of townspeople initially vaccinated

BristolBay.cpp

Declare inclusions and libraries, including maths library functionality

Include the FisherpersonAgent header file

Include the FactoryworkerAgent header file

Include the TownspersonAgent header file

Define the default constructor

Define the destructor

26

Implement the function that prompts the user to input R0 for the community

 Print a message that welcomes the user to the program with copyright and authorship

 information

 Print instructions to the user concerning R0

 Accept R0 for the community via keyboard input

 Return R0 for the community to the program

Implement the function that prompts the user to input R0 for boats

 Accept R0 for boats via keyboard input

 Return R0 for boats to the program

Implement the function that prompts the user to input R0 for factories

 Accept R0 for factories via keyboard input

 Return R0 for factories to the program

Implement the function that prompts the user to input R0 for households

 Accept R0 for households via keyboard input

 Return R0 for households to the program

Implement the function that prompts the user to input gamma (𝛾) for the community

 Print instructions to the user concerning gamma (𝛾)
 Accept gamma (𝛾) for the community via keyboard input

 Return gamma (𝛾) for the community to the program

Implement the function that prompts the user to input gamma (𝛾) for boats

 Accept gamma (𝛾) for boats via keyboard input

 Return gamma (𝛾) for boats to the program

Implement the function that prompts the user to input gamma (𝛾) for factories

 Accept gamma (𝛾) for factories via keyboard input

 Return gamma (𝛾) for factories to the program

Implement the function that prompts the user to input gamma (𝛾) for households

 Accept gamma (𝛾) for households via keyboard input

 Return gamma (𝛾) for households to the program

Implement the function that prompts the user to input the probability that fisherpersons go into

the community in a period

 While loop to ensure the probability is within logical bounds

Print instructions to the user concerning probabilities

Accept the probability via keyboard input

 Return the probability to the program

Implement the function that prompts the user to input the probability that factory workers go into

the community in a period

27

 While loop to ensure the probability is within logical bounds

Accept the probability via keyboard input

 Return the probability to the program

Implement the function that prompts the user to input the probability that townspeople go into

the community in a period

 While loop to ensure the probability is within logical bounds

Accept the probability via keyboard input

 Return the probability to the program

Implement the function that prompts the user to input the population of fisherpersons

 While loop to ensure the population is nonnegative and takes integer values

Print instructions to the user concerning this and the next three functions related

 to fisherpersons: population, boat size, initial sick, and initial vaccinated

 Accept the population via keyboard input

 Return the population to the program

Implement the function that prompts the user to input the number of fisherpersons per boat

 While loop to ensure the boat size is nonnegative and does not exceed the population of

 fisherpersons

 Accept the boat size via keyboard input

 Return the boat size to the program

Implement the function that prompts the user to input the number of fisherpersons initially sick

 While loop to ensure the number of initially sick is nonnegative and does not exceed the

 population of fisherpersons

 Accept the number of initially sick via keyboard input

 Return the number of initially sick to the program

Implement the function that prompts the user to input the number of fisherpersons initially

vaccinated

 While loop to ensure the number of initially vaccinated is nonnegative and does not

 exceed the population of fisherpersons

 Accept the number of initially vaccinated via keyboard input

 Return the number of initially vaccinated to the program

Implement the function that prompts the user to input the population of factory workers

 While loop to ensure the population is nonnegative and takes integer values

Print instructions to the user concerning this and the next three functions related

to factory workers: population, factory size, initial sick, and initial vaccinated

 Accept the population via keyboard input

 Return the population to the program

Implement the function that prompts the user to input the number of factory workers per factory

 While loop to ensure the factory size is nonnegative and does not exceed the population

 of factory workers

28

 Accept the factory size via keyboard input

 Return the factory size to the program

Implement the function that prompts the user to input the number of factory workers initially

sick

 While loop to ensure the number of initially sick is nonnegative and does not exceed the

 population of factory workers

 Accept the number of initially sick via keyboard input

 Return the number of initially sick to the program

Implement the function that prompts the user to input the number of factory workers initially

vaccinated

 While loop to ensure the number of initially vaccinated is nonnegative and does not

 exceed the population of factory workers

 Accept the number of initially vaccinated via keyboard input

 Return the number of initially vaccinated to the program

Implement the function that prompts the user to input the population of townspeople

 While loop to ensure the population is nonnegative and takes integer values

Print instructions to the user concerning this and the next three functions related

 to townspeople: population, factory size, initial sick, and initial vaccinated

 Accept the population via keyboard input

 Return the population to the program

Implement the function that prompts the user to input the number of townspeople per household

 While loop to ensure the household size is nonnegative and does not exceed the

 population of townspeople

 Accept the household size via keyboard input

 Return the household size to the program

Implement the function that prompts the user to input the number of townspeople initially sick

 While loop to ensure the number of initially sick is nonnegative and does not exceed the

 population of townspeople

 Accept the number of initially sick via keyboard input

 Return the number of initially sick to the program

Implement the function that prompts the user to input the number of townspeople initially

vaccinated

 While loop to ensure the number of initially vaccinated is nonnegative and does not

 exceed the population of townspeople

 Accept the number of initially vaccinated via keyboard input

 Return the number of initially vaccinated to the program

Implement the function that gives a FisherpersonAgent an identifier of their agent type

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

29

 This function calls the FisherpersonAgent member function that sets agent type

Implement the function that gives a FisherpersonAgent an ID number

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets ID numbers

Implement the function that assigns a FisherpersonAgent to their boat

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets boat number

Implement the function that establishes the location of a FisherpersonAgent

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets their location

Implement the function that establishes the health status of a FisherpersonAgent as infected

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets their health status

Implement the function that establishes the health status of a FisherpersonAgent as not infected

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets their health status

Implement the function that establishes the date that a FisherpersonAgent will no longer be

infected

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets when their health is

 fixed

Implement the function that establishes reduces the time the FisherpersonAgent will be infected

by one each period

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets when their health is

 fixed

Implement the function that establishes that a FisherpersonAgent is recovered/removed

 This function accepts a member of the FisherpersonAgent class and an integer from the

 TestLab

 The function calls the FishpersonAgent member function that sets when they are

 recovered/removed

30

Implement the function that gives a FactoryworkerAgent an identifier of their agent type

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 This function calls the FactoryworkerAgent member function that sets agent type

Implement the function that gives a FactoryworkerAgent an ID number

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets ID numbers

Implement the function that assigns a FactoryworkerAgent to their factory

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets factory number

Implement the function that establishes the location of a FactoryworkerAgent

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets their location

Implement the function that establishes the health status of a FactoryworkerAgent as infected

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets their health status

Implement the function that establishes the health status of a FactoryworkerAgent as not infected

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets their health status

Implement the function that establishes the date that a FactoryworkerAgent will no longer be

infected

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets when their health is

 fixed

Implement the function that establishes reduces the time the FactoryworkerAgent will be

infected by one each period

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets when their health is

 fixed

Implement the function that establishes that a FactoryworkerAgent is recovered/removed

31

 This function accepts a member of the FactoryworkerAgent class and an integer from the

 TestLab

 The function calls the FactoryworkerAgent member function that sets when they are

 recovered/removed

Implement the function that gives a TownspersonAgent an identifier of their agent type

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 This function calls the TownspersonAgent member function that sets agent type

Implement the function that gives a TownspersonAgent an ID number

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets ID numbers

Implement the function that assigns a TownspersonAgent to their household

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets household number

Implement the function that establishes the location of a TownspersonAgent

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets their location

Implement the function that establishes the health status of a TownspersonAgent as infected

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets their health status

Implement the function that establishes the health status of a TownspersonAgent as not infected

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets their health status

Implement the function that establishes the date that a TownspersonAgent will no longer be

infected

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets when their health is

 fixed

Implement the function that establishes reduces the time the TownspersonAgent will be infected

by one each period

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

32

 The function calls the TownspersonAgent member function that sets when their health is

 fixed

Implement the function that establishes that a TownspersonAgent is recovered/removed

 This function accepts a member of the TownspersonAgent class and an integer from the

 TestLab

 The function calls the TownspersonAgent member function that sets when they are

 recovered/removed

TestLab.cpp

Define all relevant inclusions including random number, vector, array, and time library

functionality

Include the BristolBay header file

Include the FisherpersonAgent header file

Include the FactoryworkerAgent header file

Include the TownspersonAgent header file

Implement the function that prompts the user to input the number of periods/rounds to be

simulated

Declare an integer variable to hold the number of periods to be simulated

 While loop to ensure the number of rounds is a nonnegative integer

 Print instructions concerning the number of periods to the user

 Accept the number of periods via keyboard input

 Return the number of periods to be simulated to the program

Implement the function that prompts the user to input the number of repetitions to be simulated

Declare an integer variable to hold the number of repetitions to be simulated

 While loop to ensure the number of repetitions is a nonnegative integer

 Print instructions concerning the number of iterations to the user

 Accept the number of repetitions via keyboard input

 Return the number of repetitions to be simulated to the program

Declare main program

Create an object of the BristolBay class

Declare a variable of type double to hold R0 for the community

Call the BristolBay object’s function that prompts the user to input R0 for the community and

assign it to the variable of type double

Declare a variable of type double to hold R0 for the fisherpersons

Call the BristolBay object’s function that prompts the user to input R0 for the fisherpersons and

assign it to the variable of type double

Declare a variable of type double to hold R0 for the factory workers

33

Call the BristolBay object’s function that prompts the user to input R0 for the factory workers

and assign it to the variable of type double

Declare a variable of type double to hold R0 for the townspeople

Call the BristolBay object’s function that prompts the user to input R0 for the townspeople and

assign it to the variable of type double

Declare a variable of type double to hold gamma (𝛾) for the community

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the

community and assign it to the variable of type double

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission

in the community

Declare a variable of type double to hold gamma (𝛾) for the fisherpersons

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the

fisherpersons and assign it to the variable of type double

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission

on boats

Declare a variable of type double to hold gamma (𝛾) for the factory workers

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the

community and assign it to the variable of type double

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission

in factories

Declare a variable of type double to hold gamma (𝛾) for the townspeople

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the

community and assign it to the variable of type double

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission

in households

Declare a variable of type double to hold 𝛽 for the community

Calculate 𝛽 as R0 / 1/𝛾

Declare a variable of type double to hold 𝛽 for boats

Calculate 𝛽 as R0 / 1/𝛾

Declare a variable of type double to hold 𝛽 for factories

Calculate 𝛽 as R0 / 1/𝛾

Declare a variable of type double to hold 𝛽 for households

Calculate 𝛽 as R0 / 1/𝛾

Declare a variable of type double to hold the probability that a fisherperson goes into the

community in a period

Call the BristolBay object’s function that prompts the user to input the probability that a

fisherperson goes into the community in a period and assign it the variable of type double

Declare a variable of type double to hold the probability that a factory worker goes into the

community in a period

Call the BristolBay object’s function that prompts the user to input the probability that a factory

worker goes into the community in a period and assign it the variable of type double

Declare a variable of type double to hold the probability that a townsperson goes into the

community in a period

34

Call the BristolBay object’s function that prompts the user to input the probability that a

townsperson goes into the community in a period and assign it the variable of type double

Declare a variable of type double to hold the population of fisherpersons

Declare a variable of type double to hold the crew size of boats

Declare a variable of type double to hold the number of initially infected fisherpersons

Declare a variable of type double to hold the number of initially vaccinated fisherpersons

Call the BristolBay object’s function that prompts the user to input the population of

fisherpersons and assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the crew size of boats and

assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the number of initially sick

fisherpersons and assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the number of initially

vaccinated fisherpersons and assign it to the variable of type double

Declare a variable of type double to hold the population of factory workers

Declare a variable of type double to hold the size of factories

Declare a variable of type double to hold the number of initially infected factory workers

Declare a variable of type double to hold the number of initially vaccinated factory workers

Call the BristolBay object’s function that prompts the user to input the population of factory

workers and assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the size of factories and

assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the number of initially sick

factory workers and assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the number of initially

vaccinated factory workers and assign it to the variable of type double

Declare a variable of type double to hold the population of townspeople

Declare a variable of type double to hold the size of households

Declare a variable of type double to hold the number of initially infected townspeople

Declare a variable of type double to hold the number of initially vaccinated townspeople

Call the BristolBay object’s function that prompts the user to input the population of

townspeople and assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the size of households and

assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the number of initially sick

townspeople and assign it to the variable of type double

Call the BristolBay object’s function that prompts the user to input the number of initially

vaccinated townspeople and assign it to the variable of type double

Declare a variable of type int to hold the number of periods to be simulated

Call the function that prompts the user to input the number of periods to be simulated and assign

it to the variable of type int

Declare a variable of type int to hold the number of repetitions to be simulated

35

Call the function that prompts the user to input the number of repetitions to be simulated and

assign it to the variable of type int

Print a parameter report to the user to ensure the accuracy of all variables

Output to the screen all parameter values as input by the user with respect to the virus, each

agent type, and the number of periods and repetitions to be simulated

 Declare a variable of type char to ask the user for their approval of the parameter report

 Print a confirmation question asking the user to input a y or Y if they would like to

 proceed

 Accept the user’s response via keyboard input and assign it to the variable of type char

 If the user inputs y or Y, proceed and print that the program is running agent-based

 simulations

 Else exit the program

For loop that repeats until the number of repetitions is satisfied

 Create a vector of FisherpersonAgent objects of size dictated by the user

 Create a vector of FactoryworkerAgent objects of size dictated by the user

 Create a vector of TownspersonAgent objects of size dictated by the user

 For loop that repeats over the size of the vector of FisherpersonAgent objects

Call the BristolBay object’s function that assigns an ID number to a

FisherpersonAgent object

Call the BristolBay object’s function that assigns a FisherpersonAgent object to a

boat

For loop that repeats over the size of the vector of FactoryworkerAgent objects

Call the BristolBay object’s function that assigns an ID number to a

FactoryworkerAgent object

Call the BristolBay object’s function that assigns a FactoryworkerAgent object to

a factory

For loop that repeats over the size of the vector of TownspersonAgent objects

Call the BristolBay object’s function that assigns an ID number to a

TownspersonAgent object

Call the BristolBay object’s function that assigns a TownspersonAgent object to a

household

 Declare a variable of type double, initialized at 0, that counts the number of sick

 fisherpersons

 Declare a variable of type double that holds the probability that a fisherperson is initially

 sick, initialized at the number of initially sick fisherpersons divided by the population of

 fisherpersons and multiplied by 100

 Declare a variable of type double, initialized at 0, that counts the number of sick factory

 workers

 Declare a variable of type double that holds the probability that a factory worker is

 initially sick, initialized at the number of initially sick factory workers divided by the

 population of factory workers and multiplied by 100

36

 Declare a variable of type double, initialized at 0, that counts the number of sick

 townspeople

 Declare a variable of type double that holds the probability that a townsperson is initially

 sick, initialized at the number of initially sick townspersons divided by the population of

 townspersons and multiplied by 100

For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the count of sick fisherpersons is less than the number of initially sick

 fisherpersons

 If the probability that a fisherperson is initially sick exceeds a random

 number between 0 and 100

Call the BristolBay object’s function that establishes a fisherperson

as sick

Declare a variable of type int to hold how long the fisherperson

will remain infected, is initialized at a random number between 1

and 𝛾

Call the BristolBay object’s function that establishes how long the

fisherperson will remain infected and assign it the int between 1

and 𝛾

Increase the count of sick fisherpersons by 1

 Else do not change the count of sick fisherpersons

 Else do not change the count of sick fisherpersons

For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If the count of sick factory workers is less than the number of initially sick factory

 workers

 If the probability that a factory worker is initially sick exceeds a random

 number between 0 and 100

Call the BristolBay object’s function that establishes a factory

worker as sick

Declare a variable of type int to hold how long the factory worker

will remain infected, is initialized at a random number between 1

and 𝛾

Call the BristolBay object’s function that establishes how long the

factory worker will remain infected and assign it the int between 1

and 𝛾

Increase the count of sick factory workers by 1

 Else do not change the count of sick factory workers

 Else do not change the count of sick factory workers

For loop that repeats over the size of the vector of TownspersonAgent objects

 If the count of sick townspeople is less than the number of initially sick

 townspeople

 If the probability that a townspeople is initially sick exceeds a random

 number between 0 and 100

37

Call the BristolBay object’s function that establishes a

townspeople as sick

Declare a variable of type int to hold how long the townspeople

will remain infected, is initialized at a random number between 1

and 𝛾

Call the BristolBay object’s function that establishes how long the

townspeople will remain infected and assign it the int between 1

and 𝛾

Increase the count of sick townspeople by 1

 Else do not change the count of sick townspeople

 Else do not change the count of sick townspeople

 Declare a variable of type double, initialized at 0, that counts the number of vaccinated

 fisherpersons

 Declare a variable of type double that holds the probability that a fisherperson is initially

 vaccinated, initialized at the number of initially vaccinated fisherpersons divided by the

 population of fisherpersons and multiplied by 100

 Declare a variable of type double, initialized at 0, that counts the number of vaccinated

 factory workers

 Declare a variable of type double that holds the probability that a factory worker is

 initially vaccinated, initialized at the number of initially vaccinated factory workers

 divided by the population of factory workers and multiplied by 100

 Declare a variable of type double, initialized at 0, that counts the number of vaccinated

 townspeople

 Declare a variable of type double that holds the probability that a townsperson is initially

 vaccinated, initialized at the number of initially vaccinated townspersons divided by the

 population of townspersons and multiplied by 100

For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the count of vaccinated fisherpersons is less than the number of initially

 vaccinated fisherpersons

If, when calling the FisherAgent object that gets the fisherperson’s health

status, the agent is healthy

 If the probability that a fisherperson is initially vaccinated exceeds

 a random number between 0 and 100

Call the BristolBay object’s function that establishes a

 fisherperson as vaccinated

Increase the count of vaccinated fisherpersons by 1

 Else do not change the count of vaccinated fisherpersons

Else do not change the count of vaccinated fisherpersons

Else do not change the count of vaccinated fisherpersons

For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If the count of vaccinated factory workers is less than the number of initially

 vaccinated factory workers

38

If, when calling the FactoryworkerAgent object that gets the factory

worker’s health status, the agent is healthy

 If the probability that a factory worker is initially vaccinated

 exceeds a random number between 0 and 100

Call the BristolBay object’s function that establishes a

 factory worker as vaccinated

Increase the count of vaccinated factory workers by 1

 Else do not change the count of vaccinated factory workers

Else do not change the count of vaccinated factory workers

Else do not change the count of vaccinated factory workers

For loop that repeats over the size of the vector of TownspersonAgent objects

 If the count of vaccinated townspeople is less than the number of initially

 vaccinated townspeople

If, when calling the TownspersonAgent object that gets the townsperson’s

health status, the agent is healthy

 If the probability that a townsperson is initially vaccinated exceeds

 a random number between 0 and 100

Call the BristolBay object’s function that establishes a

 townsperson as vaccinated

Increase the count of vaccinated townspeople by 1

 Else do not change the count of vaccinated townspeople

Else do not change the count of vaccinated townspeople

Else do not change the count of vaccinated townspeople

Determine how many of each agent type, as well as the entire population, is susceptible,

 infected, and removed

Create an object that will generate Excel files of various formats to record the results of

 each repetition of the program

Detail the particulars of each Excel file, including format and recorded content that

 includes column titles for all agent types and the entire population of agents, as well as

 their status as susceptible, infected, and removed

Write all data from period 0 into the first row of the Excel output file for each repetition

 of the simulation

 For loop that repeats until the number of periods is satisfied

 Declare a variable of type double to hold the number of sick fisherpersons in the

 period

 Declare a variable of type double to hold the number of sick factory workers in

 the period

Declare a variable of type double to hold the number of sick townspeople in the

 period

For loop that repeats over the size of the vector of FisherpersonAgent objects

 If, when calling the FisherpersonAgent object that gets a fisherperson

 agent’s health status, the agent is sick

39

 Increase the count of sick fisherpersons

 Else do not change the count of sick fisherpersons

For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If, when calling the FactoryworkerAgent object that gets a factory worker

 agent’s health status, the agent is sick

 Increase the count of sick factory workers

 Else do not change the count of sick factory workers

For loop that repeats over the size of the vector of TownspersonAgent objects

 If, when calling the TownspersonAgent object that gets a townsperson

 agent’s health status, the agent is sick

 Increase the count of sick townspeople

 Else do not change the count of sick townspeople

 Declare a variable of type double to hold the location of a fisherperson in the

 period

 Declare a variable of type double to count the number of fisherpersons in the

 community in the period

 Declare a variable of type double to hold the location of a factory worker in the

 period

 Declare a variable of type double to count the number of factory workers in the

 community in the period

 Declare a variable of type double to hold the location of a townsperson in the

 period

 Declare a variable of type double to count the number of townspeople in the

 community in the period

 For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the probability a fisherperson goes out in a period exceeds a random

 number between 0 and 100

 Set the fisherperson’s location variable to out in the community

 Update the count of fisherperson agents in the community in the

 period

 Else set the fisherperson’s location variable to their boat

 Call the BristolBay object’s function that sets the fisherperson’s location

For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If the probability a factory worker goes out in a period exceeds a random

 number between 0 and 100

 Set the factory worker’s location variable to out in the community

 Update the count of factory worker agents in the community in the

 period

 Else set the factory worker’s location variable to their factory

 Call the BristolBay object’s function that sets the factory worker’s

 location

For loop that repeats over the size of the vector of TownspersonAgent objects

40

 If the probability a townsperson goes out in a period exceeds a random

 number between 0 and 100

 Set the townsperson’s location variable to out in the community

 Update the count of townsperson agents in the community in the

 period

 Else set the townsperson’s location variable to their household

 Call the BristolBay object’s function that sets the townsperson’s location

 Declare a variable of type double to hold the number of fisherpersons out in the

 community who are infected and initialize it at zero

 Declare a variable of type double to hold the number of fisherpersons out in the

 community who are susceptible and initialize it at zero

 Declare a variable of type double to hold the number of fisherpersons out in the

 community who are removed and initialize it at zero

 Declare a variable of type double to hold the number of factory workers out in the

 community who are infected and initialize it at zero

 Declare a variable of type double to hold the number of factory workers out in the

 community who are susceptible and initialize it at zero

 Declare a variable of type double to hold the number of factory workers out in the

 community who are removed and initialize it at zero

 Declare a variable of type double to hold the number of townspeople out in the

 community who are infected and initialize it at zero

 Declare a variable of type double to hold the number of townspeople out in the

 community who are susceptible and initialize it at zero

 Declare a variable of type double to hold the number of townspeople out in the

 community who are removed and initialize it at zero

 Declare a variable of type double to hold the total number of agents out in the

 community who are susceptible and initialize it at zero

 Declare a variable of type double to hold the total number of agents out in the

 community who are infected and initialize it at zero

 Declare a variable of type double to hold the total number of agents out in the

 community who are removed and initialize it at zero

For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the fisherperson is infected and out in the community and not recovered

 Update the count of fisherpersons infected in the community by

 one

 Else do not increase the count of fisherpersons infected in the community

 If the fisherperson is not infected and out in the community and not

 recovered

 Update the count of fisherpersons susceptible in the community by

 one

Else do not increase the count of fisherpersons susceptible in the

 community

41

 If the fisherperson is not infected and out in the community and recovered

 Update the count of fisherpersons removed in the community by

 one

 Else do not increase the count of fisherpersons removed in the community

For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If the factory worker is infected and out in the community and not

 recovered

 Update the count of factory workers infected in the community by

 one

 Else do not increase the count of factory workers infected in the

 community

 If the factory worker is not infected and out in the community and not

 recovered

 Update the count of factory workers susceptible in the community

 by one

Else do not increase the count of factory workers susceptible in the

 community

 If the factory worker is not infected and out in the community and

 recovered

 Update the count of factory workers removed in the community by

 one

 Else do not increase the count of factory workers removed in the

 community

For loop that repeats over the size of the vector of TownspersonAgent objects

 If the townsperson is infected and out in the community and not recovered

 Update the count of townspeople infected in the community by one

 Else do not increase the count of townspeople infected in the community

 If the townsperson is not infected and out in the community and not

 recovered

 Update the count of townspeople susceptible in the community by

 one

Else do not increase the count of townspeople susceptible in the

 community

 If the townsperson is not infected and out in the community and recovered

 Update the count of townspeople removed in the community by

 one

 Else do not increase the count of townspeople removed in the community

Calculate the total number infected agents out in the community as the sum of all

 three infected types out in the community in the period

Calculate the total number susceptible agents out in the community as the sum of

 all three susceptible types out in the community in the period

Calculate the total number removed agents out in the community as the sum of all

 three removed types out in the community in the period

42

Declare a variable of type double that is equal to 𝛽 for the community multiplied

 by (the total infected agents out in the community divided by the total susceptible

 agents out in the community)

For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the fisherperson is out and not infected and not recovered

 If 𝛽 for the community multiplied by (the total infected agents out

 in the community divided by the total susceptible agents out in the

 community) exceeds a random number between 0 and 100

 Call the BristolBay object’s function that sets the

 fisherperson’s health status to infected

 Call the BristolBay object’s function that sets a

 fisherperson as infected for 𝛾 number of periods

 Increase the count of infected fisherpersons by one

 Increase the count of infected fisherpersons out in the

 community by one

Else do not update the count of infected fisherpersons

Else if the fisherperson is out and infected and not recovered

 Declare a variable of type int and call the FisherpersonAgent

 object’s function that gets the date that the fisherperson will cease

 to be infected

Call the BristolBay object’s function that reduces the fisherperson

 agent’s remaining infected time by one period

 Else do not update the count of infected fisherpersons

For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If the factory worker is out and not infected and not recovered

 If 𝛽 for the community multiplied by (the total infected agents out

 in the community divided by the total susceptible agents out in the

 community) exceeds a random number between 0 and 100

 Call the BristolBay object’s function that sets the factory

 worker’s health status to infected

 Call the BristolBay object’s function that sets a factory

 worker as infected for 𝛾 number of periods

 Increase the count of infected factory workers by one

 Increase the count of infected factory workers out in the

 community by one

Else do not update the count of infected factory workers

Else if the factory worker is out and infected and not recovered

 Declare a variable of type int and call the FactoryworkerAgent

 object’s function that gets the date that the factory worker will

 cease to be infected

Call the BristolBay object’s function that reduces the factory

 worker agent’s remaining infected time by one period

 Else do not update the count of infected factory workers

43

For loop that repeats over the size of the vector of TownspersonAgent objects

 If the townsperson is out and not infected and not recovered

If 𝛽 for the community multiplied by (the total infected agents out

in the community divided by the total susceptible agents out in the

community) exceeds a random number between 0 and 100

 Call the BristolBay object’s function that sets the

 townsperson’s health status to infected

 Call the BristolBay object’s function that sets a

 townsperson as infected for 𝛾 number of periods

 Increase the count of infected townspeople by one

 Increase the count of infected townspeople out in the

 community by one

Else do not update the count of infected townspeople

Else if the townsperson is out and infected and not recovered

 Declare a variable of type int and call the TownspersonAgent

 object’s function that gets the date that the townsperson will cease

 to be infected

Call the BristolBay object’s function that reduces the townsperson

 agent’s remaining infected time by one period

 Else do not update the count of infected townspeople

Declare a variable of type int to hold the number of boats, calculated as the

 population of fisherpersons divided by the crew size of boats

Declare a variable of type into to hold the number of factories, calculated as the

 population of factory workers divided by the size of factories

Declare a variable of type int to hold the number of households, calculated as the

 population of townspeople divided by the size of households

For loop that repeats over the number of boats

 Declare a variable of type double to hold the number of agents on a boat

 who are susceptible and initialize it at zero

Declare a variable of type double to hold the number of agents on a boat

 who are susceptible and initialize it at zero

Declare a variable of type double to hold the number of agents on a boat

 who are removed and initialize it at zero

 For loop that repeats over the size of the vector of FisherpersonAgent

 objects

 If the fisherperson lives on this boat and is infected and is on the

 boat

 Update the count of fisherpersons infected on this boat by

 one

 If the fisherperson lives on this boat and is not infected and is on

 the boat and is not removed

 Update the count of fisherpersons susceptible on this boat

 by one

44

 If the fisherperson lives on this boat and is not infected and is on

 the boat and is removed

 Update the count of fisherpersons removed on this boat by

 one

Declare a variable of type double that is equal to 𝛽 for a boat multiplied by

 (the total infected agents on this boat divided by the total susceptible

 agents on this boat)

For loop that repeats over the size of the vector of FisherpersonAgent

 objects

 If the fisherperson lives on this boat and is not infected and is on

 the boat and is not removed

If 𝛽 for a boat multiplied by (the total infected agents on

 this boat divided by the total susceptible agents on this boat

 exceeds a random number between 0 and 100

 Call the BristolBay object’s function that sets the

 fisherperson’s health status to infected

 Call the BristolBay object’s function that sets a

 fisherperson as infected for 𝛾 number of periods

 Increase the count of infected fisherpersons on this

 boat by one

 Increase the count of infected fisherpersons by one

 Else do not update the count of infected fisherpersons

 Else if the fisherperson lives on this boat and is infected and is on

 the boat and is not removed

 Declare a variable of type int and call the

 FisherpersonAgent object’s function that gets the date that

 the fisherperson will cease to be infected

Call the BristolBay object’s function that reduces the

 fisherperson agent’s remaining infected time by one period

 Else do not update the count of infected fisherpersons

For loop that repeats over the number of factories

 Declare a variable of type double to hold the number of agents in a factory

 who are susceptible and initialize it at zero

Declare a variable of type double to hold the number of agents in a factory

 who are susceptible and initialize it at zero

Declare a variable of type double to hold the number of agents in a fact

who are removed and initialize it at zero

 For loop that repeats over the size of the vector of FactoryworkerAgent

 objects

 If the factory worker lives in this factory and is infected and is in

 the factory

 Update the count of factory workers infected in this factory

 by one

 If the factory worker lives in this factory and is not infected and is

 in the factory and is not removed

45

 Update the count of factory worker susceptible in this

 factory by one

 If the factory worker lives in this factory and is not infected and is

 in the factory and is removed

 Update the count of factory workers removed in this

 factory by one

Declare a variable of type double that is equal to 𝛽 for a factory multiplied

 by (the total infected agents in this factory divided by the total susceptible

 agents in this factory)

For loop that repeats over the size of the vector of FactoryworkerAgent

 objects

 If the factory worker lives in this factory and is not infected and is

 in the factory and is not removed

If 𝛽 for a factory multiplied by (the total infected agents in

 this factory divided by the total susceptible agents in this

 factory exceeds a random number between 0 and 100

 Call the BristolBay object’s function that sets the

 factory worker’s health status to infected

 Call the BristolBay object’s function that sets a

 factory worker as infected for 𝛾 number of periods

 Increase the count of infected factory workers in

 this factory by one

 Increase the count of infected factory workers by

 one

 Else do not update the count of infected factory workers

 Else if the factory worker lives in this factory and is infected and is

 in the factory and is not removed

 Declare a variable of type int and call the

 FactoryworkerAgent object’s function that gets the date

 that the factory worker will cease to be infected

Call the BristolBay object’s function that reduces the

 factory worker agent’s remaining infected time by one

 period

 Else do not update the count of infected factory workers

For loop that repeats over the number of households

 Declare a variable of type double to hold the number of agents in a

 household who are susceptible and initialize it at zero

Declare a variable of type double to hold the number of agents in a

 household who are susceptible and initialize it at zero

Declare a variable of type double to hold the number of agents in a

 household who are removed and initialize it at zero

 For loop that repeats over the size of the vector of TownspersonAgent

 objects

 If the townsperson lives in this household and is infected and is in

 the household

46

 Update the count of townspeople infected in this household

 by one

 If the townsperson lives in this household and is not infected and is

 in the household and is not removed

 Update the count of townspeople susceptible in this

 household by one

 If the townsperson lives in this household and is not infected and is

 in the household and is removed

 Update the count of townspeople removed in this

 household by one

Declare a variable of type double that is equal to 𝛽 for a household

 multiplied by (the total infected agents in this household divided by the

 total susceptible agents in this household)

For loop that repeats over the size of the vector of TownspersonAgent

 objects

 If the townsperson lives in this household and is not infected and is

 in the household and is not removed

If 𝛽 for a household multiplied by (the total infected agents

 in this household divided by the total susceptible agents in

 this household exceeds a random number between 0 and

 100

 Call the BristolBay object’s function that sets the

 townsperson’s health status to infected

 Call the BristolBay object’s function that sets a

 townsperson as infected for 𝛾 number of periods

 Increase the count of infected townspeople in this

 household by one

 Increase the count of infected townspeople by one

 Else do not update the count of infected townspeople

 Else if the townsperson lives in this household and is infected and

 is in the household and is not removed

 Declare a variable of type int and call the

 TownspersonAgent object’s function that gets the date that

 the townsperson will cease to be infected

Call the BristolBay object’s function that reduces the

 townsperson agent’s remaining infected time by one period

 Else do not update the count of infected townspeople

Declare a variable of type int to hold the number of susceptible fisherpersons at

 the end of the period

Declare a variable of type int to hold the number of infected fisherpersons at the

 end of the period

Declare a variable of type int to hold the number of removed fisherpersons at the

 end of the period

Declare a variable of type int to hold the number of susceptible factory workers at

 the end of the period

47

Declare a variable of type int to hold the number of infected factory workers at

 the end of the period

Declare a variable of type int to hold the number of removed factory workers at

 the end of the period

Declare a variable of type int to hold the number of susceptible townspeople at the

 end of the period

Declare a variable of type int to hold the number of infected townspeople at the

 end of the period

Declare a variable of type int to hold the number of removed townspeople at the

 end of the period

 For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the fisherperson is not infected and not removed

 Increase the count of end of period susceptible fisherpersons by

 one

 If the fisherperson is infected and not removed

 Increase the count of end of period infected fisherpersons by one

 If the fisherperson is not infected and is removed

 Increase the count of end of period removed fisherpersons by one

 For loop that repeats over the size of the vector of FactoryworkerAgent objects

 If the factory worker is not infected and not removed

 Increase the count of end of period susceptible factory workers by

 one

 If the factory worker is infected and not removed

 Increase the count of end of period infected factory workers by one

 If the factory worker is not infected and is removed

 Increase the count of end of period removed factory workers by

 one

 For loop that repeats over the size of the vector of TownspersonAgent objects

 If the townsperson is not infected and not removed

 Increase the count of end of period susceptible fisherpersons by

 one

 If the townsperson is infected and not removed

 Increase the count of end of period infected townspeople by one

 If the townsperson is not infected and is removed

 Increase the count of end of period removed townspeople by one

 Calculate the total number of end of period susceptible agents as the sum of all

 three susceptible types

 Calculate the total number of end of period infected agents as the sum of all three

 infected types

 Calculate the total number of end of period removed agents as the sum of all three

 removed types

 Write all data for the current period into the next row of the Excel output file

48

 For loop that repeats over the size of the vector of FisherpersonAgent objects

 If the fisherperson is infected and this is the final period they are infected

 Declare a variable of type int and call the FisherpersonAgent

 object’s function that gets the date that the fisherperson will cease

 to be infected

 If this is the final period in which a fisherperson is infected

 Call the BristolBay object’s function that reduces the

 infected agent’s remaining infected time by one period to

 zero

 Call the BristolBay object’s function that sets the fisherperson’s health

 status to not infected

Call the BristolBay object’s function that sets the fisherperson’s removed

 status to removed

For loop that repeats over the size of the vector of FactoryworkerAgent objects

If the factory worker is infected and this is the final period they are

 infected

 Declare a variable of type int and call the FactoryworkerAgent

 object’s function that gets the date that the factory worker will

 cease to be infected

 If this is the final period in which a factory worker is infected

 Call the BristolBay object’s function that reduces the

 infected agent’s remaining infected time by one period to

 zero

 Call the BristolBay object’s function that sets the factory worker’s health

 status to not infected

Call the BristolBay object’s function that sets the factory worker’s

 removed status to removed

 For loop that repeats over the size of the vector of TownspersonAgent objects

If the townsperson is infected and this is the final period they are infected

 Declare a variable of type int and call the TownspersonAgent

 object’s function that gets the date that the townsperson will cease

 to be infected

 If this is the final period in which a townsperson is infected

 Call the BristolBay object’s function that reduces the

 infected agent’s remaining infected time by one period to

 zero

 Call the BristolBay object’s function that sets the townsperson’s health

 status to not infected

Call the BristolBay object’s function that sets the townsperson’s removed

 status to removed

 Close the Excel output file objects

49

Print a message to the user that the agent-based simulations are complete.

Return control to close the main program

