IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

Online Path Description Learning based on
IMU Signals from loT Devices

Weipeng Zhuo, Shiju Li, Tianlang He, Mengyun Liu, S.-H. Gary Chan, Senior Member, IEEE,

Sangtae Ha, Senior Member, IEEE and Chul-Ho Lee, Member, IEEE

Abstract—A user’s movement path can be precisely and concisely described as a concatenation of straight lines having the user’s
turns as their end points. Learning such a path description or representation from inertial measurement unit (IMU) sensors enables
various mobile and loT applications, as it allows efficient processing of the movement path data. It is, however, non-trivial to learn a
succinct yet accurate path description from IMU sensor readings in the mobile device of a moving user on the fly due to the
dynamically changing behaviors and the technical difficulty in detecting the user’s turns. We propose PATHLIT, a novel online path
description learning system based on IMU signals. PATHLIT learns position vectors of a user from IMU sensor readings by our
custom-made self-attention network model. Once each position vector is learned, PATHLIT also decides whether or not to take it as a
part of the resulting path description by our efficient online algorithm developed under the minimum description length principle, which
essentially detects the user’s turns along the path. We conduct extensive experiments on two large datasets. The experiment results
show that PATHLIT achieves superior performance over state-of-the-art algorithms by up to 50% in absolute trajectory error using only

15% of trajectory data points.

Index Terms—IMU, path recovery, online turn detection, minimum description length

1 INTRODUCTION

Movement path of a user in the two-dimensional space
can be succinctly described by straight lines inter-
spersed with the user’s turns, which we refer to as a path
description, since people usually do not walk randomly. It
is important to learn the path descriptions efficiently “on
the fly” from the readings of inertial measurement unit
(IMU) sensors in users’ internet of things (IoT) devices.
For instance, path descriptions can be leveraged for real-
time applications such as augmented and virtual reality
applications [1], [2]. They can also be used to enable smart
city applications at scale, such as indoor pathway learn-
ing [3], indoor navigation [4], and robot cleaning [5], due to
their succinct representations of movement paths that allow
efficient processing, storage, and transmission of the path
data.
It is, however, challenging to learn such a path descrip-
tion since we need to recover its movement path and detect

Weipeng Zhuo is with Guangdong Provincial Key Laboratory IRADS and
Department of Computer Science, BNU-HKBU United International College,
Zhuhai, China (email: weipengzhuo@uic.edu.cn).

Shiju Li is with the Department of Computer Engineering and Sciences,
Florida Institute of Technology, Melbourne, Florida 32901, United States
(email: sli2015@my.fit.edu).

Tianlang He, and S.-H. Gary Chan are with the Department of Computer Sci-
ence and Engineering, The Hong Kong University of Science and Technology,
Hong Kong, China (emails: {theaf, gchan}@cse.ust.hk).

Mengyun Liu is with the Institute of Artificial Intelligence, Guangzhou
University, Guangzhou, China. (email: amylmy@gzhu.edu.cn)

Sangtae Ha is with the Department of Computer Science, University of
Colorado Boulder, Boulder, Colorado 80309, United States (email: sang-
tae.ha@colorado.edu).

Chul-Ho Lee is with the Department of Computer Science, Texas State Univer-
sity, San Marcos, Texas 78666, United States (email: chulho.lee@txstate.edu).
Part of this work was done while Shiju Li was with Texas State University.

50
Greeting with
& phone in hand
2 40
£
5 30
®
[}
g 20
2 Swing Swing

0 2 4 6 8 10 12 14 16
Time (s)

Fig. 1. Acceleration signals from a phone held in hand while a user is
walking.

its associated user turns accurately on the fly. When recover-
ing the movement path of a user from IMU readings, a small
change in the user’s walking behavior, referred to as context,
can lead to substantial changes in the sensor readings. For
example, the walking context changes, when a moving user
with a phone in hand encounters and greets someone by
waving the hand holding the phone, as shown in Figure 1.
Thus, such a small context change makes accurate path
recovery non-trivial. This path recovery problem has been
studied in the literature, but existing solutions still have
their own limitations.

Earlier studies [6]-[8] focus on learning a simple linear
model for step length estimation from IMU readings since
it boils down to the step length estimation, assuming the
direction of each step can be estimated accurately. Observing
that the model parameters are specific to walking contexts,
a few later studies build different linear models for different
walking contexts and use an appropriate model by classi-
fying the current walking context [9], [10]. They, however,
require a non-trivial process of collecting IMU readings for

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

different walking contexts (with manual context labelling).
In addition, other recent studies [11]-[13] leverage a long
short-term memory (LSTM) model to recover a movement
path by obtaining a sequence of estimated displacement
or velocity vectors, without requiring any context classifi-
cation. Nonetheless, while the rationale behind the use of
the LSTM model is that the patterns in the IMU readings
would have strong temporal correlations, context changes
in users” walking behaviors could make their IMU readings
little correlated.

On the other hand, when the movement path of a
moving user is recovered from a stream of IMU readings,
it can be wasteful and costly to store all the positional
information for the recovered path, which is a set of position
vectors (or coordinates of points along the path) that grows
and expands over time. This problem can be even more
critical when it comes to IoT devices with limited storage
space. Thus, it is desirable to identify, in real time, which
position vectors are crucial for a succinct yet accurate path
description to represent the movement path that is being
recovered. It boils down to the problem of detecting the
user’s turning points on the path on the fly, but it remains
largely unsolved in the literature.

Prior studies [14]-[16] on the turn detection problem
generally focus on the offline scenario where user turns are
detected once the whole path information is available, i.e.,
after the user’s movement is complete. Thus, they cannot be
used for detecting turns on the fly for real-time applications.
In addition, a thresholding method could be used to detect
the user’s turns by assuming that the user makes a turn if
the directional change is above a predefined threshold [17].
However, such a method requires careful calibration of the
threshold value, and it is also prone to errors when the IMU
readings are noisy. Others [4], [18] leverage indoor maps
for turn detection. It is, however, impractical to require an
indoor map for every indoor setting.

In this paper, we propose PATHLIT, a novel online PATH
description Learning system based on IMU signals from IoT
devices. PATHLIT learns a path description from a stream
of IMU readings by solving the problems of recovering a
user’s movement path and detecting the user’s turns from
the path simultaneously and on the fly. Here the resulting
path description is a sequence of position vectors for turning
points. The salient features of PATHLIT are that it is context-
agnostic in the sense that it does not require context classifi-
cation or prediction, and the path description is obtained in
a principled manner by optimizing the tradeoff between the
preciseness and conciseness of its representation without any
predefined parameter.

PATHLIT first uses a multi-head self-attention network
model which is tailor-made to effectively learn a user’s
movement path from a stream of IMU readings without
context inference. The rationale behind the design of this
model is to capture short-term correlations within IMU sig-
nals rather than their long-term correlations that have been
mainly explored in the prior work [11]-[13], since walking
context changes make the IMU signals less correlated in the
long term, yet in an arbitrary manner. The IMU readings
are first divided into short sequences of equal length. These
sequences are then continuously fed into the model to learn
their corresponding velocity vectors, which are then con-

—-—-: Movement path

c— —— : Path description
/T"v[?eviation {T '\'\. ﬁ)
[S Jy A S

Fig. 2. Movement path vs. path description.

verted into displacement vectors and, eventually, position

vectors.

While a concatenation of the learned position vectors
represents the user’s movement path, it would not be a suc-
cinct representation. Thus, whenever a new position vector
is learned by the self-attention network model, PATHLIT
next decides whether to keep this position vector as a
turning point or discard it, leading to a succinct and accurate
path description that consists of the position vectors chosen
as turning points. This is done by our online turn detec-
tion algorithm, which is developed under the minimum
description length (MDL) principle [19]. We empirically
demonstrate that this online algorithm not only results in
a compact path description but also improves the accuracy
of the recovered movement path.

A path description is considered to be precise or have
high fidelity, when it contains all crucial user turns (and
possibly a few extra ones) that can recover the path without
much deviation. It is also considered to be concise or have
low complexity, when it contains as few turns as possible,
possibly less than the number of true turns. Our goal here
is to find a path description that strikes a balance between
its preciseness and conciseness. We thus leverage the MDL
principle, which is to find the best (yet unknown) model,
i.e., the best path description, that optimizes the tradeoff be-
tween the model’s complexity, i.e., path description length,
and fidelity, i.e., deviations of the path description from the
path. See Figure 2 for an illustration.

However, the MDL principle is not a method, which
means that it does not provide how to obtain the optimal
model and neither does it provide an explicit problem
formulation. Thus, we first introduce a notion of MDL cost
to define the complexity and fidelity of a model so that
the optimal model can be properly defined under the MDL
principle. Because it still remains unknown how to obtain
the optimal model, we formulate the problem as an MDL
cost minimization problem. We then formally establish that
its offline optimal solution can be obtained by solving an
equivalent shortest-path problem on a weighted directed
acyclic graph when the whole path information is available.
We finally present MET, our MDL-based online turn de-
tection algorithm. It is an efficient online algorithm of time
complexity O(amaxV) that allows us to find a succinct yet
accurate path description on the fly based only on the path
recovered so far, where N is the total number of points
(position vectors) on a movement path, and amax is the
largest number of points between two consecutive turning
points detected.

Our contributions can be summarized as follows:

o Context-agnostic path recovery: We develop a multi-head
self-attention network model to recover users’ movement
paths from IMU readings in their mobile devices while
being agnostic to how they carry the devices. The model is
judiciously customized to capture short-term correlations
in the IMU readings for accurate path recovery.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

Sequenceyn -1 \
TTTITTT i

Sequencey |‘_ ds—’|

uiiIAY ARRLRS!
|

Readings

Online Inference

/ Average _ " Iﬁk RecoverQ

Velocity Uk - \\

Path

- -

Multi-head Self-attention Network]

|

Estimation: [V, Vg1,

Back

Propagatij

ﬁnsds]

@und truthfvy, vyeyq, *+ Vna,]

Fig. 3. System diagram of PATHLIT.

e Novel turn detection algorithm: We demonstrate that the
turn detection problem under the MDL principle can be
solved by solving its equivalent shortest-path problem on
a weighted directed acyclic graph. This problem equiv-
alence allows us to obtain an (offline) optimal solution
when the complete path information is available. In addi-
tion, as an integral component of PATHLIT, we develop
an efficient online algorithm named MET to detect turning
points on the fly based only on the path recovered so far,
without requiring any parameterization or calibration of
threshold values.

o Extensive experiments: We validate the effectiveness of
PATHLIT on the RoNIN open dataset and our campus
dataset. The datasets contain sequential IMU signals col-
lected for a wide range of path trajectories while having
different walking contexts, such as devices being used
for messaging or taking photos and devices being in
bags or pockets. Experiment results show that PATHLIT
achieves high accuracy in path recovery and outperforms
state-of-the-art algorithms significantly (by up to 50% in
absolute trajectory error while just maintaining around
15% of the total location data points). Furthermore, we
discuss the feasibility of MET for trajectory compression
by showing its superior performance over state-of-the-art
compression algorithms on the Microsoft GeoLife dataset
(by up to 25% in absolute trajectory error).

The rest of this paper is organized as follows. We provide
a system overview of PATHLIT in Section 2. We then present
how to recover user paths in Section 3. We elaborate on
the turn detection problem under the MDL principle and
our turn detection algorithm MET in Section 4. We next
present illustrative experiment results in Section 5. We re-
view the related work in Section 6 and further discuss how
to incorporate measurement data from other sensors and
leverage more advanced orientation estimation techniques
in Section 7. Finally, we conclude in Section 8.

2 SYSTEM OVERVIEW

When a user is moving, six IMU sensor readings (three from
an accelerometer and another three from a gyroscope) are
collected in the user’s mobile device at a given sampling fre-
quency. Note that the IMU readings cannot be used as they
are, as they depend on the coordinate system of the mobile

Trained Model] MET

1
- (TR
Qequencek_1 Sequencey

Path

\/‘I Descrlptlon

device, whose orientation keeps on changing over time. The
device coordinate system is defined relative to the device’s
screen, and the IMU readings are collected with respect to
this device coordinate system, which can change due to the
orientation changes. Thus, they are always transformed into
the global coordinate system, which is aligned based on
gravity and standard magnetic orientation and used as a
reference coordinate system.!

Given a set of six IMU sensor readings, PATHLIT first
recovers the corresponding segment of the movement path
of the user via a multi-head self-attention network model.
Specifically, it infers the velocity vector (speed and direction)
of the segment from which the coordinates of the ending
point of the path segment are obtained. PATHLIT then
decides whether (or not) to keep the coordinates via our
MDL-based online algorithm MET. Thus, we obtain a path
description, which is a collection of the coordinates of the
points along the path that are considered ‘turning’ points.
These operations in PATHLIT are done on the fly for every
set of six IMU readings.

While the details of our multi-head self-attention net-
work model shall be explained in Section 3, the model is
trained offline as follows. Given a movement path, or more
specifically, a stream of six IMU readings collected during
the path trajectory, it is first divided into smaller sequences
of equal length, each of which is associated with its (ground
truth) velocity vectors. We set each sequence to a two-
second time window in this work, while we also discuss
the impact of different sequence lengths on PATHLIT’s
performance in Section 5. The entire set of sequences are
then all taken into the model in parallel instead of being
taken sequentially. This way the model is able to capture cor-
relations between the signal patterns that appear in different
sequences, which are not necessarily right next to each other,
as it is one of the salient features of self-attention networks
compared to recurrent neural networks. The output of the
model is a set of estimated velocity vectors for the given set
of sequences per movement path. Thus, the model is built
in a way that minimizes the difference between the ground-
truth velocity vectors and the estimated velocity vectors.

As the output of its online inference, PATHLIT generates

1. Note that the rotation of the device along z-, y-, z-axis is measured
by pitch, roll, and azimuth, respectively, which are available informa-
tion in most mobile devices and used for the transformation.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

Self-attention
network

Input signal sequence

under different contexts Similar context, higher attention

Fig. 4. lllustrating the attention mechanism on a sequence of signals
under different contexts. Thicker lines indicate higher attention.

an estimated velocity vector for a segment of the path, which
is then converted to the coordinates of the ending point of
the segment. PATHLIT next uses its turn detection algorithm
MET to decide whether to keep the coordinates. This online
algorithm is developed as an online counterpart of the
offline optimal algorithm to detect optimal turning points
along the path. Assuming that the whole (estimated) trajec-
tory information is available, we formulate a turn detection
problem from the MDL principle and formally demonstrate
that it is equivalent to solving a shortest-path problem on
a weighted directed acyclic graph, which naturally leads
to the offline optimal algorithm. The details of the offline
optimal algorithm and its online counterpart MET shall be
explained in Section 4. Figure 3 summarizes the overall
system architecture of PATHLIT.

3 CONTEXT-AGNOSTIC PATH RECOVERY

In this section, we explain the details of our multi-head
self-attention network model to infer the movement path of
a user from the IMU signals in the user’s mobile device.
While the multi-head self-attention network architecture
was proposed in [20], it was originally developed for NLP.
We first provide a brief introduction to the self-attention
network and then explain how a stream of IMU signals,
which are time-series data, are leveraged along with the self-
attention network model for the movement path recovery.

3.1 Preliminaries on Self-attention Networks

The self-attention network takes in a sequence of inputs and
results in their corresponding output sequence. For instance,
in the translation task in NLP, it takes in a sequence of
words in one language and translates them into a sequence
of words in another language. The self-attention network
commonly has an encoder-decoder architecture. Taking the
translation task as an example, the encoder first processes
the input sequence of words to learn the attention weights,
or correlations, between each pair of the words. The atten-
tion weights are then shared with the decoder layers. In
the decoder, the embedding of a token that corresponds to
a word is taken as an input at a time. Together with the
learned attention weights from the encoder, the embedding
is used to predict the next word in another language until
the translation is done or a predefined length is reached. De-
tails on the encoder-decoder architecture used in PATHLIT
shall be presented in Section 3.3.

In PATHLIT, a sequence of IMU signals are taken into
the self-attention network to generate a sequence of their
corresponding velocity vectors such that the user path can
be recovered accurately. The sequence of IMU signals taken
into the network might be obtained while under different
contexts, as shown in Figure 4, where the signals under
different contexts are denoted with different colors. Note

4

that a window of IMU signals for a short period of time
can be thought of as a word in the translation task. The
network is then able to learn attention weights (or pairwise
correlation) between each pair of signal windows, which
allow us to capture which ones are similar to each other. The
signal windows under similar contexts would have higher
attention scores and thus lead to similar velocity vectors.
Hence, we leverage the attention mechanism in PATHLIT to
infer the velocity vectors under different contexts automati-
cally, without manually specifying the contexts beforehand
or afterwards.

There are two main advantages of using a self-attention
network over a recurrent neural network network (RNN)
for our problem. First, the computation in the self-attention
network is done in parallel for a sequence of signals, making
it much more efficient compared with RNN which needs
to process the signals one by one in a sequential order.
Second, the self-attention network allows us to focus on
signals under similar contexts in predicting velocity vectors
without attending to other patterns, which improves the
model performance substantially. However, in RNN, as the
signals have to be processed in order, the outputs of RNN
could be influenced by the earlier parts of signals that might
have been under distinct patterns, thereby possibly leading
to unsatisfactory prediction performance.

3.2 Network Inputs and Outputs

Recall that the IMU sensors in a mobile device are an
accelerometer and a gyroscope, each of which has three
axes, namely -, y- and z-axis. Given a sampling rate, the
two sensors generate a total of six sensor readings at each
sampling time. Let s1, 82, and s3 be three d-dimensional
column vectors to represent streams of the accelerometer
readings (or samples) along the z-, y-, and z-axis, respec-
tively, obtained while a user is moving. Similarly, we define
84, 85, and s¢ for the streams of the three-axis readings from
the gyroscope. Here the dimension d of each vector s; is
the total number of readings during a user’s path trajectory,
which is the sampling rate times the total travel time by the
user for the trajectory.

As shown in Figure 5, we first construct a d x 6 signal ma-
trix S := [s1 s2 ... Sg] as a horizontal concatenation of the
six vectors. In other words, this signal matrix S represents
a stream of six IMU sensor readings. We then divide the
signal matrix S into two-second sequence matrices of size
ds x 6, where d is the number of sensor readings collected
for two seconds along each sensor axis. In other words, the
signal matrix S is divided into |d/d; | sequence matrices. Let

Sy = [sh sk ... sk] € R%*6 be the k-th sequence matrix,
where s¥ indicates the k-th d,-dimensional sequence vector

obtained from s; fori =1,2,...,6and k = 1,2,...,|d/ds].

Fix k. We next obtain an embedding matrix of size
ds X dem from each sequence matrix Sy, via a linear transfor-
mation with a learnable weight matrix Wg € R6*dem. We
also introduce positional encodings to account for the order of
the embeddings obtained from the collections of six sensor
readings. Each position encoding is a representation of the
position of each collection of six sensor readings among
the d, collections. The dimension of this representation is
the same as that of each embedding. Specifically, for each
sequence matrix Si, we define the following positional

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

6 dem dem '____d_erﬂ___l
d] | ds] | - T '
N ! 1ngXds
[| O [
. . -1
d : ‘ ="y Sliding
[| |+] T window
I || |+ O]
IMU Linear transformed Positional Positional encoded
readings embeddings encodings embeddings
dem

2
ngXds ﬁ

Predicted
velocities

Self-attention ngxds @
network

Windowed input
of sequences

Fig. 5. Network inputs and outputs.

encoding matrix P € R%*dem to encode the positions of

rows in Sy, where each row corresponds to a collection of
six sensor readings at a sampling time. Each entry of P is
given by
P 2)) :sin(i/fzj/d”"), and P(; 2541) :cos(i/fQJ/d”"),

where j is the index of the j-th dimension with 0 < j <
dem/2, and f is some constant to control the cyclic pattern
of each sinusoidal function, which is set to 10000 as in [20].
To summarize, we first have a d x 6 signal matrix S from
the streams of six sensor readings obtained during a user’s
path trajectory and divide S into ds x 6 sequence matrices.
Then, from each sequence matrix Sy, we finally have a ds X
der, input embedding matrix Ay := S;Wg + P, which is
obtained by a linear transformation with Wg and then by
incorporating the positional encoding matrix P.

While each input embedding matrix A can be used
as an input into the self-attention network model, we use
a sliding window of n, input embedding matrices as an
input. The rationale behind this is to learn a better repre-
sentation by capturing possible correlations between IMU
signal patterns over a longer time span, i.e., 2ns seconds,
while still limiting to each two-second sequence for infer-
ence. We use ng = 5 in this work. Let U be the k-th
sliding window of n input embedding matrices, which is
defined as a vertical concatenation of the n, matrices, i.e.,
Uk = [Akfnerl; Ak7n5+2§ ey Ak} S Rnsdst”", where
" indicates the vertical concatenation of the matrices. Note
that the first n, — 1 sliding windows are constructed with
zero-matrix padding to match the dimension.

In addition, for a collection of six sensor readings at each
sampling time, the self-attention network model outputs its
corresponding estimated velocity vector ¥ := [0, 0] in the
two-dimensional space. In other words, for each input Uy,
which is a sliding window of n, input embedding matrices,
it outputs a collection of estimated velocity vectors, i.e.,

Vi = [B(hon.)do+13 Dhmns)dy 425 - - - 3 Oka,] € R™H72,
On the other hand, for model training, we have a ground
truth velocity v; for the i-th collection of six sensor read-
ings, which is obtained by calculating the difference of two
position vectors of the user at two seconds apart, i.e.,

Litd, — L4
v; = _— s

. M

where x; and x;44, denote the location vectors of the
user at the i-th sampling time and the (i + d;)-th sam-
pling time (two seconds later), respectively. Letting V, :=
[(V(k—n.)do+1 V(k—ng)do+2; - - - 3 Vkd, |, We use the following

@
s
‘ N
oo
e
L
/w
=

Inference

Training

Fig. 6. Training and inference of our self-attention network model.

loss function for model training:

loss := Z Vi — VilF,
k

where || || p is the Frobenius norm. Note that all the velocity
vectors with negative indexes are again padded with zero
vectors for both ground truth and estimated ones. Figure 3
depicts a summary of the overall operation explained above.
When it comes to inference, we use the origin (0, 0) as the
starting position &£9. Whenever a new two-second sequence
of six sensor readings, i.e., S, is available, we construct an
input matrix Uy, with historical data (padded with zeros
if there are not enough historical data), which leads to
its corresponding estimated velocity matrix V. From Vy,
we only take a new collection of the estimated velocity
vectors [O(p—1)d,+1; O(k—1)d,+2; - - - ; Oka,] that correspond to
the new two-second (input) sequence Sj,. By noting that the
velocities do not change much within a two-second window,
we use the average of the estimated velocity vectors in

inferring the position of the user, which is given by

@)

d

_ 1~

Uy = o > Be—1yd, +i- 3)
1=1

s 4
An illustrative example of the training and inference pro-
cesses is provided in Figure 6.

For the k-th input sequence Sy, the displacement vector
that the user makes for two seconds can be estimated as 2vy,.
The k-th position vector &, can then be estimated as

§3k = iﬁk71 + 2’1_)k. (4)
Therefore, the user’s movement path recovered based on NV
two-second sequences of IMU signals is finally represented

as {530,:2’1,...,:%]\]}.

3.3 Network Structure
We develop a multi-head self-attention network model
that has an encoder-decoder architecture and is adopted
from [20]. We first consider its encoder structure. Since
each input Uy is fed into the model independently and
identically, we hereafter drop the subscript k£ and use U to
denote an input matrix for brevity, unless otherwise noted.
Given an input matrix U € Rm:dsXdem we extract
feature representations via linear transformations with three
dem X dem learnable weight matrices W, Wi, and Wy,
Specifically, we have the following nsds x d.., matrices:
Q:=UWgq, K:=UWg, and M := UW,,.
Here, rows of Q, K, and M are called queries, keys, and val-
ues, respectively. We then obtain weighted sums of feature

representations via the self-attention mechanism, which is
defined by

Attention(Q, K, M) := softmax (QKT/ Vdem)M € R™ dsXdem

where the scaling factor 1/v/d.p, is introduced to avoid
vanishing gradients, softmax(-) indicates a row-wise soft-
max normalization function, and 7" stands for the transpose

)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

Linear

Matrix
Multiplication

Matrix
Multiplication
f T 1

oW, KWy

h [[Scaled dot product attention]

L o f

(tinear || | Linear | [Linear |

£t

Q K M

MW,

Fig. 7. Encoder of the multi-head attention network.

operation. Recall that each row of U corresponds to a
collection of six IMU sensor readings at a sampling time.
The scaled dot product between the feature representations
of two different collections (a row of Q and another row of
K) indicates their similarity score. Thus, the self-attention
leads to weighted sums of value feature representations with
the weights proportional to the similarity scores.

To further improve the model performance, as shown
in Figure 7, we adopt the multi-head attention mechanism
to transform the input matrix U into multiple representation
subspaces. The matrices Q, K, and M are first linearly pro-
jected to h different subspaces. Each linear projection is done
independently via the same self-attention mechanism (yet
with different weight matrices). They are then concatenated
horizontally and fed into a linear layer (i.e., a linear trans-
formation), which outputs final n,ds X d.., representations
of the input matrix U. The multi-head attention mechanism
is summarized as follows:

MultiHead(Q, K, M) := [head; head, ... head,|Wo,
with head; := Attention(QW},, KWi. MW?,),
where Wq is a dey, X der, learnable weight matrix, and

2), Wi, and W¢, are dey X dem/h learnable weight
matrices for ¢ = 1,--- , h. This completes the operation of
an encoder layer. In this work, we use a stack of encoder
layers, where each of them has the same structure and takes
the output of the previous layer as an input (except the
first/bottom layer). The number of the encoder layers is a
hyperparameter.

We next turn attention to the decoder structure. Since
it is similar to the encoder structure, we here focus on
its main structure. The decoder takes the output of the
encoder, which is the final representations of Uy, as an input
and outputs its corresponding predicted velocity matrix
V. The decoder has a self-attention layer followed by an
encoder-decoder attention layer. The self-attention layer is
the same as the one in the encoder. While the encoder-
decoder attention layer also works based on the same self-
attention mechanism, it takes in the queries Q from the
self-attention layer and the keys K and the values M from
(the last encoder layer of) the encoder. Since K and M are
the key and value representations of the input matrix Uy,
(a sliding window of ng input sequences), this allows the
decoder to attend to all positions in the input sequences.
As in the encoder, we use a stack of decoder layers, where
the number of the decoder layers is a hyperparameter. The
output of the last encoder layer finally goes through the final
linear and softmax layers to obtain the velocity matrix V.

Note that the velocity matrix V7, is used along with the

swing e call

Yy 15 59 O
X

PATHLIT LTSM

Fig. 8. Visualization of embeddings learned.

ground-truth velocity vectors to calculate the loss in (2) and
build our model that minimizes the loss. When it comes to
inference, it is used to recover the user’s movement path as
in (3) and (4). The rest of the encoder-decoder architecture
is the same as the one in [20].

To demonstrate the effectiveness of our self-attention
network model, we carry out a small experiment to visualize
the embeddings learned from our model and LSTM [13].
In the experiment, a user is asked to walk along a path
with a phone in the user’s hand. While walking, the user
first swings his arms and then makes a phone call. Once
the call is done, he swings his arms again. Each posture
lasts for about 20 seconds. As shown in Figure 8, our
model is able to better separate the embeddings of signals
under different contexts because the self-attention network
focuses on learning patterns from the signals under the same
context, whereas LSTM can hardly avoid the influence of
historical signal data that were under a different pattern.

4 MDL-BASED TURN DETECTION

In this section, we first explain the preliminaries of the MDL
principle. We then present the turn detection problem under
the MDL principle, assuming that the whole path informa-
tion is available. We formally establish its equivalence to a
shortest-path problem on a weighted directed acyclic graph.
We finally propose MET, an efficient greedy algorithm with
linear time complexity for real-time turn detection.

4.1 Two-part MDL Principle

We first tackle the (offline) problem of detecting turning
points along a recovered movement path so that the path
is described by a concatenation of straight lines, whose end
points are the detected turning points, in a concise manner,
i.e., low complexity, while keeping the description as precise
as possible, i.e., high fidelity. We assume, for now, that the set
of position vectors for the movement path is available. We
will later explain how this turn detection can be done on the
fly while the movement path is being recovered.

Let D := {xg,x1, -+ ,xN} be a movement path recov-
ered by the self-attention network model in PATHLIT, where
x; indicates the i-th position vector or the coordinates of
the i-th point on the path, and N is the total number of
the points along the path, except the origin xy,. We here
use x; instead of &; for brevity. In addition, we refer to
two end points of the path and turning points along the
path as path delimiters, or simply, delimiters. Define a set of
the indexes of the delimiters B := {bg,- - , by} such that

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

0=0by <+ <by=Nandb; €{0,1,---, N}. Note that
m = |B| — 1. Then, the problem here is to find the optimal
delimiter set B* under the MDL principle.

The idea is to transform this problem into a model
selection problem. Observe that B is the only unknown
parameter of a model f(:|B), which specifies how we
represent or describe a path by using the delimiter set B.
For example, f(D|B) represents path D by the delimiter set
B. In this work, we consider that f(-|B) is the sum of the
Euclidean distances between two consecutive delimiters in
B. Then, letting £ := {1,2,..., N—1}, we define the class of
the candidate models as F := {f(:|B) : B\{0, N} C L}.For
a path, there are 2%V ~! models in total since each point along
the path is either included or excluded in a model while the
two end points of the path are always in the model. We
hereafter use B to denote its corresponding model f(-|B)
and B* to denote the optimal model f(-|B*) € F for
simplicity, unless a confusion exists.

For the model selection problem, Rissanen [21] suggests
using the code length as a means to compare two parts of
different models, namely model complexity and model fidelity.
For a model, the former indicates how long the code length
of this model is and the latter specifies how well this
model encodes the data. Here the best model is the one
that describes the data with the shortest code length (or
the minimum description length). The key idea is to split
the representation of data into two parts, i.e., the encoding
length of a candidate fitted model and the encoding length
of the data given the model, as follows. Letting L(“data”)
be the encoding length of the data, we have

L(“data”) = L(“fitted model”)
+ L(“data given fitted model”),

where L(“data”) is also called the MDL cost. The best
model is the one minimizing the MDL cost. This is the two-
part MDL principle. Note that it still remains unknown how
to obtain the best model.

In this work, we adopt this MDL principle to find the
best model B* that achieves the shortest description of a
movement path, which is the optimal solution to the original
turn-detection problem. For a path D, let L(D) denote the
MDL cost of D. It can then be decomposed into

L(D) = G(B) + Z(D|B), ®)

where G(B) and Z(D|B) represent the code length of the
model B that describes the path D and the one of the
path D given the model B, respectively. In other words,
G(B) indicates the complexity of the model B, i.e., the sum
of the distances between two consecutive delimiters in B,
and Z(D|B) indicates the fidelity of B, i.e., how well the
model B describes the path D by preserving the shape and
orientation of the path.

4.2 MDL Cost for Turn Detection

We next show how exactly the turn detection problem is
formulated as an MDL cost minimization problem. Note
that the MDL cost needs to be defined explicitly as the MDL
principle does not provide any such definition. Figure 9
provides an illustration of model complexity and model
fidelity under our problem. On one hand, a concise (low
complexity) path description requires as few delimiters as

o : Path coordinates A : Delimiter found ~— : Path description

(a) Low complexity (b) High fidelity (c) Optimal

Fig. 9. Model complexity vs. model fidelity.

possible. The lowest complexity is achieved when the model
only contains the starting and ending points of the path. On
the other hand, a precise (high fidelity) description requires
as many delimiters as possible. The maximal fidelity is
achieved when the model contains the coordinates of all
the points along the path as delimiters. There is clearly a
tradeoff between complexity and fidelity, so it is desirable
to achieve the optimal tradeoff in describing a path.

Consider a path D. Let len(x;, ;) be the length of a line
segment with two end points being x; and x; for 0 <i <
Jj < N.We define the model complexity G(B) as the sum of
the lengths of the segments connected by two consecutive
delimiters in B, which is given by

|B|—1
G(B) = Z 1Og2(len(wbi7wbi+l))' (6)
i=0
For the most concise case, i.e., having the starting and
ending points of the path D as the only delimiters, we
can see that it minimizes G(B). This is due to the triangle
inequality.

To measure the model fidelity Z(D|B), we first define
two types of distances, namely angular distance d, and
perpendicular distance d | . As depicted in Figure 10, suppose
that we have two line segments s; and 7;, where s; is the
segment connected by two consecutive delimiters (e.g., o
and x4 in the figure) and 7; is the segment formed by the
coordinates of two consecutive points that appear between
the two delimiters (e.g., 1 and x2 in the figure). Letting
len(n;) be the length of segment 7);, we define the angular
distance between s; and n; by

d/(sim;) = len(n;) - sin(min{6,;,90°}),
where 6;; is the angle between s; and 7n; in degrees. We also
define the perpendicular distance between s; and 7; by
dl(sia rlj) — lil(siv nj) + l2L2(Si7 ﬂj) 7
li1(si,my) +1i2(si,my)

where [1 (s;, le) is the shortest distance from one end point
of m; to s;, and 1 2(s;,m;) is the one from another end
point of 1; to s;. It is the counter-harmonic mean between
111(si,m;) and {1 2(s;, n;), which penalizes more on the de-
viation from the path than other mean measures [22]. Here
we assume thatd | (s;,m;) = 0if [1(s;,m;) = l12(8i,m;) =
0. Note that lim, ,—,o(2? + y?)/(z + y) = 0. Letting

dz,1(si,mj) :=logy(d.(si, m;)) + logy(dL(si,my)),
we define the model fidelity Z(D|B) by

‘Blfl bi+1—1
Z(DlB) = Z Z dé,J-((wbivwle)ﬂ(wj7wj+1))' @)
i=0 j—b;

Note that when all points are selected as delimiters, the
angular and perpendicular distances between a segment
and itself are zeros, in which case Z(D|B) is minimized,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

\x6(xb2)
X Y
nf,—’o“‘\\ X3 O xg
1 _.x70y Q. K
/_,(:,)' ---------------- 12 N K
SO ElJ_l
X0 (Xp,) Si X4(Xp,)

Fig. 10. An example path and a path description.

i.e., the maximal fidelity is achieved. Note that in the case of
x = 0 for logy (), we use lim,_,g logy(x) = —o0.

As mentioned before, there is a clear tradeoff between
model complexity G(B) and model fidelity Z(D|B). G(B)
increases with increasing size of the set B, while Z(D|B)
tends to decrease as B expands. Thus, our problem of
finding the best model (or the optimal delimiter set) B* now
becomes the one of achieving the optimal tradeoff, which
is formally given by the following MDL cost minimization
problem:

P B* = argmin G(B) + Z(D|B).
B

4.3 Optimal Turn Detection

We are now ready to find the optimal solution B* to P. To
this end, we establish that the problem P is equivalent to a
shortest-path problem on a weighted directed acyclic graph.
Consider a path D = {xg, z1, -+ ,zn}, where without
loss of generality we assume that the indexes of the points
along the path are ordered by their timestamps. The indexes
of the points used as delimiters in B are then also ordered.
We first construct a graph G of N 41 nodes, where node ¢
corresponds to point x; along the path D, and a directed
edge ¢;; is added from node ¢ to node j if x; appears
before «; in D. Note that this graph is directed and acyclic.
In addition, letting D; ; := {@;,x;11, - ,x;} be the path
segment (the sub-path) between x; and x;, and if x; and
x; are the only two delimiters in D ;, then we see from (5)
that the MDL cost L(D,; ;) between x; and x; becomes

L(D; ;) == G({i,j}) + Z(Di ;|{i,j}). ®)
Then, we have the following result:

Theorem 1. Let w;; be the edge weight of a directed edge from
node i to node j in G. If the edge weight w;; is set to the MDL cost
in (8), ie., w;j := L(D; ;), then the problem P is equivalent to
the problem of finding the shortest path (or the minimum-weight
path) from node 0 to node N on G.

Proof: Fix B. Observe that (6) and (7) are additively
separable. Thus, we see that L(D) can be written as the sum
of L(D,; ;) over all the ordered pairs (i, j) of the indexes of
two consecutive delimiters in B. In addition, we observe
that the nodes on G that correspond to the delimiters in B
form a path on G, i.e., a sequence of nodes where each node
in the sequence has a directed edge into the node next to it,
ie., b; = bi11. Thus, since w;; = L(D, ;) for each edge from
1 to j, the weight of the path on G, which is the sum of the
weights of the directed edges comprising the path, becomes
identical to L(D) for a given B. Therefore, P is equivalent
to finding the shortest path (or the minimum-weight path)
from node 0 to node N on G. O

It is worth noting that edge weights can be negative due
to the logarithm in (6) and (7). Thus, the shortest path prob-
lem can be generally solved by Bellman-Ford algorithm [23].

ALGORITHM 1: MET
Input :b;, :=0,B :={b;}, Ds := {xp,, Tp,+1}, and
k.= bi +2
Output: B /* Detected delimiter indexes */
1 while A new point xj, arrives do

2 D, := D, U{z}
3 C(Akfl) =
G(iwbia Lr—1, mk}) + Z(DS‘{wbﬂwk‘fla mk})

o | T = G{max)) + 2(Dal{a, 1))
5 if C(Ak_l) < T(Ak—l) then

6 B.=BU {k — 1}

7 bl =k—-1

8 D, = {wbﬂwbi“rl}

9 end

10 k=k+1
11 end

12 return B

Since it is a shortest path problem on a weighted directed
acyclic graph, it can also be solved more efficiently by using
topological sorting [24].

4.4 MET - An Efficient Online Algorithm

Observe that the shortest path algorithm is only applicable
offline, i.e.,, when the entire path information is available,
as it needs to calculate the MDL cost for every node pair.
Thus, we below propose an efficient online algorithm MET,
to achieve the real-time detection of turning points along
the movement path of a user. MET is an integral part of
PATHLIT by allowing PATHLIT to determine, in real time,
whether to keep the coordinates of each end point of a two-
second segment learned by the self-attention network model
in PATHLIT.

We can see from (6) and (7) that once a point along the
path is accepted as a delimiter, the MDL costs up to the
point remain the same and all the points that appear before
this point are not needed for computing the MDL costs after-
ward. Suppose that the last detected delimiter is x;,, and the
user’s current position is x3, (b; < k). Note that no point is
considered a delimiter (or turn) in {xp, 1, - ,Zx_2}. Our
online algorithm is then to determine whether xj_; is a turn
or not by considering the points between x;, and xy.

Letting Dy, = {®b;,Tp;+1, - &k}, we decide
whether to accept or reject 1 as a turn (or delimiter). Let
Aj_1 be the event that xj_; is accepted as a turn and Ap_q
be the event that xj_ is rejected as a turn. We then define
two MDL costs C(A,_1) and T(Ay_1) by
C(Ag-1) = G({zv,, Tx—1,Tx}) + Z(Dy, k{xp,, Tp—1, 1 }),
T(Ag-1) = G({zv;, 21 }) + Z (D, kl[{@;, 21 }),
respectively. Then, if C(Aj_1) < T(Ag_1), Tk_1 is accepted
as a turn and the position index k£ —1 is added as a new
delimiter into the set B. Otherwise, it is rejected. Upon the
arrival of x,41, we repeat the process to decide whether
to accept x;, as a turn. The whole algorithm operation is
summarized in Algorithm 1. We have the following result
on its time complexity.

Theorem 2. Consider a path D ={xo, 21, - ,xN}. Suppose
that k delimiters along the path D are detected by MET in
Algorithm 1. Let «v; be the number of location points between two

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

consecutive delimiters xp, |, and xp, (inclusive), 1=1,2,...,k,
where xp, = o. The time complexity of MET is O(amaxN),
where apmax :=max{ai,ag, -+ ,ap}

Proof: We first analyze the time complexity of MET
in Algorithm 1 when processing new points arriving after
identifying the latest delimiter, say, s, ,, until after the next
delimiter xp, is identified, 7 = 1,2,...,k. Since a; is the
total number of points between the delimiters (inclusive),
and the delimiter x, , has already been determined up
on arrival of @y, |41, it boils down to analyzing the time
complexity of executing the iterations in the while loop for
a; — 1 points, i.e., Ty, ,42,Tp; ,43,---,Lh; ,4a;- Note that
the next delimiter x;, is determined up on arrival of the
point next to @, which is Ty, | 4a;-

Observe that each iteration in the while loop is mainly
governed by the operations of computing the MDL costs
C(Ag—1) and T(Ak_1) at Lines 3 and 4, respectively, because
all the other operations take constant time, i.e., O(1). Here,
k=b;_1+j, where j =2,3,...,q; In addition, from (6),
we see that the computations of G({®s,, Tx_1,Tr}) and
G({zs,, zr}) take O(1), since their corresponding set sizes
of B in (6) are three and two, respectively. Also, from
(7), we see that the time complexity of computing each
of Z(Dsl{ﬂ?b“ Lg_1, :Bk}) and Z(DSH:B{;.“ :I:k}) is]Jnearly
proportional to | D,|, which grows from two to a;. Thus, the
time complexity of executing the iterations in the while loop
for a; — L pointsis)72, O(j) = O(a}), i = 1,2,..., k.

Therefore, by noting that

k
Za? < c'fma:lc(c'fl +- 4 ak) = O(amaxN):
i=1
we see that the time complexity of MET is O(amaxN). O

Remark 1. The time complexity of MET can be up to O(N?),
sitice amax can be on the order of N. One such case is when
only one delimiter is identified, and it is done up on arrival of the
last point x . However, in practice, cemax remains bounded and
independent of N. Thus, the time complexity of MET is generally
linear with respect to the number of points (position vectors) on a
movement path, i.e., O(N).

Remark 2. Unlike the shortest path algorithms that can only
be applied offline, MET is an online algorithm, which enables the
real-time detection of turning points along the movement path of a
user. In particular, the offline shortest path algorithms require the
graph G to be constructed a priori. In other words, the MDL cost
L(D,; ;) in (8) needs to be computed as the edge weight w;; for
each pair of x; and x; (i < j). From (7), we also see that it takes
O(N) to compute Z(D; ;|{i,7}) for each pair. Note that there
are N (N +1)/2 node pairs. Thus, it takes O(N3) to construct the
graph G. While the shortest path algorithms allow us to find the
optimal (offline) solution B* to P, the overall time complexity
of finding B* is at least O(N3) regardless of the choice of the
shortest path algorithm, e.g., topological sorting for finding the
shortest path on a weighted directed acyclic graph. In contrast,
the time complexity of our online algorithm MET is O(amaxN),
where amax often remains bounded.

5 EXPERIMENT RESULTS

In this section, we present extensive experiment results.
We discuss experiment settings and evaluate the system-

Fig. 11. Campus data collection with a phone held freely.

level performance of PATHLIT by comparing it with state-
of-the-art algorithms. We also study the impact of system
components and parameters on PATHLIT.

5.1 Experiment Settings

We conduct experiments on the RoNIN open dataset [13]
and our campus dataset. The sampling frequency of IMU
sensors for both datasets is 200Hz.2 The RoNIN dataset
contains 69 paths for training, 16 paths for validation and
64 paths for test, collected by 100 different people with three
different Android devices, i.e., Asus Zenfone AR, Samsung
Galaxy S9 and Google Pixel 2 XL. Among the 64 test paths,
half of them are collected by people who also contribute to
the training set, referred to as “test seen’ paths, since their
walking patterns may have been seen by the model. The
other half are collected by people who only contribute to
the test set, referred to as “test unseen’ paths.

We use the ground truth velocity vectors provided in the
RoNIN dataset for our PATHLIT model training. They were
obtained based on a separate Tango mobile phone that was
bound to the chest of a user, in which case the coordinate
system is fixed and thus its moving direction can be simply
regarded as the heading direction of the user [13]. In other
words, the ground truth velocity vectors are used as the
desired output, while the input data is the IMU signals
collected from different Android devices and fed into the
model to predict their corresponding velocity vectors. Note
that the IMU signals here are transformed into the global
coordinate system due to their possible orientation changes.

In addition, our campus dataset contains 48 test paths
collected by six people walking along four pathways with a
phone held freely (Figure 11), using two different Android
devices, namely Huawei Mate 30 Pro and vivo Y50. We col-
lect 12 paths along each pathway. When a person is walking,
another person holds a camera to record the ground truth.
Note that the recorded video is not used for model train-
ing but for calculating estimation errors only. Our campus
dataset is also only used for inference to evaluate ‘model
generalization’, i.e., the ability of a model to react to the
new dataset obtained in a different environment.

We use the training data of 69 paths from the RoNIN
dataset to train our self-attention network model in PATH-
LIT and other models in the state-of-the-art algorithms
and then evaluate their performance on all the test paths
for inference, including our campus dataset. Note that the
performance of PATHLIT is based on both the self-attention
network model and MET. We present the average results

2. Note that the sampling frequency of 200Hz for collecting IMU
signals is supported by most off-the-shelf mobile phones [13], [25], [26].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023 10
TABLE 1
Performance comparison with ‘mean (standard deviation)’ value. PATHLIT(-) stands for PATHLIT without MET.
Scheme ATE (meters) RTE (meters) Number of Data Points Used
Seen Unseen Campus Seen Unseen Campus Seen Unseen Campus

PATHLIT 3.30 (2.21) 5.78 (4.82) 4.88 (3.92) 2.65 (1.09) 4.03 (1.15) | 4.72(3.08) | 143.32(35.58) | 150.62 (37.35) | 11.34 (3.62)
PATHLIT(-) | 3.85(2.32) 6.40 (4.90) 5.29 (4.05) 2.78 (1.33) 4.21(1.39) | 5.18(3.52) | 961.66 (256.54) | 981.03 (252.38) | 87.13 (21.16)
RoNIN 497 (2.21) 6.97 (5.01) 6.06 (4.29) 3.02 (1.52) 4.68 (2.20) | 5.70 (4.31) | 961.66 (256.54) | 981.03 (252.38) | 87.13 (21.16)
CNN 12.02 (7.65) | 12.06 (10.98) | 18.40 (4.56) | 7.62(3.84) | 10.36 (3.70) | 15.25(3.03) | 961.66 (256.54) | 981.03 (252.38) | 87.13 (21.16)
A3 19.05 (12.57) | 16.63 (10.88) | 12.09 (7.17) | 15.56 (7.48) | 15.89 (5.86) | 12.97 (7.92) | 961.66 (256.54) | 981.03 (252.38) | 87.13 (21.16)
PDR 26.04 (13.16) | 23.49 (10.35) | 23.51 (7.28) | 23.76 (11.22) | 23.07 (9.05) | 19.04 (4.87) | 961.66 (256.54) | 981.03 (252.38) | 87.13 (21.16)

of the test seen, test unseen and campus paths separately,
unless otherwise mentioned. We consider the following
state-of-the-art algorithms for performance comparison:

o RoNIN [13]: It leverages sequential dependencies in IMU
signals obtained during a path trajectory and recovers the
movement path using an LSTM model.

o CNN [27]: It extracts features from IMU signals of each
step and estimates step lengths and directions with a one-
dimensional convolutional neural network (CNN) model.

o Pedestrian dead reckoning (PDR) [6]: It estimates the
user’s step lengths via a linear model and learns move-
ment directions using an Android API for device orienta-
tion.

e A3 [7]: It improves on PDR by continuously calibrating
the device orientation with IMU signals.

For PDR, A2, and RoNIN, we set their parameters as
described in [6], [7], and [13], respectively. For CNN, we
build a CNN model that has two layers of 1D convolution
and two layers of 1D max pooling with the ReLU activation
function. For our self-attention network model in PATHLIT,
we set its baseline parameters as follows. The encoder is
a stack of two encoder layers, where each layer has four
heads. The decoder also has the same structure. We use the
learning rate with cosine decay [28] where it increases to
0.008 in the first 100 epochs and then decreases. The dropout
rate is set to 0.2. We set the embedding dimension d, to 64.

We use absolute trajectory error (ATE) and relative tra-
jectory error (RTE) for performance comparison. The ATE is
the root mean squared error (RMSE) between ground-truth
and estimated (complete) paths, defined as

\/Zz 1 lEi — 331”2

where N is the total number of the coordinates of points on
a path, x;’s are the ground truth coordinates and &,’s are
the estimated coordinates for each point, and || - ||2 is the
lo norm. The RTE is the average RMSE over a fixed time
interval, which is defined as

|| TiptanN — ;) — (Bipan — ;)3

Z(N AN)
\/ (N — AN) ’

where AN is the number of the coordinates apart and is set
to 30 (equivalent to one minute) in our experiments.

We also use precision, recall and F'-score when it comes
to the performance evaluation in turn detection. Let T}, be
the number of true positives, which indicates the number of
correctly detected turns by a turn detection algorithm. Let
F, be the number of false positives, indicating the number of
extra points that are detected as turns. Let F'y be the number
of false negatives, denoting the number of (true) turns that

are not detected. Then, the precision, recall, and F'-score are
given by P = Tp/(Tp + Fp), R = Tp/(Tp + Fn), and
F =2PR/(P + R), respectively.

5.2 Overall Comparison with the State of the Art

We first present the ATE and RTE results of PATHLIT and
state-of-the-art algorithms on the two datasets in Table 1 to
demonstrate the superiority of PATHLIT in path recovery.
We also show the results of PATHLIT(-), which is PATHLIT
without MET, to see the performance improvement from
each system component of PATHLIT.

PATHLIT achieves the best performance in both ATE
and RTE for both datasets. The performance improvement
comes from both system components of PATHLIT, which are
the self-attention network model and MET. In other words,
PATHLIT smooths out the recovered path by the former,
leading to further improvement. In addition, the superior
performance of PATHLIT in recovering the unseen and cam-
pus paths demonstrates its better model generalization and
readiness for practical deployment. RoNIN has satisfactory
performance. However, the LSTM model may leverage ir-
relevant signal patterns for prediction due to its sequential
dependencies, resulting in lower accuracy. The CNN model
is less capable in learning temporal correlations between
signal patterns, thereby leading to worse performance than
that of RoNIN. A3 has a better calibration of the device
orientation compared to PDR, and thus exhibits better per-
formance than PDR for all the datasets. Nonetheless, due to
the dynamically changing behaviors of the mobile devices of
moving users, the orientation calibration in A3 can perform
poorly, hampering its accuracy.

In addition to its superior performance in ATE and
RTE, PATHLIT uses much fewer data points to describe
a recovered path compared to the other schemes, thanks
to its effectiveness in detecting the user’s turns correctly
and using them for a path description. For both datasets,
PATHLIT requires only around 15% of the total data points
to precisely and concisely describe a movement path, while
the others rely on all the data points along a path. Our novel
turn detection algorithm MET in PATHLIT is able to detect
the user’s turns along a path correctly on the fly while the
movement path is being recovered by the other component
in PATHLIT, the self-attention network model.

To demonstrate the effectiveness of PATHLIT in learning
path descriptions, we visualize a few representative recov-
ered paths by PATHLIT and other algorithms in Figure 12
and Figure 13. The paths learned by PATHLIT best match the
ground-truth paths. While the paths recovered by RoNIN
exhibit the second best performance, they do not match
the shapes and orientations of the ground-truth paths as

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

a037 1 a037 1 a037 1

60 —Ground truth Ground truth Ground truth
- — —CNN
40, PATHLIT 40 —RoNIN a0,
€ € E . |—PDR \
£ 20 £20 E20
> > >
0 0 0 A
20 A
- -40 20 0 20 40 -40 20 © 20 40 -40 20 0 20 40
X (m) X (m) (m)
50 a057 3 a057 3 a057 3
Ground truth Ground truth Ground truth
30-—PATHLIT 30|—RoNIN 301—cnN
)
£ 10 £ 10 £ 10| —por
>-10 >-10 >-10
-30 -30 -30
5040 30 0 20 40 40 20 0 20 40 40 20 0 20 40
X (m) X (m) X (m)

11

a013 2 a013 2
Ground truth Ground truth
—PATHLIT 40{—RoNIN

a013 2
Ground truth

-40 20 0 20 40 -40 -20 0 20 40
X (m)

X (m)

a029 2 a029 2 a029 2

(b) Test unseen.

Fig. 12. Path recovery results (RoNIN dataset).

30 pathl pathl pathl
45(—Ground truth
—CNN
~20 _20 _30{—~ e~
£ Ground truth £ Ground truth € |—POR \
S —PATHLT T |—Ronn N
> > >15
10 10 -
0
0 10 20 30 0 10 20 30 -30 -15 0 15 30 45
X (m) X (m) X (m)
path3 path3 path3
30 30 40 FGrewnd e
—onn
305,
=20 _20 300
£ Ground truth | Ground truth | E 5
; —PATHUIT ;_’ —RoNIN ; \
10 10 10 \\
0 At
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
X (m) X (m) X (m)

Fig. 13. Path recovery results (campus dataset).

I PATHLIT Threshold 30°

3 Threshold 60~

50 [—Ground truth 507 Ground truth Ground truth 1\
— PATHLIT —RoNIN 0-—CNN -
30 _ 30 T~ @
E E g 30,—PDR l/
> 10 > 1 > X3 /
0 < 10 S
10 -10 -10 _
40 -20 0 20 40 40 20 0 20 40 -40 20 0 20 40
X (m) X (m) X (m)
path2 path2
Ground tnth Grouna tuth
30| —PAmLT 30/ —renm
E20 E20
-t
10 10
0

0 10 20 30 40 0 10 20 30 40
X (m) X (m)

path4 path4

30
£20 Ground truth
< —RoNIN
> L,_,_J

10 20 30 40 50 60
X (m)

Ground truth
—PATHLIT

10 20 30 40 50 60

0 10 20 30 40 50 60 70
X (m) X (m)

I Threshold 90°

1.0 1.0
0.8 0.8
20.6 20.6
0.4 &£0.4

0.2
0

0.2
0

P R

(a) Test seen

p

(b) Test unseen

1.0
0.8
20.6
£0.4
0.2

0

R F

P R
(c) Campus

Fig. 14. Performance comparison of MET in PATHLIT and other threshold-based turn detection algorithms.

much as PATHLIT does. The CNN model is able to recover
the shapes of the paths roughly, but it fails to estimate the
orientations correctly. The paths learned by A% and PDR
show poor recovery performance.

5.3 System Component Study

Turn detection: We have demonstrated the superior per-
formance of PATHLIT, which comes from both the self-
attention network model and MET. To further illustrate the
quality of MET for turn detection, we show in Figure 14
the turn-detection performance of MET in PATHLIT and the
thresholding method with different threshold values. MET
outperforms the others significantly and performs consis-
tently across different datasets, exhibiting its capability of
detecting turns correctly regardless of the shapes of move-
ment paths. However, the performance of the thresholding

method highly depends on the choice of its threshold value.
Higher threshold values tend to miss more user turns, while
lower ones tend to have more false positives. Thus, it is
deemed infeasible to choose an appropriate threshold value
for practical deployment. In contrast, MET does not require
any parametrization or a calibration of threshold values.

In addition, to better understand the quality of MET for
turn detection, we visualize the process of PATHLIT in de-
tecting turning points on Path a000_7 from the RoNIN open
dataset in Figure 15. We can see that each time the condition
for C(Ag_1) < T(Aj_1) is satisfied (Line 5 in Algorithm 1),
a turn is accurately detected, showing the effectiveness of
MET. Note that the numbers right next to the detected turns
in Figure 15(b) correspond to the coordinates” indexes in
Figure 15(a).

Positional encoding: We apply positional encoding to enforce

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

M A
0 . JM“‘"\:\
- —20&&[B
w0 h H \\
S F .
O —40 \'.)‘\ J
)} ‘,)\ [
[a) i i ‘
= 60104 c(A)
_g0| ! T(A)
(| + Turn Detected
-100

0 20 40 60 80
Path Coordinate Index

(a) MDL cost illustration

100

12
=301 4 Turn Detected 30
-25 35+
—=-15 : .
S 43 ;
- _ Iy 1
S -10 .5,8
~5{ B8l....:-J3 ., 55
o1 B85 .. .7 .99 . 59
> ‘67
-10 -5 0 5 10 15
X (m)

(b) Turn detection

Fig. 15. lllustrating the MDL costs and turn detection in PATHLIT. The numbers in (b) represent path coordinate indexes in (a).

I With P.E.
Without P.E.

ATE
(a) Test seen

RTE ATE

I With P.E.

(b) Test unseen

I With P.E.

Without P.E. Without P.E.

RTE ATE

(c) Campus

RTE

Fig. 16. Performance of models built with and without positional encoding (P.E.).

8 8
Il With decoder

— Without decoder —_
E6 €6
— —_
e e
E4 E4
L w

N

ATE

(a) Test seen

RTE

ATE
(b) Test unseen

Fig. 17. Performance of models built with and without decoder.

the temporal relationship within a sequence when building
our self-attention network model. To validate the effective-
ness of such an intra-sequence positional encoding, we show
the performance of PATHLIT with the model built with
and without the positional encoding in Figure 16, where
PE. stands for positional encoding. As can be seen from
Figure 16, the positional encoding introduces around 10%
improvement. This is important since it enables the model to
learn correlations between signal patterns within and across
sequences while maintaining the sequential order of sensor
readings within each sequence.

Decoder: While our network model is built based on an
encoder-decoder architecture, it can also have an encoder-
only structure in which case we add a linear layer after
having the final representations from the encoder to predict
velocity vectors directly. We are interested in how much
performance degradation PATHLIT would have with the
encoder-only model. As shown in Figure 17, the perfor-
mance degradation by removing the decoder is insignificant
(~5.3%). However, the decoder doubles the model size, i.e.,
the number of learnable parameters. Including the decoder
in the network increases the training time by more than
120% in our scenario, which is from around eight hours
to 18 hours. Thus, when deploying PATHLIT in resource-

B With decoder

Il With decoder

Without decoder Without decoder

Error (m)

RTE

ATE
(c) Campus

RTE

constrained IoT devices, e.g., Raspberry Pi, one can adopt
the encoder-only model as a relatively lightweight model.

5.4 System Parameter Evaluation

Time window (sequence length): We use a short sequence
in the network model, which contains 400 readings for each
sensor. It corresponds to the number of readings collected
for two seconds. In Figure 18, we show the impact of
different sequence lengths on PATHLIT’s performance. We
can see that if it is too short, each sequence would not be
long enough to contain IMU signal patterns from a walking
context. In addition, if it is too long, each sequence would
have several walking contexts mixed up, making it difficult
to extract useful features.

Embedding dimension: Each collection of six IMU sensors’
readings is first transformed into an embedding vector of
size den, in the network model. We here evaluate the impact
of different choices of d.,, on the performance of PATHLIT.
As shown in Figure 19, both ATE and RTE tend to decrease
and get saturated under the test-seen data as d.y, increases,
while they also decrease but then increase slightly under
the test-unseen and campus data with increasing values of
dem. Thus, it would not be beneficial to keep increasing
the dimension size d.,, since it could make the model

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

overfitted to the training data, thereby hampering its model
generalization.

5.5 Turn Detection as Trajectory Compression

Recall that our turn-detection algorithm MET in PATHLIT
outputs much fewer data points to describe a user path.
Here we further evaluate its feasibility as a compression
algorithm for path/trajectory compression, since both the
turn detection and trajectory compression problems are
similar in the sense that they find a compact set of trajectory
data points. To this end, we use the Microsoft GeoLife
dataset [29], which is commonly used for the latter problem
in the literature. The dataset contains 17,621 trajectories from
182 users. The trajectories are collected outdoors and consist
of the GPS readings (latitudes and longitudes) along the
paths. The total travel distance is about 1.2M kilometers,
and the total travel time is more than 48,000 hours. We com-
pare MET with the following popular online compression
algorithms:

e OPW [30]: It keeps a new trajectory point if it is con-
sidered important in comparison with the points in the
buffer. This decision involves a threshold.

o SQUISH [31]: It accepts all trajectory points until a fixed-
size buffer becomes full. Then, every new point replaces
a point in the buffer that is considered least important.

o STTrace [32]: It is similar to SQUISH, but with a slightly
different buffer replacement policy.

o Dead Reckoning [33]: It predicts the next trajectory point
based on recent ones. If the prediction error is greater than
a given threshold, its corresponding point is kept.

Due to the large number of trajectories, we divide them
into four bins based on their lengths, which are given in the
number of the readings. The first bin contains the trajectories
of lengths (in terms of the number of readings) below one
hundred. The second one is for the lengths between one
hundred and one thousand, and the third one is for the
lengths between one thousand and ten thousand. The last
one contains the rest. We also observe that the algorithms
considered here have all similar time complexity on the
dataset.

We show the ATE and RTE results in Figure 20. We
can see that MET in PATHLIT outperforms all the other
trajectory-compression algorithms substantially in both ATE
and RTE. This demonstrates its feasibility and effective-
ness for trajectory compression. Note that ATE and RTE
are measured based on the latitudes and longitudes of
trajectory data points, whose units are in degrees. While
having inferior performance, OPW and Dead Reckoning
require threshold values to be determined based on the
lengths and shapes of the trajectories, which are hard to
calibrate in practice. In addition, SQUISH and STTrace need
to choose the size of a fixed-size buffer, which holds a
limited number of trajectory data points, to be proportional
to the length of a trajectory. However, we observe that a
non-negligible error would be involved if the buffer size is
small, since it becomes more difficult to choose which points
to be stored in the buffer. Thus, their performance becomes
unsatisfactory for short trajectories. In contrast, MET does
not require any calibration of threshold values and is also
not influenced by the trajectory lengths.

13

6 RELATED WORK

We review in this section three main categories of work rel-
evant to our system, namely path recovery, turn detection,
and trajectory compression.

6.1 Path Recovery

Multi-sensor approaches: Additional sensors [34]-[48] in
the smartphone, in addition to IMU sensors, may be utilized
to facilitate path recovery. A fusion algorithm is proposed
in [41] to learn user paths from the signals from IMU and
Bluetooth low energy (BLE) sensors. After obtaining a raw
position from IMU sensors, it leverages a particle filter
to adjust the raw position with an extra location estimate
provided by BLE. However, it requires the installation of
BLE beacon sensors on site. In [49], the camera in the smart-
phone is also used together with IMU sensors to improve
the quality of location estimates. The estimation quality is
improved by leveraging the aspect ratio of the frontal wall
that the camera faces, where all the aspect ratios of walls
are stored in a database in advance. Nonetheless, keeping
the camera turned on may drain the device battery quickly
and also introduce potential privacy concerns. In contrast,
PATHLIT works based only on the IMU signals without any
additional infrastructure support while being non-intrusive
to users.

Leveraging predefined walking contexts: There are several
approaches [8], [26], [50]-[53] that require prior knowledge
of walking contexts (or behaviors). In [8], the user’s mobile
device is required to be placed in three postures, namely
in the pocket, in hand swinging and in hand holding. In
addition, user information such as user height is needed
for path recovery. TLIO [26] requires the IMU sensors to
be mounted on the headset in which case the sensors are
more or less stationary, i.e., the sensor readings are much
more stable. Other approaches focus on extracting signal
features from different walking contexts using a two-stage
learning process [9], [10], [54], where it first classifies current
IMU signals into a walking context and then recovers the
path under that specific context. However, these techniques
need to have a predefined list of walking contexts and require
manual labeling of the contexts for their corresponding IMU
signals in model training.

Leveraging temporal correlations: Recent data-driven tech-
niques [11]-[13], [55] attempt to recover user’s movement
paths in the wild by exploiting the possible temporal cor-
relations within IMU signals. They commonly use LSTM to
learn a displacement from the current IMU signals by as-
suming the presence of long-term signal correlations. How-
ever, such an assumption may not always hold in practice.
For instance, the posture and position of the user’s mobile
device keep changing over time, and the changes can also be
quite drastic, leading to totally different signal patterns. In
contrast, PATHLIT is designed to extract (implicit) context
features from the IMU signals in a short period of time
for path recovery, during which the walking context is less
likely to change.

6.2 Turn Detection

Turn detection is important for online path recovery and
indoor localization since it can be used to detect turns as

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023 14

8 8 8

__|~ATE . .

g G| RTE § 6 ——— | g 6

5 5 O R

t4'\.\‘\"_‘ S 4 aTE S 4iaaTE

w I w RTE w RTE
2 2 2
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

Time window (second)

(a) Test seen

" Time window (second)

(b) Test unseen

"Time window (second)

(c) Campus

Fig. 18. Impact of different time windows (sequence lengths) in PATHLIT, where 200 samples are collected per second.

8 -+«ATE 8 -*«ATE 8 -*«ATE
Ee Rl Eg RTE \E,Gl\.\‘\‘\j
Sar— . | Ea 4
w L (NN}

2753 54 55 26 57 28 4753 54 55 56 37 38 5753 54 55 56 57 28

Embedding dimension

Embedding dimension

Embedding dimension

(a) Test seen (b) Test unseen (c) Campus
Fig. 19. Impact of different embedding dimension sizes (den,) in PATHLIT.
N PATHLIT [Dead Reckoning I OPW [STTrace [SQUISH
15 15
o)
o o
o 12 o 12
9] 9]
o ©
o ? o 9
— —
£ X
oL 6 w 6
& b
3 10 103 104 >104 3 107 103 104 >104
(a) ATE (b) RTE

Fig. 20. Performance comparison with state-of-the-art online trajectory compression algorithms by using MET in PATHLIT for trajectory compression.

landmarks to reduce the noises or errors in their applica-
tions. In what follows, we review recent online turn detection
algorithms.

Map-based approaches: Indoor maps can be leveraged to
detect user turns [4], [11], [18], [56]-[60]. For instance, Zee [4]
takes advantage of map constraints to detect user turns with
a particle filter, which introduces additional computation
overheads. The proposed scheme in [58] uses the map to
refine a sequence of turns detected on the fly. In a similar
vein, the approach in [11] measures the traveled distance be-
tween two consecutive turns on the map to decide whether
the (detected) turns are valid. However, the requirement of
indoor maps is not practically viable as property owners
may not want to share the maps. In contrast, MET in
PATHLIT is purely based on IMU signals without requiring
indoor maps.

Threshold-based approaches: Prior studies identify user
turns with turning thresholds [17], [61]-[65]. In [62], a large
amount of training data is collected to set threshold values
for both left- and right-turn angular velocities. In [63], a
threshold of 10 degrees per second for angular velocity is
used to detect whether there is a directional change. How-
ever, it is challenging to set the threshold values properly, as
users may handle their devices freely while walking, lead-
ing to unexpected changes in angular velocity. In contrast,

MET in PATHLIT achieves accurate online turn detection
without requiring any threshold values. We demonstrated in
Section 5 (e.g., Figure 14) that MET outperforms threshold-
based approaches significantly.

6.3 Trajectory Compression

We demonstrated in Section 5.5 the feasibility of our turn
detection algorithm MET as an online trajectory compres-
sion algorithm as it aims to minimize the number of data
points (i.e., turning points) to describe a user path accu-
rately. Hence, we below briefly review online trajectory
compression algorithms.

OPW [30] maintains a buffer of points (path coordinates)
that constitutes the trajectory. Upon arrival of a new point,
OPW constructs a line segment using the incoming point
and the ‘starting” point in the buffer. It then computes the
perpendicular Euclidean distance from each point in the
buffer to the line segment. If the maximum distance is larger
than a predetermined threshold, the new point is considered
‘important’ and kept in the buffer. In addition, the point
with the maximum distance is used as a new starting point.
In a similar vein, STTrace [32] and SQUISH [31] build up a
fixed-size buffer and replace a point in the buffer if the new
incoming point is considered more important. Recently, re-
inforcement learning-based algorithms are proposed in [66],

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

[67] for online trajectory compression. While they also main-
tain a fixed-size buffer of points, they now train a neural
network to identify and drop the least important point in
the buffer whenever a new point is available. However, all
the aforementioned algorithms need the parameters such
as buffer size and threshold value to be chosen judiciously.
In contrast, MET does not require calibration of any pa-
rameters while demonstrating its feasibility as an online
compression algorithm.

7 DISCUSSION

We below discuss the feasibility of extending PATHLIT to
leverage other measurement signals in different application
scenarios. We also explain the rationale behind using the
global or world-frame coordinate system in PATHLIT and
discuss how it could be further improved.

7.1 Fusion with Different Types of Measurements

PATHLIT only leverages IMU signals for easy deployment,
but it can be readily extended to fuse with other measure-
ments to account for different application scenarios if they
are readily available. For instance, in indoor navigation,
we can incorporate geomagnetic signals or radio frequency
(RF) signals such as WiFi and BLE as the input (together
with IMU signals) into the self-attention network model
to facilitate the path recovery process. Geomagnetic signals
can be appended to the input vectors directly to provide
additional features for learning as its sensing frequency is
usually the same as the one with the IMU signals. For RF
signals, however, the sensing frequency may be much lower.
To incorporate them into the model, we can interpolate the
signals between two consecutive measurements or use one-
hot vectors to just indicate the existence of sensible access
points in each measurement.

In addition, our turn detection algorithm MET can be
integrated into other location-based systems [3], [29]-[33],
[68], [69] in a seamless manner. In Section 5.5, we have
demonstrated its feasibility as a trajectory compression al-
gorithm [29]-[33] when GPS measurements are used. Here
we point out that it can also be used in other large-scale
localization systems [3], [68], [69]. For instance, for an auto-
matic floorplan construction, we can leverage crowdsourced
user paths to learn their corresponding pathways. Each user
path often only covers a small portion of a floor. Hence, we
first detect the user turns using MET and then use these
turns as anchor points to stitch the user paths together, from
which the pathways in the floorplan can be reconstructed.

7.2 Global Coordinate System

Note that PATHLIT is built upon the global coordinate
system provided by the operating system of a mobile device,
which is used to infer the current heading direction. While
it is not our main focus to improve the accuracy of the
global coordinate system itself, our results so far indicate
its usability and feasibility for IMU-based path learning. We
expect that the improvement in the accuracy of the global
coordinate system would lead to a further improvement in
PATHLIT as the native application programming interfaces
(APIs) in the mobile operating system keep on evolving with

15

the advances of orientation estimation algorithms [70]. We
below review how the global coordinate system has been
used in recent path-learning systems and discuss state-of-
the-art algorithms for better orientation estimations, which
can be incorporated into PATHLIT to further improve the
learning results.

Recent systems and algorithms [12], [13], [25], [37], [71]
that aim to achieve better path learning under arbitrary
walking contexts usually rely on the orientation estimations
from mobile devices. For example, IONet [12] preprocesses
raw IMU signals to obtain linear accelerations by leveraging
the orientations provided by the mobile device. It then uses
the processed IMU values to train a deep neural network
to predict the path length and angle changes for each short-
time interval. In a similar vein, RIDI [25] adopts the APIs
provided by the mobile device to transform the mobile
coordinate system to the global coordinate system. It then
implements the support vector regression to obtain velocity
values. RoNIN [13] utilizes the orientations provided by the
mobile operating system in a testing phase and estimates the
displacements using a trained LSTM model. We see that the
orientation estimations from mobile devices are currently
in a reasonable quality for (light-weight) path recovery,
although the quality of the path recovery still depends on
how the orientation estimations are effectively used.

It is also worth noting that there are several recent
algorithms [55], [72]-[75] that leverage neural networks to
calibrate the orientation estimations in a finer manner. For
instance, IDOL [73] attaches a LiDAR to a mobile device
to collect ground-truth orientation values. It estimates the
orientation of the mobile device using a separately trained
LSTM network, with IMU signals as an input and the
corresponding measurements from the LiDAR as a ground
truth. The orientation estimations are then improved with
an extended Kalman filter. In addition, AI-IMU [74] mounts
an Asus Tango phone on a human head to obtain the
ground truth rotation matrix for phone headings in order to
train an MLP network for improved orientation estimations.
In testing, it leverages a multi-state cloning Kalman filter
and a graph optimization estimator to further improve
the estimations from the network. Note that due to the
high computational overhead, only ten key frames every
second are selected for the graph optimization. In light of
the system development and deployment, we believe that
PATHLIT can take advantage of the advances in the orien-
tation estimations for better path learning, which yet comes
with a trade-off between accuracy and system complexity.

8 CONCLUSION

We have presented PATHLIT, an accurate and efficient
path description learning system. Thanks to the carefully
designed self-attention network model and the MDL-based
online turn-detection algorithm MET, PATHLIT is able to
recover each segment of a movement path from a stream
of IMU readings and determine whether to keep its end
points on the fly, which leads to a succinct yet accurate path
description. Extensive experiments have shown the superi-
ority of PATHLIT over state-of-the-art algorithms for path
recovery and the effectiveness of MET for turn detection
and trajectory compression.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

ACKNOWLEDGEMENTS

The work of Weipeng Zhuo was supported by IRADS
(2022B1212010006, R0400001-22) and UICR0700100-24. The
work of Shiju Li and Chul-Ho Lee was supported in part by
the NSF under Grant Nos. 2209921 and 2209922.

REFERENCES

[1] Z. Yuan, D. Zhu, C. Chi,]J. Tang, C. Liao, and X. Yang, “Visual-
inertial state estimation with pre-integration correction for robust
mobile augmented reality,” in Proceedings of the 27th ACM Interna-
tional Conference on Multimedia, 2019.

[2] X. Xu, J. Li, T. Yuan, L. He, X. Liu, Y. Yan, Y. Wang, Y. Shi,
J. Mankoff, and A. K. Dey, “HulaMove: Using commodity IMU
for waist interaction,” in Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021.

[3] G.Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-
Markie: Indoor pathway mapping made easy,” in 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), 2013.

[4] A.Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
Zero-effort crowdsourcing for indoor localization,” in Proceedings
of the 18th annual international conference on Mobile computing and
networking, 2012.

[5] V.Prabakaran, M. R. Elara, T. Pathmakumar, and S. Nansai, “Floor
cleaning robot with reconfigurable mechanism,” Automation in
Construction, vol. 91, pp. 155-165, 2018.

[6] A. Brajdic and R. Harle, “Walk detection and step counting on
unconstrained smartphones,” in Proceedings of the 2013 ACM inter-
national joint conference on Pervasive and ubiquitous computing, 2013.

[7] P. Zhou, M. Li, and G. Shen, “Use it free: Instantly knowing
your phone attitude,” in Proceedings of the 20th annual international
conference on Mobile computing and networking, 2014.

[8] Q. Tian, Z. Salcic, I. Kevin, K. Wang, and Y. Pan, “A multi-
mode dead reckoning system for pedestrian tracking using smart-
phones,” IEEE Sensors Journal, vol. 16, no. 7, pp. 2079-2093, 2015.

[9] A. Martinelli, H. Gao, P. D. Groves, and S. Morosi, “Probabilistic
context-aware step length estimation for pedestrian dead reckon-
ing,” IEEE Sensors journal, vol. 18, no. 4, pp. 1600-1611, 2017.

[10] J.-D. Sui and T.-S. Chang, “IMU based deep stride length estima-
tion with self-supervised learning,” IEEE Sensors Journal, vol. 21,
no. 6, pp. 7380-7387, 2021.

[11] Q. Wang, H. Luo, L. Ye, A. Men, E. Zhao, Y. Huang, and C. Ou,
“Personalized stride-length estimation based on active online
learning,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4885
4897, 2020.

[12] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni,
“Deep-learning-based pedestrian inertial navigation: Methods,
data set, and on-device inference,” IEEE Internet of Things Journal,
vol. 7, no. 5, pp. 4431-4441, 2020.

[13] S. Herath, H. Yan, and Y. Furukawa, “RoNIN: Robust neural
inertial navigation in the wild: Benchmark, evaluations, & new
methods,” in IEEE ICRA, 2020.

[14] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction
of the number of points required to represent a digitized line or
its caricature,” Cartographica: the international journal for geographic
information and geovisualization, pp. 112-122, 1973.

[15] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “¢; trend filtering,”
SIAM Review, vol. 51, no. 2, pp. 339-360, 2009.

[16] C. Long, R. C.-W. Wong, and H. Jagadish, “Trajectory simplifica-
tion: On minimizing the direction-based error,” Proceedings of the
VLDB Endowment, vol. 8, no. 1, pp. 49-60, 2014.

[17] S. Yang, P. Dessai, M. Verma, and M. Gerla, “FreeLoc: Calibration-
free crowdsourced indoor localization,” in IEEE INFOCOM, 2013.

[18] Y. Zhao, W.-C. Wong, H. K. Garg, and T. Feng, “Pedestrian dead
reckoning with turn-based correction,” in IEEE IPIN, 2018.

[19] T.C. Lee, “An introduction to coding theory and the two-part min-
imum description length principle,” International statistical review,
vol. 69, no. 2, pp. 169-183, 2001.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[21]]. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465471, 1978.

[22] P. S. Bullen, Handbook of means and their inequalities. ~ Springer
Science & Business Media, 2013.

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

(42]

[43]

(44]

[45]

16

R. Bellman, “On a routing problem,” Quarterly of applied mathemat-
ics, vol. 16, no. 1, pp. 87-90, 1958.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. MIT press, 2022.

H. Yan, Q. Shan, and Y. Furukawa, “RIDI: Robust IMU double
integration,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 621-636.

W. Liu, D. Caruso, E. Ilg,]. Dong, A. I. Mourikis, K. Daniilidis,
V. Kumar, and]. Engel, “Tlio: Tight learned inertial odometry,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5653-5660,
2020.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

A. Lewkowycz, “How to decay your learning rate,” arXiv preprint
arXiv:2103.12682, 2021.

Microsoft, “Microsoft geolife GPS trajectories.”
https:/ /research.microsoft.com/en-us/downloads/
b16d359d-d164-469e-9fd4-daa38f2b2e13/, 2012.

N. Meratnia ef al., “Spatiotemporal compression techniques for
moving point objects,” in International Conference on Extending
Database Technology. Springer, 2004.

J. Muckell,].-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. Ravi,
“SQUISH: an online approach for GPS trajectory compression,”
in Proceedings of the 2nd international conference on computing for
geospatial research & applications, 2011.

M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory
streams with spatiotemporal criteria,” in 18th International Confer-
ence on Scientific and Statistical Database Management (SSDBM'06).
IEEE, 2006.

G. Trajcevski, H. Cao, P. Scheuermanny, O. Wolfsonz, and D. Vac-
caro, “On-line data reduction and the quality of history in moving
objects databases,” in Proceedings of the 5th ACM international
workshop on Data engineering for wireless and mobile access, 2006.

A. Conti, M. Guerra, D. Dardari, N. Decarli, and M. Z. Win, “Net-
work experimentation for cooperative localization,” IEEE Journal
on Selected Areas in Communications, vol. 30, no. 2, pp. 467-475,
2012.

A. Conti, D. Dardari, M. Guerra, L. Mucchi, and M. Z. Win, “Ex-
perimental characterization of diversity navigation,” IEEE Systems
Journal, vol. 8, no. 1, pp. 115-124, 2013.

X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for
indoor localization with a deep learning approach,” IEEE Internet
of Things Journal, vol. 3, no. 6, pp. 1113-1123, 2016.

C. Luo, H. Hong, M. C. Chan, J. Li, X. Zhang, and Z. Ming,
“MPiLoc: Self-calibrating multi-floor indoor localization exploit-
ing participatory sensing,” IEEE Transactions on Mobile Computing,
vol. 17, no. 1, pp. 141-154, 2017.

W. Zhuo, K. H. Chiu, J. Chen, Z. Zhao, S.-H. G. Chan, S. Ha, and
C.-H. Lee, “Fis-one: Floor identification system with one label for
crowdsourced rf signals,” in JEEE ICDCS 2023.

W. Zhuo, K. H. Chiu, J. Chen, J. Tan, E. Sumpena, S.-H. G. Chan,
S. Ha, and C.-H. Lee, “Semi-supervised learning with network
embedding on ambient rf signals for geofencing services,” in IEEE
ICDE 2023.

J. Choi, G. Lee, S. Choi, and S. Bahk, “Smartphone based indoor
path estimation and localization without human intervention,”
IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 681-695,
2020.

J. Chen, B. Zhou, S. Bao, X. Liu, Z. Gu, L. Li, Y. Zhao,]J. Zhu,
and Q. Li, “A data-driven inertial navigation/Bluetooth fusion
algorithm for indoor localization,” IEEE Sensors Journal, vol. 22,
no. 6, pp. 5288-5301, 2021.

J. Dong, M. Noreikis, Y. Xiao, and A. Yla-Jadski, “ViNav: A
vision-based indoor navigation system for smartphones,” IEEE
Transactions on Mobile Computing, vol. 18, no. 6, pp. 1461-1475,
2018.

A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z.
Win, “Soft information for localization-of-things,” Proceedings of
the IEEE, vol. 107, no. 11, pp. 22402264, 2019.

C. Wu, E Zhang, Y. Fan, and K. R. Liu, “RF-based inertial mea-
surement,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 117-129.

B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network
localization and navigation with scalable inference and efficient
operation,” IEEE Transactions on Mobile Computing, vol. 21, no. 6,
pp. 2072-2087, 2020.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

[46]

[47]

[48]

[49]

(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

(671

X. Huang,]J. Lee, Y.-W. Kwon, and C.-H. Lee, “CrowdQuake: A
networked system of low-cost sensors for earthquake detection
via deep learning,” in ACM KDD 2020.

W. Zhuo, Z. Zhao, K. H. Chiu, S. Li, S. Ha, C.-H. Lee, and S.-H. G.
Chan, “GRAFICS: Graph embedding-based floor identification
using crowdsourced RF signals,” in IEEE ICDCS 2022.

D. Chen, N. Wang, R. Xu, W. Xie, H. Bao, and G. Zhang, “RNIN-
VIO: Robust neural inertial navigation aided visual-inertial odom-
etry in challenging scenes,” in IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), 2021.

W. Ma, Q. Li, B. Zhou, W. Xue, and Z. Huang, “Location and 3-D
visual awareness-based dynamic texture updating for indoor 3-d
model,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7612-7624,
2020.

V. Renaudin, V. Demeule, and M. Ortiz, “Adaptative pedestrian
displacement estimation with a smartphone,” in IEEE International
conference on indoor positioning and indoor navigation, 2013.

J. Chen, S.-h. Kao, H. He, W. Zhuo, S. Wen, C.-H. Lee, and S.-H. G.
Chan, “Run, don’t walk: Chasing higher flops for faster neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 12021-12031.

B. Zhou, Z. Gu, FE. Gu, P. Wu, C. Yang, X. Liu, L. Li, Y. Li, and Q. Li,
“DeepVIP: Deep learning-based vehicle indoor positioning using
smartphones,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 12, pp. 13299-13 309, 2022.

J. Kuang, T. Li, Q. Chen, B. Zhou, and X. Niu, “Consumer-grade
inertial measurement units enhanced indoor magnetic field match-
ing positioning scheme,” IEEE Transactions on Instrumentation and
Measurement, vol. 72, pp. 1-14, 2022.

Q. Wang, H. Luo, H. Xiong, A. Men, F. Zhao, M. Xia, and C. Ou,
“Pedestrian dead reckoning based on walking pattern recognition
and online magnetic fingerprint trajectory calibration,” IEEE Inter-
net of Things Journal, vol. 8, no. 3, pp. 2011-2026, 2020.

Y. Wang, H. Cheng, C. Wang, and M. Q.-H. Meng, “Pose-invariant
inertial odometry for pedestrian localization,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1-12, 2021.

A. Brajdic and R. Harle, “Scalable indoor pedestrian localisation
using inertial sensing and parallel particle filters,” in 2012 Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN).
IEEE, 2012, pp. 1-10.

C. Wu, Z. Yang, and C. Xiao, “Automatic radio map adaptation
for indoor localization using smartphones,” IEEE Transactions on
Mobile Computing, vol. 17, no. 3, pp. 517-528, 2017.

F. Holzke,].-P. Wolff, and C. Haubelt, “Improving pedestrian
dead reckoning using likely paths and backtracking for mobile
devices,” in IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), 2019.

B. Zhou, Z. Wu, and X. Liu, “Smartphone-based robot indoor
localization using inertial sensors, encoder and map matching,”
in IEEE International Conference on Automation, Control and Robots
(ICACR), 2021.

J. Tan, H. Wu, K.-H. Chow, and S.-H. G. Chan, “Implicit Multi-
modal Crowdsourcing for Joint RF and Geomagnetic Fingerprint-
ing,” IEEE Transactions on Mobile Computing, 2021.

R. Harle, “A survey of indoor inertial positioning systems for
pedestrians,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 3, pp. 1281-1293, 2013.

Y. Lu, D. Wei, Q. Lai, W. Li, and H. Yuan, “A context-recognition-
aided PDR localization method based on the hidden markov
model,” Sensors, vol. 16, no. 12, p. 2030, 2016.

T. Moder, C. Reitbauer, M. Dorn, and M. Wieser, “Calibration of
smartphone sensor data usable for pedestrian dead reckoning,” in
IEEE IPIN, 2017.

Z. Zhang, S. He, Y. Shu, and Z. Shi, “A self-evolving WiFi-based
indoor navigation system using smartphones,” IEEE Transactions
on Mobile Computing, vol. 19, no. 8, pp. 1760-1774, 2019.

H. Jiang, W. Liu, G. Jiang, Y. Jia, X. Liu, Z. Lui, X. Liao, J. Xing,
and D. Liu, “Fly-Navi: A novel indoor navigation system with on-
the-fly map generation,” IEEE Transactions on Mobile Computing,
vol. 20, no. 9, pp. 2820-2834, 2020.

Z. Wang, C. Long, and G. Cong, “Trajectory simplification with
reinforcement learning,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), 2021.

Z.Wang, C. Long, G. Cong, and Q. Zhang, “Error-bounded online
trajectory simplification with multi-agent reinforcement learning,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 1758-1768.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

17

X. Du, K. Yang, and D. Zhou, “MapSense: Mitigating inconsistent
wifi signals using signal patterns and pathway map for indoor
positioning,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4652—
4662, 2018.

J. Choi, G. Lee, S. Choi, and S. Bahk, “Smartphone based indoor
path estimation and localization without human intervention,”
IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 681-695,
2022.

Google, “Android code snippet for orientation calculation.”
https:/ /developer.android.com/develop /sensors-and-location/
sensors/sensors_position#sensors-pos-orient, 2024.

K. Han, S. M. Yu, S-W. Ko, and S.-L. Kim, “Waveform-guide
transformation of IMU measurements for smartphone-based lo-
calization,” IEEE Sensors Journal, 2023.

J. Gong, X. Zhang, Y. Huang, J. Ren, and Y. Zhang, “Robust inertial
motion tracking through deep sensor fusion across smart earbuds
and smartphone,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 5, no. 2, pp. 1-26, 2021.
S. Sun, D. Melamed, and K. Kitani, “IDOL: Inertial deep
orientation-estimation and localization,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 7, 2021, pp. 6128-
6137.

Y. Wang, J. Kuang, Y. Li, and X. Niu, “Magnetic field-enhanced
learning-based inertial odometry for indoor pedestrian,” IEEE
Transactions on Instrumentation and Measurement, vol. 71, pp. 1-13,
2022.

T. Feng, Y. Liu, Y. Yu, L. Chen, and R. Chen, “CrowdLOC-S:
Crowdsourced seamless localization framework based on CNN-
LSTM-MLP enhanced quality indicator,” Expert Systems with Ap-
plications, vol. 243, p. 122852, 2024.

Weipeng Zhuo is currently an assistant pro-
fessor in the Department of Computer Sci-
ence at BNU-HKBU United International Col-
lege, Zhuhai, China. He received his BSc de-
gree (double majored in Computer Science and
Applied Mathematics), Master of Philosophy
(MPhil) degree, and Ph.D. degree, all from The
Hong Kong University of Science and Technol-
ogy. During his MPhil study, he was a visiting
scholar in the Department of Electrical Engineer-
ing at Princeton University. His research inter-

ests include loT signal analytics, graph neural networks and indoor

localization.

Shiju Li is a Ph.D. in Computer Engineering. He
graduated from the Florida Institute of Technol-
ogy, Melbourne, FL, where he also received his
master’s degree. He received his bachelor’s de-
gree from Huazhong University of Science and
Technology, China. His research interests are in
network science, data science, graph analysis,
and networking. He is also interested in big data
analytics acceleration, and modeling, analysis,
and optimization of large-scale networked sys-
tems. His current research topic includes com-

putational storage, large language model and graph neural network.

Tianlang He received his bachelor of engineer-
ing degree (with honor) from Donghua Univer-
sity, Shanghai, China, in 2018. He obtained his
master of science degree from The Hong Kong
University of Science and Technology (HKUST),
Hong Kong, China, in 2019. He is working to-
wards his PhD degree in the Department of
Computer Science and Engineering, HKUST,
Hong Kong, China. His research interest in-
cludes AloT, Trustworthy Al, and Wireless Com-
puting.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2023

Mengyun Liu is currently working at the Institute
of Artificial Intelligence, Guangzhou University.
She received the B.E., B.B.A (Minor), and Ph.D.
degrees from Wuhan University, in the School
of Geodesy and Geomatics (2009-2013), Eco-
nomics and Management School (2011-2013),
and State Key Laboratory of Information En-
gineering in Surveying, Mapping and Remote
Sensing (LIESMARS, 2013-2019), respectively.
Before joining Guangzhou University, she was
an Research Associate and Postdoctoral Fellow
in the Department of Computer Science and Engineering, The Hong
Kong University of Science and Technology (HKUST). She was also
an intern in Microsoft Research Asia, and a research assistant in the
Department of Land Surveying and Geo-Informatics, the Hong Kong
Polytechnic University. Her research interests include positioning in
GNSS-denied areas, geo-security, and the internet of things.

S.-H. Gary Chan is currently Professor of the
Department of Computer Science and Engi-
neering, The Hong Kong University of Science
and Technology (HKUST), Hong Kong. He is
also Affiliate Professor of Innovation, Policy and
Entrepreneurship Thrust in HKUST (GZ), and
Board Director of Hong Kong Logistics and Sup-
ply Chain MultiTech R&D Center (LSCM). He
received MSE and PhD degrees in Electrical
% Engineering with a Minor in Business Adminis-

tration from Stanford University (Stanford, CA).
He obtained his B.S.E. degree (highest honor) in Electrical Engineering
from Princeton University (Princeton, NJ), with certificates in Applied
and Computational Mathematics, Engineering Physics, and Engineering
and Management Systems. His research interests include smart loT and
sensing systems, location Al and mobile computing, video/user/data an-
alytics, cloud and edge Al, technology transfer and IT entrepreneurship.

Professor Chan has been an Associate Editor of IEEE Transactions on
Multimedia, and a Vice-Chair of Peer-to-Peer Networking and Commu-
nications Technical Sub-Committee of IEEE Comsoc Emerging Tech-
nologies Committee. He has been Guest Editor of ACM Transactions
on Multimedia Computing, Communications and Applications, IEEE
Transactions on Multimedia, IEEE Signal Processing Magazine, |IEEE
Communication Magazine, etc. He is a steering committee member and
was the TPC chair of IEEE Consumer Communications and Networking
Conference (IEEE CCNC), and has been area chair of the multimedia
symposium of IEEE Globecom and IEEE ICC for many years.

Through technology transfer and entrepreneurship, Professor Chan
has successfully transferred and deployed his research results in in-
dustry and co-founded several startups. Due to their innovations, com-
mercial and societal impacts, his technologies have received numerous
local and international awards. Notably, he received Hong Kong Chief
Executive’s Commendation for Community Service for "outstanding con-
tribution to the fight against COVID-19” in 2020. He is the recipient
of Google Mobile 2014 Award and Silver Award of Boeing Research
and Technology. He was a visiting professor or researcher in Microsoft
Research, Princeton University, Stanford University, and University of
California at Davis. At HKUST, he was Director of Entrepreneurship
Center, Director of Sino Software Research Institute, Co-director of
Risk Management and Business Intelligence program, and Director of
Computer Engineering Program. He was a William and Leila Fellow at
Stanford University, and the recipient of the Charles Ira Young Memorial
Tablet and Medal and the POEM Newport Award of Excellence at
Princeton University. He is Fellow of Sigma Xi (FSX) and Chartered
Fellow of The Chartered Institute of Logistics and Transport (FCILT).

18

Sangtae Ha is an Associate Professor in the
Department of Computer Science at the Uni-
versity of Colorado Boulder. He received his
Ph.D. in Computer Science from North Carolina
State University and was an Associate Research
Scholar at Princeton University from 2010 to
2013. He received the MobiSys Best Paper
Awards in 2019 and 2021, the Samsung GRO
Award in 2017, and the INFORMS ISS Design
Science Award in 2014.

Chul-Ho Lee is currently an Assistant Professor
in the Department of Computer Science at Texas
State University, San Marcos, TX. Prior to that,
he was an Assistant Professor in the Department
of Computer Engineering and Sciences (now the
Department of Electrical Engineering and Com-
puter Science) at Florida Institute of Technology,
Melbourne, FL, and a senior research engineer
at Samsung Electronics DMC R&D Center (now
Samsung Research), South Korea. He received
his Ph.D. in Computer Engineering from North
Carolina State University, Raleigh, NC. His research interests include
graph mining, network science, machine learning, networking, and
computing/networked systems. He has been serving on the program
committees of various conferences such as IEEE INFOCOM, ACM
MobiHoc, ACM KDD, IEEE ICDM, and SIAM SDM. He currently serves
as an Associate Editor of IEEE Transactions on Network Science and
Engineering and a Track Co-Chair of Algorithms & Theory at the 21st
IEEE International Conference on Mobile Ad-Hoc and Smart Systems
(MASS 2024). He has been recognized as a distinguished TPC member
of IEEE INFOCOM 2018-2023 due to his excellent performance in the
review process. His work was recognized as a Best Paper Award Finalist
at ACM MobiHoc 2019, and he received NVIDIA Applied Research
Accelerator Award in 2022.

