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Abstract—Counting and finding triangles in graphs is often
used in real-world analytics to characterize cohesiveness and
identify communities in graphs. In this paper, we propose the
novel concept of a cover-edge set that can be used to find
triangles more efficiently. We use a breadth-first search (BFS)
to quickly generate a compact cover-edge set. Novel sequential
and parallel triangle counting algorithms are presented that
employ cover-edge sets. The sequential algorithm avoids unnec-
essary triangle-checking operations, and the parallel algorithm is
communication-efficient. The parallel algorithm can asymptoti-
cally reduce communication on massive graphs such as from real
social networks and synthetic graphs from the Graph500 Bench-
mark. In our estimate from massive-scale Graph500 graphs,
our new parallel algorithm can reduce the communication on
a scale 36 graph by 1156x and on a scale 42 graph by 2368x.

Index Terms—Graph Algorithms, Triangle Counting, Parallel
Algorithms, High Performance Data Analytics

I. INTRODUCTION

Triangle counting [1] is a fundamental problem in graph an-
alytics, which involves finding the number of unique triangles
in a graph. It plays a crucial role in various graph analysis
techniques such as clustering coefficients [2], k-truss [3], and
triangle centrality [4]. The significance of triangle counting
is evident in its application in high-performance computing
benchmarks like Graph500 [5] and the MIT/Amazon/IEEE
Graph Challenge [6], as well as in the design of future
architecture systems (e.g., IARPA AGILE [7]).

Both sequential and parallel triangle counting algorithms
have been studied extensively since 1977 [8]. Latapy [9]
provides a comprehensive overview of sequential triangle
counting and various finding algorithms. Existing techniques,
including list intersection, matrix multiplication, and subgraph
matching [10], are techniques used to count triangles.

To enhance the performance of triangle counting, Cohen
[11] introduced a novel map-reduce parallelization technique
that generates open wedges between triples of vertices in the
graph. It determines whether a closing edge exists to complete
a triangle, thus avoiding the redundant counting of the same
triangle while maintaining load balancing. Many parallel ap-
proaches for triangle counting [12], [13] partition the sparse
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graph data structure across multiple compute nodes and adopt
the strategy of generating open wedges, which are sent to other
compute nodes to determine the presence of a closing edge.
Consequently, the communication time for these open wedges
often dominates the running time of parallel triangle counting.

In traditional edge-based triangle counting methods, all tri-
angles are identified by accumulating the sizes of intersections
between pairs of endpoints for each edge. Direction-oriented
approaches can avoid counting the same triangle multiple
times. However, in this paper, we propose a novel approach
that efficiently identifies all triangles using a reduced set of
edges known as a cover-edge set. By leveraging the cover-
edge-based triangle counting method, unnecessary edge checks
can be skipped while ensuring that no triangles are missed.
This significantly reduces the number of computational op-
erations compared to existing methods. Furthermore, for dis-
tributed parallel algorithms, the cover-edge-based method can
greatly reduce overall communication requirements. As a
result, our proposed method offers improved efficiency and
scalability for triangle counting.

Our contributions include:

¢ A novel concept, Cover-Edge Set, is proposed to support
efficient triangle counting. The essential idea is that we
can identify all triangles from a significantly reduced
cover-edge set instead of the complete edge set. A simple
breadth-first search (BFS) is used to orient the graph’s
vertices into levels and to generate the cover-edge set.

o A novel triangle counting and finding algorithm, CETC,
is developed based on the concept of Cover-Edge Set.
CETC runs in O(m - dpyax) time and O(n + m) space,
where d.x is the maximal degree of a vertex v € V.

¢ A novel communication-efficient distributed parallel al-
gorithm for triangle counting and finding, Comm-CETC,
is also developed based on the concept of Cover-Edge
Set. Comm-CETC can asymptotically reduce the commu-
nication to improve total performance.

The remainder of the paper is organized as follows. Sec-
tion II presents our new approach for triangle counting. In
Section III, we employ our idea in distributed parallel triangle
counting to reduce communication. Section V discusses related
work. Lastly, in Section VI, we conclude the paper.
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Fig. 1. Example BFS tree of Graph G. The tree-edges are black, strut-edges
are blue, and horizontal-edges are red.

II. COVER-EDGE SET BASED TRIANGLE COUNTING

A. Notations and Basic Idea

Let G = (V,E) be an undirected graph with n = |V|
vertices and m = |F| edges. A triangle in the graph
is a set of three vertices {vq,vp,v.} C V such that
{(VasVp)s (Va, ve)s (Vp,ve)} C E. We will use N(v) = {u|u €
V A((v,u) € E)} to denote the neighbor set of vertex v € V.
The degree of vertex v € V' is d(v) = |N(v)|, and dpax is the
maximal degree of a vertex in graph G.

Definition 1 (Cover-Edge and Cover-Edge Set). For any edge
e of a triangle A in graph G, e is referred to as a cover-edge
of A. For a given graph G, an edge set S C E is called a
cover-edge set if it contains at least one cover-edge for every
triangle in G.

Based on the given definition, it is evident that the entire
edge set F can serve as a cover-edge set S for graph G.
However, our proposed method aims to efficiently count all
triangles using a smaller subset of edges instead of E. Thus,
the primary challenge lies in generating a compact cover-edge
set, which forms the initial problem to be addressed in our
approach. Let k = |S|/|E|. Our goal is to identify cover-
edge sets with the smallest k. In this paper, we propose using
breadth-first search (BFS) to generate a compact cover-edge
set.

Definition 2 (BFS-Edge). Let r be the root vertex of an
undirected graph G. The level L(v) of a vertex v is defined as
the shortest distance from r to v obtained through a breadth-
first search (BFS). From the BFS, we classify the edges into
three types:
o Tree-Edges: These edges belong to the BFS tree.
o Strut-Edges: These are non-tree edges with endpoints on
two adjacent levels in the BFS traversal.
o Horizontal-Edges: These are non-tree edges with end-
points on the same level in the BFS traversal.

Fig. 1 gives an example of these different edge types.
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Lemma 1. Each triangle {u,v,w} in a graph contains at
least one horizontal-edge.

Proof. (Proof by contradiction) A triangle is a path of length
3 that starts and ends at the same vertex. Suppose there are
no horizontal-edges in the triangle. In that case, every edge
in the path (i.e., a tree-edge or strut-edge) either increases or
decreases the level by one.

Since the path must end on the same level as the starting
vertex, the number of edges in the path that decrease the level
must be equal to the number of edges that increase the level.
Consequently, the length of the path must be even to maintain
level parity. However, this contradicts the fact that a triangle
has an odd path length of 3.

Therefore, we conclude that there must be at least one
horizontal-edge in every triangle. O

Theorem 3 (Cover-Edge Set Generation). All horizontal-
edges form a valid cover-edge set.

Proof. According to Definition 1, for any triangle A in graph
G, we can always find at least one horizontal-edge that serves
as a cover-edge for A. Thus, the set of all horizontal-edges
constitutes a cover-edge set. O

Therefore, we can construct a cover-edge set, denoted as
BFS-CES, by selecting all the horizontal-edges obtained during
a breadth-first search (BFS). It is evident that BFS-CES is a
subset of F and is typically much smaller than the complete
edge set F.

B. Cover-Edge based Triangle Counting

In this subsection, we provide a comprehensive description
of the process involved in identifying all triangles using a
cover-edge set generated through a breadth-first search.

Lemma 2. Each triangle {u,v,w} must contain either one
or three horizontal-edges.

Proof. By referring to the proof of Lemma 1, we know that
the path corresponding to the triangle’s three edges consists
of an even number of tree-edges and strut-edges. This implies
that there can be either O or 2 tree- or strut-edges within each
triangle.

In the case where there are O tree- or strut-edges, all three
edges of the triangle must be horizontal-edges. This is because
the absence of tree- or strut-edges implies that the entire path
is composed of horizontal-edges.

In the case where there are 2 tree- or strut-edges, the triangle
contains exactly one horizontal-edge. This is because having
two tree- or strut-edges in the path means that there is one
horizontal-edge connecting the remaining two vertices.

Therefore, we conclude that each triangle {u,v,w} must
contain either one or three horizontal-edges. [

Our triangle counting approach, described in Alg. 1, effi-
ciently counts triangles using a cover-edge set. In line 1, we
initialize the counter 7" to 0, which will store the total number
of triangles. To generate the cover-edge set, we perform a
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breadth-first search (BFS) starting from any unvisited vertex,
identifying the level (L(v)) of each vertex v in its respective
component, as shown in lines 2 to 3. In lines 4 to 8 the
algorithm iterates over each edge, selecting the cover-set
of horizontal edges (u,v) in a direction-oriented fashion in
line 5. For each vertex w in the intersection of w and v’s
neighborhoods (line 6), we check the following two conditions
to determine if (u,v,w) is a unique triangle to be counted
(line 7). If L(u) # L(w) then the edge (u,v) is the only
horizontal-edge in the triangle (u, v, w). If L(u) = L(w), then
the edge (u,v) is one of three horizontal-edges in the triangle
(u, v, w). To ensure uniqueness, the algorithm then checks the
added constraint that v < w. If the constraints are satisfied,
we increment the triangle counter 7" in line 8.

This approach effectively counts the triangles in the graph
while avoiding redundant counting.

Algorithm 1 CETC:Cover-Edge Triangle Counting

Input: Graph G = (V, E)
Output: Triangle Count T°

1: T+0

2: VeV

3 if v unvisited, then BFS(G, v)

4: Y(u,v) € E

5 if (L(u) = L(v)) A (u<wv) > (u,v) is horizontal
6 Yw € N(u) N N(v)

7 if (L(u) # L(w)) V ((L(u) = L(w)) A (v < w)) then

8 T+T+1

Theorem 4 (Correctness). Alg. 1 can accurately count all
triangles in a graph G.

Proof. Lemma 2 establishes that a triangle in the graph falls
into one of two cases: 1) the two endpoint vertices of the
horizontal-edge are on the same level while the apex vertex is
on a different level, or 2) all three vertices of the triangle are
at the same level.

Consider a triangle {v,,vp,v.} in G. Without loss of
generality, assume that (v,,vp) is a horizontal-edge, implying
L(vg) = L(vp). Let v, be the apex vertex. The two cases can
be distinguished as follows:

For the first case, each triangle is uniquely defined by a
horizontal-edge and an apex vertex from the common neigh-
bors of the horizontal-edge’s endpoint vertices. Whenever
Alg. 1 identifies such a triangle {v,, vy, v.}, it increments the
total triangle count 7" by 1.

In the second case, where all three vertices are at the
same level (L(v.) = L(vg) = L(w)), Alg. 1 ensures that
T is increased by 1 only when v, < v, < w.. This
condition ensures that triangle {v,,vp,v.} is counted only
once, preventing triple-counting and ensuring the correctness
of the triangle count.

Hence, Alg. 1 is proven to accurately count all triangles in
the graph G. O

The time complexity of Alg. 1 can be analyzed as follows.
The computation of breadth-first search, including determining
the level of each vertex and marking horizontal-edges, requires
O(n +m) time.
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Since there are at most O(m) horizontal-edges, finding the
common neighbors of each horizontal-edge individually can
be done in O(dpax) time. Here, d,x represents the maximal
degree of a vertex in the graph.

Therefore, the overall time complexity of Alg. 1 is O(m -
dmax)'

III. COMMUNICATION EFFICIENT TRIANGLE COUNTING
ALGORITHM

This section presents our communication-efficient parallel
algorithm for counting triangles in massive graphs on a
p-processor distributed-memory parallel computer. We will
take advantage of the concept of Cover-Edge Set to sig-
nificantly improve the communication performance of our
triangle counting method. Since distributed triangle counting
is communication-bound [12], this algorithm is expected to
improve the overall running time. The input graph G is stored
in a compressed sparse row (CSR) format. The vertices are
partitioned non-uniformly to the p processors such that each
processor stores approximately 2m/p edge endpoints. This
graph input follows the format used by the majority of parallel
graph algorithm implementations and benchmarks such as
Graph500 and Graph Challenge.

A. Parallel Algorithm Description

Our communication-efficient parallel algorithm (see Alg. 2)
is based on the same cover-edge approach proposed in section
II. The binary operator & used in line 9 is bitwise exclusive
OR (XOR).

Algorithm 2 Comm-CETC: Communication Efficient Trian-
gle Counting
Input: Graph G = (V, E)
Output: Triangle Count T°
1: Run parallel BFS(G) and build partial cover-edge set .S; on p;
2: For all p;,i € {0...p— 1} in parallel do:

3 t;i <0

4 Y(u,v) € S; with u < v on p;

5: Yw € V; such that w € N(u), N(v)

6: if (L(u) # L(w)) V ((L(u) = L(w)) A (v < w)) then
7: ti =t; +1

8 For j <— 1top—1 do:

9 Processors 4 and 4 @ j swap edge sets S; and S;.

10: V(u,v) € S; with u < v on p;

11: Yw € V; such that w € N(u), N(v)

12: if (L(u) # L(w)) V ((L(u) = L(w)) A (v < w)) then
13: ti=1t; +1

14: T <+ Reduce(t;, +)

Similar to the baseline CETC algorithm, the cover-edge set
S = Uf;ol S; is determined in line 1 by labeling the horizontal
edges from a parallel BFS.

Each processor runs lines 2 to 13 in parallel that consists
of two main substeps. Local triangles are counted in lines 4
to 7 and a total exchange of cover-edges between each pair
of processors to count triangles is performed in lines 8 to 13.
Note at the end of each iteration of the for loop, processor
p; can discard the cover-edge set S;. In lines 5 and 11,
processor p; determines for each cover edge (u, v) all the apex
vertices w held locally that are adjacent to both u and v. The
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logic for counting triangles in lines 6 and 12 is similar to
Alg. 1 as to only count unique triangles. Finally, a reduction
operation in line 14 calculates the total number of triangles
by accumulating the triangle counters across the system, i.e.,

T=" "t
B. Cost Analysis

1) Space: In addition to the input graph data structure, an
additional bit is needed per edge (for marking a horizontal-
edge) and O ([log D) bits per vertex to store its level, where
D is the diameter of the graph. This is a total of at most
m + n[log D] bits across the p processors. Preserving the
graph requires additional O (n + m) space for the graph.

2) Compute: The BFS costs O ((n+m)/p) [14], the
modified neighbor sets take O (m/p). The search corre-
sponding to one cover-edge in a vertex’s adjacency list
takes at most O (log(dmas)) time using binary search,
and only O (1) expected time using a hash table. Let
d; be the degree of vertex v; where 0 < ¢ < n.
Searching km edges in all vertices’ adjacency lists takes
O(km Y7~ log(d;)) = O(kmlog(TT'=;'d;)) time. Since
Sd; = 2m, we know that log(IT7='d;) reaches its
maximum value when d; = 2m/n for 0 < i < n.
Thus, O(kmlog(TIl}=}d;)) < O(kmlog((2m/n)")) <
O(kmnlog(2n?/n)) = O(mnlog(n)).

3) Total Communication: In our analysis of communication
cost for BFS, we measure the total communication volume
independent of the number of processors. Thus, this is a
conservative overestimate of communication since a fraction
(e.g., 1/p) of accesses will be on the same compute node
versus message traffic between nodes. At the same time,
we do not consider the savings from overlapping with the
computation cost.

The cost of the breadth-first search is m edge traversals
with [log D]+ 3[logn] bits communicated per edge traversal
for the level information, pair of vertex ids, and vertex degree,
yielding m-([log D]+3[logn]) bits for the BFS. Transferring
km horizontal-edges requires kmp[logn] bits, where p is the
number of processors. The final reduction to find the total
number of triangles requires (p — 1)[logn] bits.

Hence, the total communication volume is m - ([log D] +
3[logn]) + kmp[logn] + (p — 1)[logn] = m - ([log D] +
(kp+3)[logn]) + (p — 1)[logn] bits. Hence, since the word
size is O(logn) and D < n, the communication is O (pm)
words.

IV. COMMUNICATION ANALYSIS ON REAL AND
SYNTHETIC GRAPHS

In this section, we analyze the performance of the parallel
triangle counting algorithm on both real and synthetic graphs.
We implemented our new triangle counting algorithm using
Python to accurately compute the exact communication vol-
ume and determine an analytic model based on the size of the
graph and number of processors, and the ratio or percentage
(k) of cover-edges from the BFS. The results given in Table I
are exact communication volumes from our new algorithm on
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Fig. 2. Estimate of k using an exponential model, based on observations of
k for RMAT graph scale 6 to 23 graphs.

all of the graphs except the two large RMAT graphs where
we compute the communication volume from the validated
analytic model. For the comparison with prior approaches
[15]-[17], we estimate the communication volume from the
number of wedges which is exact for all graphs other than the
last two large RMAT graphs where we estimate the number
of wedges using graph theory.

For the real graphs, we find the actual value of k, the
percentage of graph edges that are cover-edges, for an arbitrary
breadth-first search, and set the number p of processors to
a reasonable number given the size of the graph. For the
synthetic graphs, we use large Graph500 RMAT graphs [18]
with parameters a = 0.57, b = 0.19, ¢ = 0.19, and d = 0.05,
for scale 36 and 42 with n = 25¢4€ and m = 16n,
similar with the IARPA AGILE benchmark graphs, and set p
according to estimates of potential system sizes with sufficient
memory to hold these large instances.

For comparison, most prior parallel algorithms for triangle
counting operate on the graph as follows. A parallel loop
over the vertices v € V produces all 2-paths (wedges) where
(v,v1), (v,v9) € E and (w.lo.g.) v; < ve. The processor
that produces this wedge will send an open wedge query
message containing the vertex ids of v; and v5 to the processor
that owns vertex v;. If the consumer processor that receives
this query message finds an edge (vi,v2) € E, then a
local triangle counter is incremented. After producers and
consumers complete all work, a global reduction over the p
triangle counts computes the total number of triangles in G.

A. Graph500 RMAT Graphs

For the large Graph500 RMAT graphs, the number of
triangles is estimated from our model based on the number of
triangles found in RMAT graphs up to scale 29 in the literature
[18]-[21]. The fitting equation is #Triangles = 77.422n'125
with R? = 1.0, where n is the total number of vertices. The
number of triangles estimated for scale 36 and 42 RMAT
graphs are 1.20 x 10** and 1.30 x 106, respectively.

We estimate the number of wedges for the scale 36 and
42 Graph500 RMAT graphs based on the theorem given by
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REPRESENTS THE COMMUNICATION REDUCTION BETWEEN THESE TWO, AND THUS, THE EXPECTED SPEEDUP OF THE PARALLEL ALGORITHM. ENTRIES

TABLE I
COMMUNICATION COSTS FOR REAL AND SYNTHETIC GRAPH. THE SYNTHETIC GRAPHS ARE GRAPH500 RMAT GRAPHS OF SCALE 36 AND 42. THE
COLUMN ‘PREVIOUS’ REPRESENTS THE COMMUNICATION VOLUME OF THE BEST PRIOR PARALLEL ALGORITHMS [15]-[17], THAT USE
WEDGE-CHECKING BASED ALGORITHMS AND ‘THIS PAPER’ REPRESENTS THE COMMUNICATION COST OF OUR NEW APPROACH. ‘REDUCTION’

IN italics ARE ESTIMATED VALUES.

Graph n m | # Triangles # Wedges k p | Previous | This paper | Reduction
ca-GrQc 5242 14484 48260 165798 | 0.522 4 526KB 122KB 431
ca-HepTh 9877 25973 28339 277389 | 0.423 4 948KB 218KB 4.35
as-caida20071105 26475 53381 36365 776895 | 0.225 4 2.78MB 401KB 7.10
facebook_combined 4039 88234 1612010 17051688 | 0.914 4 48.8MB 893KB 56.0
ca-CondMat 23133 93439 173361 1567373 | 0.511 4 5.61MB 897KB 6.40
ca-HepPh 12008 118489 3358499 5081984 | 0.621 4 17.0MB 1.13MB 15.1
email-Enron 36692 183831 727044 5933045 | 0.478 4 22.6MB 1.79MB 12.7
ca-AstroPh 18772 198050 1351441 8451765 | 0.667 4 30.2MB 2.08MB 14.6
loc-brightkite_edges 58228 214078 494728 6956250 | 0.441 4 26.5MB 2.02MB 20.4
soc-Epinions] 75879 405740 1624481 21377935 | 0.498 4 86.7MB 4.25MB 10.7
amazon0601 403394 2443408 3986507 96348699 | 0.529 8 436MB 40.9MB 10.7
com-Youtube 1134890 2987624 3056386 | 209811585 | 0.347 8 1.03GB 44.3MB 237
RMAT-36 68719476736 1099511627776 1.2E+14 2.73E+16 | 0.311 | 128 218PB 192TB 1156
RMAT-42 4398046511104 | 70368744177664 1.3E+16 5.79E+18 | 0.260 | 256 52.8EB 22.8PB 2368

Seshadhri et al. in [22]. According to their formula, we can
estimate the expected number of vertices N(d) for a given
out-degree d. The number of wedges that can be formed by
vertices with such a degree is calculated as (g) x N(d), where
(g) means choosing two from d.

By summing all such wedges generated from the minimum
(eInn) to the maximum degree (1/n), which is the assumption
of the formula, we can approximate the total number of
wedges in the given graph, where n is the total number
of vertices. This is a conservative estimate because it only
considers the out-degree instead of the sum of out and in-
degrees. Employing the formula, we calculate the number of
wedges to be 2.73 x 1016 for scale 36 and 5.8 x 10*® for scale
42. With 2logn bits/wedge, the total volume of wedge checks
is 218PB and 52.8EB for RMAT graphs of scales 36 and 42,
respectively'.

Beamer et al. [23] find a typical BFS on a scale 27
Graph500 RMAT graph has 7 levels, so 4 bits is a reasonable
estimate for log D in our analyses of scale 36 and 42 graphs.

The methodology for estimating the value of k for RMAT
graphs is as follows. RMAT graphs from scale 6 to 23 are
generated, and the exact value of k is determined for each by
counting the horizontal-edges after a breadth-first search. The
data fit to an exponential model k = 1.1773¢—0-036-scale i
very high R? = 0.9956 (see Fig. 2). For scale 36, k is esti-
mated to be 0.311 and for scale 42, k is estimated to be 0.260.

In our new approach for scale 36, where the communication
costis m-([log D]+ (kp+3)[logn])+(p—1)[log n] bits. With
[log D] = 4, and assuming p = 128 processors, we have a
total communication volume of 192TB, for a communication
reduction of 1156x. For scale 42, and assuming p = 256
processors, we estimate the communication of our new triangle
counting algorithm as 22.8PB, for a communication reduction
of 2368 x.

IThroughout this paper, a petabyte (PB) is 250 bytes and an exabyte (EB)
is 260 bytes.

979-8-3503-0860-0/23/$31.00 ©2023 IEEE

V. RELATED WORK
A. Sequential Algorithms

The naive approach for triangle counting uses brute-force:
find all the triplets {vg, vy, v}, that is, permutations of three
arbitrary vertices in the graph, and check whether each edge
in the triplet exists. The time complexity is €2(n®). Latapy
[9] and Schank and Wagner [24] provide surveys of faster
sequential algorithms. Triangle counting generally can be
formulated as three kinds of problems: set (list) intersection,
matrix multiplication and subgraph (cycle) query.

The three main intersection-based triangle counting al-
gorithms are: 1) the node-iterator algorithm iterates over all
vertices and tests for each pair of neighbors whether they are
connected by an edge, 2) the edge-iterator algorithm iterates
over all edges and searches for common neighbors of the two
endpoints of each edge, and 3) the forward algorithm is a
refinement of the edge-iterator algorithm that computes the
intersection of a subset of neighborhoods by using an orien-
tation of the graph. The time complexity of node-iterator and
edge-iterator are both O (m - dmax) and the forward algorithm
is O (m%), which has significantly better performance when
dmax > v/m [9].

When performing the intersection of two lists, the com-
monly used techniques are merge-path, binary search and
hashing-based algorithms.

Merge-path algorithms (e.g., [25], [26]) use two pointers to
scan through neighbor lists of two endpoints from beginning
to end in order to find the list intersection. During the scan,
the pointer that points to a smaller value will be incremented.
A triangle is enumerated if both pointers are incremented (i.e.,
they both point to the same vertex). Binary-search algorithms
(e.g., [19], [27]) organize the longer list as a binary tree and
use the shorter list as search keys. For each search key, it
descends through the binary-search tree in order to find the
equal entry, which is a triangle. Hashing-based algorithms
(e.g., [10], [26]) construct a hash table for one list and use the
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other list as search keys to find the common elements in the
hash table. The hash table is used here to find the intersection
of two adjacency lists, so it is not necessary to sort all the
adjacency lists to find all the triangles. The running time is
proportional to the size of the two adjacency lists.

Triangle counting using matrix multiplication [28] relies
on a linear algebra formulation for triangle counting. This
approach can be optimized [29] using matrix decomposition
by decomposing A into lower and upper triangular matrices
L and U, and then computing (L x U) ® L, or (L x L) ® L
to determine the number of triangles. The binary operator ®
denotes the Hadamard product.

A subgraph-based approach for triangle counting searches
for all occurrences of a query graph, which is a triangle, in
the input graph. Wang and Owens [30] use breadth-first search
to update the subgraph matching approach by pruning more
invalid vertices based on neighborhood encoding information,
and using optimizations like k-step look-ahead to reduce
unwanted intermediate results. Alon er al. [31] proposed a
O (m**!) algorithm to find length 3 cycles (triangle) in a
graph, which is an improvement over the Itai and Rodeh

sequential O m%) algorithm [8].

B. Parallel Algorithms

Map-reduce is a standard platform for large scale distributed
computation. Cohen [11] first demonstrated the capability of
map-reduce to solve triangle counting in an approach that
generates open wedges between triples of vertices in the graph
and determines if a closing edge exists that completes a
triangle. Suri et al. [32] implemented triangle counting using
map-reduce that ranks vertices by degree and distributes them
across hosts. Pearce [12] developed an algorithm that is based
on creating an augmented degree-ordered directed graph,
where the original undirected edges are directed from low-
degree to high degree, and implemented this approach in the
distributed asynchronous graph processing framework Havo-
qGT. DistTC [19] is a distributed triangle counting implemen-
tation for multiple machines that uses mirror proxy on each
partition to eliminate almost all the inner-host communication.
TriCore [27] partitions the graph held in a compressed-sparse
row (CSR) data structure for multiple GPUs and uses stream
buffers to load edge lists from CPU memory to GPU memory
on-the-fly and then uses binary search to find the intersection.
Hu et al. [33] employed a “copy-synchronize-search” pattern
to improve the parallel threads efficiency of GPU and mixed
the computing and memory intensive workloads together to
improve the resource efficiency. Pandey et al. [10] employed
an vertex-centric hash-based design to scale triangle counting
to over 1,000 GPUs. TriC [13] exploits the vertex-based
distributed triangle counting and sends vertices rather than
edges (vertex pairs), and then the remote processor could
translate the sequence of vertex IDs to correct combination of
vertices as edges to reduce communication. An enhancement
is then presented to TriC [34] that added a user-defined buffer
to improve the flexibility of controlling the memory usage
for large data sets and used a probabilistic data structure to
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optimize the edge lookups by trading off the accuracy. Strausz
et al. [35] use CLaMPI, a software caching layer that caches
data retrieved through MPI remote memory access operations,
to reduce the overall communication cost. Zeng et al. [36]
proposed a triangle counting algorithm that adaptively selects
vertex-parallel and edge-parallel paradigm.

Panduranga et al. [37] and Dolev et al. [15]’s work focused
on the communication cost. Compared with our work, there
are two major differences. First, they use the number of
communication rounds to measure the total communication
with a bandwidth restriction. However, we use the total volume
of messages to evaluate the communication. Second, they are
probabilistic algorithms, but our algorithm is a deterministic
algorithm (Dolev et al. [15] also contains a deterministic
version). Probabilistic methods cannot be used under scenarios
with an exact result requirement. Uhl [17], [38] also focuses
on reducing the communication cost of triangle counting. The
paper’s basic idea is only requiring communication for count-
ing triangles consisting of cut edges. If the partition generates
many cut edges, the proposed method cannot significantly
reduce communication. In contrast, our method identifies a
subset of the total set of edges independent of the partitioning
and only transfers this smaller set of edges during the triangle
counting to significantly reduce the total communication.

VI. CONCLUSIONS

In this paper, we present novel sequential and parallel
algorithms for counting and finding triangles in graphs based
on a compact cover-edge set. The parallel algorithm is the
first communication-efficient triangle counting algorithm by
exploiting BFS horizontal-edges to significantly reduce the
communication volume on massive graphs of practical interest.
Our approach uses the breadth-first search to significantly
reduce the number of edges examined and minimize the
communication required for triangle checking. The parallel
algorithm achieves an order of magnitude or more reduction
of communication volume for large graphs as communication
is the main bottleneck for triangle counting on distributed
memory systems.

VII. REPRODUCIBILITY

The sequential triangle counting source code and the Python
code for determining the communication volume of the par-
allel algorithm are open source and available on GitHub at
https://github.com/Bader-Research/triangle-counting. The in-
put graphs are from the Stanford Network Analysis Project
(SNAP) available from http://snap.stanford.edu/.
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