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Abstract 

Outbreaks of COVID-19 in crowded work locations led to “superspreading” events during the 

pandemic that stressed health capacity in rural communities. This led to disparate responses – 

either isolating and restricting workers to facilities and potentially amplifying spread between 

them, more intense community wide restrictions, or an acceptance of higher disease spread. An 

extreme case is the salmon fishery in Bristol Bay, Alaska, where fishermen, factory workers, and 

residents all interact during the summer fishing season. During the pandemic, policy measures 

were debated, including community mask mandates, restricting workers to their boats and 

factories, and even closing the valuable seasonal fishery. 

 

We develop an agent-based SIR model (ABM) to examine COVID-19 transmission in a 

resource-dependent community populated by distinct subgroups. The model includes a virus 

spreading within and between three heterogenous populations who interact with other members 

of their type in their home location, and with different types of agents when out in the 

community. We simulate various non-pharmaceutical interventions and vaccination rates across 

these groups. Results demonstrate the efficacy of non-pharmaceutical interventions and 

vaccinations, as well as tradeoffs between duration and intensity and tradeoffs between groups 

impacted by the outbreak. This ABM demonstrates the impact of public policy mechanisms on 

health outcomes in resource-dependent communities with distinct populations. 

 

 

 

1. Introduction 
 

“ About eighty known died at Naknek. Adult population practically wiped out… Nurses required 

to handle orphans.  

Will advise later what funds are required.” 

 

– aerogram to Dr. French, US Commissioner at Dillingham, from Alaska Packers  

Association Superintendent JF Heinbockel, June 8, 1919 

 

 

Bristol Bay, Alaska is home to the world’s largest wild salmon fishery, and it hosts processing 

factories and seasonal fishermen that dramatically increase the population in the summer to harvest 

returning fish. Bristol Bay communities also had a brutal experience with the 1918 Influenza, 

which disproportionately killed Alaska Natives and punished local communities (deValpine 2015). 

This experience, and the knowledge and memory held by both the community and industry, lead 

to dramatic policy actions in response to the 2020 COVID-19 pandemic intended to avoid a repeat 

of history. Additionally, policymakers were concerned with maintaining a successful sockeye 

salmon fishery. Fishing is a major part of the economic base of Bristol Bay, and the sockeye fishery 

is incredibly time sensitive – the majority of the action occurs when the anadromous salmon return 

to fresh water to spawn over roughly one month in the summer (McKinley Research Group 2021). 

There is also evidence that COVID-19 imposed a greater burden on remote and rural areas 

(Armillei et al. 2021). 

 



3 
 

The fishery directly provides labor income to residents through both commercial fishing and 

recreational fishing, as well as directly providing food through a subsistence fishery (McKinley 

Research Group 2021). The extreme seasonality of salmon fishing in Bristol Bay means that an 

influx of seasonal workers temporarily live in these isolated communities which are disconnected 

from the wider road system. During their stay in the community, their spending is critical to local 

businesses focused on serving this workforce. However, all of these out-of-state workers are 

potential carriers of COVID-19. 

 

The community therefore faces an extreme version of the tradeoff faced by most communities 

where restrictions and lockdowns early in a pandemic save lives (Amuedo-Dorantes et al. 2021; 

Cooper et al. 2023; Prakash et al. 2022) but lead to economic costs (Bognanni et al. 2020). Closing 

the fishery during the pandemic would have protected public health, but it would have caused 

irreparable economic harm. Keeping the fishery open brings income, and with it disease and 

additional susceptible people to an isolated and medical resource-constrained community. 

Potential policy responses, like isolating fishery workers together away from the community in a 

factory or on a boat also potentially amplify the spread. The effect of similar superspreader events 

on transmission has been studied previously, and there is evidence that non-pharmaceutical 

interventions (NPI) may be more necessary and effective when targeted at these events (Althouse 

et al. 2020; Sneppen et al. 2021). Factory workers live in man camp arrangements where they dine 

communally and work in close contact with others. There is no way to socially distance on a 32-

foot fishing vessel with a crew of 5 people. Previous work has found that similar conditions in 

meatpacking plants amplified the spread of COVID-19 (Saitone et al. 2021) and that social habits 

influence the number of cases and deaths (Cristini and Trivin 2022). Work on the impact of 

weather also suggests that crowded spaces amplify spread (Yakubenko 2021). We also abstract 

away from the impact on absenteeism in production (Araya 2021). It is necessary to examine the 

impact of NPI in a scenario where economic interactions influence spread (Murray 2020). 

Oversimplified models that ignore the differences between economic agents may also miss an 

important mediating force on pandemic dynamics (Nishi et al. 2020). 

 

Prior work has examined the impact of targeted lockdowns on different age groups to examine the 

overall economic cost of extreme mitigation (Acemoglu et al. 2020, 2021; Bárcena-Martin et al. 

2022). This work finds targeted policies are more effective at reducing the cost of NPI. We also 

respond to calls to incorporate heterogeneity by occupation and location as well as vaccine 

treatments instead of NPI (Arias 2021). We expand upon previous work like Bisin and Moro (2020, 

2022) to examine the impact of restricted movement in remote rural areas. These areas often face 

limited healthcare resources and are particularly vulnerable to COVID-19 and other pandemics 

(Savage et al. 2020). 

 

Our paper explores potential policy responses to the pandemic and details an agent-based model 

(ABM) we developed to better understand the dynamics of an infectious disease when policies are 

targeted to various subgroups of the population. In general, an ABM consists of a program, 

typically written in an object-oriented language, that details an agent type or types, which includes 

potential traits or decision rules that govern behavior of members of a type. The ABM then uses 

computational power to create individual agents from a type, simulate their behavior and 

interactions with other agents of their type, other types, or both, and derive emergent, large-scale 

outcomes. While ABM has become an increasingly applied tool in several disciplines, much early 
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work in ABM centered on finance and transportation, and this literature is reviewed by Axelrod 

and Tesfatsion (2006) and Chen (2012). Related to the present study, other work has used ABM 

to examine behavior in resource-dependent environments (Wood et al., 2016) or to predict the 

efficacy of interventions in data rich environments (Tatapudi et al. 2020). These models have the 

potential to predict the efficacy of interventions (Gans 2022). Other contemporary work on 

COVID-19 transmission examines the impact of distancing on a population (Silva et al. 2020), or 

of transmission within a facility (Cuevas 2020).  

 

We incorporate community structural detail and different transmission rates within and between 

four different locations – fishing vessels, the processing factories, households, and community 

locations. We distinguish between three types of people – fishermen, factory workers, and 

household members. We are able to draw these distinctions because of the unique characteristics 

of the fishery – because it is a time sensitive regulated open access fishery, even residents of Bristol 

Bay who engage in commercial fishing are distinct from household members, in that they are likely 

to be fishing for the preponderance of the season. Additionally, we are able to examine policies 

both before and after the introduction of a vaccine that reduces transmission and find that policies 

have differential effects before and after introduction (Makris and Toxvaerd 2020). 

 

 

2. Geographical and Mathematical Models 
 

We develop an agent-based SIR (susceptible, infected, removed) model consisting of three types 

of agents that interact within a model of distinct locations and heterogenous populations.  

 

2.1 Heterogeneous Populations Community Model 

Agents in the heterogenous populations model can be fishermen, factory workers, or household 

members. Each group has a different home location during the fishing season. Fishing boats are 

the home location for fishermen, processing factories are the home location for factory workers, 

and households are the home location for household members. Within each home location, there 

are subunits that represent individual households, fishing boats, or processing factories. These 

subunits vary in size by agent type. All agents sometimes visit the community, where they come 

into contact with members of other groups. The model is represented in Figure 1. We model agent 

movements on a daily time scale. Every day, agents wake up in their home location. With some 

probability they then either remain in that location, or they move to the community. After their 

location for that day is determined, they interact with all other individuals in that location. For 

example, a fisherman starts the day on their fishing boat. With some probability they either remain 

there, or they go to the community. If they go to the community they then interact with any other 

fishermen, factory workers, and household members who also went to the community that day. If 

they remain on their fishing boat, they only interact with other members of that crew. 
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Figure 1: Community model 

 

2.2: SIR Model 

Figure 2 provides the details of the infectious disease model. Within any location we develop a 

daily SIR model where we track the health status of every agent. Once it is determined who is in 

any given location, we determine if there are any infected individuals in that location. We denote 

individuals as being susceptible 𝑆, infected 𝐼, or removed 𝑅, which includes both those with post 

infection resistance and mortality. Individuals are indexed by their type 𝑖 ∈ {𝑓, 𝑝, ℎ} where 𝑓 

denotes fishermen, 𝑝 denotes processing factory workers, and ℎ denotes household members as 

well as their location 𝑗 ∈ {𝑏𝑜𝑎𝑡, 𝑓𝑎𝑐𝑡𝑜𝑟𝑦, ℎ𝑜𝑚𝑒}. Simplified versions of the equations of motion 

are provided in equations 1-3. 

 

1) 𝑆̇𝑖,𝑗 = −𝛽𝑗𝑆𝑖,𝑗
𝐼𝑖∀𝑖,𝑗

𝑁
 

 

2) 𝐼𝑖̇,𝑗 = 𝛽𝑆𝑖,𝑗
𝐼𝑖∀𝑖,𝑗

𝑁
− 𝛾𝐼𝑖∀𝑖,𝑗 

 

3) 𝑅̇𝑖,𝑗 = 𝛾𝐼𝑖∀𝑖,𝑗 
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Figure 2: Daily SIR infectious disease model in a factory 

 

Susceptible people in group 𝑖 become infected at rate 𝛽𝑗 subject to coming into contact with 

infected individuals. The probability of any individual contact being with an infected individual 

depends upon the proportion of infected individuals in each location, regardless of their type 𝑖, or 
𝐼𝑖∀𝑖,𝑗

𝑁
. Individuals then are removed from the infected population 𝐼𝑖∀𝑖,𝑗 at the rate 𝛾 when they either 

recover and have immunity or become deceased. The typical season length is short enough that 

reinfection does not occur. 

 

 

3. Agent Based Model and Simulation Scenarios 
 

3.1 Agent-Based Model 

The agent-based model (ABM) consists of the community and SIR models of agent interaction 

and public health policy. It provides detailed results of virus transmission in agents within and 

between heterogeneous populations. The program was written in C++ and tested and debugged in 

Microsoft Visual Studio 2019 Version 16. Detailed pseudocode is provided in Appendix A to 

exhibit transparency in program design. 

 

When the program begins, the user is prompted to initialize each parameter and probability 

relevant to the virus, each agent type, and every public policy mechanism in the ABM. Stay-at-

home orders for each type of agent are captured by the probability that an agent of a particular type 

leaves their home location and goes into the community on a given day. For instance, if the value 
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for households is 28.5, a household member agent will leave their household and go into the 

community twice per week in an average week (28.5% of days involve a trip out of the household).  

 

The program also allows initial values specific to each agent type including the number of agents 

in each population, the size of home locations, the number of initially infected agents, and the 

number of initially vaccinated agents for each of the fishermen, factory workers, and household 

members. Infected agents are randomly assigned a number between 1 and 𝛾 for how many periods 

they will remain contagious before they attain removed status.  

 

After parameters are given for each class of agent, the program asks for the number of periods 

(days) and repetitions to be simulated. On each day, every individual agent of each type is placed 

either in their home location or out in the community based on the probability that they go out. An 

SIR model is then simulated in the community and in each factory, boat, and household that is 

determined by the number of agents in each location, as well as their status as susceptible, infected, 

or removed. At the end of the period, the status of each agent is updated. The simulation is repeated 

to provide a distribution of results based on the random transmission and distribution of initial 

cases.  

 

3.2 Scenarios Considered 

For our analysis, we developed a list of plausible scenarios to consider and ran simulations in 

which we imposed various control measures. These scenarios are listed in Table 1. 

 

Scenario Name Description 

A Baseline Baseline scenario without NPI 

B Stay-at-home orders Require all agents to stay in their home location the 

majority of the time 

C Mask mandates in 

community 

Reduced transmission in the community location 

D Mask mandates in 

community and factories 

Reduced transmission in the community and factory 

locations 

E Vaccinations Some agents are not susceptible or infected 

F All of the above Combination of B, D, and E 

G Factory mobile Encourage the factory workers to leave home location 

H Factory mobile and 

mask mandates in 

community 

Encourage the factory workers to leave home location 

and lower transmission rates in the community location 

I Factory mobile and 

mask mandates in 

community and factories 

Encourage factory workers to leave home locations and 

lower transmission in the community location and in 

factories 

J Factory mobile, mask 

mandates in community 

and factories, and 

households lockdown 

Encourage factory workers to leave, lower transmission 

in the community location and in factories, and 

household members cannot leave home location 

Table 1: Scenarios for numerical exercises and brief descriptions 
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To motivate our numerical experiments, we considered a combination of non-pharmaceutical 

interventions that were common policy responses in the United States at the time, the actual 

measures taken in Bristol Bay, and other plausible combinations of control measures. Our interest 

lay in how the distribution of potential outcomes changed both in average outcomes and variance. 

We were also interested in potential unintended consequences of different actions.  

 

Our baseline scenario considers non NPI and assumes that behavior does not meaningfully change 

during the outbreak. This is our base case against which we consider different outcomes. Our first 

alternative scenario consists of home orders which require everyone to remain in their home 

location but impose no restrictions on their interactions within that location. This includes both 

fishermen and factory workers, who have to stay within their boat or factory, respectively. There 

is precedent for this – during the 2020 season restrictions were passed that limited fishermen to 

their boats and restricted their movement while in port, and processing factories severely restricted 

the ability of their workers to access the local community. Our next scenario assumes mask 

mandates are enforced, but only in the community area. We assume the main effect of mask 

mandates is to reduce the transmission rates in the location they are used, which in this case is the 

community where groups mix. We extend that reduction in transmission to factories in scenario 

D. In Scenario E we introduce vaccinations and assume that inoculated agents are not able to be 

infected during the simulation period. Scenario F is a combination of vaccination, masks, and stay-

at-home orders that restricts the movement between areas and lowers transmission rates.  

 

Scenario G allows only the factory workers to leave their home location. Our motivation here is to 

examine the potential counterfactual for what actually happened in Bristol Bay. By restricting large 

quantities of people to a small and crowded working and living area there is the potential of an 

amplification effect. By bringing large quantities of susceptible people into close contact with 

infected individuals and not allowing them to distance, outbreaks in factory locations could be 

worse than otherwise expected. In this case, allowing factory workers to leave their home location 

could potentially shrink outbreak sizes and shorten outbreaks. We add mask mandates in scenario 

H, and we impose a universal mask mandate in scenario I. Scenario J extends this one step further 

and requires household members to remain in their homes and not go to the community location, 

while still allowing factory workers to distance in the community while masked. 

 

Table 2 has scenario parameter values. Consistent throughout, we assume that non-pharmaceutical 

measures only impact transmission through the parameter 𝛽. In reality, there is likely a change 

also in the amount of time individuals spend in public and in community locations. There is 

evidence of both restricted activity and increased time in public. 

 

Each scenario consists of a parameterization that lasts for 60 periods, and each scenario was 

simulated 1000 times. Table 3 contains details about each heterogeneous group across all 

scenarios, including the population of each group, the number of agents that reside in each home 

location, and how many agents are infected at the beginning of the simulation. Table 4 has the 

specific policy parameters for each scenario.  
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Agent Population 

Home 

Location 

Population 

Initially 

Infected 
γ 

Fishermen 7000 5 10 14 

Factory Workers 5000 200 10 14 

Household Members 2226 3 0 14 

Table 2: Population data for numerical exercises 
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A 5 7 7 6 20% 20% 20% 0 0 0 

B 5 7 7 6 5% 5% 5% 0 0 0 

C 1 7 7 6 20% 20% 20% 0 0 0 

D 1 7 1.5 6 20% 20% 20% 0 0 0 

E 5 7 7 6 20% 20% 20% 4200 3000 1335 

F 1 7 1.5 6 5% 5% 5% 4200 3000 1335 

G 5 7 7 6 20% 50% 20% 0 0 0 

H 1 7 7 6 20% 50% 20% 0 0 0 

I 1 7 1.5 6 20% 50% 20% 0 0 0 

J 1 7 1.5 6 20% 50% 5% 0 0 0 

Table 3: Parameters for numerical exercises 

 

3.3 Analysis 

Within the above scenarios we run repeated trials to explore uncertainty around where an outbreak 

might originate and the stochastic portions of transmission. We then compared average outcomes 

for variables of interest. 

 

4) 𝑦ℎ = 𝛽0 + ∑ 𝛽ℎ𝐷ℎℎ + 𝜖ℎ 

 

We use the specification in equation (4) to regress the peak number of individuals infected, the 

day the number of peak infections occur, the total number of individuals infected over the duration 

of the outbreak, and the last day an individual is infected on a constant and a dummy variable for 

treatments other than the baseline. The coefficient 𝛽0 is interpreted as the average value of the 

variable of interest in Treatment A – Baseline. The coefficient for 𝛽ℎ is the average deviation from 

the baseline case for all ℎ different treatments. The error term reflects the random component of 

our simulations. Results are shown in Table 4. 

 

Additionally, we generated a series of box and whisker plots (Figures 3 through 6) to better 

demonstrate the variability across treatments. These plots demonstrate the potential riskiness of 



10 
 

strategies that may on average reduce the severity of the pandemic (measured in our variables of 

interest) but can also lead to a greater variance in outcomes. 

 

4. Results 
In examining the results in Table 4, Treatment A is used as a baseline against which the other 

scenarios are compared. Shown in the first row, it denotes the peak number of infected individuals, 

the day with the peak number of infections, the total number of agents who become infected over 

the course of the simulation period, and the day at which the outbreak ends when no mitigation 

efforts are in place. The subsequent rows exhibit how the results for Treatments B through J 

compare to Treatment A. A negative number in a column about individuals (columns 1 and 3) 

imply fewer sick agents relative to Treatment A. A negative number in a column about time 

(columns 2 and 4) imply fewer days relative to Treatment A. For example, a negative number in 

column 3 relates how many fewer agents became infected on average compared to Treatment A, 

while a negative number in column 4 conveys how many fewer days on average it took for the 

outbreak to end. Graphical results of the outcomes in terms of peak infected individuals, day of 

peak infections, total infected individuals, and end of outbreak are shown in Figures 3, 4, 5, and 6, 

respectively. 

 

 

 

 

Results 

 Dependent variable: 

 Peak Infected 

Individuals 

Day of Peak 

Infections 

Total Removed 

(previously 

infected or 

vaccinated) 

Individuals 

End of 

Outbreak 

 (1) (2) (3) (4) 

Treatment A - Baseline 13,624.060*** 22.025*** 14,226.000*** 43.366*** 

 (50.198) (0.155) (59.429) (0.166) 

     

Treatment B - Stay-at-Home 

Orders 
-3,163.076*** 7.789*** -88.950 16.634*** 

 (70.991) (0.219) (84.046) (0.235) 

Treatment C - Mask Mandates in 

Community 
-13,101.620*** -10.732*** -13,669.030*** -17.143*** 

 (70.991) (0.219) (84.046) (0.235) 

Treatment D - Mask Mandates in 

Community and Factory 
-13,575.290*** -16.619*** -14,167.990*** -22.565*** 

 (70.991) (0.219) (84.046) (0.235) 

Treatment E - Vaccinations -8,444.026*** -0.710*** -0.657 13.039*** 
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 (70.991) (0.219) (84.046) (0.235) 

Treatment F - All of the Above -13,557.840*** -4.748*** -5,589.906*** -10.976*** 
 (70.991) (0.219) (84.046) (0.235) 

Treatment G - Send Factory Out 285.209*** 0.510** -0.000 -0.061 
 (70.991) (0.219) (84.046) (0.235) 

Treatment H - Send Factory Out 

Masked 
-10,302.630*** -0.357 -10,307.120*** -1.535*** 

 (70.991) (0.219) (84.046) (0.235) 

Treatment 1 - Send Factory Out 

Masked Everywhere 
-13,576.390*** -17.057*** -14,170.020*** -22.659*** 

 (70.991) (0.219) (84.046) (0.235) 

Treatment J - Send Factory Out 

Masked Everywhere Household 

Members Home 

-13,576.780*** -17.096*** -14,170.530*** -22.771*** 

 (70.991) (0.219) (84.046) (0.235) 

     

     

Observations 10,000 10,000 10,000 10,000 

R2 0.923 0.748 0.920 0.876 

Adjusted R2 0.923 0.748 0.920 0.875 

Residual Std. Error (df = 9990) 1,587.398 4.892 1,879.324 5.257 

F Statistic (df = 9; 9990) 13,387.760*** 3,298.647*** 12,769.230*** 7,805.958*** 

Note: *p<0.1; **p<0.05; ***p<0.01 

Table 4: Results of ABM simulations presented using a regression model. Treatment A – 

Baseline is the comparison group. All coefficients in every other treatment are deviations from 

Treatment A levels for the peak number of infected individuals, the day of peak infections, the 

total number of previously infected or vaccinated individuals, and the last day with an active 

case. 
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Figure 3: Peak number of infections 
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Figure 4: Day of maximum number of infected individuals 
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Figure 5: Total removed (previously infected or vaccinated) individuals 
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Figure 6: End of the outbreak 

 

In Treatment A, the entire community is rapidly infected, and the outbreak ends when the last 

individual recovers or dies. In total 13,624 agents are infected at the peak, and this occurs on day 

22 of the simulation. All agents become infected during the 60-day simulation, with the end of the 

outbreak occurring on day 44. This is the result of assumed exponential growth in infected cases 

and no endogenous behavioral response to the disease. We use this as a baseline to compare other 

strategies, acknowledging there is an extensive literature on the endogenous response to COVID-

19, and that this is an upper bound on actual outcomes. 

 

Treatment B imposes stay-at-home orders, and 3,163 fewer agents are infected at the peak, which 

occurs 8 days later. While only 88 fewer agents are infected in total, the outbreak lasts 17 more 

days. The peak and length of the outbreak are delayed. In our simulations the efficacy of stay-at-

home orders lies in reducing the peak number of infections and reducing stress on finite resources 

at the height of the outbreak. The orders are imperfect – while trips are reduced by 75%, individuals 

still move between their home locations and the community location infrequently allowing the 

disease to spread. Perfectly enforced stay-at-home orders would reduce total cases further and 

potentially shorten the outbreak. 

 

Treatment C incorporates the effective imposition of masks in the community location. Masks are 

assumed effective at reducing the reproductive number in the community location. This location 
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is where individuals are able to pass the disease between different agent types and home locations. 

As a result 13,102 fewer agents are infected at the peak, and 13,669 fewer contract the virus over 

the course of the simulation. Further, the outbreak peaks 11 days sooner and ends 17 days sooner 

when compared to Treatment A. In total, that yields an outbreak of 557 individuals lasting 26 days, 

demonstrating the impact of effective and required masking in public spaces during a pandemic. 

Outbreaks are also more frequently localized to individual factories, boats, or households as the 

disease is less able to spread between locations. 

 

Treatment D has masking in factories in addition to the community location, and results in fewer 

peak infections, fewer total infections, fewer days to the peak number of infections, and fewer days 

to the outbreak than Treatment C. Treatments C and D are associated with many fewer peak and  

total infections than Treatment A. Additionally, the peak outbreak occurs sooner, helping to avoid 

fatigue and stress on small medical facilities in a remote, rural area.  

 

Treatment E examines when 60% of each type of agent is vaccinated against the virus. Compared 

to Treatment A, 8,444 fewer people are infected at a peak that occurs on roughly the same day, 

and while roughly the same number of agents are eventually resistant to the disease in the 

“removed” category, 60% of them acquired immunity to the disease from the vaccine before the 

simulation began. This is important in interpreting the result in Table 4 and Figure 5. That is, while 

the total number of removed individuals is roughly the same, 8,536 of them are due to vaccination, 

while almost all unvaccinated individuals are eventually infected with the disease. Overall, the 

outbreak lasts 13 days longer, however the system does not face the same extreme stress from high 

peak infection numbers.  

 

Treatment F combines the policy mechanisms of Treatments B, D, and E, and the results exhibit a 

vast reduction in the number of peak infected individuals, with 13,558 fewer infected at a peak 

that ends 5 days sooner on average than that of Treatment A. In total, 5,590 fewer agents are 

removed when stay-at-home orders, mask mandates, and vaccines are combined, and the outbreak 

ends 11 days sooner. The majority of individuals who do acquire immunity to the disease do so 

through vaccination, rather than infection. On average, only roughly 100 people are actually 

infected with the disease. 

 

In Treatment G, factory workers are actively sent out in the community to reduce the contagion 

occurring in the factories. The results are similar to Treatment A, with slightly more agents infected 

at the peak of the outbreak.  

 

Treatment H again has the factory workers more likely to be out in the community in a period, but 

they are now required to engage in effective masking. 10,303 fewer agents are infected at the peak, 

and 10,307 fewer agents get infected over the course of the outbreak. The peak outbreak occurs on 

the same day as Treatment A, but the entire outbreak ends around 2 days sooner.  

 

Treatment I has the factory workers masked in the community and in their home factories, and the 

results have 13,576 fewer infections at a peak that occurs 17 days sooner than Treatment A. In 

total, 14,170 fewer infections occur, and the outbreak is 23 days shorter.  
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Lastly, Treatment J has factory workers masked in the community and in their respective factories, 

while household members are kept on stay-at-home orders. The addition of stay-at-home orders 

do not change the outcome observed in Treatment I. Factory workers are a large portion of the 

community, and the outbreaks in this setting predominantly occur within factories. There is not a 

difference between allowing factory workers to mingle in the community or only in the factory if 

household members are isolated at home. 

 

 

5. Conclusions 
We introduced a unique ABM program that simulates virus transmission in a small fish processing 

community in Bristol Bay, Alaska. The model allows the disease to move within and between 

heterogeneous groups, and we contribute a novel way of examining ABM results using regression 

analysis to contrast differences more clearly between scenarios. We demonstrate how different 

non-pharmaceutical methods for slowing the spread of a disease between locations and person 

types can impact disease outcomes. We focus on social interactions between groups and show that 

these interactions mediated by nonpharmaceutical interventions determine overall disease burden, 

consistent with the existing literature (Cristini and Trivin 2022; Cooper et al. 2023). We 

demonstrate that targeting different interventions leads to tradeoffs between variability in 

outcomes and disease burden. Additionally, we show the impact of vaccination in changing how 

people acquire resistance to infectious disease. These insights are important, as these communities 

are often critically dependent upon a small group of large employers, and the ability of different 

groups in society to interact allows the community to benefit from the development of their 

resources. 

 

We find that rural, remote locations benefit not only from isolating different parts of the 

community, but from effective NPI and vaccination. This is consistent with peripheral areas being 

more at risk of COVID-19 (Armillei et al. 2021). Vaccination paired with NPI and movement 

restrictions can almost eliminate the risk of a pandemic. However, if a society places a high value 

on the ability of its household members to interact with outside workers, it can achieve similar 

results through vaccination and NPI alone. Our model shows that vaccination and efforts to reduce 

the reproductive number that we summarize as “masking” can allow local economies in these 

locations to continue to operate, and allow household members to interact with workers in ways 

that ensure spillovers to local communities from economic activity. 

 

We find tradeoffs between duration and intensity, and tradeoffs between which groups are 

impacted by the pandemic. For example, we find that absent additional NPI, isolating processing 

factory workers from the rest of the community can amplify outbreaks within these factories. This 

can potentially still lead to stress on public health facilities, while denying the community the 

economic benefits of local economic activity. This contributes to the literature as it examines inter 

and intra group contagion and enables the study of the impact of various public policy measures 

when applied individually or in combination to all or certain groups. This approach can be used 

prescriptively or predictively to examine future outbreaks and the impact of public policy 

mechanisms on health outcomes. Additionally, we provide insights that are relevant to 

policymakers who may need to assuage the fears of different community groups. For instance, a 

community that is protecting itself from a seasonal influx of people may be more interested in 

protecting household members while limiting other NPI. Our model highlights how the unintended 
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consequences of amplifying spread within other groups without additional NPI could still stress 

healthcare capacity and adversely impact household members. 
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Appendix: Pseudocode 
 

The program consists of nine components: a header file and source file for the TownspersonAgent 

class, a header file and source file for the FisherpersonAgent class, a header file and source file for 

the FactoryworkerAgent class, a header file and source file for the BristolBayCommunity class, 

and a TestLab source file that executes the “main” program.  

 

Because the header and source files are the same for each class of individual agent, we below 

provide pseudocode for five components: a header and source file for a generic agent type, a header 

and source file for the community, and a source file for the main program. 
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GenericAgent.h 

 

Define the class GenericAgent 

 

Declare the public components of the class 

 Declare the default constructor 

 Declare specific constructors 

 Declare the destructor 

 

Declare a function that returns a GenericAgent’s agent type 

Declare a function that returns a GenericAgent’s ID number 

Declare a function that returns a GenericAgent’s household/boat/factory number 

Declare a function that returns a GenericAgent’s location 

Declare a function that returns a GenericAgent’s health status 

Declare a function that returns a GenericAgent’s recovered/removed date 

Declare a function that returns a GenericAgent’s recovered/removed status 

 

Declare a function that sets a GenericAgent’s agent type 

Declare a function that sets a GenericAgent’s ID number 

Declare a function that sets a GenericAgent’s household/boat/factory number 

Declare a function that sets a GenericAgent’s location 

Declare a function that sets a GenericAgent’s health status 

Declare a function that sets a GenericAgent’s recovered/removed date 

Declare a function that sets a GenericAgent’s recovered/removed status 

 

Declare private variables of the class 

Declare a variable that holds a GenericAgent’s agent type 

Declare a variable that holds a GenericAgent’s ID number 

Declare a variable that holds a GenericAgent’s household/boat/factory number 

Declare a variable that holds a GenericAgent’s location 

Declare a variable that holds a GenericAgent’s health status 

Declare a variable that holds a GenericAgent’s recovered/removed date 

Declare a variable that holds a GenericAgent’s recovered/removed status 

 

 

GenericAgent.cpp 

 

Declare inclusions and libraries, including the GenericAgent header file and maths library 

functionality 

 

Define a specific constructor, allowing it to accept initial parameter values from the user 

Define a specific constructor, creating a new GenericAgent by copying an extant class member 

Define the destructor 

 

Implement a function that returns a GenericAgent’s agent type 

Implement a function that returns a GenericAgent’s ID number 
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Implement a function that returns a GenericAgent’s household/boat/factory number 

Implement a function that returns a GenericAgent’s location 

Implement a function that returns a GenericAgent’s health status 

Implement a function that returns a GenericAgent’s recovered/removed date 

Implement a function that returns a GenericAgent’s recovered/removed status 

 

Implement a function that sets a GenericAgent’s agent type 

 Take in a sensible value (0, 1, or 2) from the user and set that as the agent’s type 

Implement a function that sets a GenericAgent’s ID number 

 Take in an integer from the user and set that as the GenericAgent’s ID number 

Implement a function that sets a GenericAgent’s household/boat/factory number 

Take in an integer from the user and set that as the GenericAgent’s 

household/boat/factory number 

Implement a function that sets a GenericAgent’s location 

 Take in a sensible value (0 or 1) from the user and set that as a GenericAgent’s location 

Implement a function that sets a GenericAgent’s health status 

 Take in a sensible value (0 or 1) from the user and set that as a GenericAgent’s health 

 status 

Implement a function that sets a GenericAgent’s recovered/removed date 

 Take in a sensible value (from 0 to gamma (𝛾)) and set that as a GenericAgent’s 

 recovered/removed date 

Implement a function that returns a GenericAgent’s recovered/removed status 

 Take in a sensible value (0 or 1) from the user and set that as a GenericAgent’s 

 recovered/removed status 

 

 

BristolBay.h 

 

Define the class BristolBay 

 

Define all relevant inclusions including random number, vector, array, and time library 

functionality 

Include the FisherpersonAgent header file 

Include the FactoryworkerAgent header file 

Include the TownspersonAgent header file 

 

Declare public components of the class 

 Declare the default constructor 

 Declare the destructor 

 

Declare the function that prompts the user to input R0 for the community 

Declare the function that prompts the user to input R0 for each boat 

Declare the function that prompts the user to input R0 for each factory 

Declare the function that prompts the user to input R0 for each household 

Declare the function that prompts the user to input gamma (𝛾) for the community 

Declare the function that prompts the user to input gamma (𝛾)for fisherpersons 
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Declare the function that prompts the user to input gamma (𝛾) for factory workers 

Declare the function that prompts the user to input gamma (𝛾) for townspeople 

Declare the function that prompts the user to input the probability that fisherpersons go 

 into the community in a period 

Declare the function that prompts the user to input the probability that factory workers go 

 into the community in a period 

Declare the function that prompts the user to input the probability that townspeople go 

 into the community in a period 

Declare the function that prompts the user to input the population of fisherpersons 

Declare the function that prompts the user to input the number of fisherpersons per boat 

Declare the function that prompts the user to input the number of fisherpersons initially 

 sick 

Declare the function that prompts the user to input the number of fisherpersons initially 

 vaccinated 

Declare the function that prompts the user to input the population of factory workers 

Declare the function that prompts the user to input the number of factory workers per 

 factory 

Declare the function that prompts the user to input the number of factory workers initially 

 sick 

Declare the function that prompts the user to input the number of factory workers initially 

 vaccinated 

Declare the function that prompts the user to input the population of townspeople 

Declare the function that prompts the user to input the number of townspeople per 

 household 

Declare the function that prompts the user to input the number of townspeople initially 

 sick 

Declare the function that prompts the user to input the number of townspeople initially 

 vaccinated 

 

Declare the function that establishes an agent as a FisherpersonAgent type 

  This function accepts a FisherpersonAgent and an integer as inputs 

Declare the function that establishes an ID number for a FisherpersonAgent 

  This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that assigns a FisherpersonAgent to a specific boat as their home 

 location 

 This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that assigns a FisherpersonAgent to their location in a given period 

 This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that establishes the FisherpersonAgent’s infected status 

 This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that establishes if a FisherpersonAgent is or was infected at one point 

 This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that establishes that a newly infected FisherpersonAgent will be sick 

 for gamma (𝛾) number of periods 
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This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that reduces the number of remaining periods in which a 

FisherpersonAgent is infected by one during each period 

 This function accepts a FisherpersonAgent and an integer as inputs 

Declare a function that sets a FisherpersonAgent as recovered/removed once the gamma 

 (𝛾) period is complete 

 This function accepts a FisherpersonAgent and an integer as inputs 

Declare the function that establishes an agent as a FactoryworkerAgent type 

  This function accepts a FactoryworkerAgent and an integer as inputs 

Declare the function that establishes an ID number for a FactoryworkerAgent 

  This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that assigns a FactoryworkerAgent to a specific factory as their home 

 location 

 This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that assigns a FactoryworkerAgent to their location in a given period 

 This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that establishes the FactoryworkerAgent’s infected status 

 This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that establishes if a FactoryworkerAgent is or was infected at one 

 point 

 This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that establishes that a newly infected FactoryworkerAgent will be sick 

 for gamma (𝛾) number of periods 

This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that reduces the number of remaining periods in which a 

FactoryworkerAgent is infected by one during each period 

 This function accepts a FactoryworkerAgent and an integer as inputs 

Declare a function that sets a FactoryworkerAgent as recovered/removed once the 

 gamma (𝛾) period is complete 

 This function accepts a FactoryworkerAgent and an integer as inputs 

Declare the function that establishes an agent as a TownspersonAgent type 

  This function accepts a TownspersonAgent and an integer as inputs 

Declare the function that establishes an ID number for a TownspersonAgent 

  This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that assigns a TownspersonAgent to a specific household as their 

 home location 

 This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that assigns a TownspersonAgent to their location in a given period 

 This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that establishes the TownspersonAgent’s infected status 

 This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that establishes if a TownspersonAgent is or was infected at one point 

 This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that establishes that a newly infected TownspersonAgent will be sick 

 for gamma (𝛾) number of periods 
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This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that reduces the number of remaining periods in which a 

TownspersonAgent is infected by one during each period 

 This function accepts a TownspersonAgent and an integer as inputs 

Declare a function that sets a TownspersonAgent as recovered/removed once the gamma 

 (𝛾) period is complete 

 This function accepts a TownspersonAgent and an integer as inputs 

 

Declare private variables of the class 

 Declare a variable that holds the R0 for the community 

Declare a variable that holds the R0 for each boat 

Declare a variable that holds the R0 for each factory 

Declare a variable that holds the R0 for each household 

Declare a variable that holds gamma (𝛾) for the community 

Declare a variable that holds gamma (𝛾) for fisherpersons 

Declare a variable that holds gamma (𝛾) for factory workers 

Declare a variable that holds gamma (𝛾) for townspeople 

Declare a variable that holds the probability that factory workers go into the community 

 in a period 

Declare a variable that holds the probability that fisherpersons go into the community in a 

 period 

Declare a variable that holds the probability that townspeople go into the community in a 

 period 

Declare a variable that holds the population of fisherpersons 

Declare a variable that holds the number of fisherpersons per boat 

Declare a variable that holds the number of fisherpersons initially sick 

Declare a variable that holds the number of fisherpersons initially vaccinated 

Declare a variable that holds the population of factory workers 

Declare a variable that holds the number of factory workers per factory 

Declare a variable that holds the number of factory workers initially sick 

Declare a variable that holds the number of factory workers initially vaccinated 

Declare a variable that holds the population of townspeople 

Declare a variable that holds the number of townspeople per household 

Declare a variable that holds the number of townspeople initially sick 

Declare a variable that holds the number of townspeople initially vaccinated 

 

 

BristolBay.cpp 

 

Declare inclusions and libraries, including maths library functionality 

Include the FisherpersonAgent header file 

Include the FactoryworkerAgent header file 

Include the TownspersonAgent header file 

 

Define the default constructor 

Define the destructor 
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Implement the function that prompts the user to input R0 for the community 

 Print a message that welcomes the user to the program with copyright and authorship 

 information 

 Print instructions to the user concerning R0 

 Accept R0 for the community via keyboard input 

 Return R0 for the community to the program 

 

Implement the function that prompts the user to input R0 for boats 

 Accept R0 for boats via keyboard input 

 Return R0 for boats to the program 

 

Implement the function that prompts the user to input R0 for factories 

 Accept R0 for factories via keyboard input 

 Return R0 for factories to the program 

 

Implement the function that prompts the user to input R0 for households 

 Accept R0 for households via keyboard input 

 Return R0 for households to the program 

 

Implement the function that prompts the user to input gamma (𝛾) for the community  

 Print instructions to the user concerning gamma (𝛾) 
 Accept gamma (𝛾) for the community via keyboard input 

 Return gamma (𝛾) for the community to the program 

 

Implement the function that prompts the user to input gamma (𝛾) for boats 

 Accept gamma (𝛾) for boats via keyboard input 

 Return gamma (𝛾) for boats to the program 

 

Implement the function that prompts the user to input gamma (𝛾) for factories 

 Accept gamma (𝛾) for factories via keyboard input 

 Return gamma (𝛾) for factories to the program 

 

Implement the function that prompts the user to input gamma (𝛾) for households 

 Accept gamma (𝛾) for households via keyboard input 

 Return gamma (𝛾) for households to the program 

 

Implement the function that prompts the user to input the probability that fisherpersons go into 

the community in a period 

 While loop to ensure the probability is within logical bounds 

Print instructions to the user concerning probabilities 

Accept the probability via keyboard input 

 Return the probability to the program 

 

Implement the function that prompts the user to input the probability that factory workers go into 

the community in a period 
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 While loop to ensure the probability is within logical bounds 

Accept the probability via keyboard input 

 Return the probability to the program 

 

Implement the function that prompts the user to input the probability that townspeople go into 

the community in a period 

 While loop to ensure the probability is within logical bounds 

Accept the probability via keyboard input 

 Return the probability to the program 

 

Implement the function that prompts the user to input the population of fisherpersons 

 While loop to ensure the population is nonnegative and takes integer values  

Print instructions to the user concerning this and the next three functions related 

 to fisherpersons: population, boat size, initial sick, and initial vaccinated 

  Accept the population via keyboard input 

 Return the population to the program 

 

Implement the function that prompts the user to input the number of fisherpersons per boat 

 While loop to ensure the boat size is nonnegative and does not exceed the population of 

 fisherpersons 

  Accept the boat size via keyboard input 

 Return the boat size to the program 

 

Implement the function that prompts the user to input the number of fisherpersons initially sick 

 While loop to ensure the number of initially sick is nonnegative and does not exceed the 

 population of fisherpersons 

  Accept the number of initially sick via keyboard input 

 Return the number of initially sick to the program 

 

Implement the function that prompts the user to input the number of fisherpersons initially 

vaccinated 

 While loop to ensure the number of initially vaccinated is nonnegative and does not 

 exceed the population of fisherpersons 

  Accept the number of initially vaccinated via keyboard input 

 Return the number of initially vaccinated to the program 

 

Implement the function that prompts the user to input the population of factory workers 

 While loop to ensure the population is nonnegative and takes integer values  

Print instructions to the user concerning this and the next three functions related 

to factory workers: population, factory size, initial sick, and initial vaccinated 

  Accept the population via keyboard input 

 Return the population to the program 

 

Implement the function that prompts the user to input the number of factory workers per factory 

 While loop to ensure the factory size is nonnegative and does not exceed the population 

 of factory workers 
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  Accept the factory size via keyboard input 

 Return the factory size to the program 

 

Implement the function that prompts the user to input the number of factory workers initially 

sick 

 While loop to ensure the number of initially sick is nonnegative and does not exceed the 

 population of factory workers 

  Accept the number of initially sick via keyboard input 

 Return the number of initially sick to the program 

 

Implement the function that prompts the user to input the number of factory workers initially 

vaccinated 

 While loop to ensure the number of initially vaccinated is nonnegative and does not 

 exceed the population of factory workers 

  Accept the number of initially vaccinated via keyboard input 

 Return the number of initially vaccinated to the program 

 

Implement the function that prompts the user to input the population of townspeople 

 While loop to ensure the population is nonnegative and takes integer values  

Print instructions to the user concerning this and the next three functions related 

 to townspeople: population, factory size, initial sick, and initial vaccinated 

  Accept the population via keyboard input 

 Return the population to the program 

 

Implement the function that prompts the user to input the number of townspeople per household 

 While loop to ensure the household size is nonnegative and does not exceed the 

 population of townspeople 

  Accept the household size via keyboard input 

 Return the household size to the program 

 

Implement the function that prompts the user to input the number of townspeople initially sick 

 While loop to ensure the number of initially sick is nonnegative and does not exceed the 

 population of townspeople 

  Accept the number of initially sick via keyboard input 

 Return the number of initially sick to the program 

 

Implement the function that prompts the user to input the number of townspeople initially 

vaccinated 

 While loop to ensure the number of initially vaccinated is nonnegative and does not 

 exceed the population of townspeople 

  Accept the number of initially vaccinated via keyboard input 

 Return the number of initially vaccinated to the program 

 

Implement the function that gives a FisherpersonAgent an identifier of their agent type 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 



29 
 

 This function calls the FisherpersonAgent member function that sets agent type 

 

Implement the function that gives a FisherpersonAgent an ID number 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets ID numbers 

 

Implement the function that assigns a FisherpersonAgent to their boat 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets boat number 

 

Implement the function that establishes the location of a FisherpersonAgent 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets their location 

 

Implement the function that establishes the health status of a FisherpersonAgent as infected 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets their health status 

 

Implement the function that establishes the health status of a FisherpersonAgent as not infected 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets their health status 

 

Implement the function that establishes the date that a FisherpersonAgent will no longer be 

infected 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets when their health is 

 fixed 

 

Implement the function that establishes reduces the time the FisherpersonAgent will be infected 

by one each period 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets when their health is 

 fixed 

 

Implement the function that establishes that a FisherpersonAgent is recovered/removed 

 This function accepts a member of the FisherpersonAgent class and an integer from the 

 TestLab 

 The function calls the FishpersonAgent member function that sets when they are 

 recovered/removed 
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Implement the function that gives a FactoryworkerAgent an identifier of their agent type 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 This function calls the FactoryworkerAgent member function that sets agent type 

 

Implement the function that gives a FactoryworkerAgent an ID number 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets ID numbers 

 

Implement the function that assigns a FactoryworkerAgent to their factory 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets factory number 

 

Implement the function that establishes the location of a FactoryworkerAgent 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets their location 

 

Implement the function that establishes the health status of a FactoryworkerAgent as infected 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets their health status 

 

Implement the function that establishes the health status of a FactoryworkerAgent as not infected 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets their health status 

 

Implement the function that establishes the date that a FactoryworkerAgent will no longer be 

infected 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets when their health is 

 fixed 

 

Implement the function that establishes reduces the time the FactoryworkerAgent will be 

infected by one each period 

 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets when their health is 

 fixed 

 

Implement the function that establishes that a FactoryworkerAgent is recovered/removed 
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 This function accepts a member of the FactoryworkerAgent class and an integer from the 

 TestLab 

 The function calls the FactoryworkerAgent member function that sets when they are 

 recovered/removed 

 

Implement the function that gives a TownspersonAgent an identifier of their agent type 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 This function calls the TownspersonAgent member function that sets agent type 

 

Implement the function that gives a TownspersonAgent an ID number 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets ID numbers 

 

Implement the function that assigns a TownspersonAgent to their household 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets household number 

 

Implement the function that establishes the location of a TownspersonAgent 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets their location 

 

Implement the function that establishes the health status of a TownspersonAgent as infected 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets their health status 

 

Implement the function that establishes the health status of a TownspersonAgent as not infected 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets their health status 

 

Implement the function that establishes the date that a TownspersonAgent will no longer be 

infected 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets when their health is 

 fixed 

 

Implement the function that establishes reduces the time the TownspersonAgent will be infected 

by one each period 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 
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 The function calls the TownspersonAgent member function that sets when their health is 

 fixed 

 

Implement the function that establishes that a TownspersonAgent is recovered/removed 

 This function accepts a member of the TownspersonAgent class and an integer from the 

 TestLab 

 The function calls the TownspersonAgent member function that sets when they are 

 recovered/removed 

 

 

TestLab.cpp 

 

Define all relevant inclusions including random number, vector, array, and time library 

functionality 

Include the BristolBay header file 

Include the FisherpersonAgent header file 

Include the FactoryworkerAgent header file 

Include the TownspersonAgent header file 

 

Implement the function that prompts the user to input the number of periods/rounds to be 

simulated 

Declare an integer variable to hold the number of periods to be simulated 

 While loop to ensure the number of rounds is a nonnegative integer 

  Print instructions concerning the number of periods to the user 

  Accept the number of periods via keyboard input 

 Return the number of periods to be simulated to the program 

 

Implement the function that prompts the user to input the number of repetitions to be simulated 

Declare an integer variable to hold the number of repetitions to be simulated 

 While loop to ensure the number of repetitions is a nonnegative integer 

  Print instructions concerning the number of iterations to the user 

  Accept the number of repetitions via keyboard input 

 Return the number of repetitions to be simulated to the program 

 

Declare main program 

 

Create an object of the BristolBay class 

 

Declare a variable of type double to hold R0 for the community 

Call the BristolBay object’s function that prompts the user to input R0 for the community and 

assign it to the variable of type double 

Declare a variable of type double to hold R0 for the fisherpersons 

Call the BristolBay object’s function that prompts the user to input R0 for the fisherpersons and 

assign it to the variable of type double 

Declare a variable of type double to hold R0 for the factory workers 
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Call the BristolBay object’s function that prompts the user to input R0 for the factory workers 

and assign it to the variable of type double 

Declare a variable of type double to hold R0 for the townspeople 

Call the BristolBay object’s function that prompts the user to input R0 for the townspeople and 

assign it to the variable of type double 

 

Declare a variable of type double to hold gamma (𝛾) for the community 

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the 

community and assign it to the variable of type double 

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission 

in the community 

Declare a variable of type double to hold gamma (𝛾) for the fisherpersons 

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the 

fisherpersons and assign it to the variable of type double 

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission 

on boats 

Declare a variable of type double to hold gamma (𝛾) for the factory workers 

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the 

community and assign it to the variable of type double 

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission 

in factories 

Declare a variable of type double to hold gamma (𝛾) for the townspeople 

Call the BristolBay object’s function that prompts the user to input gamma (𝛾) for the 

community and assign it to the variable of type double 

Declare a variable of type double that is equal to 1/𝛾 used in the modeling of virus transmission 

in households 

 

Declare a variable of type double to hold 𝛽 for the community 

Calculate 𝛽 as R0 / 1/𝛾 

Declare a variable of type double to hold 𝛽 for boats 

Calculate 𝛽 as R0 / 1/𝛾 

Declare a variable of type double to hold 𝛽 for factories 

Calculate 𝛽 as R0 / 1/𝛾 

Declare a variable of type double to hold 𝛽 for households 

Calculate 𝛽 as R0 / 1/𝛾 

 

Declare a variable of type double to hold the probability that a fisherperson goes into the 

community in a period 

Call the BristolBay object’s function that prompts the user to input the probability that a 

fisherperson goes into the community in a period and assign it the variable of type double 

Declare a variable of type double to hold the probability that a factory worker goes into the 

community in a period 

Call the BristolBay object’s function that prompts the user to input the probability that a factory 

worker goes into the community in a period and assign it the variable of type double 

Declare a variable of type double to hold the probability that a townsperson goes into the 

community in a period 
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Call the BristolBay object’s function that prompts the user to input the probability that a 

townsperson goes into the community in a period and assign it the variable of type double 

 

Declare a variable of type double to hold the population of fisherpersons 

Declare a variable of type double to hold the crew size of boats 

Declare a variable of type double to hold the number of initially infected fisherpersons 

Declare a variable of type double to hold the number of initially vaccinated fisherpersons 

Call the BristolBay object’s function that prompts the user to input the population of 

fisherpersons and assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the crew size of boats and 

assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the number of initially sick 

fisherpersons and assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the number of initially 

vaccinated fisherpersons and assign it to the variable of type double 

 

Declare a variable of type double to hold the population of factory workers 

Declare a variable of type double to hold the size of factories 

Declare a variable of type double to hold the number of initially infected factory workers 

Declare a variable of type double to hold the number of initially vaccinated factory workers 

Call the BristolBay object’s function that prompts the user to input the population of factory 

workers and assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the size of factories and 

assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the number of initially sick 

factory workers and assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the number of initially 

vaccinated factory workers and assign it to the variable of type double 

 

Declare a variable of type double to hold the population of townspeople 

Declare a variable of type double to hold the size of households 

Declare a variable of type double to hold the number of initially infected townspeople 

Declare a variable of type double to hold the number of initially vaccinated townspeople 

Call the BristolBay object’s function that prompts the user to input the population of 

townspeople and assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the size of households and 

assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the number of initially sick 

townspeople and assign it to the variable of type double 

Call the BristolBay object’s function that prompts the user to input the number of initially 

vaccinated townspeople and assign it to the variable of type double 

 

Declare a variable of type int to hold the number of periods to be simulated 

Call the function that prompts the user to input the number of periods to be simulated and assign 

it to the variable of type int 

Declare a variable of type int to hold the number of repetitions to be simulated 
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Call the function that prompts the user to input the number of repetitions to be simulated and 

assign it to the variable of type int 

 

Print a parameter report to the user to ensure the accuracy of all variables 

Output to the screen all parameter values as input by the user with respect to the virus, each 

agent type, and the number of periods and repetitions to be simulated 

 Declare a variable of type char to ask the user for their approval of the parameter report 

 Print a confirmation question asking the user to input a y or Y if they would like to 

 proceed 

 Accept the user’s response via keyboard input and assign it to the variable of type char 

 If the user inputs y or Y, proceed and print that the program is running agent-based 

 simulations 

 Else exit the program 

 

For loop that repeats until the number of repetitions is satisfied 

 Create a vector of FisherpersonAgent objects of size dictated by the user 

 Create a vector of FactoryworkerAgent objects of size dictated by the user 

 Create a vector of TownspersonAgent objects of size dictated by the user 

 

 For loop that repeats over the size of the vector of FisherpersonAgent objects 

Call the BristolBay object’s function that assigns an ID number to a 

FisherpersonAgent object 

Call the BristolBay object’s function that assigns a FisherpersonAgent object to a 

boat 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

Call the BristolBay object’s function that assigns an ID number to a 

FactoryworkerAgent object 

Call the BristolBay object’s function that assigns a FactoryworkerAgent object to 

a factory 

For loop that repeats over the size of the vector of TownspersonAgent objects 

Call the BristolBay object’s function that assigns an ID number to a 

TownspersonAgent object 

Call the BristolBay object’s function that assigns a TownspersonAgent object to a 

household 

 

 Declare a variable of type double, initialized at 0, that counts the number of sick 

 fisherpersons 

 Declare a variable of type double that holds the probability that a fisherperson is initially 

 sick, initialized at the number of initially sick fisherpersons divided by the population of 

 fisherpersons and multiplied by 100 

 Declare a variable of type double, initialized at 0, that counts the number of sick factory 

 workers 

 Declare a variable of type double that holds the probability that a factory worker is 

 initially sick, initialized at the number of initially sick factory workers divided by the 

 population of factory workers and multiplied by 100 
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 Declare a variable of type double, initialized at 0, that counts the number of sick 

 townspeople 

 Declare a variable of type double that holds the probability that a townsperson is initially 

 sick, initialized at the number of initially sick townspersons divided by the population of 

 townspersons and multiplied by 100 

 

For loop that repeats over the size of the vector of FisherpersonAgent objects 

 If the count of sick fisherpersons is less than the number of initially sick   

  fisherpersons 

  If the probability that a fisherperson is initially sick exceeds a random  

   number between 0 and 100 

Call the BristolBay object’s function that establishes a fisherperson 

as sick 

Declare a variable of type int to hold how long the fisherperson 

will remain infected, is initialized at a random number between 1 

and 𝛾 

Call the BristolBay object’s function that establishes how long the 

fisherperson will remain infected and assign it the int between 1 

and 𝛾 

Increase the count of sick fisherpersons by 1 

  Else do not change the count of sick fisherpersons 

 Else do not change the count of sick fisherpersons 

 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

 If the count of sick factory workers is less than the number of initially sick factory 

   workers 

  If the probability that a factory worker is initially sick exceeds a random  

   number between 0 and 100 

Call the BristolBay object’s function that establishes a factory 

worker as sick 

Declare a variable of type int to hold how long the factory worker 

will remain infected, is initialized at a random number between 1 

and 𝛾 

Call the BristolBay object’s function that establishes how long the 

factory worker will remain infected and assign it the int between 1 

and 𝛾 

Increase the count of sick factory workers by 1 

  Else do not change the count of sick factory workers 

 Else do not change the count of sick factory workers 

 

For loop that repeats over the size of the vector of TownspersonAgent objects 

 If the count of sick townspeople is less than the number of initially sick   

  townspeople 

  If the probability that a townspeople is initially sick exceeds a random  

   number between 0 and 100 
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Call the BristolBay object’s function that establishes a 

townspeople as sick 

Declare a variable of type int to hold how long the townspeople 

will remain infected, is initialized at a random number between 1 

and 𝛾 

Call the BristolBay object’s function that establishes how long the 

townspeople will remain infected and assign it the int between 1 

and 𝛾 

Increase the count of sick townspeople by 1 

  Else do not change the count of sick townspeople 

 Else do not change the count of sick townspeople 

 

 Declare a variable of type double, initialized at 0, that counts the number of vaccinated 

 fisherpersons 

 Declare a variable of type double that holds the probability that a fisherperson is initially 

 vaccinated, initialized at the number of initially vaccinated fisherpersons divided by the 

 population of fisherpersons and multiplied by 100 

 Declare a variable of type double, initialized at 0, that counts the number of vaccinated 

 factory workers 

 Declare a variable of type double that holds the probability that a factory worker is 

 initially vaccinated, initialized at the number of initially vaccinated factory workers 

 divided by the  population of factory workers and multiplied by 100 

 Declare a variable of type double, initialized at 0, that counts the number of vaccinated 

 townspeople 

 Declare a variable of type double that holds the probability that a townsperson is initially 

 vaccinated, initialized at the number of initially vaccinated townspersons divided by the 

 population of townspersons and multiplied by 100 

 

For loop that repeats over the size of the vector of FisherpersonAgent objects 

 If the count of vaccinated fisherpersons is less than the number of initially   

  vaccinated fisherpersons 

If, when calling the FisherAgent object that gets the fisherperson’s health 

status, the agent is healthy 

   If the probability that a fisherperson is initially vaccinated exceeds  

    a random number between 0 and 100 

Call the BristolBay object’s function that establishes a 

 fisherperson as vaccinated 

Increase the count of vaccinated fisherpersons by 1 

 Else do not change the count of vaccinated fisherpersons 

Else do not change the count of vaccinated fisherpersons 

Else do not change the count of vaccinated fisherpersons 

 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

 If the count of vaccinated factory workers is less than the number of initially  

  vaccinated factory workers 
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If, when calling the FactoryworkerAgent object that gets the factory 

worker’s health status, the agent is healthy 

   If the probability that a factory worker is initially vaccinated  

    exceeds a random number between 0 and 100 

Call the BristolBay object’s function that establishes a 

 factory worker as vaccinated 

Increase the count of vaccinated factory workers by 1 

 Else do not change the count of vaccinated factory workers 

Else do not change the count of vaccinated factory workers 

Else do not change the count of vaccinated factory workers 

 

For loop that repeats over the size of the vector of TownspersonAgent objects 

 If the count of vaccinated townspeople is less than the number of initially   

  vaccinated townspeople 

If, when calling the TownspersonAgent object that gets the townsperson’s 

health status, the agent is healthy 

   If the probability that a townsperson is initially vaccinated exceeds 

    a random number between 0 and 100 

Call the BristolBay object’s function that establishes a 

 townsperson as vaccinated 

Increase the count of vaccinated townspeople by 1 

 Else do not change the count of vaccinated townspeople 

Else do not change the count of vaccinated townspeople 

Else do not change the count of vaccinated townspeople 

 

Determine how many of each agent type, as well as the entire population, is susceptible, 

 infected, and removed 

Create an object that will generate Excel files of various formats to record the results of 

 each repetition of the program  

Detail the particulars of each Excel file, including format and recorded content that 

 includes column titles for all agent types and the entire population of agents, as well as 

 their status as susceptible, infected, and removed 

Write all data from period 0 into the first row of the Excel output file for each repetition 

 of the simulation 

 

 For loop that repeats until the number of periods is satisfied 

  Declare a variable of type double to hold the number of sick fisherpersons in the  

  period 

  Declare a variable of type double to hold the number of sick factory workers in  

  the period 

Declare a variable of type double to hold the number of sick townspeople in the 

 period 

 

For loop that repeats over the size of the vector of FisherpersonAgent objects 

 If, when calling the FisherpersonAgent object that gets a fisherperson  

  agent’s health status, the agent is sick  
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  Increase the count of sick fisherpersons 

 Else do not change the count of sick fisherpersons 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

 If, when calling the FactoryworkerAgent object that gets a factory worker  

  agent’s health status, the agent is sick  

  Increase the count of sick factory workers 

 Else do not change the count of sick factory workers 

For loop that repeats over the size of the vector of TownspersonAgent objects 

 If, when calling the TownspersonAgent object that gets a townsperson  

   agent’s health status, the agent is sick  

  Increase the count of sick townspeople 

 Else do not change the count of sick townspeople 

   

  Declare a variable of type double to hold the location of a fisherperson in the  

  period 

  Declare a variable of type double to count the number of fisherpersons in the  

  community in the period 

  Declare a variable of type double to hold the location of a factory worker in the  

  period 

  Declare a variable of type double to count the number of factory workers in the  

  community in the period 

  Declare a variable of type double to hold the location of a townsperson in the  

  period 

  Declare a variable of type double to count the number of townspeople in the  

  community in the period 

 

  For loop that repeats over the size of the vector of FisherpersonAgent objects 

   If the probability a fisherperson goes out in a period exceeds a random  

   number between 0 and 100 

    Set the fisherperson’s location variable to out in the community 

    Update the count of fisherperson agents in the community in the  

    period 

   Else set the fisherperson’s location variable to their boat    

   Call the BristolBay object’s function that sets the fisherperson’s location 

 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

   If the probability a factory worker goes out in a period exceeds a random  

   number between 0 and 100 

    Set the factory worker’s location variable to out in the community 

    Update the count of factory worker agents in the community in the  

    period 

   Else set the factory worker’s location variable to their factory 

   Call the BristolBay object’s function that sets the factory worker’s   

   location 

 

For loop that repeats over the size of the vector of TownspersonAgent objects 
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   If the probability a townsperson goes out in a period exceeds a random  

   number between 0 and 100 

    Set the townsperson’s location variable to out in the community 

    Update the count of townsperson agents in the community in the  

    period 

   Else set the townsperson’s location variable to their household   

   Call the BristolBay object’s function that sets the townsperson’s location 

 

  Declare a variable of type double to hold the number of fisherpersons out in the  

  community who are infected and initialize it at zero 

  Declare a variable of type double to hold the number of fisherpersons out in the  

  community who are susceptible and initialize it at zero 

  Declare a variable of type double to hold the number of fisherpersons out in the  

  community who are removed and initialize it at zero 

  Declare a variable of type double to hold the number of factory workers out in the 

  community who are infected and initialize it at zero 

  Declare a variable of type double to hold the number of factory workers out in the 

  community who are susceptible and initialize it at zero 

  Declare a variable of type double to hold the number of factory workers out in the 

  community who are removed and initialize it at zero 

  Declare a variable of type double to hold the number of townspeople out in the  

  community who are infected and initialize it at zero 

  Declare a variable of type double to hold the number of townspeople out in the  

  community who are susceptible and initialize it at zero 

  Declare a variable of type double to hold the number of townspeople out in the  

  community who are removed and initialize it at zero 

 

  Declare a variable of type double to hold the total number of agents out in the  

  community who are susceptible and initialize it at zero 

  Declare a variable of type double to hold the total number of agents out in the  

  community who are infected and initialize it at zero 

  Declare a variable of type double to hold the total number of agents out in the  

  community who are removed and initialize it at zero 

 

 

For loop that repeats over the size of the vector of FisherpersonAgent objects 

 If the fisherperson is infected and out in the community and not recovered 

  Update the count of fisherpersons infected in the community by  

   one 

 Else do not increase the count of fisherpersons infected in the community 

 If the fisherperson is not infected and out in the community and not  

  recovered 

  Update the count of fisherpersons susceptible in the community by 

   one  

Else do not increase the count of fisherpersons susceptible in the 

 community 
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 If the fisherperson is not infected and out in the community and recovered 

  Update the count of fisherpersons removed in the community by  

   one 

 Else do not increase the count of fisherpersons removed in the community 

 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

 If the factory worker is infected and out in the community and not   

  recovered 

  Update the count of factory workers infected in the community by  

   one 

 Else do not increase the count of factory workers infected in the   

  community 

 If the factory worker is not infected and out in the community and not  

  recovered 

  Update the count of factory workers susceptible in the community  

   by one  

Else do not increase the count of factory workers susceptible in the 

 community 

 If the factory worker is not infected and out in the community and   

  recovered 

  Update the count of factory workers removed in the community by 

   one 

 Else do not increase the count of factory workers removed in the   

  community 

 

For loop that repeats over the size of the vector of TownspersonAgent objects 

 If the townsperson is infected and out in the community and not recovered 

  Update the count of townspeople infected in the community by one 

 Else do not increase the count of townspeople infected in the community 

 If the townsperson is not infected and out in the community and not  

  recovered 

  Update the count of townspeople susceptible in the community by  

   one  

Else do not increase the count of townspeople susceptible in the 

 community 

 If the townsperson is not infected and out in the community and recovered 

  Update the count of townspeople removed in the community by  

   one 

 Else do not increase the count of townspeople removed in the community 

 

Calculate the total number infected agents out in the community as the sum of all 

  three infected types out in the community in the period 

Calculate the total number susceptible agents out in the community as the sum of 

 all three susceptible types out in the community in the period 

Calculate the total number removed agents out in the community as the sum of all 

 three removed types out in the community in the period 
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Declare a variable of type double that is equal to 𝛽 for the community multiplied 

 by (the total infected agents out in the community divided by the total susceptible 

 agents out in the community) 

 

For loop that repeats over the size of the vector of FisherpersonAgent objects 

 If the fisherperson is out and not infected and not recovered 

  If 𝛽 for the community multiplied by (the total infected agents out  

   in the community divided by the total susceptible agents out in the  

   community) exceeds a random number between 0 and 100 

   Call the BristolBay object’s function that sets the   

    fisherperson’s  health status to infected 

   Call the BristolBay object’s function that sets a   

    fisherperson as infected for 𝛾 number of periods  

   Increase the count of infected fisherpersons by one 

   Increase the count of infected fisherpersons out in the  

    community by one 

Else do not update the count of infected fisherpersons 

Else if the fisherperson is out and infected and not recovered 

 Declare a variable of type int and call the FisherpersonAgent  

  object’s function that gets the date that the fisherperson will cease  

  to be infected 

Call the BristolBay object’s function that reduces the fisherperson 

 agent’s remaining infected time by one period 

 Else do not update the count of infected fisherpersons 

 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

 If the factory worker is out and not infected and not recovered 

  If 𝛽 for the community multiplied by (the total infected agents out  

   in the community divided by the total susceptible agents out in the  

   community) exceeds a random number between 0 and 100 

   Call the BristolBay object’s function that sets the factory  

    worker’s health status to infected 

   Call the BristolBay object’s function that sets a factory  

    worker as infected for 𝛾 number of periods  

   Increase the count of infected factory workers by one 

   Increase the count of infected factory workers out in the  

    community by one 

Else do not update the count of infected factory workers 

Else if the factory worker is out and infected and not recovered 

 Declare a variable of type int and call the FactoryworkerAgent  

  object’s function that gets the date that the factory worker will  

  cease to be infected 

Call the BristolBay object’s function that reduces the factory 

 worker agent’s remaining infected time by one period 

 Else do not update the count of infected factory workers 
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For loop that repeats over the size of the vector of TownspersonAgent objects 

 If the townsperson is out and not infected and not recovered 

If 𝛽 for the community multiplied by (the total infected agents out 

in the community divided by the total susceptible agents out in the 

community) exceeds a random number between 0 and 100 

   Call the BristolBay object’s function that sets the   

    townsperson’s health status to infected 

   Call the BristolBay object’s function that sets a   

    townsperson as infected for 𝛾 number of periods  

   Increase the count of infected townspeople by one 

   Increase the count of infected townspeople out in the  

    community by one 

Else do not update the count of infected townspeople 

Else if the townsperson is out and infected and not recovered 

 Declare a variable of type int and call the TownspersonAgent  

  object’s function that gets the date that the townsperson will cease  

  to be infected 

Call the BristolBay object’s function that reduces the townsperson 

 agent’s remaining infected time by one period 

 Else do not update the count of infected townspeople 

 

Declare a variable of type int to hold the number of boats, calculated as the 

 population of fisherpersons divided by the crew size of boats 

Declare a variable of type into to hold the number of factories, calculated as the 

 population of factory workers divided by the size of factories 

Declare a variable of type int to hold the number of households, calculated as the 

 population of townspeople divided by the size of households 

 

For loop that repeats over the number of boats 

 Declare a variable of type double to hold the number of agents on a boat  

  who are susceptible and initialize it at zero 

Declare a variable of type double to hold the number of agents on a boat 

 who are susceptible and initialize it at zero 

Declare a variable of type double to hold the number of agents on a boat 

 who are removed and initialize it at zero 

 For loop that repeats over the size of the vector of FisherpersonAgent  

  objects 

  If the fisherperson lives on this boat and is infected and is on the  

   boat 

   Update the count of fisherpersons infected on this boat by  

    one 

  If the fisherperson lives on this boat and is not infected and is on  

   the boat and is not removed 

   Update the count of fisherpersons susceptible on this boat  

    by one 
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  If the fisherperson lives on this boat and is not infected and is on 

   the boat and is removed 

   Update the count of fisherpersons removed on this boat by  

    one 

Declare a variable of type double that is equal to 𝛽 for a boat multiplied by 

 (the total infected agents on this boat divided by the total susceptible 

 agents on this  boat) 

For loop that repeats over the size of the vector of FisherpersonAgent 

 objects 

    If the fisherperson lives on this boat and is not infected and is on  

    the boat and is not removed 

If 𝛽 for a boat multiplied by (the total infected agents on  

  this boat divided by the total susceptible agents on this boat 

  exceeds a random number between 0 and 100 

      Call the BristolBay object’s function that sets the  

      fisherperson’s health status to infected 

      Call the BristolBay object’s function that sets a  

      fisherperson as infected for 𝛾 number of periods 

      Increase the count of infected fisherpersons on this  

      boat by one 

      Increase the count of infected fisherpersons by one 

     Else do not update the count of infected fisherpersons 

    Else if the fisherperson lives on this boat and is infected and is on  

    the boat and is not removed 

  Declare a variable of type int and call the    

   FisherpersonAgent object’s function that gets the date that  

   the fisherperson will cease to be infected 

Call the BristolBay object’s function that reduces the 

 fisherperson agent’s remaining infected time by one period 

    Else do not update the count of infected fisherpersons 

 

For loop that repeats over the number of factories 

 Declare a variable of type double to hold the number of agents in a factory 

  who are susceptible and initialize it at zero 

Declare a variable of type double to hold the number of agents in a factory 

 who are susceptible and initialize it at zero 

Declare a variable of type double to hold the number of agents in a fact 

who are removed and initialize it at zero 

 For loop that repeats over the size of the vector of FactoryworkerAgent  

  objects 

  If the factory worker lives in this factory and is infected and is in  

   the factory 

   Update the count of factory workers infected in this factory  

    by one 

  If the factory worker lives in this factory and is not infected and is  

   in the factory and is not removed 
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   Update the count of factory worker susceptible in this  

    factory by one 

  If the factory worker lives in this factory and is not infected and is  

   in the factory and is removed 

   Update the count of factory workers removed in this  

    factory by one 

Declare a variable of type double that is equal to 𝛽 for a factory multiplied 

 by (the total infected agents in this factory divided by the total susceptible 

 agents  in this factory) 

For loop that repeats over the size of the vector of FactoryworkerAgent 

 objects 

    If the factory worker lives in this factory and is not infected and is  

    in the factory and is not removed 

If 𝛽 for a factory multiplied by (the total infected agents in  

  this factory divided by the total susceptible agents in this  

  factory exceeds a random number between 0 and 100 

      Call the BristolBay object’s function that sets the  

      factory worker’s health status to infected 

      Call the BristolBay object’s function that sets a  

      factory worker as infected for 𝛾 number of periods 

      Increase the count of infected factory workers in  

      this factory by one 

      Increase the count of infected factory workers by  

      one 

     Else do not update the count of infected factory workers 

    Else if the factory worker lives in this factory and is infected and is 

    in the factory and is not removed 

  Declare a variable of type int and call the    

   FactoryworkerAgent object’s function that gets the date  

   that the factory worker will cease to be infected 

Call the BristolBay object’s function that reduces the 

 factory worker agent’s remaining infected time by one 

 period 

    Else do not update the count of infected factory workers 

 

For loop that repeats over the number of households 

 Declare a variable of type double to hold the number of agents in a   

  household who are susceptible and initialize it at zero 

Declare a variable of type double to hold the number of agents in a 

 household who are susceptible and initialize it at zero 

Declare a variable of type double to hold the number of agents in a 

 household who are removed and initialize it at zero 

 For loop that repeats over the size of the vector of TownspersonAgent  

  objects 

  If the townsperson lives in this household and is infected and is in  

   the household 



46 
 

   Update the count of townspeople infected in this household 

    by one 

  If the townsperson lives in this household and is not infected and is 

   in the household and is not removed 

   Update the count of townspeople susceptible in this   

    household by one 

  If the townsperson lives in this household and is not infected and is 

   in the household and is removed 

   Update the count of townspeople removed in this   

    household by one 

Declare a variable of type double that is equal to 𝛽 for a household 

 multiplied by (the total infected agents in this household divided by the 

 total susceptible agents in this household) 

For loop that repeats over the size of the vector of TownspersonAgent 

 objects 

    If the townsperson lives in this household and is not infected and is 

    in the household and is not removed 

If 𝛽 for a household multiplied by (the total infected agents  

  in this household divided by the total susceptible agents in  

  this household exceeds a random number between 0 and  

  100 

      Call the BristolBay object’s function that sets the  

      townsperson’s health status to infected 

      Call the BristolBay object’s function that sets a  

      townsperson as infected for 𝛾 number of periods 

      Increase the count of infected townspeople in this  

      household by one 

      Increase the count of infected townspeople by one 

     Else do not update the count of infected townspeople 

    Else if the townsperson lives in this household and is infected and  

    is in the household and is not removed 

  Declare a variable of type int and call the    

   TownspersonAgent object’s function that gets the date that  

   the townsperson will cease to be infected 

Call the BristolBay object’s function that reduces the 

 townsperson agent’s remaining infected time by one period 

    Else do not update the count of infected townspeople  

 

Declare a variable of type int to hold the number of susceptible fisherpersons at 

 the end of the period 

Declare a variable of type int to hold the number of infected fisherpersons at the 

 end of the period 

Declare a variable of type int to hold the number of removed fisherpersons at the 

 end of the period 

Declare a variable of type int to hold the number of susceptible factory workers at 

 the end of the period 
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Declare a variable of type int to hold the number of infected factory workers at 

 the end of the period 

Declare a variable of type int to hold the number of removed factory workers at 

 the end of the period 

Declare a variable of type int to hold the number of susceptible townspeople at the 

 end of the period 

Declare a variable of type int to hold the number of infected townspeople at the 

 end of the period 

Declare a variable of type int to hold the number of removed townspeople at the 

 end of the period 

 

  For loop that repeats over the size of the vector of FisherpersonAgent objects 

   If the fisherperson is not infected and not removed 

    Increase the count of end of period susceptible fisherpersons by  

    one 

   If the fisherperson is infected and not removed 

    Increase the count of end of period infected fisherpersons by one 

   If the fisherperson is not infected and is removed 

    Increase the count of end of period removed fisherpersons by one 

 

  For loop that repeats over the size of the vector of FactoryworkerAgent objects 

   If the factory worker is not infected and not removed 

    Increase the count of end of period susceptible factory workers by  

    one 

   If the factory worker is infected and not removed 

    Increase the count of end of period infected factory workers by one 

   If the factory worker is not infected and is removed 

    Increase the count of end of period removed factory workers by  

    one 

 

  For loop that repeats over the size of the vector of TownspersonAgent objects 

   If the townsperson is not infected and not removed 

    Increase the count of end of period susceptible fisherpersons by  

    one 

   If the townsperson is infected and not removed 

    Increase the count of end of period infected townspeople by one 

   If the townsperson is not infected and is removed 

    Increase the count of end of period removed townspeople by one 

 

  Calculate the total number of end of period susceptible agents as the sum of all  

  three susceptible types 

  Calculate the total number of end of period infected agents as the sum of all three  

  infected types 

  Calculate the total number of end of period removed agents as the sum of all three 

  removed types 

  Write all data for the current period into the next row of the Excel output file 
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  For loop that repeats over the size of the vector of FisherpersonAgent objects 

   If the fisherperson is infected and this is the final period they are infected 

 Declare a variable of type int and call the FisherpersonAgent  

  object’s function that gets the date that the fisherperson will cease  

  to be infected 

    If this is the final period in which a fisherperson is infected 

     Call the BristolBay object’s function that reduces the  

     infected agent’s remaining infected time by one period to  

     zero 

 Call the BristolBay object’s function that sets the fisherperson’s health  

  status to not infected 

Call the BristolBay object’s function that sets the fisherperson’s removed 

 status to removed 

 

For loop that repeats over the size of the vector of FactoryworkerAgent objects 

If the factory worker is infected and this is the final period they are 

 infected 

 Declare a variable of type int and call the FactoryworkerAgent  

  object’s function that gets the date that the factory worker will  

  cease to be infected 

    If this is the final period in which a factory worker is infected 

     Call the BristolBay object’s function that reduces the  

     infected agent’s remaining infected time by one period to  

     zero 

 Call the BristolBay object’s function that sets the factory worker’s health  

  status to not infected 

Call the BristolBay object’s function that sets the factory worker’s 

 removed status to removed 

 

  For loop that repeats over the size of the vector of TownspersonAgent objects 

If the townsperson is infected and this is the final period they are infected 

 Declare a variable of type int and call the TownspersonAgent  

  object’s function that gets the date that the townsperson will cease  

  to be infected 

    If this is the final period in which a townsperson is infected 

     Call the BristolBay object’s function that reduces the  

     infected agent’s remaining infected time by one period to  

     zero 

 Call the BristolBay object’s function that sets the townsperson’s health  

  status to not infected 

Call the BristolBay object’s function that sets the townsperson’s removed 

 status to removed 

 

 Close the Excel output file objects 
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Print a message to the user that the agent-based simulations are complete. 

Return control to close the main program 

 

 


