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Abstract—Listing and counting triangles in graphs is a key
algorithmic kernel for network analyses including community
detection, clustering coefficients, k-trusses, and triangle central-
ity. We design and implement a new serial algorithm for triangle
counting that performs competitively with the fastest previous
approaches on both real and synthetic graphs, such as those from
the Graph500 Benchmark and the MIT/Amazon/IEEE Graph
Challenge. The experimental results use the recently-launched
Intel Xeon Platinum 8480+ and CPU Max 9480 processors.

Index Terms—Graph Algorithms, Triangle Counting, High
Performance Data Analytics

I. INTRODUCTION

Triangle listing and counting is a highly-studied problem in
computer science and is a key building block in various graph
analysis techniques such as clustering coefficients [1], k-truss
[2], and triangle centrality [3]. The MIT/Amazon/IEEE Graph
Challenge [4], [5] includes triangle counting as a fundamental
method in graph analytics. There are at most

(
n
3

)
= Θ

(
n3

)
triangles in a graph G = (V,E) with n = |V | vertices
and m = |E| edges. The focus of this paper is on triangle
counting for sparse graphs that are stored in compressed,
sparse row (CSR) format, rather than adjacency matrix format.
The naı̈ve approach using triply-nest loops to check if each
triple (u, v, w) forms a triangle takes O

(
n3

)
time and is

inefficient for sparse graphs. It is well-known that listing all
triangles in G is Ω

(
m

3
2

)
time [6], [7].

The main contributions of this paper are:
• A new triangle algorithm that combines the tech-

niques of cover-edges, forward, and hashing and runs in
O (m · dmax), where dmax is the maximum degree of a
vertex in the graph;

• An experimental study of an implementation of this novel
triangle counting algorithm on real and synthetic graphs;
and

• Freely-available, open-source software for more than 20
triangle counting algorithms and variants in the C pro-
gramming language.

A. Related work

There are faster algorithms for triangle counting, such as the
work of Alon, Yuster, and Zwick [8] that require an adjacency
matrix for the input graph representation and use fast matrix

∗
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multiplication. As this is infeasible for large, sparse graph,
their and other fast multiply methods are outside the scope of
this paper.

Latapy [7] provides a survey on triangle counting algorithms
for very large, sparse graphs. One of the earliest algorithms,
tree-listing, published in 1978 by Itai and Rodeh [6] first finds
a rooted spanning tree of the graph. After iterating through the
non-tree edges and using criteria to identify triangles, the tree
edges are removed and the algorithm repeats until there are
no edges remaining. This approach takes O

(
m

3
2

)
time (or

O (n) for planar graphs).
The most common triangle counting algorithms in the

literature include vertex-iterator [6], [7] and edge-iterator
[6], [7] approaches that run in O (m · dmax) time [6], [9],
[10]. In vertex-iterator, the adjacency list N(v) of each vertex
v ∈ V is doubly-enumerated to find all 2-paths (u, v, w) where
u,w ∈ N(v). Then, the graph is searched for the existence
of the closing edge (u,w) by checking if w ∈ N(u) (or if
u ∈ N(w)). Arifuzzaman et al. [11] study modifications of the
vertex-iterator algorithm based on various methods for vertex
ordering.

In edge-iterator, each edge (u, v) in the graph is examined,
and the intersection of N(u) and N(v) is computed to find tri-
angles. A common optimization is to use a direction-oriented
approach that only considers edges (u, v) where u < v. The
variants of edge-iterator are often based on the algorithm used
to perform the intersection. When the two adjacency lists
are sorted, then MergePath and BinarySearch can be used.
MergePath performs a linear scan through both lists counting
the common elements. Makkar, Bader and Green [12] give an
efficient MergePath algorithm for GPU. Mailthody et al. [13]
use an optimized two-pointer intersection (MergePath) for set
intersection. BinarySearch, as the name implies, uses a binary
search to determine if each element of the smaller list is found
in the larger list. Hash is another method for performing the
intersection of two sets and it does not require the adjacency
lists to be sorted. A typical implementation of Hash initializes
a Boolean array of size m to all false. Then, positions in Hash
corresponding to the vertex values in N(u) are set to true.
Then N(v) is scanned, looking up in Θ(1) time whether or not
there is a match for each vertex. Chiba and Nishizeki published
one of the earliest edge iterator with hashing algorithms for
triangle finding in 1985 [14]. The running time is O (a(G)m),

979-8-3503-0860-0/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 H
ig

h 
Pe

rf
or

m
an

ce
 E

xt
re

m
e 

Co
m

pu
tin

g 
Co

nf
er

en
ce

 (H
PE

C)
 |

 9
79

-8
-3

50
3-

08
60

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
HP

EC
58

86
3.

20
23

.1
03

63
53

9

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 01,2024 at 05:07:49 UTC from IEEE Xplore.  Restrictions apply. 



where a(G) is defined as the arboricity of G, which is
upper-bounded a(G) ≤ ⌈(2m + n)

1
2 /2⌉ [14]. In 2018, Davis

rediscovered this method, which he calls tri_simple in his
comparison with SuiteSparse GraphBLAS [15]. According to
Davis [15]: this algorithm “is already a non-trivial method.
It requires expert knowledge of how Gustavson’s method can
be implemented efficiently, including a reduction of the result
to a single scalar.” Mowlaei [16] gave a variant of the edge-
iterator algorithm that uses vectorized sorted set intersection
and reorders the vertices using the reverse Cuthill-McKee
heuristic.

In 2005, Schank and Wagner [9], [10] designed a fast
triangle counting algorithm called forward (see Algorithm 1)
that is a refinement of the edge-iterator approach. Instead of
intersections of the full adjacency lists, the forward algorithm
uses a dynamic data structure A(v) to store a subset of the
neighborhood N(v) for v ∈ V . Initially each set A() is
empty, and after computing the intersection of the sets A(u)
and A(v) for each edge (u, v) (with u < v), v is added to
A(u). This significantly reduces the size of the intersections
needed to find triangles. The running time is O (m · dmax).
However, if one reorders the vertices in decreasing order
of their degrees as a Θ(n log n) time pre-processing step,
the forward algorithm’s running time reduces to O

(
m

3
2

)
.

Donato et al. [17] implement the forward algorithm for shared-
memory. Ortmann and Brandes [18] survey triangle counting
algorithms, create a unifying framework for parsimonious im-
plementations, and conclude that nearly every triangle listing
variant is in O (a(G)m).

Algorithm 1 Forward Triangle Counting [9], [10]
Input: Graph G = (V,E)
Output: Triangle Count T
1: T ← 0
2: ∀v ∈ V
3: A(v)← ∅
4: ∀(u, v) ∈ E
5: if (u < v) then
6: ∀w ∈ A(u) ∩A(v)
7: T ← T + 1
8: A(v)← A(v) ∪ {u}

The forward-hashed algorithm [9], [10] (also called
compact-forward [7]) is a variant of the forward algorithm
that uses the hashing described above for the intersections of
the A() sets, see Algorithm 2. Shun and Tangwongsan [19]
parallelize the forward and forward-hashed algorithms for mul-
ticore systems. Low et al. [20] derive a linear-algebra method
for triangle counting that does not use matrix multiplication.
Their algorithm results in the forward-hashed algorithm.

II. ALGORITHM

Recently, we presented Algorithm 3 [21] as a new method
for finding triangles.

This algorithm uses breadth-first search (BFS) to find a
reduced cover-edge set consisting of edges (u, v) where the
levels of vertices u and v are the same, i.e., L(u) ≡ L(v). Then
each edge in the cover set is examined, and Hash is used to find

Algorithm 2 Forward-Hashed Triangle Counting [9], [10]
Input: Graph G = (V,E)
Output: Triangle Count T
1: T ← 0
2: ∀v ∈ V
3: A(v)← ∅
4: ∀(u, v) ∈ E
5: if (u < v) then
6: ∀w ∈ A(u)
7: Hash[w] ← true
8: ∀w ∈ A(v)
9: if Hash[w] then

10: T ← T + 1
11: ∀w ∈ A(u)
12: Hash[w] ← false
13: A(v)← A(v) ∪ {u}

Algorithm 3 Cover-Edge Triangle Counting
Input: Graph G = (V,E)
Output: Triangle Count T
1: T ← 0
2: ∀v ∈ V
3: if v unvisited, then BFS(G, v)
4: ∀(u, v) ∈ E
5: if (L(u) ≡ L(v)) ∧ (u < v) ▷ (u, v) is horizontal
6: ∀w ∈ N(u) ∩N(v)
7: if (L(u) ̸= L(w)) ∨ ((L(u) ≡ L(w)) ∧ (v < w)) then
8: T ← T + 1

the vertices w in the intersection of N(u) and N(v). A triangle
(u, v, w) is found based on logic about w’s level. The breadth-
first search, including determining the level of each vertex
and marking horizontal-edges, requires O (n+m) time. The
number of horizontal edges is O (m). The intersection of each
pair of vertices costs O (dmax). Hence, Alg. 3 has complexity
O (m · dmax).

Algorithm 4 Fast Triangle Counting
Input: Graph G = (V,E)
Output: Triangle Count T
1: ∀v ∈ V
2: if v unvisited, then BFS(G, v)
3: ∀(u, v) ∈ E
4: if (L(u) ≡ L(v)) then ▷ (u, v) is horizontal
5: Add (u, v) to G0
6: else
7: Add (u, v) to G1
8: T ← TC forward-hashed(G0) ▷ Alg. 2
9: ∀u ∈ VG1

10: ∀v ∈ NG1(u)
11: Hash[v] ← true
12: ∀v ∈ NG0(u)
13: if (u < v) then
14: ∀w ∈ NG1(v)
15: if Hash[w] then
16: T ← T + 1
17: ∀v ∈ NG1(u)
18: Hash[v] ← false

In this paper, we present our new triangle counting algo-
rithm (Alg. 4), called fast triangle counting. This new triangle
counting algorithm is similar with cover-edge triangle counting
in Alg. 3 and uses BFS to assign a level to each vertex in lines
1 and 2. Next in lines 3 to 7, the edges E of the graph are
partitioned into two sets E0 – the horizontal edges where both
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endpoints are on the same level – and E1 – the remaining
tree and non-tree edges that span a level. Thus, we now
have two graphs, G0 = (V,E0) and G1 = (V,E1), where
E = E0 ∪ E1 and E0 ∩ E1 = ∅. Our algorithm uses divide
and conquer to count the triangles in G0 and G1 using two
different methods. For G0, the graph with horizontal edges, we
count the triangles efficiently using the forward-hashed method
(line 8). For G1, the graph with edges that span levels, we use a
hashed intersection approach in lines 9 to 18. As per the cover-
edge triangle counting, we need to find the intersections of the
adjacency lists from the endpoints of horizontal edges. Thus,
we use G0 to select the edges, and perform the hash-based
intersections from the adjacency lists in graph G1. The proof
of correctness for cover-edge triangle counting is given in [21].
Alg. 4 is a hybrid version of this algorithm, that partitions the
edge set, and uses two different methods to count the triangles
in each set. The proof of correctness is still valid with these
new refinements to the algorithm. The running time of Alg. 4
is the maximum of the running time of forward-hashing and
Alg. 3, or O (m · dmax).

Similar with the forward-hashed method, by pre-processing
the graph by re-ordering the vertices in decreasing order of
degree in Θ(n log n) time often leads to a faster triangle
counting algorithm in practice.

III. EXPERIMENTAL RESULTS

We implemented more than 20 triangle counting algorithms
and variants in C and use the Intel Development Cloud
for benchmarking our results on a GNU/Linux node. The
compiler is Intel(R) oneAPI DPC++/C++ Compiler 2023.1.0
(2023.1.0.20230320) and ‘-O2‘ is used as a compiler opti-
mization flag. For benchmarking we compare the performance
using two recently-launched Intel Xeon processors (Sapphire
Rapids launched Q1’23) with two types of memory (DDR5
and HBM). The first node is a dedicated 2.00 GHz 56-
core (112 thread) Intel(R) Xeon(R) Platinum 8480+ processor
(formerly known as Sapphire Rapids) with 105M cache and
1024GB of DDR5 RAM. The second node is a dedicated 1.90
GHz 56-core (112 thread) Intel(R) Xeon(R) CPU Max 9480
processor (formerly known as Sapphire Rapids HBM) with
112.5M cache and 256GB of high-memory bandwidth (HBM)
memory.

Following the best practices of experimental algorithmics
[22], we conduct the benchmarking as follows. Each algorithm
is written in C and has a single argument – a pointer to the
graph in a compressed sparse row (CSR) format. The input
is treated as read-only. If the implementation needs auxiliary
arrays, pre-processing steps, or additional data structures, it
is charged the full cost. Each implementation must manage
memory and not contain any memory leeks – hence, any
dynamically allocated memory must be freed prior to returning
the result. The output from each implementation is an integer
with the number of triangles found. Each algorithm is run
ten times, and the mean running time is reported. To reduce
variance for random graphs, the same graph instance is used
for all of the experiments. The source code is sequential C

code without any explicit parallelization. The same coding
style and effort was used for each implementation.

Experimental results are presented in Table I for the Intel
Xeon Platinum 8480+ processor with DDR5 memory and in
Table II for the Intel Xeon Max 9480 processor with HBM
memory. For each graph, we give the number of vertices (n),
the number of edges (m), the number of triangles, and k – the
percentage of graph edges that are horizontal after running
BFS from arbitrary roots. The algorithms tested are

IR : Treelist from Itai-Rodeh [6]
V : Vertex-iterator
VD : Vertex Iterator (direction-oriented)
EM: Edge Iterator with MergePath for set intersection
EMD : Edge Iterator with MergePath for set intersection

(direction-oriented)
EB : Edge Iterator with BinarySearch for set intersection
EBD : Edge Iterator with BinarySearch for set intersection

(direction-oriented)
EP : Edge Iterator with Partitioning for set intersection
EPD : Edge Iterator with Partitioning for set intersection

(direction-oriented)
EH : Edge Iterator with Hashing for set intersection
EHD : Edge Iterator with Hashing for set intersection

(direction-oriented)
F : Forward
FH : Forward with Hashing
FHD : Forward with Hashing and degree-ordering
TS : Tri simple (Davis [15])
LA : Linear Algebra (CMU [20])
CE : Cover Edge (Bader, [21])
CED : Cover Edge with degree-ordering (Bader, [21])
Bader : this paper
BaderD: this paper with degree-ordering

While all of the algorithms tested have the same asymptotic
worst-case complexity, the running times range by orders of
magnitude between the approaches. In nearly every case where
edge direction-orientation is used, the performance is typically
improved by a constant factor up to two. The vertex-iterator
and Itah-Rodeh algorithms are the slowest across the real
and synthetic datasets. The timings between the Intel Xeon
Platinum 8480+ and Intel Xeon Max 9480 are consistent, with
the 8480+ a few percent faster than the 9480 processor. This
is likely due to the fact that we are using single-threaded code
on one core, and that the 8480+ is clocked at a slightly higher
rate (2.00GHz vs 1.90GHz).

In general, the forward algorithms and its variants tend to
perform the fastest, followed by the edge-iterator, and then
the vertex-iterator methods. The new fast triangle counting
algorithm is competitive with the forward approaches, and may
be useful when the results of a BFS are already available from
the analyst’s workflow, which is often the case.

The performance of the road network graphs (roadNet-CA,
roadNet-PA, roadNet-TX) are outliers from the other graphs.
Road networks, unlike social networks, often have only low
degree vertices (for instance, many degree four vertices), and
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large diameters. The percentage of horizontal edges (k) of
these road networks is under 15% and we see less benefit of
the new approach due to this low value of k. In addition, the
sorting of vertices by degree for the road network significantly
harms the performance compared with the default ordering of
the input. This may be due to the fact that there are few unique
degree values, and sorting decimates the locality in the graph
data structure.

The linear algebra approach [20] does not typically perform
as well on the real and synthetic social networks. For example,
on a large RMAT graph of scale 18, the linear algorithm
method takes seconds, whereas the new algorithm runs in
under a second. However, the linear algebra approach performs
well on the road networks.

IV. CONCLUSIONS

In this paper we design and implement a novel, fast triangle
counting algorithm, that uses new techniques to improve the
performance. It is the first algorithm in decades to shine new
light on triangle counting, and use a wholly new method of
cover-edges to reduce the work of set intersections, rather
than other approaches that are variants of the well-known
vertex-iterator and edge-iterator methods. We provide exten-
sive performance results in a parsimonious framework for
benchmarking serial triangle counting algorithms for sparse
graphs in a uniform manner. The results use one of Intel’s
latest processor families, the Intel Sapphire Rapids (Platinum
8480+) and Sapphire Rapids HBM (CPU Max 9480) launched
in the 1st quarter of 2023. The new triangle counting algorithm
can benefit when the results of a BFS are available, which is
often the case in network science.

V. FUTURE WORK

The fast triangle counting algorithm (Alg. 4) can be readily
parallelized using a parallel BFS, partitioning the edge set in
parallel, and using a parallel triangle counting algorithm on
graph G0, and parallelizing the set intersections for graph G1.
In future work, we will implement this parallel algorithm and
compare its performance with other parallel approaches.

VI. REPRODUCIBILITY

The sequential triangle counting source code is open source
and available on GitHub at https://github.com/Bader-Research/
triangle-counting. The input graphs are from the Stanford
Network Analysis Project (SNAP) available from http://snap.
stanford.edu/.
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