TEE-MR: Developer-Friendly Data Oblivious
Programming for Trusted Execution Environments

AKM Mubashwir Alam, Keke Chen

Abstract—Trusted execution environments (TEEs) enable effi-
cient protection of integrity and confidentiality for applications
running on untrusted platforms. They have been deployed in
cloud servers to attract users who have concerns on exporting
data and computation. However, recent studies show that TEEs’
side channels, including memory, cache, and micro-architectural
features, are still vulnerable to adversarial exploitation. As many
such attacks utilize program access patterns to infer secret infor-
mation, data oblivious programs have been considered a practical
defensive solution. However, they are often difficult to develop and
optimize via either manual or automated approaches. We present
the oblivious TEE with MapReduce (TEE-MR) approach that uses
application frameworks, an approach between fully manual and
fully automated, to hide the details of access-pattern protection to
significantly minimize developers’ efforts. We have implemented
the approach with the MapReduce application framework for
data-intensive applications. It can regulate application dataflows
and hide application-agnostic access-pattern protection measures
from developers. Compared to manual composition approaches,
it demands much less effort for developers to identify access
patterns and to write code. Our approach is also easy to
implement, less complicated than fully automated approaches,
for which we have not seen a working prototype yet. Our
experimental results show that TEE-MR-based applications have
good performance, comparable to those carefully developed with
time-consuming manual composition approaches.

Index Terms—TEE, SGX, MapReduce,
Dataflow, Access Patterns, ORAM

Data Analytics,

I. INTRODUCTION

With the development of resource-starving distributed ap-
plications in big data, artificial intelligence, and the Inter-
net of Things (IoT), public clouds and edge devices have
become common platforms for hosting data and compute-
intensive tasks, which significantly expand the attack surface
for potential adversaries. While encryption and secure data
transmission protocols can ensure data security in transit
and at rest, data in computing is still a big concern. For
many years, researchers have been experimenting with novel
crypto approaches based on secure software primitives, such
as homomorphic encryption (HE) [10] and secure multi-party
computation (SMC) [32], [47]. However, for complex data-
intensive tasks like machine learning [58], these approaches
are too expensive to be practical. More recently, the concept
of hardware-assisted trusted execution environments (TEEs)
has emerged as a more efficient and cost-effective approach,
compared to the pure software-based cryptographic solutions
[58].

A. M. Alam is with the Department of Computer Science, Marquette
University, Milwaukee, WI, 53233. K. Chen is with the Department of
Computer Science and Electrical Engineering, University of Maryland at
Baltimore County, Baltimore, MD 21250
E-mail: mubashwir.alam @marquette.edu, kekechen@umbc.edu

TEEs depend on CPUs that provide hardware support to cre-
ate an isolated environment within a potentially compromised
computing environment, where a strong assumption holds: the
entire system software stack, including the operating system
and hypervisor, can be compromised. TEEs enable the concept
of secure enclaves, which depends on hardware mechanisms
to preserve the confidentiality and integrity of the enclave.
Users can pass encrypted data into the enclave, decrypt it,
compute with plaintext data, encrypt the result, and return it to
the trusted client, avoiding expensive software primitives like
HE and SMC. TEEs have been available on many commodity
CPUs and supported by public clouds — for example, Microsoft
Azure [44] and Alibaba [4] provide Intel Software Guard
Extension (SGX) enabled servers, and Google has adopted
AMD Secure Encrypted Virtualization (SEV) for confidential
computing.

Although TEE enclaves cannot be directly breached, side
channels are still there. The enclave interacts with untrusted
memories and file systems, and the CPU cache is still shared
among processes and virtual machines owned by different
users. Recent studies have shown that side-channel attacks
remain main threats to TEEs [27], [38]. Attackers can control
and manipulate these channels via compromised operating
systems or hypervisors, e.g., manipulating page faults and
page-table entries and exploiting the flaws of modern CPU’s
micro-architecture execution optimization. Powerful attacks
like Foreshadow [13] and Load Value Injection [68] can com-
bine memory and cache access patterns and modern CPUs’
speculative execution mechanisms to extract secrets during
TEE execution.

While systematic approaches on side-channel attack defense
are still missing, data oblivious programming appears an
attractive and promising one. Data oblivious programs expose
invariant dataflow and execution path patterns regardless of
the input values. This unique feature can potentially address
many side-channel attacks (details in Section II). Normal
programs’ data flow and execution paths vary according to
different input data, and thus a specific input value may trigger
unique steps to execute. Many attacks utilize the specific
execution pattern to infer the input value [27], [38], to which
data oblivious programs are immune.

Nevertheless, it is challenging for users to develop an
oblivious solution for the following reasons. First, it’s often
time-consuming and error-prone to compose an oblivious
data program manually. Some TEE-related studies [50], [59],
[20] have utilized oblivious primitives, e.g., oblivious RAM
[59] and oblivious branching [50], to compose an oblivious
solution. However, manually composing an oblivious program
for an arbitrary application is not a practical option for most

developers. It requires careful analysis of application dataflow
and skillful uses of the primitives to achieve performant solu-
tions as naive transformation may have significant performance
impact [9]. Developers can also use oblivious programming
languages [41], [73]. However, it requires developers to learn
a new language and completely re-write existing programs.
Theoretically, the manual approach can also be automated via
compiler techniques, e.g., static analysis and randomization
[54]. However, it’s difficult to automatically determine the
best transformations [9], and we have not witnessed mature
solutions yet.

A. Scope of Our Research

We hypothesize that, between the manual approach and
the fully automated approaches, a semi-automated framework-
based approach can significantly simplify developers’ efforts
and avoid the complexity of implementing fully automated and
optimized conversion. The specific idea is to use an application
framework to regulate application dataflow and implement
the major access-pattern protection methods at the framework
level, which will be transparent to the developers. By doing
so, all algorithms that can be cast to the framework can benefit
from the framework-level protection, and the developers only
need to handle much smaller pieces of code with simpler ac-
cess patterns. Following this idea, we developed the oblivious
TEE with MapReduce (TEE-MR) approach. While the current
approach has been implemented' on Intel SGX, it can be easily
extended to other TEEs.

The framework approach hides the details of access pattern
protection and their optimization within the framework. In the
current implementation, we have taken the MapReduce (MR)
framework and targeted data-intensive applications for several
reasons. First, researchers and practitioners have accumulated
extensive experience [19], [45], [43] on MapReduce solutions
over the past decade, and thus it’s also easy to learn and use
TEE-MR. Second, the MR framework significantly reduces
the developers’ work in coding and access-pattern protections:
only the user-defined mapper and reducer functions need to be
handled. We have shown the significant workload reduction
brought by this approach in experiments.

Specifically, our research has the following contributions.

o TEE-MR is the first framework approach for developing
data-intensive data oblivious programs for TEEs. With
a tiny framework core around a few megabytes, it can
significantly reduce the developer’s workload in coping
with access-pattern protection.

o We have carefully studied the access patterns during each
stage of the TEE-MR framework and designed robust
and optimized framework-level access-pattern protection
methods.

+ We have conducted extensive experiments to understand
the benefits of the TEE-MR framework. The result shows
that TEE-MR can significantly reduce developers’ efforts,
and TEE-MR applications can achieve satisfactory per-

The preliminary version is SGX-MR [3], designed specifically for Intel
SGX.

formance comparable to manually composed oblivious
programs.

In the remaining sections, we will first present the back-
ground knowledge for our approach (Section II) and the threat
model (Section III), and then describe the components in the
proposed approach (Section IV), focus on the details of access-
pattern analysis and protection (Section V), and discuss the
evaluation result (Section VI). Finally, we examine the closely
related work (Section VII) and conclude our work (Section
VIID).

II. PRELIMINARIES

We will present the necessary background knowledge before
we dive into our approach. In the following, we will introduce
the two main server-side TEE architectures, and the access-
pattern based attacks in TEE applications.

A. Mainstream TEE Architectures

After the past ten years of development, so far the most
well-known server-side TEE architectures are Intel SGX [21]
and AMD SEV [5]. ARM TrustZone [67] is also available for
most ARM processors. Since we focus on cloud-based appli-
cations, we will ignore TrustZone in the following discussion.

Intel Software Guard Extensions (SGX) promotes the
idea of minimal trust computing base (TCB), i.e., the enclave.
An enclave uses only the enclave page cache (EPC), a subset
of processor reserved memory area (PRM) that cannot be
accessed by other software, including operating systems and
hypervisors. Enclave pages are encrypted in the EPC and only
decrypted inside the processor with hardware AES support.
This architecture requires the developer to carefully design the
application program into two separated parts: the secret part
of the program that needs to run inside the enclave, and the
remaining parts running in untrusted areas out of the enclave.

Since Intel SGX is the earliest one available in commodity
processors, researchers have conducted extensive studies on
its security during the past few years. So far, a number of
side channel attacks [27] have been discovered, most of which
heavily depend on exploring access patterns of the victim
program [27].

AMD Secure Encrypted Virtualization (SEV) takes an
entirely different approach [5]. The memory encryption is done
at the virtual machine (VM) level. It utilizes a CPU builtin
secure co-processor to handle memory encryption operations.
Each virtual machine will get a randomly generated fresh VM-
specific AES key. All the VM pages are encrypted with this
key in the main memory and only decrypted inside the CPU.
SEV also includes the SEV-Encrypted State (SEV-ES) and the
SEV-Secure Nested Page (SEV-SNP) techniques to address the
security weaknesses associated with the early versions of SEV
in virtual machine management and page table operations,
respectively.

SEV does not require the application code to be rewritten,
which was considered a huge benefit compared to SGX.
For this reason, Intel also adopted the SEV approach and
developed Intel Trust Domain Extensions (TDX) for virtual
machine level protection. However, this convenience comes

at a cost. The whole VM becomes a large trust computing
base in this architecture, which potentially exposes even more
weaknesses [38], including most of the side-channel attacks
reported on SGX.

B. Access Patterns Used in Side-channel Attacks

The studies on side channel attacks have shown that pro-
gram access patterns are critical to these attacks. Specifically,
these attacks can be categorized into memory-based, cache-
based, and micro-architecture-based attacks. We show how
existing attacks utilize access patterns in the following.

Memory based attacks are further categorized into
application-specific memory attacks and memory-page at-
tacks, both of which heavily depend on access patterns. (1)
Application-specific memory access patterns. Cash et al. [16]
and Zhang et al. [75] show how an adversary can extract the
content of encrypted documents by leveraging access pattern
leakages. Ohrimenko et al. [49] and Zheng et al. [76] also
demonstrate how sensitive information, such as age-group,
birthplace, marital status, etc., can be extracted from data-
intensive processing programs by only observing the network
flow and memory skew. (2) Page-level access patterns. Intel
SGX depends on OS provided virtual memory management,
which exposes enclave memory’s page access via page-fault
interrupts [71], [62] or page table operations [14]. AMD SEV-
Secure Nested Paging [5] addresses the integrity issues with
the paging mechanism. However, the page level access patterns
are out of its protection. It’s widely believed most memory
access-pattern attacks are also applicable to AMD SEV [38].

Cache-based attacks use cache hit or miss to detect
victim’s memory access patterns: if cache misses, the access
time will be longer; otherwise, the access time is shorter.
Cache-based side-channel attacks [48], such as Prime+Probe
[42] and Flush+Reload [72], had been long exploited before
TEEs became popular. The basic mechanism of cache attacks
remains the same for systems with or without TEE. Since
the cache is a shared resource between processes and virtual
machines, an attacker can exploit fine-grained information at a
specific stage of the program by probing the data access time
in each cache line. Studies have shown a cache attack cannot
distinguish the secret-dependent block IDs or block data from
dummy ones if accessed through oblivious RAM [59], [2].

Micro-architectural attacks exploit the CPU’s micro-
architecture to retrieve secrets from TEE applications. Fore-
shadow [13] exploits meltdown-type [40] attacks on TEE ap-
plications. Load Value Injection (LVI) [68] is the most recent
attack on Intel SGX that successfully retrieves the secrets
from a victim’s enclave. To make it work, the CPU’s micro-
architectural buffer must be prepared with some attacker-
controlled secret value to perform the LVI attack. These attacks
are powerful enough to extract plain text information from
the TEE without physical access. Most such attacks depend
on manufacturers’ micro-architectural-level firmware patches
to fix.

However, not all micro-architectural attacks can be pre-
vented from firmware-level patches. Some micro-architectural-
level attacks still utilize access patterns, e.g., in branch pre-
fetching and pre-computation, a common technique used in

~

Untrusted Memory Trusted Memory

Fetched
Path
a

ORAM Tree

Fetching

‘— retrieved
block

Accessing every node from path to
hide the actual position of the block

Fig. 1: Oblivious block retrieval from the ORAM Tree. The
entire path containing the target block is loaded into the
enclave to hide the access pattern. Furthermore, the CMOV
instruction is used to hide the in-enclave access of the target
block to address the page-fault attack.

CPU pipeline. For example, Bulck et al. [13] show that,
by exploiting the timing of micro-architectural instructions,
attackers can observe secret-dependent branches at the CPU
instruction level. This type of micro-architectural-level attacks
cannot succeed if the application developer hides the data-
dependent branches with oblivious solutions. Therefore, obliv-
ious programs can still help mitigate these attacks.

Other attacks include return oriented programming [37],
which is difficult to defend and oblivious solutions may not
help. Hardware and power analysis attacks assume physical
accesses to the server, which does not match the TEE threat
model assumptions, and they are not practical for cloud servers
unless insider attacks are considered.

Overall, TEE manufacturers do not provide a systematic
mechanism to protect against access pattern leakages. They
have explicitly mentioned it’s TEE application developer’s
responsibility to guard access patterns if the highest level of
security guarantee is desired.

C. Data Obliviousness

Definition. If the execution path and data flow of a program
does not do not change, or fully randomized, with different
input data and parameter settings, we call this program is data
oblivious. When all the steps of an algorithm or mechanism
do not depend on input data, one cannot determine the
nature of the data by observing the steps of that algorithm.
Thus, oblivious solutions can effectively protect from attacks
utilizing data-dependent access patterns.

Oblivious Primitives. Note that most algorithms are
not designed with data obliviousness in mind. The goal of
developing data oblivious programs is to eliminate any data-
dependent operations. We list the primitives in the following
categories that data oblivious programs heavily depend on.

o Address-based Access. This operation includes array el-
ement access or data block access. Exposing the position
of accessed data is the fundamental access pattern. A
naive solution is to iterate over the whole data structure to
hide the actual accessed position. In contrast, Oblivious
RAM (ORAM) [29] has been a well-accepted primitive

for more efficiently hiding accessed addresses. It can ef-
fectively reduce the cost of oblivious access to O(log N)
for a structure of IV data items. By leveraging the ORAM
construction, SGX applications can protect the access
pattern of untrusted memory from the adversarial OS. The
current SGX ORAM methods also partially address the
in-enclave page-fault attack on ORAM-related operations.
As shown by Figure 1, the popular SGX ORAM solu-
tions, such as ZeroTrace [59] and Obliviate [2], utilize
the most efficient Path ORAM [65] or Circuit ORAM
[69], which uses a tree structure and paths from the root
to the leaves to hide the actual accessed block. The tree
and data blocks are maintained in the untrusted area. The
drawback is the additional O(log N') cost per operation.
Data-dependent Branching. Most programs contain
data-dependent branching statements. Depending on the
different inputs, a program execution may choose dif-
ferent paths, resulting in distinct access patterns. The
following code snippet shows how an attacker can utilize
the branching access pattern.

if (a >= b){

// swap a and b, and

// the page access can be observed.

lelse{

// no page access.

}

The common method uses the CPU’s conditional move
(CMOV) instructions to eliminate the branching state-
ments. A simplified example is shown as follows:
//if (a < b) x =
//test a<b

CMOVL x, a
CMOVGE x, b

A few studies [50], [54], [3] have used CMOV instruc-
tions to provide code-level obliviousness for branching
statements. Without specific conditional jumps, CMOV
instructions move the source operand to the destination
when a conditional flag is set. However, regardless the
flag is set or not, it reads the source operand. Therefore,
the access to the source operand cannot be used to
infer whether the source is copied to the destination or
not. Ohrimenko et al. [50] designed library functions
omove and ogreater to wrap up the CMOV instructions
for conveniently converting the branching statements.
Notably, a completely oblivious execution needs to run
both branches and select the desired result with the above
method, which often leads to higher costs than non-
oblivious version.

Circuit. Circuits are considered a natural way to hide
access patterns, as the circuit execution activates the gates
in the predefined order regardless of the input values [31].
For example, the branching statement is readily imple-
mented with a bitwise multiplexer with both branches
executed and the result is selected by the multiplexer’s
input. Studies show that oblivious memory access is
an expensive operation for the circuit approach. Many
solutions depend on linear scan to hide memory access
[63], [51], [15], which incurs high costs.

a else x = Db

« Oblivious algorithms. Mechanically transforming mem-
ory accesses and branching statements to be oblivious
often incurs significant performance penalties [9]. For
example, MergeSort can be converted to an oblivious
version by simply replacing every memory interaction
of the merge phase with ORAM and unwinding data-
dependent loops with fixed iteration loops. However, this
direct conversion can be much more expensive than a
specially designed oblivious sorting algorithm [9], such as
BitonicSort [7]. Similarly, frequently used data-intensive
operations, such as join and group by, can have more
efficient dedicated oblivious versions [46].

D. MapReduce Processing

The basic idea of TEE-MR is to use an application frame-
work to regulate dataflows, so that we can examine and
protect the access patterns in an application-agnostic way.
Currently, we have adopted the MapReduce framework to
regulate application dataflows. MapReduce[22] is a popu-
lar programming model and also a processing framework,
designed to handle large-scale data on a massively-parallel
processing infrastructure. It has the major computation phases:
map, optional combiner, shuffle and reduce. The input data is
split into fixed-size blocks. Running in parallel, each Map-
per takes the user-defined “map” function to process each
data block and converts it to key-value pairs. An optional
combiner can be used to pre-aggregate the map outputs, if
hierarchical aggregation works for the reduce function. Then,
all output key-value pairs are sorted, grouped, and partitioned
individually for Reducers to fetch. Each Reducer then fetches
the corresponding share of Map (or Combiner) output in
the shuffling phase, sorts the shares, and applies the user-
defined reduce function to process each group of key-value
pairs to generate the final result. The MapReduce patterns
are frequently seen in data-intensive applications, e.g., the
filtering, group-by and aggregation. During the past 10 to 15
years, this processing pattern has been applied to numerous
data-processing algorithms [45], which makes it easy to adopt
to develop TEE-MR-based applications.

IIT. MOTIVATION AND THREAT MODEL

Starting with an analysis of the typical threat model for data
analytics algorithms, we then present the TEE-MR framework
to address the access-pattern protection problem. Then, we
analyze possible framework-level access pattern leakages and
design methods to protect them. The design will be specific
to the SGX environment. For AMD SEV, the design can be
further simplified.

A. Threat Model

Users may run confidential computation tasks in an un-
trusted cloud server, where the server’s OS or hypervisor can
be compromised. The goal is to preserve data and program’s
integrity and confidentiality while availability is out of con-
cern. A typical TEE, such as Intel SGX, provides a hardware-
protected memory area, i.e., the enclave [21], and guarantees

the integrity of the data and computation running inside the
enclave. While adversaries cannot directly access the enclave,
they can still glean information via side channels, such as
memory access patterns and CPU caches. In contrast, the
exposure of memory access patterns is inevitable as enclaves
have to interact with the untrusted memory area. It’s also
reasonable to assume that attackers cannot access the cloud
server physically, e.g., attaching a device to the server or
touching the motherboard, which excludes all attacks based
on physical accesses. Figure 2 illustrates the threat model.

CPU
\‘@)
. EX
:‘ Untrusted Memory

Untrusted Server
Fig. 2: TEE, side channels, and the threat model.

TEE Applications. Typical data analytics applications han-
dle datasets much larger than the enclave memory and of-
ten they are sequentially scanned in multiple iterations. For
simplicity, datasets are often organized in encrypted blocks
and stored in a block-file structure. For security reasons, the
enclave program that runs in the protected EPC area cannot
access the file system APIs directly. When processed, they are
first loaded into the main (untrusted) memory, and then passed
to the enclave. Encrypted data blocks will be decrypted and
processed inside the enclave. While adversaries cannot directly
access the enclave, they can still glean information via side
channels, such as memory access patterns and CPU caches.
However, cache-based attacks target all CPUs (regardless of
having TEEs or not) and thus need manufacturers’ micro-
architecture level fixes. In contrast, the exposure of memory
access patterns is inevitable as enclaves have to interact with
the untrusted memory area. It’s also reasonable to assume
that attackers cannot access the cloud server physically, e.g.,
attaching a device to the server or touching the motherboard,
which excludes all attacks based on physical accesses. Figure
2 illustrates the threat model.

TEE Protection. TEE infrastructures provides the basic
mechanisms for integrity and confidentiality protection for
the data and programs in the enclave. We encrypt the code
and data in the untrusted region of our framework with
TEE provided crypto-library. Our framework also implements
the block-level integrity checking mechanism, which will be
described later.

Attacker Capability. Based on the analysis of the features
of TEE-based data analytics algorithms, we make the follow-
ing assumption for all adversaries: (1) They can compromise
the operating system and any hypervisor of the host running
the TEE applications. However, they cannot breach the TEE
hardware and enclaves directly. As such, they can observe

CTI
Untrusted TEE -MR
St Map()
e Q) Combiner()
Memory Data-Block In MR Reduce()
Block 1 Controller .
Block 2 Q Data-Block Out Oblivious
: Sort
Block n
TEE-MR Block Data
Crypto Module
A —

Fig. 3: High-level diagram of TEE-MR in SGX: Green shaded
modules and memories either executed in the enclave or
remain encrypted.

all of the data, out-of-enclave program execution, and access
patterns between the enclave and out-of-enclave programs
and inside the enclave at the page level. (2) Furthermore,
adversaries are able to modify the data and program running
in the untrusted memory, e.g., to compromise the integrity of
data or force the generation of page faults for enclave pages.

Other side-channel attacks depending on direct hardware
accesses, power analysis, or speculative execution [28], [68],
[13], [30], [11] are out of the scope of this paper. It may
depend on CPU manufacturers’ firmware fixes to address the
cache related attacks that affect all CPUs. We assume although
a cloud infrastructure can be compromised the attacker cannot
physically access the machine.

B. Existing Approaches to Constructing Oblivious Programs

Convert programs with data-oblivious operators. De-
velopers can meticulously examine applications for access
pattern problems. After analyzing the candidate solutions
based on each context, the vulnerable code can be replaced
with proper mitigation methods. There is an active line of work
[20], [35], [50], [60], [46] available for manually modifying
programs with data oblivious operators and oblivious algo-
rithms for TEE applications. However, this approach requires
developers to have extensive knowledge of sensitive access
patterns and oblivious operators to re-design applications. It’s
time-consuming and error-prone, impractical for large-scale
applications.

Rewrite programs with oblivious programming lan-
guage. Some programming languages are designed to disguise
program access patterns, such as ObliVM [41] and Obliv-C
[73]. However, developers need to learn such languages and
rewrite the programs, which is expensive.

Use special-purpose compilers. Another generic approach
is to automatically convert a normal program to data-oblivious
program with data oblivious compilers [54], [41], [74]. It
depends on static analysis to detect vulnerable code blocks
and replace them with data-oblivious alternatives such as
ORAM, linear search, or other oblivious algorithms. While it
is the most developer-friendly approach, static analysis cannot
capture all problematic parts of the code and might be error-
prone [64]. Naive direct transformations also result in low-

efficiency code [9]. So far, the only available open-source tool
is circuit-based converter, e.g., HyCC circuit generator [15].

IV. TEE-MR: FRAMEWORK-BASED OBLIVIOUS
PROGRAMMING FOR TEES

This section includes two parts. First, we will present a
prototype design of TEE-MR with SGX and describe how our
approach utilizes the application framework to regulate ap-
plication dataflows and make access-pattern protection easier.
Then, we will analyze the framework-level access patterns and
develop the protection methods in detail.

A. Prototype Design of TEE-MR with SGX

The concept behind TEE-MR involves utilizing an ap-
plication framework to ensure that input data conforms to
a predetermined pattern for processing, regardless of the
specific application. This approach enables us to systemati-
cally examine and safeguard framework-level access patterns.
Meanwhile, developers can cover a wide range of applications
by implementing straightforward user-defined functions. To
grasp this concept, we will first outline the prototype system’s
structure and then detail the regulated flow of data. The
prototype is based on the most popular TEE — Intel SGX.
It’s straightforward to export the implementation to virtual
machine based TEEs, such as AMD SEV. We foresee that
SEV-oriented implementation will be much simpler. However,
all the analyses about the framework dataflow, sensitive ac-
cess patterns, and mitigation methods will still be valid and
applicable.

1) Components: According to the SGX working mecha-
nism and features of data-intensive applications, we partition
the entire framework into two partitions, i.e., the trusted
in-enclave and untrusted out-enclave components. Figure 3
describes how they are designed.

e Out-Enclave Component. Since the data and the I/O
library are in the untrusted area, our design needs to
address both their confidentiality and integrity. We design
a block file structure for encrypted data on disk and in
the untrusted memory area. For simplicity, we assume
that data records have a fixed size. Both block size
and record size are tunable by the user based on the
specific application. Each block also contains a message
authentication code (MAC) to ensure data integrity. The
whole block is encrypted systematically using the AES
Counter (CTR) mode functions in the SGX SDK. To
minimize the attack surface, we design the library running
in the untrusted part to handle only block I/O, and a
verification function inside the block data manager in the
enclave to capture any adversarial modification on the
loaded data blocks.

e In-Enclave Component. The TEE-MR controller han-
dles MapReduce jobs and controls the dataflow of the
application. Users only provide the map(), reduce(),
and combine() functions to implement the application-
specific processing. For simplicity, we will focus on the
aggregation-style combine and reduce functions, such as
COUNT, MAX, MIN, SUM, TOP-K, etc., which have

6

TEE Memory
Iterative

Processing Q ﬂ

[-> Map P> Combiner1 r Sort 1 r Reduce 1
,’I Data Block Data Block Data Block Data Bloc \‘\
! /page Ipage /page /page
Untrusted Memory

. 4: Regulated dataflows between enclave and main mem-

been shown sufficient to handle many data analytics tasks
[56]. Remarkably, with our careful design, the binary of
the whole TEE-MR framework (without the application-
specific map, combine, and reduce functions) takes only
about 1.1MB physical memory. With the manually man-
aged memory, we can also work with EPC memory as
small as 3—4 blocks. The block size may depend on the
specific application (we use block sizes varying from 2
KB to 2 MB for both WordCount and kMeans application
in our experiment).

2) Regulated Dataflow: With a basic understanding of the
components in TEE-MR, we describe how the application
dataflow is regulated, which helps simplify access-pattern
analysis and protection. While the original MapReduce is
designed for parallel processing, Figure 4 sketches how the
dataflow regulated by the MapReduce processing pipeline
and processed sequentially in TEE-MR, and the interactions
between the enclave and the untrusted memory. First of all,
input files are processed by the data owner, encoded with the
block format via a file encoding utility tool, and uploaded to
the target machine running the TEE-MR application. Second,
within a MapReduce job, all file access requests from the
enclave (i.e., mapper reading and reducer writing) have to
go through the TEE-MR block I/O module running in the
untrusted memory area. Third, the intermediate outputs, e.g.,
of the Map, Combiner, and Sorting phases, can also be spilled
out either by application buffer manager or system’s virtual
memory manager, in encrypted form.

Specifically, after the job starts, the Map module will read
encrypted data blocks sequentially from the untrusted memory
area, decrypt them, and apply the user-provided map function
to process the records iteratively, which generates the output in
key-value pairs. Note that the formats of both the input records
and the generated key-value pairs are defined by users for
the specific application (for readers who are not familiar with
MapReduce programming, please refer to Section II and the
original paper [22]). The controller accumulates the generated
key-value records until they fill up a block, and then sort them
by the key. With strictly managed memory, the filled data block
will be written to the untrusted area temporarily. If we depend
on the virtual memory management, the filled data blocks will
stay in the enclave memory and swapped out by the system
when needed.

We have restricted the reducer functions to a set of hierar-
chical aggregate functions (i.e., aggregates can be done locally

and then globally), with which we can design their combiner
functions for local aggregation. For example, for the COUNT
function, the combiner will generate the local counts for a key,
say ki ((ki,c1), (ki ca), ..., (ki, cn)) if there are m mappers.
The reduce phase will get the final counts of ZT:l cj. The
inclusion of combiner has two benefits: (1) it can significantly
reduce the cost of the most expensive phase: sorting, and (2) it
can help address the group size leakage problem in the reduce
phase that will be discussed later.

The Combiner outputs will go through the sorting phase,
where the sorting algorithm will sort all key-value pairs into
groups uniquely identified by the key. The Reduce phase then
iteratively processed the groups of key-value pairs identified
by the key.

Like the Map phase, key-value pairs stored in blocks will
be handled sequentially in the Reduce phase. Specifically, the
user-selected reduce function from the library takes a group
of records with the same key and generates aggregated results.
For all the aggregation functions we mentioned earlier, a
sequential scan over the group will be sufficient to generate
the aggregates. The aggregate of each group is also in the
form of key-value pairs, which are accumulated in data blocks,
encrypted, and written back to the untrusted area. The above
described dataflow keeps the same for all applications that
can be cast into the MapReduce processing framework. Now,
by specifically addressing the potential access-pattern leakages
in the MapReduce data flow, we can effectively protect a
broad category of data-intensive SGX applications from access
pattern related attacks.

3) Other Design Details: Block Design. We provide two
types of block designs to meet different requirements. The first
type is for fixed length records, mainly used for storing the
intermediate key-value pair output, structured inputs, such as
vectors, or approximately equal length inputs. The fixed-length
record design can effectively protect from attacks that utilize
the record length information, with a cost of padding for short
records.

The second type is for variable length records. Some types
of datasets, like graphs, may contain records with significantly
varying lengths. Using fixed-length records will waste a large
amount of space. However, storing exact-length records also
reveal the record length information, which is not desirable.
We will discuss design privacy-preserving variable-length
methods in Section V-C1.

Integrity Guarantee. While SGX assures the integrity of
enclave memory, both code and data that reside in untrusted
memory remain vulnerable and can be modified. TEE-MR
minimizes untrusted execution that was only used for storing
and retrieving block data from untrusted memory. The integrity
of the untrusted execution will be verified inside the enclave.

We consider three possible attacks to integrity: (1) modify
a block, (2) shuffle a block with another block in the same
file, and (3) insert a block from a different file (or a phase’s
output that is encrypted with the same key). To address all the
attacks, we include the following attributes in the block: (i)
Block ID, so that block shuffling can be identified, (ii) File
Id, so that no block from different files can be inserted, and
(iii) the block-level Message Authentication Code (MAC). At

In-Enclave access pattern
via page fault attack

TEE Memory

Block-level access pattern
from untrusted memory

N

Fig. 5: Observable attack surface of TEE-MR (under SGX)

the end of each block, a MAC is attached to guarantee the
integrity of records, before the whole block is encrypted. We
also use the randomized encryption using AES-CTR encoding
to make sure identical blocks will be re-encrypted to totally
non-distinguishable ones so that adversaries cannot trace the
generated results in the MapReduce workflow. A simple ver-
ification program runs inside the enclave that verifies the IDs
and MAC, after reading and decrypting a block.

V. FRAMEWORK-LEVEL ACCESS-PATTERN ANALYSIS AND
PROTECTION

This section focuses on the framework-level sensitive access
patterns. We will analyze the attack surface of the framework,
discuss each sensitive access pattern, and design the mitigation
methods to protect the sensitive access patterns.

A. Attack Surface of the Regulated Dataflow

In section IV-A, we have shown how the framework’s
basic design regulates the data flow and maintains the data
confidentiality and integrity. The regulated data flow also
makes the analysis of access patterns much easier. Figure
5 focuses on the access-pattern-based attack surface of the
framework. Essentially, an attacker can monitor the block-level
access pattern when TEE-MR reads or writes block data from
TEE. Although the blocks are encrypted, the attacker can still
record the statistics of block read/write operations. Moreover,
when trusted modules execute within TEE, a skilled attacker
with access to the host operating system can observe the page-
level in-enclave access patterns.

Based on the TEE-MR dataflow analysis, we can identify
several critical data access patterns pertaining to different
phases: Map’s input, intermediate processing, combining, and
output; Shuffling/Sorting’s input, sorting, and output; and
Reduce’s input, aggregation, and output. Among these access
patterns, Map’s input and Reduce’s output involve only se-
quential block reads/writes. Thus, individually they do not leak
additional information except for input and output file sizes.

The sensitive access patterns can be summarized into three
groups:

« Data in processing. The most expensive step in this data-
intensive pipeline is the sorting phase that may expose the
relative order between input records. We adopt oblivious
sorting for both block-level and in-enclave protection.
Still, an adversary can observe the page-level access pat-
tern of the framework operations via page-fault interrupts.
We analyze the in-enclave processing code and design
corresponding oblivious methods.

{’Rl R2R3 R4 L1 L2 | L3 | L4
T N

'RI|R2/R3 R4 LI

Fig. 6: Access-pattern leakage in MergeSort by observing the
interactions between the enclave program and the untrusted
memory. If R4 < L1, then the Merge Phase reads R1 to R4
one by one to write sorted output and then reads L1 to L4.
By observing this reading pattern (movement of the pointers),
the adversary will learn that the entire right sub-list is smaller
than the left sub-list.

« Data in input/output. With aggregation operations done
in the reduce phase, the group sizes can be exposed,
which may leak the application-specific private informa-
tion. Furthermore, if records have variable lengths, an
adversary may track unique records by their lengths in
each phase that may result in leaking access patterns of
specified records. Finally, iterative processing algorithms
need to carefully handle the output from the previous it-
eration, e.g., removing dummy records inserted to protect
group sizes.

o User-defined functions. While we focus on the
framework-level protection to minimize developers’ ef-
forts in access-pattern protection, still a user may wish to
have the oblivious UDFs.

In the next subsections, we will organize the content in these
three aspects. For each aspect, we will analyze the access
pattern and then give the protection method. These mitigation
methods can be roughly categorized as follows: (1) replacing
sensitive codes with oblivious branching, loops, or algorithms;
(2) introducing randomness into the access patterns, e.g., with
differential privacy; or (3) injecting padding data to align the
sizes to make the sensitive data output difficult to distinguish.

B. Access Patterns in Data Processing

1) Sorting: We start with the most expensive part of
the whole data flow — the sorting phase. Traditionally, the
MapReduce framework adopts the MergeSort algorithm for
its simplicity. As the shares of Map(or combiner)-output have
been sorted individually, MergeSort only needs to merge
the sorted shares. However, as we show next, it leaks vital
information about the records under sorting.

If we look at the block-wise merge process carefully, we can
identify some unusual merging behaviors, which reveals some
sensitive attributes of the processed records. Starting from the
records in each block, the main body of MergeSort is to merge
two individually sorted lists of records recursively until all
records are sorted. Assume the two merged lists contain the
records {L;} and {R;}, respectively, as shown in Figure 6.

If one of the lists has all the values larger (or less) than the
other, the corresponding access pattern will be continuously
reading the blocks in one list first, followed by the whole
list of the other. This block access pattern can be observed
in-enclave if the enclave memory buffer is large enough to
contain all sorted blocks; or outside of the enclave if the
untrusted memory or hard drive is used to hold blocks. It may
leak sensitive information for real applications. For example,
in the WordCount program, adversaries might be able to guess
the frequencies of words and derive the word distribution.

Protection Methods. Since this access pattern can be in
enclave memory or outside of enclave, in the following we will
discuss the protection method for outside-enclave case first,
while the in-enclave page-level protection will be discussed
later with other issues. A popular method for hiding the
block-level access patterns is ORAM. However, we notice
that applying the direct transformation with ORAM for block
I/O is not the best option, as we show in experiments and
also other researchers [9]. In contrast, a dedicated oblivious
sorting algorithm [7] is more efficient. In the TEE-MR frame-
work, we extend the well-known data-oblivious BitonicSort
[7] algorithm as the default sorting to processing blocks with
fixed number of records per block. Note that BitonicSort takes
O(N(log N)?) block accesses for N blocks. The ORAM-
based MergeSort’s cost has a similar complexity, but is con-
stant times higher than BitonicSort as our experimental result
shows. We also show in experiments that other options, such
as ORAM-+oblivious hashing, can also be an efficient option
for a specific type of applications.

2) In-Enclave Page Access Patterns: In-enclave execution
is vulnerable to the page-access attacks [27]. We have carefully
analyzed the framework-level operations and categorize them:
the branching statements and the sort operations. In particular,
the sort operations include the in-enclave sorting part of the
sorting phase and the map-output sorting before the combiner
is applied. Note that the repetitive page accesses for the same
data block reveal the ordering of records in a pair of blocks, a
similar scenario to Figure 6, but happening at the page level.

Protection Methods. For the sorting operations, at first
glance, we can just use the BitonicSort algorithm to hide
the record-level access pattern as well inside the enclave.
However, the core operation of this in-enclave BitonicSort,
compare-and-swap, still shows the data-dependent access pat-
terns. The following code snippet shows how possibly the
access pattern is associated with the record order.
if (a >= b){

// swap a and b, and

// the page access can be observed.
lelse{

// no page access.

}

Note that this is the common branching statement problem
for all parts of framework-level in-enclave code. Thus, we
adopt the oblivious-if [9] to handle all the if-else statements.
The basic idea is to use the CMOV instructions to hide the
page access patterns. However, the oblivious swap operation
indeed occurs high costs, about 2 — 2.5X cost increases for
the sorting phase only.

C. Access Patterns in Data Input/Output

We have handled the access patterns in processing data.
Next, we look at the problems when data is transitioned from
or into the static form, including the record length, the group
sizes in aggregation, and padding removal between iterations.

1) Record-Length Patterns : Variable record lengths leak
important information, e.g., allowing attackers to trace records
of specific lengths in sorting. A simple design to guard this
length information is fixed-length records. The fixed-length
design adopts the largest record length for all records, which
disable the length-based record identification. However, it
wastes space and incurs high processing costs. For some appli-
cations, especially, graph algorithms, record lengths can vary
dramatically, e.g., the largest record may contain thousands of
times more neighboring nodes than the smallest one. Thus,
simply adopting the fixed-length design may not be ideal.

Protection Methods. We study two record designs. First,
we keep the fixed-length design for some applications, e.g.,
data mining algorithms processing fixed-length vectors, which
ideally preserves confidentiality without making any sacrifice.
Second, we design and evaluate several efficient variable-
length methods to balance space efficiency and information
hiding.

Our first method is based on differential privacy (DP), [24],
which is recognized as the de facto strongest privacy protection
method. The basic method is to pad records with randomized
sizes. Consider a record-length query function, e.g., the max
length of record in any subset. The function sensitivity would
be the maximum record length of the dataset, denoted as m.
A straightforward solution for differentially private padding is
to use a Laplacian noise distribution Lap(0,m/¢€). There are
two challenges in practice: (1) the padding length cannot be
negative, and (2) the global m can be very large, resulting
in high noise levels. The negative padding can be simply
addressed by offsetting the noise distribution to Lap(d, m/€),
where § is constant chosen to make sure about 99% of noise
positive: 0 ~ 30, where o is the standard deviation ﬂm/ €
(the variance of Lap(é, b) is 2b%). For the remaining very small
number of cases generating negative noise, we set the padding
length to 0. However, we find that for a large global m, the
cost is close to the fixed-length design and thus impractical to
use.

We also investigated a much more space-efficient (and thus
weaker privacy protection method) with k-Anonymization.
Note that the fixed-length method pads every record to the
maximum length of the whole dataset. If we use a group-
wise padding method instead, i.e., every record in the group
padded to the maximum length of a group of k records, we
can save space significantly. As Algorithm 1 shows, this k-
anonymization method partitions the records sorted by record
length into groups, where each group has at least k records and
the records in the same group share the same padded record
size. The parameter k implies a trade-off between the cost and
confidentiality of record size. Our experimental result shows
this strategy gives a lower overall storage and processing costs
than the fixed-length solution, certainly with a weaker privacy
guarantee than the global differential privacy method.

Algorithm 1 K-Anonymized Bucketing

1: Function KA_Buckets(R, k, Q)
2: Note: R: original records, k: the minimum number of
records in each group, @Q: the length-anonymized records
N < the number of records in R
R <+ sort_by_record_length(R)
for ¢ < 1 to N with step k£ do
im < min(i + k, N)
Sm < record_length(R[i,])
for j < i to i, do
Qlj] < pad_record(R[j], $m)
end for
end for
Function pad_record(r, s,,)
r: a record; S,,: maximum length of the record
I < length(r)
if | == s,, then
return 7
end if
b + allocate(sy,)
for i + 1tos,, do
if 7 <[then
bli] « rli]
else
bli] + 0xFF
end if
: end for
: return b

R e U

—- =
4

R AN A e

—_ = = = = =
N AW N = O

2) Group Sizes: The Sorting phase will order key-value
pairs by the key. For many applications, when the key type is
defined as integer or string, the identical keys will be sorted
into the same group. The controller will sequentially read the
sorted groups and transfer the records containing the same
key to the reduce function. Furthermore, in an aggregation-
based reduce function, each group will be reduced to one
key-value pair. By observing the input/output ratio, adversaries
may estimate group sizes, as shown in Figure 7. In extreme
cases, multiple blocks can be reduced into one record, which
may lead to severe information leakage. For example, it can
leak the word frequencies for the WordCount program, which
can be used to guess the associated words.

Protection Methods. We consider a simple method to
address the group-size leakage problem, which consists of two
parts. Since the difference between Reducer’s input and output
sizes allows the inference of group size, the first method is
to make the input number of records per group oblivious. We
make the Combiner component mandatory in TEE-MR, which
does not breach the utility of framework for most applications
[56]. As such, each record in the reducer input may represent
an aggregate of multiple records — by counting the observed
number of records, one cannot infer proper group sizes.

A concern is whether the frequency of such combiner-output
records still preserves the ranking of actual group sizes. The
intuition is that the key of a large group may be presented in
more map outputs than a key of a small group. We analyze the

Input Blocks

K2-V1 K2-V2 K2—V3} { K2-V4 K2-V5 K2-V6} { K2-V7 K3-V1 K3—V2} K3-V3

L)
]

\ 4

Reduce

| S |
K2-v

Ouptut Blocks

Fig. 7: Group-wise aggregation in Reduce phase may leak
group sizes. K2 spread over three blocks. Thus, the access
pattern will be reading three blocks sequentially and then
possibly writing out one block.

observed group size after adding combiners to check whether
the size ranking is still preserved. Figure 13(a) for WordCount
and Figure 13(b) for kMeans both show that the ranking of
group sizes is not preserved at all.

To completely address the possible ranking leakage, we can
further take the following approach, by randomly padding
dummy records, e.g., every time an input block is scanned,
output an aggregated record, regardless of whether or not the
actual aggregation happens. Note that since all the records
are encrypted and non-distinguishable, it’s impossible to dis-
tinguish dummy records from normal ones by observing the
encrypted reduce output. However, this approach will incur
more costs for sure, including the padding removal step if
multiple iterations of the MapReduce job are needed.

3) Padding Removal: The discussion so far is based on
single-round processing algorithms. When iterative processing
is considered, a unique problem is to appropriately handle the
injected dummy records in the reducing phase if the padding
method is applied. Many data mining algorithms include
iterative processing steps: between iterations, the output of the
last iteration is pumped to the next iteration as the input. If we
keep all dummy records and pump them into the next iteration,
the processing cost will steadily increase after every iteration.
However, a naive scan-and-filter step to remove the dummy
records will make them identifiable, beating the purpose of
padding.

Protection Methods. We design an approach to filter the
dummy records obliviously. While creating dummy records,
we assign a tag in each record to distinguish between actual
and dummy records, e.g., 0 and 1, respectively. Meanwhile,
we keep track of the total number of dummy records ' among
the N number of total records. To filter the dummy records,
we first perform oblivious sorting by the filtering tag, and then
take the first N — K records from the sorted list. This step
will significantly increase the overall cost as we will see in
experiments.

D. Access Patterns in User Defined Functions

So far, we have addressed the major access pattern issues
at the framework level. The framework now safeguards the
sensitive access patterns, which reduces the attack surface to
just the user-defined functions. These user-defined functions
include map, combine, and reduce. The good news is that these
function all handle within-block and in-enclave operations,
leaving much simpler access patterns to users. Thus, a sim-
ple approach, e.g., directly transforming the data-dependent
operations, might work just fine.

Protection Methods. As recent studies [9], [50] show,
for within-block processing, we only need to take care of
several data-dependent statements: if-else, loops, and logical
operators. Note that a logical operator like “a && b” is
implicitly converted to an if-else statement:

if (a == True) return b
else return False

We provide the corresponding oblivious APIs so that TEE-MR
users can replace these statements. We may further deploy
a static analysis mechanism like ObliCheck [64] to verify
whether users have correctly and comprehensively covered all
these sensitive operations.

VI. EXPERIMENTAL EVALUATION

The TEE-MR approach is designed to reduce the manual
efforts in developing oblivious programs with a tiny engine.
The experimental evaluation has the following goals. (1) We
show that the TEE-MR approach has achieved the design goal:
it can significantly reduce developers’ efforts, and the TEE-
MR applications perform comparably to manually composed
solutions. (2) We also examine the main design decisions to
identify the best options for protecting critical access patterns.

A. Experiment Setup

TEE-MR is implemented with C++ and the Intel SGX SDK
for the Linux environment. Our core framework consists of
only about 2000 lines of code. The entire TEE-MR framework
runs inside the enclave, except for a small component in
the untrusted area that handles block-level read/write requests
from the enclave. The compiled framework without the ap-
plication code takes about 1.1MB. We use 128-bit AES-CTR
encryption to encrypt the data blocks in the untrusted memory.
We have implemented a customized bitonic sort that works
with blocks. To protect record level access patterns in the en-
clave, we also apply the bitonic merge operation to obliviously
merge in-enclave blocks. Furthermore, we have implemented
all the oblivious operations for the core framework, and
developed a combiner/reducer library for aggregation. The
experiments were conducted on a Linux machine with an
Intel(R) Core(TM) i7-8700K CPU of 3.70GHz processor and
16 GB of DRAM.

Benchmark Applications. We adopt three well-known
data-intensive applications in our evaluation: WordCount,
KMeans, and PageRank. WordCount takes a document collec-
tion and output the frequency for each word. It is an essential
tool for natural language processing and has been included in

various tutorials as an example of data-intensive processing.
KMeans [33] is a fast, simple clustering algorithm. It takes
the initial cluster centroids and iteratively conducts the two
steps: (1) cluster membership assignment for each record and
(2) the centroid re-computation, until the clustering converges,
where the centroids (or all records’ cluster membership) do
not change anymore. In all KMeans related experiments, we
only execute one iteration of the learning process. PageRank
is a well-known link analysis algorithm [12]. It determines
the importance score of every node in a directed graph based
on the edge references. As the entries in a graph adjacency
list have significantly varying lengths, it’s perfect for our
evaluation of variable record length and iterative processing.

Datasets. We have used several application-specific datasets
in this experiments. Samples of the Bible dataset are used for
evaluating WordCount. KMeans is evaluated with a simulated
two-dimensional vector dataset that fills data blocks with ran-
domly generated records. For PageRank-related evaluations,
we have used three graph datasets: wikipedia (crocodile) [57],
DBLP citation [55], and Human Protein-Protein Interaction
(HPPI) [1] networks.

B. Compared Approaches

Compared to the manual composition approach and the au-
tomated approaches, TEE-MR is a semi-automated approach.
We show that it can significantly reduce developers’ efforts
in the manual approach and generate comparably efficient
oblivious programs. Furthermore, TEE-MR applications are
much more efficient than the oblivious solutions mechanically
transformed by the circuit-based automated converter, the only
working automated approach we can find so far.

Manual Composition. To find the optimal composition,
we have carefully examined implementations for the sample
applications with ORAM and within-block oblivious operators
as the building blocks. Specifically, we also noticed the most
expensive operation is aggregating by groups, which can be
implemented with either sorting or hashing. Correspondingly,
we examine the following two candidate solutions.

o Manual Composition with ORAM-Sort. The ORAM-Sort
approach utilizes ORAM as the block I/O, which was
promoted by some approaches [59], [2]. Thus, the sort-
ing operation will be MergeSort with ORAM for block
accesses. Both the input and output will use sequential
block I/0O without ORAM protection. Note that we did not
apply any additional access pattern protection methods,
such as group-size disguising for in-enclave processing.
We will show that this manual approach is not straight-
forward to construct, and, if not carefully designed, e.g.,
using ORAM directly for all basic block operations like
sorting, we will get a solution more expensive than TEE-
MR.

e Manual Composition with ORAM-Hash. The ORAM-
Hash approach refines the ORAM-Sort approach by using
hashing to find the items in aggregation. The basic work-
flow is as follows. The program sequentially reads input
blocks without ORAM, processes the block, and gener-
ates the records for aggregation. Then, an incremental

record-by-record aggregation step is applied with groups
indexed and retrieved with an efficient I/O optimized
hashing method, such as extendible hashing [26]. Specif-
ically, when a new record is extracted from the input,
the block containing its aggregate item (i.e., the group)
is retrieved with ORAM, and then the corresponding ag-
gregate is updated. To optimize the performance, we have
also applied block-wise pre-aggregation and maintained a
buffer of the same size as used for TEE-MR’s sorting to
reduce the number of ORAM accesses. Note that this
approach actually benefits some applications, such as
kMeans, when the number of groups in aggregation is so
small that one or a few blocks can hold all the key-value
pairs. The ORAM-Hash-based operations are thus more
efficient than ORAM-Sort for this kind of applications.
The ORAM-Hash method will need to maintain a hash index
— the mapping between hash function outputs and block ids,
which we have used a HashMap to maintain for simplicity.
However, researchers have found that processing such a hash
table in enclave may incur unique page-level access patterns
[34], [46]. An enhanced scheme [34] to protect these patterns
will require additional O(N) cost per key search if the table
contains N keys. We did not implement these protections in
our evaluation. With such suboptimal implementations, we
show in general both ORAM schemes still cost significantly
more than TEE-MR.

Automated Conversion Approach. Automated approaches
include compiler and circuit-based methods. Unfortunately, we
could not find a working open-source implementation for the
few published compiler approaches [54]. Due to the sheer
complexity of implementing such a compiler, we have not
included the compiler method in the evaluation. For circuit-
based, we use the HyCC circuit generator [15] that converts a
plain application implementation to the corresponding circuit.
HyCC was originally designed for converting programs to
Garbled Circuits [8].

C. Result Analysis

Our evaluation is conducted on three aspects to show: (1) the
amount developers’ efforts can be reduced with the TEE-MR,
(2) the performance of TEE-MR-based oblivious programs,
and (3) design decisions made in TEE-MR protecting access
patterns. We analyze the corresponding results as follows.

1) Reducing Developers’ Efforts with TEE-MR: We are
curious about how easily developers can achieve oblivious
solutions in comparison to TEE-MR. This evaluation does
not include the extra time learning the different approaches
— apparently, developers need to take a significant amount
of time to learn the manual approach and the framework
approach. Instead, we look at the result of developing the
evaluated applications to understand the difficulty levels of
using different approaches. We also assume developers will
use a library of oblivious primitives, e.g., ORAM, oblivious
branching, and oblivious sorting. The use of library will also
significantly reduce the line of code (LOC) for the manual and
framework approaches.

Table I summarizes the additional effort a developer need
to achieve data oblivious applications. (1) It shows the manual

TABLE I: Developers’ effort to implement the oblivious solutions. LOC: Total lines of code, AP: Acess-pattern sensitive code

segments. LOC-overhead: lines used to hide APs.

Application Manual Circuit TEE-MR
LOC LOC-Overhead AP LOC LOC-Overhead AP LOC LOC-Overhead AP
Word Count 277 21 6 155 0 - 22 0 0
KMeans 330 24 4 | 263 0 - 58 6 1
PageRank | 305 22 4 | 160 0 - 45 3 1
approach need to identify one to six sensitive code segments
. 4,
to hide access patterns with data-oblivious alternatives. This B ‘ ‘ ‘
approach also requires the developer to write more lines of _ In TEE-MR
.. . . =z > It ORAM-Sort
code tha.n o.ther approaches, even when the 0bhv1qus 11brar¥ 18 20} < 0% lIORAM.-Hash
used. It indicates much more development efforts in analyzing Eq £ It Circuit
.. . . 2 =
the original code and conducting the conversion. (2) The g s
o . g 2 10°F
circuit approach is fully automated, and the developer does G 107 g
.. m
not need to do any additional work. However, the generated I I
i 10" 48 ‘ ‘
programs have poor performance as we will show later. (3) ol wiki hppi dablp

With TEE-MR, the developer only focuses on small pieces
of application-specific code, such as the map and reduce
functions, dramatically reducing the developer’s burden com-
pared to the manual approach. Specifically, it does not require
any LOC overhead for WordCount, and for KMeans it only
requires six lines of code to solve one access pattern issue.

Cost of Learning MapReduce. Note that the reported
developer’s cost of TEE-MR does not include the cost of
learning MapReduce programming, which is out of this paper’s
scope. However, previous studies have supported that junior
to medium-level developers (e.g., Computer Science college
students) should be able to learn the concepts and apply the
skills to solve real problems within a reasonable time frame,
e.g., 2-3 weeks. As early as around 2009-2012, universities
started introducing MapReduce into big data and distributed
systems courses, which include our effort [18] and large
universities like the University of California at Berkeley (UC
Berkeley) [53]. We have witnessed that junior and senior-level
undergraduate Computer Science students started learning the
main concepts and finished a MapReduce programming task
within 2-3 weeks [18]. The evaluation was done in three
semesters during 2014-2015, and most students reported they
could finish the programming task within 20-25 hours in
the two-week period. Similar results were reported by UC
Berkeley in 2012, which integrated MapReduce programming
tasks and the cloud-based deployment into lower-division CS
courses that students in third or fourth semesters typically
took. Students finished one two-hour lab and one two-week
project assignment with satisfactory learning outcomes [53].
Thus, we conclude that the cost of learning MapReduce is
reasonablly low, but it significantly benefits big data analytics
and approaches like ours.

2) Performance on Benchmark Applications: We compare
the implementations of TEE-MR and different oblivious so-
lutions for the benchmark applications. We implement the
manual approaches in two different approaches: ORAM-Hash
and ORAM-Sort with ZeroTrace as the oblivious block I/O in-
terface. We have ignored another trivial manual approach, i.e.,
following the same MapReduce dataflow, which gives similar
results as TEE-MR. As we discussed earlier, the ORAM-Sort
solution has used an o-swap protected MergeSort. However,

TEE-MR ORAM-S ORAM-H Circuit

(a) WordCount
block size = 2KB.

Dataset

cost (b) PageRank cost comparison, block

size = 2KB.

comparison,

Fig. 8: Application-based comparisons for WordCount and
PageRank.

the in-enclave hashmap access has not used oblivious opera-
tions. Thus, the full version of ORAM-Hash will have costs
higher than the reported. In all the implementations, we have
used the same number of working memory blocks, e.g., only
the number of working blocks for the sorting algorithms to
maintain a minimum trust computing base.

The applications show almost similar patterns for the three
approaches, while KMeans’ ORAM-Hash shows a different
pattern, which we will analyze in more details. Figure 8(a)
and 8(b) for WordCount and PageRank show the TEE-MR-
based implementations are significantly faster than all the
compared approaches, and the circuit-converted programs take
unbearable costs. In contrast, ORAM-Hash for KMeans has
the best performance among all approaches (Figure 9). The
reason is that the small number of centroids can be stored
in one or a few in-enclave working blocks for incremental
aggregation in the hash-based solution, which is much faster
than sorting records and then aggregate. Figure 9(a) shows
that this benefit does not hold when kMeans generates a large
number of clusters, e.g., the k is large when kMeans is used
for data summarization.

TABLE 1II: Application Level Comparisons of TEE-MR and
ORAM for different applications. Block size = 2 KB

Application Input size TEE-MR | ORAM
(records) (s) (s)
KMeans 68 x10% records 20.0 4.1
WordCount 20,000 2KB blocks 194.6 1593.2
PageRank (wiki) | 170,918 edges 16.8 138.4

3) Major Design Decisions in TEE-MR: We conduct ex-
tensive experiments to show how different design decisions in
the following three aspects may affect the overall performance.
(1) We will study the impact of variable and fixed record

107}
104

10%

Execution Time (s)

10 £

10!

100
TEE-MR ORAM-S ORAM-H Circuit

(a) kMeans cost comparison for an
increasing number of records. Block
size = 2KB.

Required hashmap size (Blocks)
2 4 6 8 10

-~ ORAM-Hash
-=- ORAM-Sort
| -~ TEE-MR

Execution time (s)

170 340 510 630
Number of centroids (/K)

850

(b) kMeans cost comparison for an
increasing number of centroids (K).
Number of records 17 x10%, Block

IS

g, 400 — ‘
= text —=— wiki
=5 300 —o— dblp —o— hppi |
2

o 200

& 100}

o

2

= (e

E 12345678910

Privacy budget (¢)

size = 2KB

Fig. 9: Application-based comparisons for kMeans.

length for different applications. (2) We show the benefits
of the dedicated oblivious sorting, BitonicSort, compared to
MergeSort with ORAM for block 1/0. (3) Group sizes in the
aggregation stage are sensitive. We experiment with different
methods to show the corresponding costs.

Variable vs Fixed Record Length. As described in section
V-C1, keeping variable record lengths as they appear will lead
to a potential access pattern problem. However, using a fixed
length for the whole dataset will waste space and increase
processing costs. In this experiment, we first show the impact
of the fixed-length solution on the memory cost, then explore
two memory saving approaches using differential privacy and
the k-anonymization accordingly.

TABLE III: Memory cost comparison: fixed-length records
consume much more memory than variable-length records.

Dataset | fixed (MB) | fixed/variable (times)

wiki 157.6 115.0
hppi 143.2 66.0
dblp 49.0 8.4
text 10.9 3.5
vector 10 1.0

Table III shows the memory overhead of setting maximum
record length to all the records. The memory overhead varies
over different types of data, among which graph datasets incur
the most overheads due to the large differences between record
lengths. Text data can be partitioned almost arbitrarily, and
thus fixed length records work well. Finally, vector data has
fixed length and thus incurs no additional overhead.

Figure 10 shows the memory overhead of differentially-
private record lengths compared to fixed ones with the DP
method described in section V-C1. Only when € is larger
than a threshold around 4, the cost can be smaller than the
fixed-length method. Furthermore, for a commonly acceptable
privacy budget, i.e., € < 10, the cost is still about 50% of the
fixed-length method, which is not impressive for space saving.

Compared to the global DP method, the k-anonymization
method gives much more space saving. In Figure 11(a) we
estimate the percentage of the memory requirement of k-
anonymized variable-length records over fixed-length data
with different settings of k. The wiki and hppi datasets increase

Fig. 10: Average storage cost of differentially private lengths
for various graph datasets

significant with increasing k values, due to the large variance
of record lengths. However, the overall cost is still less
than 10% of the fixed record-length. Because of the smaller
variance in record-length, the dblp dataset showed negligible
impact on large k values.

We also conducted experiments to estimate the process-
ing cost difference between k-anonymized-length records and
fixed-length records, using the PageRank algorithm. In figure
11(b), we see k-anonymized length performs significantly
better than fixed length. The execution time increases linearly
with larger k values due to the increased overall data size.

S ‘ ‘ ‘ : " - ‘

= -&- wiki —— dblp —e- hppi — fixed length -=- K-anonymized

=y I 4 —~

512 2w

o

S § 301

7 3

= o

P IR S ——

S

& 0 L L L L '] (f L L J
0 200 400 600 800 1,000 00 500 1,000 1,500

Different values of K

by

Different values of K

(a) Storage cost
anonymized lengths.

using k- (b) Processing costs with different

types of records in PageRank.

Fig. 11: K-anonymized variable-length records

Options for Oblivious Sorting. A key operation in the
framework is key-value record and block sorting. We have
shown that it is necessary to use oblivious sorting algorithms to
protect the important relationship between keys. We compare
the costs of BitonicSort and MergeSort with ORAM for block
I/0. In both solutions, we also examined the impact of CMOV-
based protection for disguising branch statements. Figure 12(a)
shows that BitonicSort is much faster than MergeSort +
ORAM. While the costs of both algorithms are asymptotically
the same, i.e., O(n log2 n), ORAMMergeSort+ORAM appears
to have a much high constant factor — up to five times
slower than BitonicSort. As described in Section V-B2, we
also applied the oblivious swap technique for within-block
operations. Figure 12(b) shows the additional cost brought by
BitonicSort+o-swap is significant.

Protecting Group Sizes. We have mentioned that by using

700

T T
- Merge Sort + ORAM .
GO0 - —e— Bitonic Sort in TEE-MR o
500 -
400 -

300 st

Execution time (s)
.

200 - o

100 | P

? L
1,000 1,500

Number of blocks

%5() 500

10,000 15,000 2,000

Number of blocks

0 5,000 20,000

(a) Comparing oblivious sorting algo- (b) Oblivious sorting with in-enclave
rithms, block size = 1KB. CMOV protection, block size = 2KB.

Fig. 12: Costs of oblivious sorting solutions.

T T T 5 T T
_| — Actual Frequency — Actual Size
. 10° [— Observed Frequency = 4.5} — Observed Size
% 10* 1 éﬂ
s g 1
£ 10%) 8 2
'E 2 § 35 i \]
§ 10 E
v ﬂhm Tl 7
100 " JIA AL 92.5L . . . "
0 20 40 60 80 100 1 2 3 4 5

Top 100 words ordered by frequency C]us}er Id

(a) Word frequencies protected by (b) KMeans cluster size protected by
mandatory Combiner. mandatory Combiner.

Fig. 13: Group size protection with mandatory Combiners.

Combiners mandatorily in our framework we can effectively
protect from the group-size-estimation attack in reducing.
Figure 13(a) and 13(b) show how well Combiners’ outputs
disguise the actual group sizes. It is well-known that combiners
improve performance as they can significantly reduce the
number of records going to the Reduce phase. We achieved
about x2 and x7 speedup for WordCount and KMeans respec-
tively. As our experiments showed, combiners are especially
beneficial for applications with a small number of keys such
as KMeans.

To further protect the possibly preserved group size ranking,
we have also evaluated the dummy-record padding method,
which impacts applications that require iterative processing.
Table IV shows the oblivious post-processing cost to remove
dummy records, which is necessary in iterative processing. The
padding will significantly increase the execution time as we
need an additional oblivious sorting step in the filtering step.
However, with the post-processing step, the size goes back
to the original one, which will not affect the performance of
future processing.

TABLE IV: Additional costs for filtering padded records in
iterative processing

Application Input size w/o filtering | w/ filtering
records (s) (s)
KMeans 68 x10% vectors 20.0 39.2
WordCount 20,000 2KB blocks | 194.6 381.8
PageRank (wiki) | 170,918 edges 16.8 31.2

VII. RELATED WORK

Side-channel attacks and mitigations. Side channel at-
tacks on Intel SGX have been a hot research area during recent
years. We will not intend to cover all the work in this area, as
some surveys [27], [48] have done an excellent job. Instead, we
focus on those studies that are most related to access-pattern
protection for data-intensive SGX applications.

The most popular solutions are based on ORAM [65], [69],
which has broader applications beyond SGX applications, e.g.,
including the setting of cloud-based client-server confidential
computation. The most efficient ORAM schemes so far include
tree-based Path ORAM [65] and Circuit ORAM [69]. Zero-
Trace [59] experimented with both Path and Circuit ORAM
to address the access-pattern problem for SGX applications.
While using the most efficient implementation of ORAM, we
show that ZeroTrace based block I/O still takes a significant
overhead over the regular block I/O and much more expensive
than TEE-MR. Obliviate [2] also uses the Path ORAM scheme
to design the I/O interface for an SGX-based secure file
system. Both schemes try to design a protection mechanism at
the block I/O level, providing a high level of transparency to
application developers. As we have discussed, an application-
framework-level protection mechanism can be more efficient
for data analytics applications.

TEE-enhanced big data systems. Researchers also try
to extend big data processing platforms to take advantage
of SGX. Although our method utilizes the famous big data
processing framework, our purpose is entirely different from
these studies. They follow the basic idea: to keep the codebase
of current big-data systems: Hadoop and Spark unchanged as
possible, while moving the data-processing parts to the SGX
enclave. Access-pattern protection is their secondary goal. (1)
VC3 [61] applied this strategy for modifying the Hadoop
[70] system. It moves the execution of “map” and “reduce”
functions to the SGX enclave, while the upper-level functions
such as job scheduling and data management still stay outside
the enclave. The most part of the Hadoop Java library is not
changed at all. As a result, it achieves the goal of processing
encrypted sensitive data in enclaves, but did not address
the problems of access pattern protection and computation
integrity (for the components running in the untrusted memory
area). (2) M2R [23] targets the problem of access-pattern
leakage in the shuffling phase of VC3 and proposes to use
the oblivious schemes for shuffling. However, other security
problems are still not addressed. (3) Opaque [76] tries to
revise Spark for SGX. They focus on the data access patterns
between computing nodes and illustrate how adversaries can
utilize these access patterns to infer sensitive information in the
encrypted data. To protect the distributed data access patterns,
they provide four types of primitive oblivious operators to
support the rich Spark processing functionalities: oblivious
sort, filter, join, and aggregation. Noticing the problem of
computation integrity, they try to move the job controller
part, formerly in the master node, to the trusted client-side
and design an integrity verification method to detect whether
worker nodes process data honestly. However, to reuse the
most parts of Spark codebase, it has the most of the system

running in the untrusted area, especially for worker nodes.
Thus, the local-level integrity guarantee and access-pattern
protection might be insufficient.

These top-down approaches: VC3, M2R, and Opaque, have
the fundamental problem — unless the whole framework is re-
implemented and moved to the enclave, adversaries can easily
attack the components running in the untrusted area or utilize
the memory side-channels to extract confidential information.
Our work is entirely different from these studies. Our goal
is not to achieve massive parallel processing of data. Instead,
we utilize the MapReduce framework to regulate application
dataflow so that we can focus on the application-independent
framework level protection mechanisms and thus protect a
large number of data mining algorithms that can be cast to
the processing framework.

Oblivious operators. Compared to ORAM at the block 1/0
level and TEE-MR at the framework level providing access
pattern protection, Ohrimenko et al. [50] take an application-
specific data-oblivious library approach. They analyzed several
machine learning and data mining algorithms and extract a
few primitive operations to make them data oblivious, includ-
ing oblivious move, oblivious greater, and oblivious sorting.
These primitives are then used to construct data-oblivious data
analytics algorithms. Following the similar path, several works
[60], [36], [35], [39] originate oblivious versions of primitive
operators like move, swap, etc., by leveraging either CMOV
instruction or boolean expressions. By using these oblivious
operators as building blocks, they designed more complex
algorithms. This approach can protect the application-specific
access patterns, but it needs experienced developers to rewrite
each algorithm carefully.

Access-patterns in enclave-enhanced databases. Other
related work includes enclave-based database systems. Many
of them have ignored the access pattern problem and focused
more on efficiency and functionality of database systems, such
as EnclaveDB [52], AlwaysEncrypted [6], and Enclage [66].
Several solutions have used improved ORAM as the basic
building block to provide oblivious query processing, such as
Oblix [46], ObliDB [25], and oblivious range and kNN query
processing [17]. Oblivious join is the most expensive operation
in oblivious database queries, which cannot be efficiently
implemented with ORAM. Zheng et al. [76] proposed a non-
ORAM primary-foreign key join algorithm and Krastnikov et
al. [36] extended this method for general equi-joins. All of
these studies are tailored to the access patterns in relational
query processing, which are different from the batch-based
data mining workloads that TEE-MR is designed for.

VIII. CONCLUSION

This paper proposes a framework-based approach to ad-
dressing the access-pattern protection problems in TEE ap-
plications. The proposed TEE-MR framework to regulate the
application dataflow — once the framework-level access pattern
problems are addressed, applications cast to the framework
can all benefit from the systematic access-pattern protec-
tion mechanism. The regulated dataflow allows us to focus
on the application-agnostic access pattern leakages at each

stage and develop efficient solutions. As a result, the TEE-
MR framework hides the details of access-pattern protection
methods from developers and minimizes developers’ work in
developing TEE applications resilient to access-pattern attacks.

We have conducted extensive experiments to study the costs
and performance advantages of the TEE-MR framework. The
result shows that TEE-MR-based implementations of data-
intensive applications work much more efficiently than most
ORAM-based solutions. Although learning the MapReduce
programming model may take a couple of weeks based on the
reported studies, the advantage of using the framework in our
approach is tremendous. They are also easier to develop and
integrate into existing projects, as many algorithms have been
implemented with MapReduce during the past years. Another
unique benefit is that the framework-based implementation
can be easily ported to different TEEs without significantly
affecting the applications.

IX. ACKNOWLEDGMENT

This research was partially supported by National Institute
of Health (Award# 1R43AI136357) and National Science
Foundation (Award# 2232824). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the funders.

REFERENCES

[1] M. Agrawal, M. Zitnik, and J. Leskovec. Large-scale analysis of disease
pathways in the human interactome. In Biocomputing 2018, pages 111—
122, 2018.

[2] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE: A data
oblivious file system for intel SGX. In the Network and Distributed
System Security Symposium, 2018.

[3] A. M. Alam, S. Sharma, and K. Chen. SGX-MR: Regulating dataflows
for protecting access patterns of data-intensive sgx applications. Pro-
ceedings on Privacy Enhancing Technologies, 2021(1):5 — 20, 2021.

[4] Alibaba. Alibaba cloud’s SGX encrypted computing environ-
ment. https://www.alibabacloud.com/help/en/elastic-compute-service/
latest/build-an-sgx-encrypted-computing-environment/.

[5] AMD. AMD SEV-SNP: Strengthening vm isolation with integrity
protection and more. https://www.amd.com/en/processors/amd-secure-
encrypted-virtualization, 2020.

[6] P. Antonopoulos, A. Arasu, K. D. Singh, K. Eguro, N. Gupta, R. Jain,
R. Kaushik, H. Kodavalla, D. Kossmann, N. Ogg, R. Ramamurthy,
J. Szymaszek, J. Trimmer, K. Vaswani, R. Venkatesan, and M. Zwilling.
Azure SQL database always encrypted. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD
20, page 1511-1525, New York, NY, USA, 2020. Association for
Computing Machinery.

[7]1 K. E. Batcher. Sorting networks and their applications. In Proceedings
of the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS
’68 (Spring), pages 307-314, New York, NY, USA, 1968. ACM.

[8] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled
circuits. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS 12, page 784-796, New York, NY,
USA, 2012. Association for Computing Machinery.

[9] L. Biernacki, B. M. Tiruye, M. Z. Demissie, F. A. Andargie, B. Reagen,
and T. Austin. Exploring the efficiency of data-oblivious programs.
In 2023 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 189-200, 2023.

[10] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Proceedings
of the 31st Annual Conference on Advances in Cryptology, CRYPTO’11,
pages 505-524, Berlin, Heidelberg, 2011. Springer-Verlag.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi. Software grand exposure: SGX cache attacks are practical.
In 71th USENIX Workshop on Offensive Technologies (WOOT 17),
Vancouver, BC, 2017. USENIX Association.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]
(28]
[29]

[30]

(31]

[32]

[33]

[34]

S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 30:107-117, 1998.

J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution. In 27th USENIX Security Symposium (USENIX Security 18),
page 991-1008, Baltimore, MD, Aug. 2018. USENIX Association.

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1041-1056, Vancouver, BC, Aug. 2017.
USENIX Association.

N. Biischer, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T. Schnei-
der. HyCC: Compilation of hybrid protocols for practical secure
computation. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 847-861, 2018.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks
against searchable encryption. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, page
668-679, New York, NY, USA, 2015. Association for Computing
Machinery.

Z. Chang, D. Xie, F. Li, J. M. Phillips, and R. Balasubramonian.
Efficient oblivious query processing for range and kNN queries. /EEE
Transactions on Knowledge and Data Engineering, pages 1-1, 2021.
K. Chen, B. Wang, and P. Mateti. CUTE labs: Low-cost open-source
instructional laboratories for cloud computing education. In 2016 ASEE
Annual Conference and Exposition, New Orleans, Louisiana, 2016.
ASEE Conferences.

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, and A. Y. Ng. Map-
reduce for machine learning on multicore. In Proceedings Of Neural
Information Processing Systems (NIPS), 2006.

S. D. Constable and S. Chapin. 1libOblivious: A c++ library for oblivious
data structures and algorithms. In Electrical Engineering and Computer
Science - Technical Reports. 184, 2018.

V. Costan and S. Devadas. Intel SGX explained. IACR Cryptology
ePrint Archive, 2016:86, 2016.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, pages 137-150, 2004.

T. T. A. Dinh, P. Saxena, E. Chang, B. C. Ooi, and C. Zhang. M2R:
enabling stronger privacy in MapReduce computation. In USENIX
Security Symposium, pages 447-462. USENIX Association, 2015.

C. Dwork. Differential privacy. In International Colloquium on
Automata, Languages andProgramming, pages 1-12. Springer, 2006.
S. Eskandarian and M. Zaharia. ObliDB: Oblivious query processing
for secure databases. Proc. VLDB Endow., 13(2):169-183, oct 2019.
R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible
hashing — a fast access method for dynamic files. ACM Transactions on
Database Systems, 4(3):315-344, 1979.

S. Fei, Z. Yan, W. Ding, and H. Xie. Security vulnerabilities of SGX
and countermeasures: A survey. ACM Comput. Surv., 54(6), 2021.

H. Gamaarachchi and H. Ganegoda. Power analysis based side channel
attack. CoRR, abs/1801.00932, 2018.

0. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious ram. Journal of the ACM, 43:431-473, 1996.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller. Cache attacks on
intel SGX. In Proceedings of the 10th European Workshop on Systems
Security, EuroSec’17, pages 2:1-2:6, New York, NY, USA, 2017. ACM.
D. A. Heath. New Directions in Garbled Circuits. PhD thesis, Georgia
Institute of Technology, 2022.

Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Conference on Security,
pages 35-35, 2011.

A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM
Computing Surveys, 31:264-323, 1999.

T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. ShieldStore: Shielded in-
memory key-value storage with SGX. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys 19, New York, NY, USA, 2019.
Association for Computing Machinery.

S. Krastnikov, F. Kerschbaum, and D. Stebila. Efficient oblivious
database joins. arXiv preprint arXiv:2003.09481, 2020.

S. Krastnikov, F. Kerschbaum, and D. Stebila. Efficient oblivious
database joins. Proc. VLDB Endow., 13(12):2132-2145, jul 2020.

J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado,
and B. B. Kang. Hacking in darkness: Return-oriented programming
against secure enclaves. In 26th USENIX Security Symposium (USENIX
Security 17), pages 523-539, Vancouver, BC, 2017.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
(58]

[59]

[60]

[61]

M. Li. Understanding and Exploiting Design Flaws of AMD Secure
Encrypted Virtualization. PhD thesis, The Ohio State University, The
Ohio State University, 2022.

M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting unprotected i/o
operations in amd’s secure encrypted virtualization. In Proceedings of
the 28th USENIX Conference on Security Symposium, SEC’19, page
1257-1272, USA, 2019. USENIX Association.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.
Meltdown: Reading kernel memory from user space. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM:
A programming framework for secure computation. In 2015 [EEE
Symposium on Security and Privacy, pages 359-376, 2015.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache
side-channel attacks are practical. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15, page 605-622, USA, 2015.
IEEE Computer Society.

D. Lyubimov and A. Palumbo. Apache Mahout: Beyond MapReduce.
CreateSpace Independent Publishing Platform, 2016.

Microsoft. Microsoft azure database. https://learn.microsoft.com/en-us/
azure/azure-sql/database/always-encrypted-enclaves-enable-sgx ?view=
azuresql/.

D. Miner and A. Shook. MapReduce Design Patterns: Building Effective
Algorithms and Analytics for Hadoop and Other Systems. O’Reilly
Media, 2012.

P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An
efficient oblivious search index. In IEEE Symposium on Security and
Privacy, pages 279-296. IEEE Computer Society, 2018.

P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 19-38, 2017.

A. Nilsson, P. N. Bideh, and J. Brorsson. A survey of published attacks
on intel SGX. ArXiv, abs/2006.13598, 2020.

O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss,
and D. Sharma. Observing and preventing leakage in MapReduce. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS’15, page 1570-1581, New York, NY,
USA, 2015. Association for Computing Machinery.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine learning
on trusted processors. In USENIX Security Symposium, pages 619—-636.
USENIX Association, 2016.

A. Ozdemir, F. Brown, and R. S. Wahby. Circ: Compiler infrastructure
for proof systems, software verification, and more. In 2022 [EEE
Symposium on Security and Privacy (SP), pages 2248-2266. IEEE,
2022.

C. Priebe, K. Vaswani, and M. Costa. EnclaveDB - a secure database
using SGX. In IEEE Symposium on Security and Privacy. IEEE, May
2018.

A. S. Rabkin, C. Reiss, R. Katz, and D. Patterson. Experiences teaching
mapreduce in the cloud. In Proceedings of SIGCSE, SIGCSE 12,
page 601-606, New York, NY, USA, 2012. Association for Computing
Machinery.

A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital side-channels
through obfuscated execution. In Proceedings of the 24th USENIX
Conference on Security Symposium, SEC’15, page 431-446, USA, 2015.
USENIX Association.

R. A. Rossi and N. K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: Security and privacy for mapreduce. In USENIX Conference
on Networked Systems Design and Implementation, 2010.

B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node
embedding, 2019.

S. Sagar and C. Keke. Confidential machine learning on untrusted
platforms: a survey. Cybersecurity, 4(1):30, 2021.

S. Sasy, S. Gorbunov, and C. W. Fletcher. Zerotrace : Oblivious memory
primitives from intel SGX. In Network and Distributed System Security
Symposium, 2018.

S. Sasy, A. Johnson, and I. Goldberg. Fast fully oblivious compaction
and shuffling. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 2565-2579, 2022.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich. VC3: Trustworthy data analytics in the cloud
using SGX. In 36th IEEE Symposium on Security and Privacy, 2015.

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]

[72]

(73]

[74]

[75]

[76]

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page
faults from telling your secrets. In Proceedings of ASIACCS, page
317-328, New York, NY, USA, 2016. ACM.

R. L. Simon. Fair play: The ethics of sport. Routledge, 2018.

J. Son, G. Prechter, R. Poddar, R. A. Popa, and K. Sen. ObliCheck:
Efficient verification of oblivious algorithms with unobservable state. In
30th USENIX Security Symposium (USENIX Security 21), pages 2219—
2236. USENIX Association, 2021.

E. Stefanov, M. V. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: An extremely simple oblivious
ram protocol. Journal of the ACM, 65(4), Apr. 2018.

Y. Sun, S. Wang, H. Li, and F. Li. Building enclave-native stor-
age engines for practical encrypted databases. Proc. VLDB Endow.,
14(6):1019-1032, feb 2021.

S. Thornton. Arm trustzone explained. http://alturl.com/icptx, 2017.

J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection. In 4/th
IEEE Symposium on Security and Privacy (S&P’20), 2020.

X. Wang, H. Chan, and E. Shi. Circuit ORAM: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
CCS 15, page 850-861, New York, NY, USA, 2015. Association for
Computing Machinery.

T. White. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determinis-
tic side channels for untrusted operating systems. In Proceedings of the
2015 IEEE Symposium on Security and Privacy, SP ’15, pages 640-656,
Washington, DC, USA, 2015. IEEE Computer Society.

Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise,
13 cache side-channel attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’ 14, page 719-732, USA, 2014.
USENIX Association.

S. Zahur and D. Evans. Obliv-c: A language for extensible data-oblivious
computation. Cryptology ePrint Archive, 2015.

K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Sidebuster: automated
detection and quantification of side-channel leaks in web application
development. In Proceedings of the 17th ACM conference on Computer
and communications security, pages 595-606, 2010.

Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong
to us: The power of file-injection attacks on searchable encryption. In
Proceedings of the 25th USENIX Conference on Security Symposium,
SEC’16, page 707-720, USA, 2016. USENIX Association.

W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An oblivious and encrypted distributed analytics
platform. In USENIX Symposium on Networked Systems Design and
Implementation, 2017.

APPENDIX A
SAMPLE ORAM-HASH ALGORITHMS

Algorithm 2 Buffer Management for ORAM-Hash algorithms

1:

a cache of m blocks C.

2: Function GetBlock(block_id)
3. if block_id not in the cache C then

»

R A

new_block + request_oram_block(block_id)
add new_block to the cache
end if
block_reference < find the block_id in the cache
: return block_reference

Buffer contains a working block B for new records, and

decide a block to overwrite with an algorithm like LRU;
the victim block is written back to the output file.

A A ol S

: Function AddRecordToBlock(record)

. if working block B is full then
evict LRU and write out the victim block
copy B to the cache
clear the working block

end if

: add record to the working block

: return working_block_id

Al

gorithm 3 HashMap-based WordCount in Enclave

1
2
3
4
S:
6
7
8
9:
10:

11:
12:

: Function WordCount(input_file, output_file)
: h < a HashMap to maintain (output-key, block-id)
. initialize ORAM and a buffer
. for all block in input_file do
words < parse_words(block)
word_freq < local_frequencies(words)
for all (word, freq) in word_freq do
if word not not in the HashMap h then
record < (word, freq)
id < add_record_to_block(word)
hlword] «+ id
else
id <+ h[word]
block + get_block_from_buffer(id)
update block with (word, freq)
end if
end for
: end for

: flush all blocks in the buffer via ORAM to output_file

Algorithm 4 HashMap-based KMeans in Enclave

1: Function KMeans(centroid_file, coordinates_file)
2: initialize ORAM and Cache block

3: load initial centroids from centroid_file

4: for all block in coordinates_file do

5: points < ParseCoordinates(block)

6: for each pt in points do

7

centroid_index — FindNearestCentroid(pt,
centroids)
8: LocalMapl[centrotd_index | < pt
9: end for
10: combined_points < aggregate points under same cen-
troid
11: for each (centroid_index, point) in
combined_points do
12: if centroid_index not not in HashMap then
13: record < (centroid_index, point)
14: id < AddRecordToBlock(centroid_index)
15: HashMap[centroid_index| + id
16: else
17: id + HashMap|centroid_index]
18: block_reference < GetBlock(id)
19: update block in block_reference with
(centroid_index, point)
20: Write(block)
21: end if
22: end for
23: end for

24: write all blocks from ORAM to centroid_file

