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Abstract— Large-scale channel prediction, i.e., estimation of
the pathloss from geographical/morphological/building maps,
is an essential component of wireless network planning. Ray trac-
ing (RT)-based methods have been widely used for many years,
but they require significant computational effort that may become
prohibitive with the increased network densification and/or use of
higher frequencies in BSG/6G systems. In this paper, we propose
a data-driven, model-free pathloss map prediction (PMP) method,
called PMNet. PMNet uses a supervised learning approach: it
is trained on a limited amount of RT data and map data.
Once trained, PMNet can predict pathloss over location with
high accuracy (an RMSE level of 10™2) in a few milliseconds.
We further extend PMNet by employing transfer learning (TL).
TL allows PMNet to learn a new network scenario quickly
(X 5.6 faster training) and efficiently (using X 4.5 less data) by
transferring knowledge from a pre-trained model, while retaining
accuracy. Our results demonstrate that PMNet is a scalable and
generalizable ML-based PMP method, showing its potential to
be used in several network optimization applications.

Index Terms— Pathloss map prediction, ray tracing, machine
learning, computer vision, transfer learning, network optimiza-
tion, digital twin, 6G.

I. INTRODUCTION

IGITAL twin (DT) network is emerging as a key enabler

for the artificial intelligence (AI) and machine learning
(ML)-driven design, simulation, and optimization of 6G sys-
tems [3], [4]. A DT network is a dynamic, digital replica
of a real-world network environment, providing real-time,
accurate reflections of physical network scenarios. It can
be used for a variety of applications, including dynamic
resource allocation, beam management, and localization using
ML-based PMP, which demands quick adjustments for new
scenarios. However, implementing DT is challenging in 6G
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networks, which are characterized by increased deployment
density, complex distributed architectures, and high-frequency
operation in millimeter wave (mmWave) and terahertz (THz)
bands.

Individually and taken together, these developments neces-
sitate dramatically faster large-scale channel prediction
methods.! Since traditional ray tracing (RT) tools are too slow
for the repeated runs required in such DT implementation
processes, there is a strong need for new, accurate, and fast
methods for channel prediction over a large-scale area (e.g.,
campus or city-map scale).

Several works have addressed this need by channel pre-
diction using powerful ML techniques. These works use
ground-truth channel data (from RT simulations or real
channel measurements/soundings campaigns) to train neural
networks (NNs). This eventually provides an accurate and
fast prediction of channel information (e.g., received power,
delay, angles, and so on) for a certain area, a technique called
ML-based site-specific radio propagation modeling.

Still, these ML-based approaches use supervised learning,
meaning they are trained to solve a specific network scenario
with a certain labeled dataset. In other words, the models may
need to be rebuilt for a new network scenario, e.g., different
map scales, environmental aspects, and/or network configura-
tion - a process that can be time-consuming and expensive.
This creates a need for a method that can furthermore transfer
knowledge of propagation channels across different network
scenarios and environments.

A. Related Works

Due to the high cost and complexity of field measurements
with channel sounders, most cellular deployment planning
has long replaced channel measurements with electromagnetic
(EM) simulation-based approaches, such as RT [5], [6] and
ray launching [7] simulation.> Over the past 30 years, the
efficiency and accuracy of RT have improved significantly [9],
thanks to the prevalence of GPUs (graphic processing units)
that efficiently facilitate RT tasks.

However, due to the factors mentioned above (such as the
need for more detailed environmental consideration at higher

IThe word “channel prediction” is often used for two different problems:
(i) computation of the propagation channel at a particular location based on
maps of the environment, and (ii) temporal prediction of the channel (often
for a mobile device moving on a trajectory), based on measurements in the
immediate past. This paper only considers the former case.

2Qur research utilizes RT simulations via Wireless Insite to investigate
path loss. This simulation program has been validated against real-world
measurements, e.g., in [8] showing an acceptable error margin.
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Fig. 1.  Overview of the pathloss map prediction (PMP) task and the

cross-scenario PMP. The input Map feature includes the transmitter (TX)
location.

frequencies and the need for fast simulations with higher
deployment density), RT simulations are too computationally
intensive for large-scale network deployment in 6G systems.
Consequently, simplified model-based approaches like the
dominant path model [10], or fine-tuning of generic pathloss
models (e.g., 3GPP path gain model) with limited measure-
ment data [11], [12] have been proposed over the years.
Nevertheless, these approaches have gained limited acceptance
by network operators due to their insufficient accuracy in
predicting the propagation characteristics of signals in complex
environments.

In recent years, supervised ML has been applied to solve
a variety of challenging problems in wireless communication,
including channel measurement/prediction for 6G networks.
Such an ML-based approach can be trained on a map of
the environment (topology/morphology) and a relatively small
set of measurement data to learn how to provide a virtual
replica (e.g., DT) of a large-scale network environment in
real-time while accurately modeling the behavior of channel
characteristics.

On the one hand, models like WiNeRT [13] and NeRF2
[14] are specifically developed to predict detailed chan-
nel information (e.g., power, delay, and angle information)
of each multi-path component (MPC) between TX and
receiver (RX) with the input of detailed information, including
spatial configuration and wireless configuration parameters.
These models are particularly well-suited for applications in
small-scale indoor areas, where high-detailed channel predic-
tion is required (e.g., indoor sensing).

On the other hand, models like RadioUNet [15] and
FadeNet [16] aim to predict the path gain, received power,
or coverage for TX-RX in a given area with the input of
a building map. These models are designed for large-scale
channel prediction, where fast operation is essential (e.g.,
network optimization).

In particular, several state-of-the-art works, such as
Agile [17], PPNet [18], and PMNet [1], are pushing the
boundaries of predictive accuracy and computational efficiency
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for large-scale channel prediction (e.g., radio environment map
estimation), as evidenced by their performance in ML compe-
titions such as the RadioMap Prediction Challenge (see details
in [19]). This highlights the applicability and importance of
large-scale channel prediction in evolving wireless network
optimization, which aligns with our research direction.

B. Contributions

This paper proposes a scalable and generalizable channel
prediction approach specifically designed for large-scale chan-
nel prediction, called PMP task. Our contributions can be
summarized as follows:

e We design a PMP-oriented NN architecture, called
PMNet, by leveraging computer-vision techniques, gen-
erating highly accurate channel prediction results for
a given map in few milliseconds. PMNet achieves the
best channel prediction accuracy compared to two base-
lines: a model-based scheme (3GPP-UMi model [20])
and another ML-based scheme (RadioUNet [15]) (see
Table V in Sec. IV) and also in different PMP datasets.
PMNet achieved Ist-rank in the ICASSP 2023 Radio Map
Prediction Challenge [19].3

o We build three sets of real-world channel datasets using
a RT simulation tool, i.e., Wireless Insite, for training
and evaluation, which reflects different network scenarios
(e.g., different map scale, environment, and network
configuration) in two different light urban environments
(the USC and UCLA campuses) and a metropolitan area
(the Boston area), see Table I in Sec. III.

e« We propose a method of predicting pathloss in unseen
network scenarios by using transfer learning (TL) with a
pre-trained model. We prepare three pre-trained models
for TL: VGG16 [22] and two pre-trained PMNet models
trained with 3GPP prediction results and RT simulation
results, respectively, and quantitatively and qualitatively
evaluate their accuracy (see Table IX and Fig. 8 in
Sec. V).

« We empirically demonstrate that our PMNet pre-trained
model has generalization capability for different network
scenarios, adjusting to new network scenarios x5.6 faster
and using x4.5 less data than a baseline model without
TL, while still achieving high accuracy of an RMSE of
1072 level (see Fig. 6 and Table. VIII in Sec. V).

« We release source code for the experiments to promote
reproducible ML research in wireless communication.*

C. Paper Organization

The rest of the paper is organized as follows: Sec. II presents
the background on two important concepts: (1) ray tracing
simulation, which is used to generate ground-truth channel
information for training and evaluation; and (2) transfer
learning, which enables us to transfer the knowledge learned

3In this competition, PMNet demonstrated its high accuracy in the PMP
task on a different dataset [21], which featured a different map scale, network
configuration, and was generated by a different RT simulation tool, i.e.,
WinProp, highlighting PMNet’s generalization capability.
“https://github.com/abman23/PMNet
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from a source task/dataset to a new task/dataset (e.g., unseen
network scenario). After introducing our dataset based on real
geographical maps in Sec. III, Sec. IV introduces the PMP task
and our proposed NN architecture (PMNet) for this channel
prediction task. We also present the training and evaluation
process, as well as simulation results. Then, Sec. V presents
our approach for efficiently learning and predicting channels in
unseen network environments by transferring the pre-trained
knowledge from other networks. We provide extensive exper-
imental results and quantitative and qualitative performance
analysis, followed by concluding remarks in Sec. VI.

Notation: Throughout this paper, we use the normal-face
font to denote scalars and the boldface font to denote vectors.
We use P(-) and P(:|-) to represent a marginal probability
distribution and conditional distribution, respectively. We also
use || - || to denote the L2-norm, which is an Euclidean norm.
N (u,0) denotes the normal distribution with mean p and
standard deviation o.

II. BACKGROUND

To provide a comprehensive understanding of our work,
it is essential to cover Pathloss, Ray Tracing Simulation,
and Transfer Learning, as these areas are integral to our
methodology and analysis.

A. Pathloss

The link gain between a TX at location gy and an RX at
location grx at time ¢ and frequency f can be expressed as
follows:

_ PRX(t7 fv qRX)
PTX(ta f7 qTX)

where Prx and Prx are received and transmitted power,
respectively. This link gain includes the effects of antenna
gains at TX and RX; when isotropic antennas are used,
it becomes identical to the channel gain. It exhibits variations
in time and/or location due to small-scale fading, shadowing,
and large-scale distance changes. Averaging over small-scale
fading removes (under certain circumstances, see [23, Ch. 7])
the dependence on frequency and time, providing the path gain
(PG) that can be written as a function of only the large-scale
distance changes:

|h(t, f, qTXvQRX)‘Q (D

11

PG(qrx, qrx) = Ts Bs /|h(t7f7 qrx, qrx)|? df dt.

Ts Bs

2

Here, Ts and Bg denote the stationary-time and -bandwidth,
respectively. The path gain can be represented as the sum of
the powers of the N MPCs, as discussed further in Sec. III-A.
For later reference, we note that the pathloss is the inverse
of the path gain (or the sign-flipped value when expressed
in dB).

B. Ray Tracing (RT) Simulation

RT is an approximate method for modeling the propa-
gation of electromagnetic waves in wireless communication

scenarios. It works by tracing the paths of individual rays as
they propagate through the environment, whose features are
represented in a geographical database. The rays are reflected,
deflected, and scattered by the objects in the environment,
with the various interaction processes computed according
to high-frequency approximations, namely (most commonly)
Snell’s laws for specular reflection and transmission, uniform
theory of diffraction (UTD) for diffraction, and Kirchhoff
scattering theory for diffuse scattering [23, Ch. 4].> The
RT tool simulates radio wave propagation deterministically
based on physical laws, offering site-specific radio propagation
modeling, in contrast to stochastic wireless channel models
(e.g., 3GPP standardized channel model).

In this paper, we employ a commercial RT tool, Wire-
less Insite from Remcom [7] for all RT simulations, both
because of its user-friendliness and the fact that its accuracy
has been compared against a number of channel sounder
measurements [6], [24], [25]. RT can be used to predict
channel information, such as received signal strength, delay,
and angles, in a variety of wireless environments, both indoor
and outdoor. The accuracy of RT simulations depends on
various factors, such as the complexity of the environment,
the accuracy of the geographical database, and the carrier
frequency. The channel information obtained from the RT
can be utilized, inter alia, for various network optimiza-
tion tasks, including base station (BS) deployment planning,
BS parameter optimization, as well as beam management and
localization.

C. Transfer Learning (TL)

TL is a machine learning technique that leverages a
pre-trained model on a new task, significantly reducing the
amount of data and training time required for new scenarios.
This approach is particularly advantageous when there is
limited data available for the new task or when the new task
shares similarities with a previously learned task. By utilizing
knowledge from a related task, TL can enhance model perfor-
mance, expedite training processes, and mitigate overfitting,
especially in data-constrained environments.

For instance, a model pre-trained on image classification
tasks can be effectively repurposed for object detection or
semantic segmentation. This reuse is possible because the
model has already learned useful feature representations from
a large and diverse dataset, enabling it to adapt more efficiently
to new, related tasks.

One of the most popular pre-trained models is VGG16
[22], which is trained on more than a million images from
the ImageNet database for image classification. VGG16 has
demonstrated its versatility by being reused to improve perfor-
mance in various tasks, including semantic segmentation [26]
and object detection [27]. These applications showcase the
model’s ability to transfer learned features, thus enhancing
performance in new domains with minimal additional training.

However, it is important to note that the effectiveness of TL
depends on the similarity between the pre-trained task and the

SRT can be implemented via image-theory-based RT, or as ray launching.
We will henceforth use the expression RT for both those methods.

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263



264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

target task.® The transferability of deep feature representations
decreases as the discrepancy between the pre-trained task and
the target task increases [28]. In other words, the further apart
the task is, the less transferable the knowledge. One example is
catastrophic forgetting, which is a phenomenon that can occur
when fine-tuning a pre-trained model on a new task, resulting
in a loss of previously acquired knowledge [29].

Research has shown that well-generalized models, particu-
larly those with excellent pre-training performance [30], have
the potential to require minimal fine-tuning or even none at
all (e.g., zero-shot learning) for new tasks [31]. These suggest
the importance of selecting a pre-trained model suitable for
the target task.

III. DATASET

In this section, we discuss the dataset preparation process
for our pathloss map datasets, reflecting real-world network
scenarios in USC, UCLA, and Boston areas.

We obtained the ground-truth channel data using the
commercial RT tool Wireless Insite [7], which takes into
account the geographical and morphological features of the
propagation environment. We then pre-processed the data
(e.g., interpolation and data augmentation) to prepare the
ground-truth pathloss map.

A. Channel Data

1) RT Simulation: As discussed in Sec. II-A, RT emulates
the behavior of each MPC between TX and RX, following
physical principles including the free-space power loss and
interaction with different interacting objects (IOs). This allows
us to compute for each MPC the information of complex
amplitude a, directions of departure €2 and arrival ¥, and delay
7. The contribution of m-th MPC can be expressed as [32]:

P (8, 7, QW) = 4, 0(T — T )O(Q — Q)0 (¥ — ), (3)

where the dependence of 2, ¥, 7, a on ¢ is not written explic-
itly on the r.h.s. The sum of contributions from all MPCs is
given by

N
h(t77-797 \I/) = Z hm(t,T,Q,\IJ). (4)

m=1

Since Q, ¥, 7, |a| are constant over a stationarity-time and
bandwidth, while arg(a) varies over many periods of 27, and
assuming isotropic antennas at TX and RX (so that Q, ¥ do
not matter), the path gain averaged over the small-scale fading
can be computed from (2) as

N N
PG =Y [hn(r, Q00 =D |an|* )
m=1 m=1

5The wireless community has long classified environments—rural, sub-
urban, urban, and metropolitan—based on their channel characteristics,
a practice dating back to the COST 207 models of the mid-1980s. Despite the
subjective nature of these categories and the lack of specific numerical criteria,
their differentiation by factors like population density and infrastructure
complexity is widely accepted for assessing wireless signal propagation and
network performance and its similarity.
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(a) USC campus Map) (b) USC campus (Geometry in
Wireless Insite)

e 8 z 'k :
A - il ¥ #4 X e

(c) UCLA campus (Map) (d) Boston (Map)
Fig. 2. Map of USC, UCLA, and Boston used in RT simulation. Fig. 2a
is imported and converted to Fig. 2b. The ground-truth pathloss map over

the USC campus is then obtained using Wireless Insite RT simulation and
pre-processing (e.g., interpolation, gray conversion, and data augmentation).

Note that our pathloss map uses the information of path gain
(in [dB]) while other information on angles and delay is
not needed (though this information can be used for further
applications, e.g., beamforming algorithms).

Thus, Prx (in [dBm]) can be expressed as a function of
Prx (in [dBm]) as follows:

Prx = Prx + PG. (6)

Note that we set Prx = 0 [dBm] in our RT dataset to simplify
the analysis, which makes Prx in [dBm] equal to PG in [dB].

To generate a ground-truth (labeled) dataset that simulates
real-world network scenarios, we conduct Wireless Insite RT
simulations on the geographical and morphological maps of
the University of Southern California (USC) campus, the
University of California, Los Angeles (UCLA) campus, and
the Boston area. Both campus areas are in Los Angeles, CA,
and exhibit a (light) urban build-up, with most buildings being
five stories or less (with a few high-rises interspersed), gaps
between buildings along the street canyons, and some open
squares. The Boston area is in downtown of Boston, MA. It is
a metropolitan area with multiple high-rises; its streets are not
arranged along a rectangular grid. Each dataset has different
network configurations and environmental characteristics (e.g.,
map scale, and geographical features, such as vegetation). See
Fig. 2 and Table I for more details.’

7It is worth noting that the simulations are performed at the sub-6 GHz
band, which is the most widely used cellular band. Similar simulations can
be performed in other frequency bands, such as the mmWave and THz bands,
with minor adjustments to the parameters. However, at those high frequency
bands, geographical data bases with higher resolution might be required for
comparable accuracy.
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TABLE I
PARAMETERS OF USC, UCLA, AND BOSTON DATASETS

Dataset

Parameter

usC UCLA Boston
Map scale 880 x 880 [m?] 760 x 760 [m?] 553 X 553 [m?]
Cropped map scale (per pixel) 221 x 221 [m?] (0.86 x 0.86 [m3]) 225 x 225 [m?] (0.88 x 0.88 [m?]) 187 x 187 [m?] (0.73 x 0.73 [m?])
Terrain v v v
Buildings v v 4
Foliage” X X v
Carrier frequency 2.5 [GHz] 3.0 [GHz] 3.0 [GHz]
Transmit power 0 [dBm] 0 [dBm] 0 [dBm]
TX antenna typeb Isotropic (vertical) Half-wave dipole (vertical) Half-wave dipole (vertical)
Total # of data/scene 4754 3776 3143

“QOur study assesses PMP accuracy across datasets varying in map scale, network configurations, and geography, focusing on how factors like foliage

impact path loss predictions.

bIsotropic and half-wave dipole antennas provide almost identical radiation patterns within a certain angular extent. MPC induced outside of the angular

extent does not contribute significantly to the link.

We stress that the goal of our work is the correct pre-
diction of “ground-truth” pathloss by ML techniques. The
pathloss obtained from the RT simulations might deviate
from measured values due to inaccuracies of the database
or inherent approximations of RTs. However, such deviations
are irrelevant to the assessment of our ML methods, since
they only impact what is used as “ground-truth” and not the
prediction process itself. In other words, if the ground-truth is
more accurate (similar to measurement results), our prediction
inherently becomes more accurate as well.®

2) 3GPP Model: The 3GPP 38.901 channel model [20]
(henceforth simply called the “3GPP model” for conciseness)
is a widely used model for wireless system standardization
that claims validity for frequencies spanning from 0.5 to
100 [GHz].

For the purposes of this paper, we only consider the 3GPP
modeling of the pathloss, which follows the classical a — (3
model

PLa*ﬁ(d) = 10a 10glo(d) + /6 + 57 (7)

where S ~ N(0,05) is a lognormally distributed random
variable (with variance og) representing the shadow fading,
and «, , and o are parameters of the model that are
based on measurement campaigns and that are different in
different environments. Important for our later discussions,
those parameters are also different depending on whether an
unobstructed optical line of sight (LoS) exists between TX and
RX or not.

Specifically, for urban environments, the following describes
the path gain:

PLy, (10[m] < dop < dpp)

PGuMi—Los = 8
UMIZEOS T P, (dpp < dop < 5[km)) ®)

PGumi-NLos = max(PGumi-r.0s, PL3),
(10[m] < dop < 5[km]) )

8Thus, if our proposed PMNet can accurately predict/reproduce RT results
when trained with RT data, it will also be able to do so for measurement data
when trained with measurement data.

where the two-dimensional xy-distance is dop and the three-
dimensional zyz-distance is d3p,

PL; = 32.4 + 21log;y(d3p) + 201ogyo(fe),

PLy = 32.4 + 40log,((dsp) + 20logyo(fe)
—9.51log;,((dsp)? + (ks — hut)?),

PL3 = 22.4 + 35.3logyo(dsp) + 21.31log(fe)

—0.6(hyr — 1.5). (10)

Here, the breakpoint distance is dgp = 2whgshuyr f./c where
fe is the center frequency in [Hz] and ¢ = 3.0 X 108[m/s] is
the speed of light. The antenna heights at the TX (e.g., base
station), hpg, and the RX (e.g., user terminal), hy, are set to
1.5 [m] and 10 [m], respectively. Note that the model differs
for LoS and non-LoS (NLoS) situations.

This model is employed as one of our baselines for the
prediction (see Sec. IV-E). While the 3GPP model also models
shadowing, it incorporates it as stochastic variations that
cannot be related to particular map features; we therefore omit
them for the purposes of this paper.

B. Pre-Processing

The raw numeric data from the RT simulation is
pre-processed using gray conversion and interpolation meth-
ods to generate the ground-truth pathloss map, data augmen-
tation methods to create an increased amount of labeled data,
and sampling methods to divide them into training and testing
sets.

1) Gray Conversion: To generate the pathloss map,
we begin by converting the received power Prx (in [dBm])
(or the path gain PG in [dB]) into grayscale between 1 and
255 using Min-Max normalization, with the minimum value
of —254 [dBm] and the maximum value of 0 [dBm]. While
the upper value is higher than physically reasonable, this pair
of values was chosen for convenience to have a 1 [dBm] per
gray value step mapping. A smaller (or larger) step size does
not have a significant impact on the prediction performance.

The gray value 0 is filled at pixels of building area, which
is not our region-of-interest (Rol), while, for our Rol, each
pixel is filled with gray values between 1 and 255, which
corresponds to Prx. Then, the pathloss map is generated after
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scaling the considered map scale into a 256 x 256 gray image.
Note that the image size (256 x 256) has nothing to do with
the grayscale (0 — 255).

2) Interpolation: Since the RT simulations are carried out
over a discrete set of RX locations, and it is computation-
ally challenging to gather the channel information for every
available RX location, there is missing channel information in
a few pixel locations. To fill the missing part of the pathloss
map, we utilize bilinear interpolation, which approximates the
missing value with a weighted sum of the gray values of the
adjacent locations.

3) Data Augmentation: Typically, a larger dataset leads to
improved performance of NN training. In other words, the
larger the data set, the better the outcome. We thus use two
augmentation methods - cropping and rotation - to increase
the size of our data set.

The entire map data is cropped into images of about a
quarter of the size, taking TX as an anchor point. This
augments the size of the dataset by a factor of 96. The image
is first cropped as a 64 x 64 size image and then upsampled to
a 256 x 256 size image. Note that some cropped images, not
including any TX, are skipped since the TX location will be
used as our second input feature. After cropping, the image
sets are rotated by 90°, 180°, and 270°, thus increasing the
size of the dataset by a further factor of 4.

4) Sampling: In the training and testing of PMNet on the
pathloss map dataset, we employ an exclusive division scheme.
Specifically, 90% and 10% of images are randomly split into
the training and validation set, while the images from the same
geographical map belong exclusively to either the training
or the validation set. This approach is taken to enhance the
generalization performance of PMNet.

IV. PATHLOSS MAP PREDICTION
A. Task (1): Pathloss Map Prediction

We now formulate the prediction task in ML nomenclature.
A domain (i.e., wireless channel prediction) is composed of a
feature space X, where © € X. Given the domain, a PMP task
is defined as 7 = {Y, P(y|x)}, which is composed of a label
space ), where y € ). Given the task, a dataset is defined as
D = {X, Y}, which is a collection of |D| = N channel data
that belong to a domain with a task 7.

For the PMP task, X consists of (1) a building map
(including terrain, building, and/or foliage) and (2) a TX
location and )Y is a Pathloss map. The goal of the PMP
task 7 is to find a predictive function f(-), which accurately
predicts Y for a given X'. It is worth noting that integrating
Rol (denoted as A*) segmentation with path gain prediction
simplifies the PMP task and eliminates the need for separate
pre- or post-processing steps for the Rol segmentation for each
map. Additionally, this integration helps NN better understand
the different IOs in a given building map.

In a nutshell, the PMP task is to predict the pathloss/path
gain (and received power Prx using simple normalization)
at RX locations grx given TX location gpx in Rol A*.
This channel prediction task exploits site-specific geographical
information, focusing on the large-scale effects in the channel.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

We employ a supervised ML method for the PMP task.
We train the model on a dataset of RT channel for an area
of A, such as the USC dataset in Table I; see Fig. 3 for an
overview of the ML-based PMP approach.

B. Network Architecture

In this subsection, we present the design process of our
proposed PMP-oriented NN architecture, referred to as PMNet.
Our design principles are summarized as follows: (1) several
state-of-the-art techniques in the field of image processing are
carefully selected and tested, (2) some essential techniques are
selected following the concept of ablation study, and (3) the
NN with selected techniques is optimized with extensive
trials.

1) Design Choices: In the PMP task, the NN is required to
perform image segmentation to identify the Rol and predict
received power within the Rol, while accounting for complex
wireless propagation physics. To accomplish this, our proposed
PMNet is designed based on such methods, Encoder-Decoder
and Atrous convolution.

2) Encoder-Decoder: Encoder-Decoder networks are a
widely applied architecture for many computer vision tasks,
e.g., object detection [33], human pose estimation [34], and
semantic segmentation [35], [36], [37]. The encoder-decoder
architecture allows to learn a lower-dimensional representation
from a higher-dimensional dataset and utilize the learned rep-
resentation for various tasks. However, as the encoder shrinks
the input feature maps, it may lose essential information, lead-
ing to a bottleneck problem. Several architectures, including
U-Net [38], address the bottleneck problem by adding skip
connections between the encoder and the decoder parts. Skip
connections allow the decoder to access feature maps from
the encoder, which helps to propagate context information to
higher-resolution layers.

3) Atrous Convolution: Receptive field of a convolutional
layer is the region of the input feature map that contributes
to the output feature map at a given location. The size of the
receptive field is determined by the resolution of the input
feature map and the field-of-view (FoV) of the filter. There is
a logarithmic relationship between the localization accuracy
of a model and the size of its receptive field. This means the
receptive field size should be sufficient if the given dataset and
task are observed with wide FoV. A standard convolutional
filter detects a particular feature by sliding over the input
feature map, resulting in the output feature map seeing only
the adjacent part of the input feature map. In terms of
computational complexity, having a wide receptive field with
the standard convolutional filter is expensive. Thus, broadly
speaking, the receptive field of the standard convolution filter
is somewhat narrow, seeing only little context.

Atrous convolution, also known as dilated convolution,
is a technique that addresses this limitation [39]. It allows
capturing a larger context with a wider FoV by modifying
the standard convolution operation. For the two-dimensional
case, atrous convolution is applied over the input feature map
f to produce the output feature map g at location {i, j} using
the convolution filter w. This operation can be expressed as
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Input: (1) Building map; (2) TX location

Fig. 3. Overview of the PMP task and the PMNet architecture.

follows:

k k
Z Z f{i+rm,j+rn}w{m,n}~

m=1n=1

Y

945y =

Here, k represents the kernel size, and r is the atrous rate,
which determines the stride level. Notably, the atrous rate r
allows to adaptively control the FoV of the filter. For example,
an atrous rate of 7 = 2 doubles the FoV of the filter, while an
atrous rate of » = 3 triples it. The standard convolution can
be seen as a special case of (11) where r = 1.

In the context of the PMP task, the encoder-decoder
architecture of PMNet facilitates efficient context propagation
from the encoder to the decoder, while atrous convolution
enables it to handle scale variations and capture broader
context in map data, setting it apart from other UNet-based
networks [15], [16], [17], [18]. The combination of these two
features enables PMNet to efficiently and accurately predict
pathloss maps, while also accounting for complex wireless
propagation physics.

4) Design Parameters: PMNet architectures are composed
of a stack of ResLayers, each containing multiple residual
blocks [40]. These ResLayers can be configured with varying
numbers of blocks, atrous rates, multi-grids, and output strides.
These elements are summarized as follows:

o Number of blocks: The number of residual blocks in
a ResLayer controls the complexity and depth of the
network. Increasing the number of blocks may improve
the accuracy of the model, but it also increases the
computational cost.

o Atrous rates: Atrous rates control the spacing between
the convolutions in a ResLayer. Larger atrous rates allow
the network to capture more larger spatial contexts in the
PMP task.

o Multi-grids: Multi-grids allow the network to capture
multi-scale information from different levels of the CNN
architecture.

o Output stride: The output stride of a ResLayer controls
the ratio between the resolution of the input image and the
output image’s resolution. A higher output stride results
in a lower-resolution output image. This can be useful to
strike a balance between accuracy and speed.

Parameters are optimized through thorough simulations. Note
that the impact of output stride in the PMP task is shown in

Pathloss = 90.8 [dB]

Skip Connection (Prx = —90.8 [dBm])

Pathloss = 70.1 [dB]
(Prx = —70.1 [dBm])

- Context Propagation & Upsampling

Qutput: Pathloss map

Table IV in Sec. IV-E (e.g., the case of % X %), demonstrating
the most substantial effect compared to other parameters.
With these design choices and parameters, PMNet effectively
predicts pathloss maps even for different channel datasets (e.g.,
RadioMapSeer [21]). For an architectural overview, please
refer to Fig. 3 and Table II. For more details, please see our
source code repository.

C. Training

Table III lists the hyper-parameters that are used for the
training of PMNet. We implement the PMNet using PyTorch
and use an NVIDIA GeForce RTX 3080 Ti GPU. For more
stable training, we normalize the input values into [0, 1] via
scaling. During the training, we evaluate the PMNet by mean
squared error (MSE) on the validation set at the end of every
epoch. For testing, we use the parameters of PMNet with
the best MSE score on the validation set. Consequently, the
pathloss map for a given map can be generated within a few
milliseconds after training.

D. Evaluation

1) Root Mean Square Error (RMSE): RMSE is a widely
used loss function in regression analysis and is used as the
primary evaluation metric for this task. It measures the overall
difference between the prediction g and ground-truth y and
quantifies the overall accuracy of the model. The formula for
RMSE is:

RMSE(y,y (12)

N
Z Un — Yn)?,
where ¢, € ¥ and y,, € y denote predicted and ground-truth
gray value (corresponding Prx) at the n-th pixel, respectively,
and N is the number of pixels in a pathloss map, i.e.,
256 x256. The RMSE averaged over all samples is the primary
evaluation metric for the PMP task.

2) Rol Segmentation Error: The Rol segmentation error,
calculated using the intersection over union (IoU) metric,
quantifies the accuracy of Rol and non-Rol area segmenta-
tion for all pixels in the ground-truth ({¢,;}) and prediction
({i,7}) - that is calculated as follows:

Do Zj ErrB{i,j}

—_——— . (13)
22522 Bldg

Rol Segmentation Err. =
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TABLE I
PMNET ARCHITECTURES AND PARAMETERS. | AND T REPRESENT THE DOWNSAMPLING AND UPSAMPLING LAYERS, RESPECTIVELY

PMNet
Encoder Decoder

# Type QOutput Size # Type QOutput Size
Input Image 2 % 256 x 256 | Output Image 1 x 256 x 256
1) Conv2d, MaxPool2d 64 x 65 x 65 1) Conv2d (128 4+ 2) x 256 x 256

2 ResLayer 256 x 65 x 65 2 Conv2d (256 + 64) x 65 x 65
3) ResLayer 512 x 33 x 33 3 Conv2d (256 + 256) x 65 x 65
4(]) ResLayer 512 x 17 x 17 4(1) ConvTranspose2d (256 + 256) x 65 x 65

5 ResLayer 1024 x 17 x 17 5(1)  ConvTranspose2d (512 4 512) x 33 x 33

6 Conv2d, AdaptiveAvgPool2d 512 x 17 x 17 6 Conv2d (5124 512) x 17 x 17

TABLE III

TRAINING CONFIGURATION AND HYPER-PARAMETERS
FOR PMNET TRAINING

Model PMNet

Dataset (USC)

Map USC campus

Split for training (test) set  90% (10%) of dataset
Hyper-parameter

Learning rate (LR) 1072 ~5x 1074

LR gamma, step size 0.5, 10

Batch size 16 ~ 32

Optimizer Adam

# of of epochs 50

Here, ErrB{i)j} and Bldy; ;; are defined as:

1, {i,j} €Band {i,j} € A*
ErP =141, {i,j} €A and {1,5} € B (14)
0, otherwise
1, {i,j}eB
Bld; i = 15
(g} 0. otherwise (15

Within a given map, the non-Rol area, denoted as black (gray
value 0), is represented by 5, while the Rol area, denoted as
non-black (grayscale 1 — 255), is represented by A4*. B and
A* are complementary set within A. B can include buildings,
foliage, and/or small objects.

3) Channel Prediction Error: Channel prediction error
directly evaluates path gain accuracy for pixels within the Rol
area, evaluating power in [dBm] (or path gain in [dB]) unlike
RMSE, which quantifies differences based on gray values.

To calculate channel prediction error, gray values within the
Rol area of both the predicted and ground-truth pathloss maps
are converted into corresponding received power values. The
RMSE formula is then applied to these power values:

1 N

i H 2
N (pn pn) ,

n=1

RMSE(p, p) = (16)

where p,, € p and p,, € p represent the predicted and ground-
truth Prx at the n-th pixel, respectively. Channel Prediction
Error is then computed by averaging RMSE(p, p) across all
given samples.

E. Simulation Result

1) Training Optimization: Table IV presents an ablation
study to identify the factors that significantly contribute to
PMNet’s performance in the PMP task, such as data augmen-
tation and feature map size.’

2) Impact of Data Augmentation: For the data augmenta-
tion, we do horizontal, vertical and diagonal flips. In other
words, including the original images, we use the x4 number
of images for training. Note that data augmentation has several
advantages in general: first, it enhances the diversity of the
training data by generating additional examples that capture
various variations of the original data. Second, it reduces
overfitting by exposing the model to a wider range of input
patterns. Finally, data augmentation helps to make the model
more robust to noise and variability in the input data. As shown
in Table IV, it improves the performance of PMNet by 15.7%
in terms of RMSE.

3) Impact of Feature Map Size: We analyze the perfor-
mances of PMNet according to the size of the feature map,
which is the output of the encoder. Table IV compares the
results with the feature map sizes % X % and 1% X Tv‘g,
where H and W are the height and width of an input image,
respectively. To adjust the feature map size, we modify the
strides of the convolution layers in the encoder. We employ

w

the feature map size of % X -g- as the default option, because

PMNet yields better performance with the feature map size of
4 % W than that of £ x 1.

4) Accuracy: We compare the ML-based PMP with our
proposed PMNet model to two other methods for the PMP
task: a model-based approach, 3GPP, and an ML-based
approach, RadioUNet. All three methods produce a single-
channel 256 x 256 image of the pathloss map as the output,
given the input of a two-channel 256 x 256 image containing
the geographical map and the TX location. Here are the details
of these baseline methods:

1) 3GPP (with map info.) As discussed in Sec. I1I-A.2, the
3GPP model determines the pathloss at a particular loca-
tion based on the Euclidean distance and whether the link
between the TX and RX is in LoS or NLoS. To ensure
a fair comparison with other baselines, we utilize map
information to determine the LoS or NLoS condition of

0ur extensive experiments tested other factors, such as different sampling
methods, training loss functions, and additional input features (e.g., TX dis-
tance heatmap), but these factors did not show a meaningful improvement to
justify the additional complexity.
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TABLE IV
ABLATION STUDY FOR PMNET TRAINING OPTIMIZATION. LOWER VALUES INDICATE BETTER PERFORMANCE

Case || Data Aug. (x4) Feature Size || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.|
w/o Data-Aug. % X % 0.01637 0.00263 0.01860
w/ Data- Aug 15 X 15 0.01259 0.00025 0.01403
o X = 5 X5 0.01057 0.00096 0.01175
*

|.|:.I}.J S

-“"'_ _'
—-_— -.@'
A n'e IG

(a) Prediction (3GPP)

(b) Prediction (RadioUNet)

(e) Prediction (3GPP) (f) Prediction (RadioUNet)

(c) Prediction (PMNet) (d) Ground-truth (Wireless In-

site)

T
I -
1
I -

(g) Prediction (PMNet) (h) Ground-truth (Wireless In-

site)

Fig. 4. Comparison of the predicted pathloss map of 3GPP, RadioUNet, and PMNet. @3 in ground-truth represents the TX location. The scenes are randomly

selected, not cherry-picked.

specific pixels to the TX.! Note that it does not require
any NN training as it is a model-based approach.

2) RadioUNet [15] is an ML-based PMP method that
extends the UNet architecture by employing two UNets.
Each UNet comprises 8 encoder layers with convolution,
ReLU, and Maxpool layers, followed by 8 decoder lay-
ers with transposed convolution and ReLU layers. The
encoders and decoders are concatenated, as in the original
UNet architecture. Here, RadioUNet employs curriculum
training to enhance training: in the first stage, the first
UNet is trained for a specific number of epochs, with
the second UNet frozen. In the second stage, the second
UNet is trained using the two-channel input features
and the output of the first UNet, effectively making it
a three-channel input network.

3) PMNet (Proposed) is our proposed ML-based PMP
method. This network employs several parallel atrous

10The original 3GPP pathloss model uses a probabilistic model to determine
LoS/NLoS condition at a particular distance. However, to ensure a fair
comparison, we use here the deterministic LoS/NLoS condition determined
from the map information in calculating the pathloss gain.

convolutions with different rates and the encoder-decoder
network. The encoder consists of 6 ResNet-based layers.
Each ResNet layer comprises several bottleneck lay-
ers consisting of convolution, batch normalization, max
pooling, and ReLLU. The decoder consists of 6 layers con-
sisting of convolution, adaptive average pooling, ReLU,
transposed convolution, and ReLU. Skip connections are
used between encoders and decoders.

5) Qualitative Analysis: Fig. 4 shows the prediction results
of the baselines. Recall that each pixel in the Rol corresponds
to the predicted received power Prx (or the path gain PG).
Note that some pixel values in the ground-truth data appear
noisy due to interpolation during the gray conversion process
after RT simulation.

3GPP exhibits a substantial deviation from ground-truth
obtained through RT simulation, highlighting the differences
between how RT simulation and 3GPP model calculate a
pathloss. Specifically, for RX locations with LoS conditions
close to the TX, the results obtained using the 3GPP model
approximately match the ground-truth data obtained from
Wireless Insite. However, for RX locations farther from the TX
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TABLE V

COMPARISON STUDY FOR PMP SCHEMES (3GPP, RADIOUNET, AND PMNET). LOWER VALUES INDICATE BETTER PERFORMANCE,
AND THE LOWEST ERRORS ARE HIGHLIGHTED

Scheme ‘ ML-based H RMSE|  Rol Segmentation Err.]  Channel Prediction Err.|
3GPP (with map info.) [20] 15.9451 - 17.5973
RadioUNet [15] 0.02634 0.00840 0.01249
PMNet 0.01057 0.00096 0.01175

TABLE VI

NUMERICAL RESULTS OF PMNET ON AN UNSEEN NETWORK SCENARIO. PMNET WAS TRAINED ON THE USC DATASET
AND EVALUATED ON THE UCLA AND BOSTON DATASET

Case || Model Train Data  Eval Data || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.|
Vanilla ‘ PMNet USC uUsC H 0.01057 0.00096 0.01175
Cross-scenario (UCLA) PMNet USC UCLA 0.19146 0.03925 0.21700
Cross-scenario (Boston) PMNet USC Boston 0.25842 0.04602 0.32436

or under NLoS conditions, the 3GPP model exhibits significant
discrepancy from the ground-truth data. It is worth noting that
the 3GPP pathloss model does not provide results for near-field
within a link distance of 10 meters; so, we arbitrarily set the
power in the near-field area to gray value 255, which does
not introduce significant errors. The 3GPP pathloss model is
a simplified model that does not account for the complex
wireless propagation physics of reflection, diffraction, and
scattering (highlighted in @). Instead, it relies solely on two
models for LoS and NLoS locations, respectively, and only
considers link distance and carrier frequency. This simplified
approach inevitably leads to significant inaccuracies in the
pathloss prediction.

RadioUNet demonstrates impressive Rol segmentation
results, while its channel prediction outputs appear some-
what blurry. It is worth noting that RadioUNet conducts
curriculum-based training with 50 epochs each in the first
and second stages, utilizing the same training/validation set
as PMNet, which is trained with a total of 50 epochs.

PMNet, on the other hand, achieves notable results for both
Rol segmentation and channel prediction. As highlighted in @),
PMNet effectively captures the intricate wireless propagation
physics of reflection, diffraction, and scattering. This can
be attributed to PMNet’s ability to incorporate a broader
contextual understanding of the environment, enabling it to
capture the representation of wireless propagation physics in
the surrounding environment.

6) Quantitative Analysis: Table V compares our proposed
PMNet model to the model-based 3GPP method and the
ML-based RadioUNet method in terms of three accuracy
metrics for the PMP task: RMSE, Rol segmentation error, and
channel prediction error. Note that the ground-truth dataset
is made by RT simulation; therefore, the error shows the
difference between a scheme and the RT simulation.

The model-based 3GPP method has inferior results com-
pared to ML-based methods, which can be explained by the
oversimplifications inherent in this model, as discussed above.
While our proposed PMNet model achieves the best score on
all three metrics, another ML-based PMP method, RadioUNet,

(a) Ground-truth (Wireless In-
site)

(b) Prediction (PMNet)

Fig. 5. Prediction results of PMNet on an unseen network scenario (i.e.,
cross-scenario evaluation). The model is trained on the USC dataset and
evaluated on the Boston dataset.

also achieves high accuracy (RMSE < 0.03). This result
highlights the capability of ML-based PMP approaches to
learn a representation of the wireless propagation physics
implicit in the ground-truth RT channel data.

V. TRANSFERABLE PATHLOSS MAP PREDICTION
A. Challenge: PMP for Unseen Network Scenario

As demonstrated in the previous section, PMNet exhibits
high accuracy of the PMP task for a given dataset. How-
ever, minimizing re-training efforts for new network scenarios
remains a challenge. To evaluate PMNet’s generalizability
across different scenarios, we conducted a cross-scenario eval-
uation, testing PMNet trained on USC data on the Boston
dataset.

As shown in Fig. 5 and Table VI, the PMNet achieves
the Rol segmentation error on the order of 1072 and the
channel prediction error on the order of 10~! in a new
scenario. Such deterioration is due to differences in network
configuration and environmental characteristics between the
two scenarios (e.g., different map scales and geographical
features). This highlights the need for further development
to improve PMNet’s performance across different network
scenarios, a task we refer to as cross-scenario PMP.
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B. Task (2): Cross-Scenario PMP

To enable better performance, we now allow cross-scenario
PMP to improve the model trained on a different network
scenario through training with a reduced-size training in the
new scenario. This will allow the network to adapt to the new
scenario with less time and resource effort, while maintaining
high accuracy. To address this challenge, we leverage transfer
learning (TL).

1) Approach: Transfer Learning: TL is an ML technique
that allows knowledge transfer from one task or dataset to
another, reducing the amount of data and training time required
for new scenarios. In the context of cross-scenario PMP,
we can transfer the knowledge from the source scenario, which
learns a predictive function fg(-) from a source dataset Dg
(e.g., USC), to the target scenario, which learns a predictive
function fr(-) from a target dataset Dr (e.g., UCLA and
Boston).

There are two main ways to use TL for the cross-scenario
PMP.

e Feature extraction: We can train a feature extractor on

a source scenario and then use that feature extractor to
extract features from data from a target scenario. Once we
have extracted the features, we can train a simple model
(e.g., a linear regressor) to predict the pathloss map for
the target scenario.

o Fine-tuning: We can fine-tune a pre-trained model on the
target scenario. This can be done by unfreezing some or
all of the layers of the pre-trained model and training the
model on data from the target scenario.

The choice between those two methods depends on a number
of factors, including the size and complexity of the pre-trained
model, the availability of training data for the target dataset,
and the computational resources available.

In this work, we focus on the fine-tuning TL approach with
all of the layers of the pre-trained model unfrozen.'' This
approach is simple yet effective, achieving higher accuracy on
various cross-scenario PMP tasks with less training data and
shorter training time, as elaborated in the following subsection.

We prepare and use the following pre-trained models in our
experiments:

(i) VGG161mgNet is the pre-trained CNN model trained
on the ImageNet dataset, which contains 140k images
belonging to 22k categories. It is a powerful image
classification model that has been used to achieve state-
of-the-art results on a variety of image classification
benchmarks.

PMNet3gpp, is the pre-trained PMNet model trained on
the 3GPP pathloss map dataset. The 3GPP pathloss map
dataset is prepared with the 3GPP pathloss model in [20]
(see 3GPP in Sec. IV-E .4, Fig. 4, and Table V).

PMNet,q. is the pre-trained PMNet model trained on the
USC RT dataset. It is similar to PMNetggpp but is trained
on a different dataset. This is our main pre-trained model.

(ii)

(iii)

Each pre-trained model is available on our GitHub page.

"'While we have performed sample experiments with unfreezing certain
layers, such as the encoder-frozen and decoder-unfrozen, performance did
not improve significantly. A more comprehensive investigation of this topic
is, however, beyond the scope of this paper.

TABLE VII

TRAINING CONFIGURATION AND HYPER-PARAMETERS
IN CROSS-SCENARIO PMP

Model

Backbone
Pre-trained model

Dataset (UCLA, Boston)

Map
Split for training (test) set

PMNet, VGG16
PMNetysc, PMNetsgpp, VGG16mmeNet

UCLA campus, Boston
10% ~ 90% (10%) of dataset

Hyper-parameter
LR 1073 ~ 5 x 107*
LR gamma, step size 0.5, 10
Batch size 16
Optimizer Adam
# of of epochs 50
TABLE VIII

IMPACT OF TL ON TRAINING SPEED (= st;ps). PMNET MODELS WITH
OR WITHOUT PMNETysc PRE-TRAINED MODEL ARE TRAINED AND

EVALUATED ON THE BOSTON DATASET

# of Required Step (Training Speed)

Case

RMSE < 0.1 RMSE =~ 0.03
Vanilla (90% Data) 5841 DNNNNNN (x1.0) 6195 NNENNNNEN (x1.0)
PMNetysc (20% Data) 1040 HH (x5.6) 1520 W (x4.1)

C. Simulation Results

As demonstrated in the cross-scenario evaluation results (in
Fig. 5 and Table VI), there is a need for further development
to make PMNet adapt to different network scenarios. To this
end, our approach is fine-tuning a pre-trained model with
down-sized data for the new scenario. Here, the main questions
in performing cross-scenario PMP are: (1) How quickly and
with how minimal data PMNet can effectively adapt to new
scenarios; and (2) Which pre-trained model should be utilized
for optimal performance in cross-scenario PMP.

1) Efficiency: For cross-scenario PMP, rapidly adapting
PMNet models to new network scenarios using limited data
is essential due to the time-consuming and expensive nature
of channel measurement using RT simulation or channel
sounder. This is particularly critical for applications like beam
management and localization using ML-based PMP, which
demand quick adjustments for new scenarios.

2) Impact of TL: TL can significantly improve the training
speed of PMNet models for cross-scenario PMP. As shown in
Fig. 6 and Table VIII, the TL case with the PMNet,. pre-
trained model achieves a given level of accuracy much faster
even with much less amount of training data. In particular,
PMNet,s. achieves the same level of accuracy (RMSE <
0.1 and RMSE =~ 0.03) x5.6 and x4.1 faster, respectively,
as the Vanilla case (highlighted in @), where we define as
“Vanilla” the training from scratch in a particular environment.

Furthermore, the TL can also significantly save the required
amount of data for cross-scenario PMP. As shown in Fig. 7, the
TL (PMNet,s.) trained with about 20% of the Boston dataset
achieves equivalent results to the Vanilla case trained with
about 90% of the dataset.

It is worth noting that limited training data can easily induce
overfitting, as observed in the Vanilla case with 20% Data
(highlighted in @). For the same amount of new scenario
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Fig. 6. Comparison of the training efficiency of PMNet models with and without TL. PMNet models are trained for 50 epochs and evaluated on the Boston

dataset.

TABLE IX

COMPARISON OF PRE-TRAINED MODELS (VGG 161mgNet, PMNET3gpp, AND PMNETysc) IN TERMS OF ACCURACY. MODELS ARE EVALUATED ON THE
UCLA AND BOSTON DATASETS, USING 90% OF THE DATA FOR TRAINING AND 10% OF THE DATA FOR VALIDATION. 50 EPOCHS ARE USED FOR
TRAINING. LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

Case || Pre-training Model || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.|
Vanilla X PMNet 0.03415 0.02935 0.03844
TL (ImageNet) v (ImageNet) VGG16 0.04528 0.01814 0.05108 @
TL (3GPP) v (3GPP) PMNet 0.02809 0.00655 0.03238
TL (USC) v (USC) PMNet 0.02792 0.01666 0.03145
(a) UCLA
Case || Pre-training Model || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.|
Vanilla X PMNet 0.01736 0.02417 0.02125
TL (ImageNet) v (ImageNet) VGG16 0.01999 0.02040 0.02512
TL (3GPP) v (3GPP) PMNet 0.01762 0.04030 0.02187
TL (USC) v (USC) PMNet 0.00987 0.03530 0.01225
(b) Boston
10° vl g 10 3) Accuracy: As discussed in Sec. V, the source and target
= scenario (task or domain) should be sufficiently similar for
& 2 effective TL to occur. For instance, to successfully apply TL to
= 107! A 107! .. . . .
= 3 the target task of predicting wireless communication channels,
g the NN should extract relevant features of wireless propagation
< .
02l ‘ ‘ ST ‘ N physics from the source task.
10 20 40 60 80 90 10 20 40 60 80 90

% of Dataset for Training

(b) Channel prediction error

% of Dataset for Training
(a) RMSE
Fig. 7. Impact of TL on training data requirements. PMNet models with or

without PMNetysc pre-trained model are trained with 50 epochs and evaluated
on the Boston dataset.

data, the TL case (PMNet,s. (20%)) does not experience the
overfitting issue. This suggests that TL also enhances training
stability (less overfitting issue with limited data) in cross-
scenario PMP.

Our findings demonstrate that the pre-trained PMNet,.
model efficiently accelerates the training process by leveraging
its knowledge of PMP tasks, including the physics of wireless
channel propagation and Rol segmentation, and this model
can be readily adapted to new scenarios with minimal data
and training steps.

Consequently, we confirm that fine-tuning with a suitable
pre-trained model is an effective cross-PMP task method.
Another key question is which pre-trained model is suit-
able and which is not, which is discussed further in the
following.

4) “Suitable” Pre-Trained Model: Table IX compares the
performance of the PMNet model with and without TL. The
baseline model, referred to as Vanilla, is trained without any
TL (without any pre-trained model). Additionally, we compare
the performance of TL using a pre-trained model trained on an
unrelated source scenario (i.e., VGG16 trained on ImageNet)
with TL using a pre-trained model trained on a related source
scenario (i.e., PMNet trained on USC or 3GPP datasets).

As shown in Table IX, both PMNet models trained on
PMNet,s. and PMNets,p,,, outperform the Vanilla case on all
performance metrics, suggesting that using a pre-trained model
trained on a related source task can significantly improve
accuracy.

Interestingly, while the VGG16 model trained on ImageNet
(VGG161meNet) outperforms the Vanilla for Rol segmentation,
it fails to do so for channel prediction (highlighted in @). This
discrepancy stems from the VGG16 pre-trained model, which
has an inherent understanding of segmentation and image
representation from its source task; however, does not have
any knowledge of the physics of wireless propagation.

Fig. 8 visually confirms the findings from Table IX. All
models achieve high accuracy for Rol segmentation, while
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(a) Vanilla (UCLA)
o —

(b) VGG161mgnes (UCLA)
ST [ r=r———

VGG16ImgNet

(f) Vanilla (Boston) ()
(Boston)

Fig. 8.

(¢c) PMNetsgp, (UCLA)
o, - 'Ill

(h) PMNet3gpp (Bo%ton)

(d) PMNetysc (UCLA)
o,

i

(i) PMNet,s. (Boston)

(e) Ground-truth (UCLA)

10

(j) Ground-truth (Boston)

—1

Comparison of the prediction results of pre-trained models (VGG161gNet, PMNetsgpp, and PMNetysc). 50 epochs are used for training. Brighter

colors indicate higher PG. Note that pixels with non-zero gray value are converted to color to highlight differences between results.

only the TL case using a pre-trained model trained on a related
source scenario (e.g., PMNetsgp,, and PMNet,.) achieves high
accuracy for channel prediction, capturing subtle details of the
wireless propagation physics. This suggests that our PMNet
pre-trained model is generalizable to different scenarios due to
its inherent knowledge of channel propagation representation,
and that TL can further improve accuracy.

These results empirically demonstrate that pre-trained
model’s source dataset (task or domain) should be similar
to the target dataset (task or domain) to transfer useful
information during TL. Specifically, for cross-scenario PMP,
it is important to use a pre-trained model that has been
trained extensively on data related to wireless propagation
physics.

Therefore, we conclude that the suggested TL approach,
fine-tuning with a stable and closely related pre-trained model
(such as PMNet,s.), is a simple yet effective way to address
the cross-scenario PMP task, which is important for practical
applications.

VI. CONCLUSION

This work introduces an ML-based large-scale channel pre-
diction framework, PMNet, which can create highly accurate
pathloss predictions for a given map in a few milliseconds.
Utilizing an RT channel dataset of real-world scenarios (e.g.,
USC, UCLA, and Boston area), PMNet is verified for its
accuracy and training efficiency. In particular, TL with our
PMNet pre-trained model, which has generalization capability
for different network scenarios, enables the PMNet to adapt
itself quickly and efficiently to a new network scenario, while
achieving an RMSE of 1072 level.

The high accuracy and low runtime of the PMNet frame-
work make it suitable for deployment planning in dense
networks as well as online optimization of network parameters.

Still, it remains an open question whether the knowledge of
wireless propagation physics in our PMNet pre-trained model
can be transferred to other downstream tasks beyond the PMP
task; this question will be the topic of our future research.
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Abstract— Large-scale channel prediction, i.e., estimation of
the pathloss from geographical/morphological/building maps,
is an essential component of wireless network planning. Ray trac-
ing (RT)-based methods have been widely used for many years,
but they require significant computational effort that may become
prohibitive with the increased network densification and/or use of
higher frequencies in BSG/6G systems. In this paper, we propose
a data-driven, model-free pathloss map prediction (PMP) method,
called PMNet. PMNet uses a supervised learning approach: it
is trained on a limited amount of RT data and map data.
Once trained, PMNet can predict pathloss over location with
high accuracy (an RMSE level of 10™2) in a few milliseconds.
We further extend PMNet by employing transfer learning (TL).
TL allows PMNet to learn a new network scenario quickly
(X 5.6 faster training) and efficiently (using X 4.5 less data) by
transferring knowledge from a pre-trained model, while retaining
accuracy. Our results demonstrate that PMNet is a scalable and
generalizable ML-based PMP method, showing its potential to
be used in several network optimization applications.

Index Terms— Pathloss map prediction, ray tracing, machine
learning, computer vision, transfer learning, network optimiza-
tion, digital twin, 6G.

I. INTRODUCTION

IGITAL twin (DT) network is emerging as a key enabler

for the artificial intelligence (AI) and machine learning
(ML)-driven design, simulation, and optimization of 6G sys-
tems [3], [4]. A DT network is a dynamic, digital replica
of a real-world network environment, providing real-time,
accurate reflections of physical network scenarios. It can
be used for a variety of applications, including dynamic
resource allocation, beam management, and localization using
ML-based PMP, which demands quick adjustments for new
scenarios. However, implementing DT is challenging in 6G
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networks, which are characterized by increased deployment
density, complex distributed architectures, and high-frequency
operation in millimeter wave (mmWave) and terahertz (THz)
bands.

Individually and taken together, these developments neces-
sitate dramatically faster large-scale channel prediction
methods.! Since traditional ray tracing (RT) tools are too slow
for the repeated runs required in such DT implementation
processes, there is a strong need for new, accurate, and fast
methods for channel prediction over a large-scale area (e.g.,
campus or city-map scale).

Several works have addressed this need by channel pre-
diction using powerful ML techniques. These works use
ground-truth channel data (from RT simulations or real
channel measurements/soundings campaigns) to train neural
networks (NNs). This eventually provides an accurate and
fast prediction of channel information (e.g., received power,
delay, angles, and so on) for a certain area, a technique called
ML-based site-specific radio propagation modeling.

Still, these ML-based approaches use supervised learning,
meaning they are trained to solve a specific network scenario
with a certain labeled dataset. In other words, the models may
need to be rebuilt for a new network scenario, e.g., different
map scales, environmental aspects, and/or network configura-
tion - a process that can be time-consuming and expensive.
This creates a need for a method that can furthermore transfer
knowledge of propagation channels across different network
scenarios and environments.

A. Related Works

Due to the high cost and complexity of field measurements
with channel sounders, most cellular deployment planning
has long replaced channel measurements with electromagnetic
(EM) simulation-based approaches, such as RT [5], [6] and
ray launching [7] simulation.? Over the past 30 years, the
efficiency and accuracy of RT have improved significantly [9],
thanks to the prevalence of GPUs (graphic processing units)
that efficiently facilitate RT tasks.

However, due to the factors mentioned above (such as the
need for more detailed environmental consideration at higher

IThe word “channel prediction” is often used for two different problems:
(i) computation of the propagation channel at a particular location based on
maps of the environment, and (ii) temporal prediction of the channel (often
for a mobile device moving on a trajectory), based on measurements in the
immediate past. This paper only considers the former case.

2Qur research utilizes RT simulations via Wireless Insite to investigate
path loss. This simulation program has been validated against real-world
measurements, e.g., in [8] showing an acceptable error margin.

1536-1276 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Overview of the pathloss map prediction (PMP) task and the

cross-scenario PMP. The input Map feature includes the transmitter (TX)
location.

frequencies and the need for fast simulations with higher
deployment density), RT simulations are too computationally
intensive for large-scale network deployment in 6G systems.
Consequently, simplified model-based approaches like the
dominant path model [10], or fine-tuning of generic pathloss
models (e.g., 3GPP path gain model) with limited measure-
ment data [11], [12] have been proposed over the years.
Nevertheless, these approaches have gained limited acceptance
by network operators due to their insufficient accuracy in
predicting the propagation characteristics of signals in complex
environments.

In recent years, supervised ML has been applied to solve
a variety of challenging problems in wireless communication,
including channel measurement/prediction for 6G networks.
Such an ML-based approach can be trained on a map of
the environment (topology/morphology) and a relatively small
set of measurement data to learn how to provide a virtual
replica (e.g., DT) of a large-scale network environment in
real-time while accurately modeling the behavior of channel
characteristics.

On the one hand, models like WiNeRT [13] and NeRF2
[14] are specifically developed to predict detailed chan-
nel information (e.g., power, delay, and angle information)
of each multi-path component (MPC) between TX and
receiver (RX) with the input of detailed information, including
spatial configuration and wireless configuration parameters.
These models are particularly well-suited for applications in
small-scale indoor areas, where high-detailed channel predic-
tion is required (e.g., indoor sensing).

On the other hand, models like RadioUNet [15] and
FadeNet [16] aim to predict the path gain, received power,
or coverage for TX-RX in a given area with the input of
a building map. These models are designed for large-scale
channel prediction, where fast operation is essential (e.g.,
network optimization).

In particular, several state-of-the-art works, such as
Agile [17], PPNet [18], and PMNet [1], are pushing the
boundaries of predictive accuracy and computational efficiency

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

for large-scale channel prediction (e.g., radio environment map
estimation), as evidenced by their performance in ML compe-
titions such as the RadioMap Prediction Challenge (see details
in [19]). This highlights the applicability and importance of
large-scale channel prediction in evolving wireless network
optimization, which aligns with our research direction.

B. Contributions

This paper proposes a scalable and generalizable channel
prediction approach specifically designed for large-scale chan-
nel prediction, called PMP task. Our contributions can be
summarized as follows:

e We design a PMP-oriented NN architecture, called
PMNet, by leveraging computer-vision techniques, gen-
erating highly accurate channel prediction results for
a given map in few milliseconds. PMNet achieves the
best channel prediction accuracy compared to two base-
lines: a model-based scheme (3GPP-UMi model [20])
and another ML-based scheme (RadioUNet [15]) (see
Table V in Sec. IV) and also in different PMP datasets.
PMNet achieved Ist-rank in the ICASSP 2023 Radio Map
Prediction Challenge [19].3

o We build three sets of real-world channel datasets using
a RT simulation tool, i.e., Wireless Insite, for training
and evaluation, which reflects different network scenarios
(e.g., different map scale, environment, and network
configuration) in two different light urban environments
(the USC and UCLA campuses) and a metropolitan area
(the Boston area), see Table I in Sec. III.

« We propose a method of predicting pathloss in unseen
network scenarios by using transfer learning (TL) with a
pre-trained model. We prepare three pre-trained models
for TL: VGG16 [22] and two pre-trained PMNet models
trained with 3GPP prediction results and RT simulation
results, respectively, and quantitatively and qualitatively
evaluate their accuracy (see Table IX and Fig. 8 in
Sec. V).

« We empirically demonstrate that our PMNet pre-trained
model has generalization capability for different network
scenarios, adjusting to new network scenarios x5.6 faster
and using x4.5 less data than a baseline model without
TL, while still achieving high accuracy of an RMSE of
1072 level (see Fig. 6 and Table. VIII in Sec. V).

« We release source code for the experiments to promote
reproducible ML research in wireless communication.*

C. Paper Organization

The rest of the paper is organized as follows: Sec. II presents
the background on two important concepts: (1) ray tracing
simulation, which is used to generate ground-truth channel
information for training and evaluation; and (2) transfer
learning, which enables us to transfer the knowledge learned

3In this competition, PMNet demonstrated its high accuracy in the PMP
task on a different dataset [21], which featured a different map scale, network
configuration, and was generated by a different RT simulation tool, i.e.,
WinProp, highlighting PMNet’s generalization capability.
“https://github.com/abman23/PMNet
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from a source task/dataset to a new task/dataset (e.g., unseen
network scenario). After introducing our dataset based on real
geographical maps in Sec. III, Sec. IV introduces the PMP task
and our proposed NN architecture (PMNet) for this channel
prediction task. We also present the training and evaluation
process, as well as simulation results. Then, Sec. V presents
our approach for efficiently learning and predicting channels in
unseen network environments by transferring the pre-trained
knowledge from other networks. We provide extensive exper-
imental results and quantitative and qualitative performance
analysis, followed by concluding remarks in Sec. VI.

Notation: Throughout this paper, we use the normal-face
font to denote scalars and the boldface font to denote vectors.
We use P(-) and P(:|-) to represent a marginal probability
distribution and conditional distribution, respectively. We also
use || - || to denote the L2-norm, which is an Euclidean norm.
N (u,0) denotes the normal distribution with mean p and
standard deviation o.

II. BACKGROUND

To provide a comprehensive understanding of our work,
it is essential to cover Pathloss, Ray Tracing Simulation,
and Transfer Learning, as these areas are integral to our
methodology and analysis.

A. Pathloss

The link gain between a TX at location gy and an RX at
location grx at time ¢ and frequency f can be expressed as
follows:

_ PRX(t7 fv qRX)
PTX(ta fa qTX)

where Prx and Prx are received and transmitted power,
respectively. This link gain includes the effects of antenna
gains at TX and RX; when isotropic antennas are used,
it becomes identical to the channel gain. It exhibits variations
in time and/or location due to small-scale fading, shadowing,
and large-scale distance changes. Averaging over small-scale
fading removes (under certain circumstances, see [23, Ch. 7])
the dependence on frequency and time, providing the path gain
(PG) that can be written as a function of only the large-scale
distance changes:

|h(t, f, qTXvQRX)‘Q (D

11

PG(qrx, qrx) = Ts Bs /|h(t7f7 qrx, qrx)|? df dt.

Ts Bs

2

Here, Ts and Bg denote the stationary-time and -bandwidth,
respectively. The path gain can be represented as the sum of
the powers of the N MPCs, as discussed further in Sec. III-A.
For later reference, we note that the pathloss is the inverse
of the path gain (or the sign-flipped value when expressed
in dB).

B. Ray Tracing (RT) Simulation

RT is an approximate method for modeling the propa-
gation of electromagnetic waves in wireless communication

scenarios. It works by tracing the paths of individual rays as
they propagate through the environment, whose features are
represented in a geographical database. The rays are reflected,
deflected, and scattered by the objects in the environment,
with the various interaction processes computed according
to high-frequency approximations, namely (most commonly)
Snell’s laws for specular reflection and transmission, uniform
theory of diffraction (UTD) for diffraction, and Kirchhoff
scattering theory for diffuse scattering [23, Ch. 4].> The
RT tool simulates radio wave propagation deterministically
based on physical laws, offering site-specific radio propagation
modeling, in contrast to stochastic wireless channel models
(e.g., 3GPP standardized channel model).

In this paper, we employ a commercial RT tool, Wire-
less Insite from Remcom [7] for all RT simulations, both
because of its user-friendliness and the fact that its accuracy
has been compared against a number of channel sounder
measurements [6], [24], [25]. RT can be used to predict
channel information, such as received signal strength, delay,
and angles, in a variety of wireless environments, both indoor
and outdoor. The accuracy of RT simulations depends on
various factors, such as the complexity of the environment,
the accuracy of the geographical database, and the carrier
frequency. The channel information obtained from the RT
can be utilized, inter alia, for various network optimiza-
tion tasks, including base station (BS) deployment planning,
BS parameter optimization, as well as beam management and
localization.

C. Transfer Learning (TL)

TL is a machine learning technique that leverages a
pre-trained model on a new task, significantly reducing the
amount of data and training time required for new scenarios.
This approach is particularly advantageous when there is
limited data available for the new task or when the new task
shares similarities with a previously learned task. By utilizing
knowledge from a related task, TL can enhance model perfor-
mance, expedite training processes, and mitigate overfitting,
especially in data-constrained environments.

For instance, a model pre-trained on image classification
tasks can be effectively repurposed for object detection or
semantic segmentation. This reuse is possible because the
model has already learned useful feature representations from
a large and diverse dataset, enabling it to adapt more efficiently
to new, related tasks.

One of the most popular pre-trained models is VGG16
[22], which is trained on more than a million images from
the ImageNet database for image classification. VGG16 has
demonstrated its versatility by being reused to improve perfor-
mance in various tasks, including semantic segmentation [26]
and object detection [27]. These applications showcase the
model’s ability to transfer learned features, thus enhancing
performance in new domains with minimal additional training.

However, it is important to note that the effectiveness of TL
depends on the similarity between the pre-trained task and the

SRT can be implemented via image-theory-based RT, or as ray launching.
We will henceforth use the expression RT for both those methods.
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target task.® The transferability of deep feature representations
decreases as the discrepancy between the pre-trained task and
the target task increases [28]. In other words, the further apart
the task is, the less transferable the knowledge. One example is
catastrophic forgetting, which is a phenomenon that can occur
when fine-tuning a pre-trained model on a new task, resulting
in a loss of previously acquired knowledge [29].

Research has shown that well-generalized models, particu-
larly those with excellent pre-training performance [30], have
the potential to require minimal fine-tuning or even none at
all (e.g., zero-shot learning) for new tasks [31]. These suggest
the importance of selecting a pre-trained model suitable for
the target task.

III. DATASET

In this section, we discuss the dataset preparation process
for our pathloss map datasets, reflecting real-world network
scenarios in USC, UCLA, and Boston areas.

We obtained the ground-truth channel data using the
commercial RT tool Wireless Insite [7], which takes into
account the geographical and morphological features of the
propagation environment. We then pre-processed the data
(e.g., interpolation and data augmentation) to prepare the
ground-truth pathloss map.

A. Channel Data

1) RT Simulation: As discussed in Sec. II-A, RT emulates
the behavior of each MPC between TX and RX, following
physical principles including the free-space power loss and
interaction with different interacting objects (IOs). This allows
us to compute for each MPC the information of complex
amplitude a, directions of departure €2 and arrival ¥, and delay
7. The contribution of m-th MPC can be expressed as [32]:

B (8, 7,0, 0) = amd(7 — 7 )0 (Q — Q) 8(P — U,), (3)

where the dependence of 2, ¥, 7, a on t is not written explic-
itly on the r.h.s. The sum of contributions from all MPCs is
given by

N
h(t7 T, Q7 \I/) = Z hm(t, T, Q, \IJ> (4)

m=1

Since Q, ¥, 7, |a| are constant over a stationarity-time and
bandwidth, while arg(a) varies over many periods of 27, and
assuming isotropic antennas at TX and RX (so that Q, ¥ do
not matter), the path gain averaged over the small-scale fading
can be computed from (2) as

N N
PG =Y [hn(r, Q00 =D |an|* ©)
m=1 m=1

5The wireless community has long classified environments—rural, sub-
urban, urban, and metropolitan—based on their channel characteristics,
a practice dating back to the COST 207 models of the mid-1980s. Despite the
subjective nature of these categories and the lack of specific numerical criteria,
their differentiation by factors like population density and infrastructure
complexity is widely accepted for assessing wireless signal propagation and
network performance and its similarity.
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(a) USC campus (Map)

(b) USC campus (Geometry in
Wireless Insite)

(d) Boston (Map)
Map of USC, UCLA, and Boston used in RT simulation. Fig. 2a

Fig. 2.
is imported and converted to Fig. 2b. The ground-truth pathloss map over
the USC campus is then obtained using Wireless Insite RT simulation and
pre-processing (e.g., interpolation, gray conversion, and data augmentation).

Note that our pathloss map uses the information of path gain
(in [dB]) while other information on angles and delay is
not needed (though this information can be used for further
applications, e.g., beamforming algorithms).

Thus, Prx (in [dBm]) can be expressed as a function of
Prx (in [dBm]) as follows:

Prx = Prx + PG. (6)

Note that we set Prx = 0 [dBm] in our RT dataset to simplify
the analysis, which makes Pgrx in [dBm] equal to PG in [dB].

To generate a ground-truth (labeled) dataset that simulates
real-world network scenarios, we conduct Wireless Insite RT
simulations on the geographical and morphological maps of
the University of Southern California (USC) campus, the
University of California, Los Angeles (UCLA) campus, and
the Boston area. Both campus areas are in Los Angeles, CA,
and exhibit a (light) urban build-up, with most buildings being
five stories or less (with a few high-rises interspersed), gaps
between buildings along the street canyons, and some open
squares. The Boston area is in downtown of Boston, MA. It is
a metropolitan area with multiple high-rises; its streets are not
arranged along a rectangular grid. Each dataset has different
network configurations and environmental characteristics (e.g.,
map scale, and geographical features, such as vegetation). See
Fig. 2 and Table I for more details.’

7It is worth noting that the simulations are performed at the sub-6 GHz
band, which is the most widely used cellular band. Similar simulations can
be performed in other frequency bands, such as the mmWave and THz bands,
with minor adjustments to the parameters. However, at those high frequency
bands, geographical data bases with higher resolution might be required for
comparable accuracy.
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TABLE I
PARAMETERS OF USC, UCLA, AND BOSTON DATASETS

Dataset

Parameter

[IN® UCLA Boston
Map scale 880 x 880 [m?] 760 x 760 [m?] 553 x 553 [m?]
Cropped map scale (per pixel) 221 x 221 [m?] (0.86 x 0.86 [m?]) 225 x 225 [m?] (0.88 x 0.88 [m?]) 187 x 187 [m?] (0.73 x 0.73 [m2])
Terrain v v v
Buildings v v v
Foliage” X X v
Carrier frequency 2.5 [GHz] 3.0 [GHz] 3.0 [GHz]
Transmit power 0 [dBm] 0 [dBm] 0 [dBm]
TX antenna type? Isotropic (vertical) Half-wave dipole (vertical) Half-wave dipole (vertical)
Total # of data/scene 4754 3776 3143

“Qur study assesses PMP accuracy across datasets varying in map scale, network configurations, and geography, focusing on how factors like foliage

impact path loss predictions.

PTsotropic and half-wave dipole antennas provide almost identical radiation patterns within a certain angular extent. MPC induced outside of the angular

extent does not contribute significantly to the link.

We stress that the goal of our work is the correct pre-
diction of “ground-truth” pathloss by ML techniques. The
pathloss obtained from the RT simulations might deviate
from measured values due to inaccuracies of the database
or inherent approximations of RTs. However, such deviations
are irrelevant to the assessment of our ML methods, since
they only impact what is used as “ground-truth” and not the
prediction process itself. In other words, if the ground-truth is
more accurate (similar to measurement results), our prediction
inherently becomes more accurate as well.3

2) 3GPP Model: The 3GPP 38.901 channel model [20]
(henceforth simply called the “3GPP model” for conciseness)
is a widely used model for wireless system standardization
that claims validity for frequencies spanning from 0.5 to
100 [GHz].

For the purposes of this paper, we only consider the 3GPP
modeling of the pathloss, which follows the classical a — (3
model

PLa*ﬁ(d) = 10a 10glo(d) + /6 + Sv (7)

where S ~ N(0,05) is a lognormally distributed random
variable (with variance og) representing the shadow fading,
and «, , and o are parameters of the model that are
based on measurement campaigns and that are different in
different environments. Important for our later discussions,
those parameters are also different depending on whether an
unobstructed optical line of sight (LoS) exists between TX and
RX or not.

Specifically, for urban environments, the following describes
the path gain:

PL;, (10[m] < dop < dpp)

PGuMi—Los = 8
UMIZEOS T BT, (dpp < dop < 5[km)) ®)

PGumi-NLos = max(PGumi-r.0s, PL3),
(10[m] < dop < 5[km)]) )

8Thus, if our proposed PMNet can accurately predict/reproduce RT results
when trained with RT data, it will also be able to do so for measurement data
when trained with measurement data.

where the two-dimensional xy-distance is dop and the three-
dimensional zyz-distance is d3p,

PL; = 32.4 + 21log;y(d3p) + 201ogyo(fe),

PLy = 32.4 + 40log,((dsp) + 20log,o( fe)
—9.5log,o((dsp)* + (hss — hur)?),

PL3 = 22.4 + 35.3log,o(dsp) + 21.31og;(f.)

—0.6(hur — 1.5). (10)

Here, the breakpoint distance is dgp = 2whgshuyr f./c where
fe is the center frequency in [Hz] and ¢ = 3.0 X 108[m/s] is
the speed of light. The antenna heights at the TX (e.g., base
station), hpg, and the RX (e.g., user terminal), hy, are set to
1.5 [m] and 10 [m], respectively. Note that the model differs
for LoS and non-LoS (NLoS) situations.

This model is employed as one of our baselines for the
prediction (see Sec. IV-E). While the 3GPP model also models
shadowing, it incorporates it as stochastic variations that
cannot be related to particular map features; we therefore omit
them for the purposes of this paper.

B. Pre-Processing

The raw numeric data from the RT simulation is
pre-processed using gray conversion and interpolation meth-
ods to generate the ground-truth pathloss map, data augmen-
tation methods to create an increased amount of labeled data,
and sampling methods to divide them into training and testing
sets.

1) Gray Conversion: To generate the pathloss map,
we begin by converting the received power Prx (in [dBm])
(or the path gain PG in [dB]) into grayscale between 1 and
255 using Min-Max normalization, with the minimum value
of —254 [dBm] and the maximum value of 0 [dBm]. While
the upper value is higher than physically reasonable, this pair
of values was chosen for convenience to have a 1 [dBm] per
gray value step mapping. A smaller (or larger) step size does
not have a significant impact on the prediction performance.

The gray value 0 is filled at pixels of building area, which
is not our region-of-interest (Rol), while, for our Rol, each
pixel is filled with gray values between 1 and 255, which
corresponds to Prx. Then, the pathloss map is generated after

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399



401

402

403

404

406

407

408

409

410

411

412

413

414

415

416

47

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

454

455

scaling the considered map scale into a 256 x 256 gray image.
Note that the image size (256 x 256) has nothing to do with
the grayscale (0 — 255).

2) Interpolation: Since the RT simulations are carried out
over a discrete set of RX locations, and it is computation-
ally challenging to gather the channel information for every
available RX location, there is missing channel information in
a few pixel locations. To fill the missing part of the pathloss
map, we utilize bilinear interpolation, which approximates the
missing value with a weighted sum of the gray values of the
adjacent locations.

3) Data Augmentation: Typically, a larger dataset leads to
improved performance of NN training. In other words, the
larger the data set, the better the outcome. We thus use two
augmentation methods - cropping and rotation - to increase
the size of our data set.

The entire map data is cropped into images of about a
quarter of the size, taking TX as an anchor point. This
augments the size of the dataset by a factor of 96. The image
is first cropped as a 64 x 64 size image and then upsampled to
a 256 x 256 size image. Note that some cropped images, not
including any TX, are skipped since the TX location will be
used as our second input feature. After cropping, the image
sets are rotated by 90°, 180°, and 270°, thus increasing the
size of the dataset by a further factor of 4.

4) Sampling: In the training and testing of PMNet on the
pathloss map dataset, we employ an exclusive division scheme.
Specifically, 90% and 10% of images are randomly split into
the training and validation set, while the images from the same
geographical map belong exclusively to either the training
or the validation set. This approach is taken to enhance the
generalization performance of PMNet.

IV. PATHLOSS MAP PREDICTION
A. Task (1): Pathloss Map Prediction

We now formulate the prediction task in ML nomenclature.
A domain (i.e., wireless channel prediction) is composed of a
feature space X, where © € X. Given the domain, a PMP task
is defined as 7 = {Y, P(y|x)}, which is composed of a label
space ), where y € ). Given the task, a dataset is defined as
D = {X, Y}, which is a collection of |D| = N channel data
that belong to a domain with a task 7.

For the PMP task, X consists of (1) a building map
(including terrain, building, and/or foliage) and (2) a TX
location and )Y is a Pathloss map. The goal of the PMP
task 7 is to find a predictive function f(-), which accurately
predicts Y for a given X'. It is worth noting that integrating
Rol (denoted as A*) segmentation with path gain prediction
simplifies the PMP task and eliminates the need for separate
pre- or post-processing steps for the Rol segmentation for each
map. Additionally, this integration helps NN better understand
the different IOs in a given building map.

In a nutshell, the PMP task is to predict the pathloss/path
gain (and received power Prx using simple normalization)
at RX locations grx given TX location gpx in Rol A*.
This channel prediction task exploits site-specific geographical
information, focusing on the large-scale effects in the channel.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

We employ a supervised ML method for the PMP task.
We train the model on a dataset of RT channel for an area
of A, such as the USC dataset in Table I; see Fig. 3 for an
overview of the ML-based PMP approach.

B. Network Architecture

In this subsection, we present the design process of our
proposed PMP-oriented NN architecture, referred to as PMNet.
Our design principles are summarized as follows: (1) several
state-of-the-art techniques in the field of image processing are
carefully selected and tested, (2) some essential techniques are
selected following the concept of ablation study, and (3) the
NN with selected techniques is optimized with extensive
trials.

1) Design Choices: In the PMP task, the NN is required to
perform image segmentation to identify the Rol and predict
received power within the Rol, while accounting for complex
wireless propagation physics. To accomplish this, our proposed
PMNet is designed based on such methods, Encoder-Decoder
and Atrous convolution.

2) Encoder-Decoder: Encoder-Decoder networks are a
widely applied architecture for many computer vision tasks,
e.g., object detection [33], human pose estimation [34], and
semantic segmentation [35], [36], [37]. The encoder-decoder
architecture allows to learn a lower-dimensional representation
from a higher-dimensional dataset and utilize the learned rep-
resentation for various tasks. However, as the encoder shrinks
the input feature maps, it may lose essential information, lead-
ing to a bottleneck problem. Several architectures, including
U-Net [38], address the bottleneck problem by adding skip
connections between the encoder and the decoder parts. Skip
connections allow the decoder to access feature maps from
the encoder, which helps to propagate context information to
higher-resolution layers.

3) Atrous Convolution: Receptive field of a convolutional
layer is the region of the input feature map that contributes
to the output feature map at a given location. The size of the
receptive field is determined by the resolution of the input
feature map and the field-of-view (FoV) of the filter. There is
a logarithmic relationship between the localization accuracy
of a model and the size of its receptive field. This means the
receptive field size should be sufficient if the given dataset and
task are observed with wide FoV. A standard convolutional
filter detects a particular feature by sliding over the input
feature map, resulting in the output feature map seeing only
the adjacent part of the input feature map. In terms of
computational complexity, having a wide receptive field with
the standard convolutional filter is expensive. Thus, broadly
speaking, the receptive field of the standard convolution filter
is somewhat narrow, seeing only little context.

Atrous convolution, also known as dilated convolution,
is a technique that addresses this limitation [39]. It allows
capturing a larger context with a wider FoV by modifying
the standard convolution operation. For the two-dimensional
case, atrous convolution is applied over the input feature map
f to produce the output feature map g at location {i, j} using
the convolution filter w. This operation can be expressed as
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Spatial Pyramid Poolir

X!

Input: (1) Bulldmfz map; (2) TX location

Encoder - Feature Extraction & Downsampling

Fig. 3. Overview of the PMP task and the PMNet architecture.

follows:

k k
Z Z f{i+rm,j+rn}w{m,n}~

m=1n=1

9{i5 = (11
Here, k represents the kernel size, and r is the atrous rate,
which determines the stride level. Notably, the atrous rate r
allows to adaptively control the FoV of the filter. For example,
an atrous rate of 7 = 2 doubles the FoV of the filter, while an
atrous rate of r = 3 triples it. The standard convolution can
be seen as a special case of (11) where r = 1.

In the context of the PMP task, the encoder-decoder
architecture of PMNet facilitates efficient context propagation
from the encoder to the decoder, while atrous convolution
enables it to handle scale variations and capture broader
context in map data, setting it apart from other UNet-based
networks [15], [16], [17], [18]. The combination of these two
features enables PMNet to efficiently and accurately predict
pathloss maps, while also accounting for complex wireless
propagation physics.

4) Design Parameters: PMNet architectures are composed
of a stack of ResLayers, each containing multiple residual
blocks [40]. These ResLayers can be configured with varying
numbers of blocks, atrous rates, multi-grids, and output strides.
These elements are summarized as follows:

o Number of blocks: The number of residual blocks in
a ResLayer controls the complexity and depth of the
network. Increasing the number of blocks may improve
the accuracy of the model, but it also increases the
computational cost.

o Atrous rates: Atrous rates control the spacing between
the convolutions in a ResLayer. Larger atrous rates allow
the network to capture more larger spatial contexts in the
PMP task.

o Multi-grids: Multi-grids allow the network to capture
multi-scale information from different levels of the CNN
architecture.

o Output stride: The output stride of a ResLayer controls
the ratio between the resolution of the input image and the
output image’s resolution. A higher output stride results
in a lower-resolution output image. This can be useful to
strike a balance between accuracy and speed.

Parameters are optimized through thorough simulations. Note
that the impact of output stride in the PMP task is shown in

Pathloss = 90.8 [dB]

Skip ('nnm’ctmn (Prx = —90.8 [dBm])

Pathloss = 70.1 [dB]
(Prx = —70.1 [dBm])

- - Context Prop"tg"mon & Upsampling

Qutput: Pathloss map

Table IV in Sec. IV-E (e.g., the case of % X %), demonstrating
the most substantial effect compared to other parameters.
With these design choices and parameters, PMNet effectively
predicts pathloss maps even for different channel datasets (e.g.,
RadioMapSeer [21]). For an architectural overview, please
refer to Fig. 3 and Table II. For more details, please see our
source code repository.

C. Training

Table III lists the hyper-parameters that are used for the
training of PMNet. We implement the PMNet using PyTorch
and use an NVIDIA GeForce RTX 3080 Ti GPU. For more
stable training, we normalize the input values into [0, 1] via
scaling. During the training, we evaluate the PMNet by mean
squared error (MSE) on the validation set at the end of every
epoch. For testing, we use the parameters of PMNet with
the best MSE score on the validation set. Consequently, the
pathloss map for a given map can be generated within a few
milliseconds after training.

D. Evaluation

1) Root Mean Square Error (RMSE): RMSE is a widely
used loss function in regression analysis and is used as the
primary evaluation metric for this task. It measures the overall
difference between the prediction g and ground-truth y and
quantifies the overall accuracy of the model. The formula for
RMSE is:

RMSE(y,y (12)

N
Z Un — Yn)?,
where ¢, € ¥ and y,, € y denote predicted and ground-truth
gray value (corresponding Prx) at the n-th pixel, respectively,
and N is the number of pixels in a pathloss map, i.e.,
256 x256. The RMSE averaged over all samples is the primary
evaluation metric for the PMP task.

2) Rol Segmentation Error: The Rol segmentation error,
calculated using the intersection over union (IoU) metric,
quantifies the accuracy of Rol and non-Rol area segmenta-
tion for all pixels in the ground-truth ({¢,7}) and prediction
({i,7}) - that is calculated as follows:

D Zj ErrB{i,j}

—_——— . (13)
22522 Bldg

Rol Segmentation Err. =
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TABLE I
PMNET ARCHITECTURES AND PARAMETERS. | AND T REPRESENT THE DOWNSAMPLING AND UPSAMPLING LAYERS, RESPECTIVELY

PMNet
Encoder Decoder

# Type QOutput Size # Type QOutput Size
Input Image 2 x 256 x 256 | Output Image 1 x 256 x 256
1) Conv2d, MaxPool2d 64 x 65 X 65 1) Conv2d (128 + 2) x 256 x 256

2 ResLayer 256 x 65 x 65 2 Conv2d (256 + 64) x 65 x 65
3()) ResLayer 512 x 33 x 33 3 Conv2d (256 + 256) x 65 x 65
4(]) ResLayer 512 x 17 x 17 4(1) ConvTranspose2d (256 + 256) x 65 x 65

5 ResLayer 1024 x 17 x 17 5(1) ConvTranspose2d (512 + 512) x 33 x 33

6 Conv2d, AdaptiveAvgPool2d 512 x 17 x 17 6 Conv2d (5124 512) x 17 x 17

TABLE III

TRAINING CONFIGURATION AND HYPER-PARAMETERS
FOR PMNET TRAINING

Model PMNet

Dataset (USC)

Map USC campus

Split for training (test) set  90% (10%) of dataset
Hyper-parameter

Learning rate (LR) 1072 ~5x 1074

LR gamma, step size 0.5, 10

Batch size 16 ~ 32

Optimizer Adam

# of of epochs 50

Here, ErrB{i)j} and Bldy; ;; are defined as:

1, {i,j} €Band {i,j} € A*
ErPr =41, {i,j} €A and {3,5} € B (14)
0, otherwise
1, {i,j}eB
Bldy; iy = 15
(i.g} 0. otherwise (15)

Within a given map, the non-Rol area, denoted as black (gray
value 0), is represented by 5, while the Rol area, denoted as
non-black (grayscale 1 — 255), is represented by A4*. B and
A* are complementary set within A. B can include buildings,
foliage, and/or small objects.

3) Channel Prediction Error: Channel prediction error
directly evaluates path gain accuracy for pixels within the Rol
area, evaluating power in [dBm] (or path gain in [dB]) unlike
RMSE, which quantifies differences based on gray values.

To calculate channel prediction error, gray values within the
Rol area of both the predicted and ground-truth pathloss maps
are converted into corresponding received power values. The
RMSE formula is then applied to these power values:

1 N
RMSE(p, p) = 4 | 3 D (b = Pn)?, (16)
n=1

where p,, € p and p,, € p represent the predicted and ground-
truth Prx at the n-th pixel, respectively. Channel Prediction
Error is then computed by averaging RMSE(p, p) across all
given samples.

E. Simulation Result

1) Training Optimization: Table IV presents an ablation
study to identify the factors that significantly contribute to
PMNet’s performance in the PMP task, such as data augmen-
tation and feature map size.’

2) Impact of Data Augmentation: For the data augmenta-
tion, we do horizontal, vertical and diagonal flips. In other
words, including the original images, we use the x4 number
of images for training. Note that data augmentation has several
advantages in general: first, it enhances the diversity of the
training data by generating additional examples that capture
various variations of the original data. Second, it reduces
overfitting by exposing the model to a wider range of input
patterns. Finally, data augmentation helps to make the model
more robust to noise and variability in the input data. As shown
in Table IV, it improves the performance of PMNet by 15.7%
in terms of RMSE.

3) Impact of Feature Map Size: We analyze the perfor-
mances of PMNet according to the size of the feature map,
which is the output of the encoder. Table IV compares the
results with the feature map sizes % X % and 1% X 1—”{3,
where H and W are the height and width of an input image,
respectively. To adjust the feature map size, we modify the
strides of the convolution layers in the encoder. We employ

w

the feature map size of % X -g- as the default option, because

PMNet yields better performance with the feature map size of
4 % W than that of £ x 1.

4) Accuracy: We compare the ML-based PMP with our
proposed PMNet model to two other methods for the PMP
task: a model-based approach, 3GPP, and an ML-based
approach, RadioUNet. All three methods produce a single-
channel 256 x 256 image of the pathloss map as the output,
given the input of a two-channel 256 x 256 image containing
the geographical map and the TX location. Here are the details
of these baseline methods:

1) 3GPP (with map info.) As discussed in Sec. I1I-A.2, the
3GPP model determines the pathloss at a particular loca-
tion based on the Euclidean distance and whether the link
between the TX and RX is in LoS or NLoS. To ensure
a fair comparison with other baselines, we utilize map
information to determine the LoS or NLoS condition of

0ur extensive experiments tested other factors, such as different sampling
methods, training loss functions, and additional input features (e.g., TX dis-
tance heatmap), but these factors did not show a meaningful improvement to
justify the additional complexity.
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TABLE IV
ABLATION STUDY FOR PMNET TRAINING OPTIMIZATION. LOWER VALUES INDICATE BETTER PERFORMANCE

Case || Data Aug. (x4)  Feature Size || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.]
w/o Data-Aug. % X % 0.01637 0.00263 0.01860
W/ Data- Aug g X @ 0.01259 0.00025 0.01403
§ X = T X5 0.01057 0.00096 0.01175
-

“d

::!'E' X
o

wo
12y |G

(a) Prediction (3GPP)

(b) Prediction (RadioUNet)
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1 1
i’ : d & 7 d
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(e) Prediction (3GPP) (f) Prediction (RadioUNet)
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(d) Ground-truth (Wireless In-

site)
-
[ ]

(c) Prediction (PMNet)

-

{I-
+ I'-i-i-
-
=

(g) Prediction (PMNet)

(h) Ground-truth (Wireless In-
site)

Fig. 4. Comparison of the predicted pathloss map of 3GPP, RadioUNet, and PMNet. @3 in ground-truth represents the TX location. The scenes are randomly

selected, not cherry-picked.

specific pixels to the TX.! Note that it does not require
any NN training as it is a model-based approach.

2) RadioUNet [15] is an ML-based PMP method that
extends the UNet architecture by employing two UNets.
Each UNet comprises 8 encoder layers with convolution,
ReLU, and Maxpool layers, followed by 8 decoder lay-
ers with transposed convolution and ReLU layers. The
encoders and decoders are concatenated, as in the original
UNet architecture. Here, RadioUNet employs curriculum
training to enhance training: in the first stage, the first
UNet is trained for a specific number of epochs, with
the second UNet frozen. In the second stage, the second
UNet is trained using the two-channel input features
and the output of the first UNet, effectively making it
a three-channel input network.

3) PMNet (Proposed) is our proposed ML-based PMP
method. This network employs several parallel atrous

10The original 3GPP pathloss model uses a probabilistic model to determine
LoS/NLoS condition at a particular distance. However, to ensure a fair
comparison, we use here the deterministic LoS/NLoS condition determined
from the map information in calculating the pathloss gain.

convolutions with different rates and the encoder-decoder
network. The encoder consists of 6 ResNet-based layers.
Each ResNet layer comprises several bottleneck lay-
ers consisting of convolution, batch normalization, max
pooling, and ReLLU. The decoder consists of 6 layers con-
sisting of convolution, adaptive average pooling, ReLU,
transposed convolution, and ReLU. Skip connections are
used between encoders and decoders.

5) Qualitative Analysis: Fig. 4 shows the prediction results
of the baselines. Recall that each pixel in the Rol corresponds
to the predicted received power Prx (or the path gain PG).
Note that some pixel values in the ground-truth data appear
noisy due to interpolation during the gray conversion process
after RT simulation.

3GPP exhibits a substantial deviation from ground-truth
obtained through RT simulation, highlighting the differences
between how RT simulation and 3GPP model calculate a
pathloss. Specifically, for RX locations with LoS conditions
close to the TX, the results obtained using the 3GPP model
approximately match the ground-truth data obtained from
Wireless Insite. However, for RX locations farther from the TX
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TABLE V

COMPARISON STUDY FOR PMP SCHEMES (3GPP, RADIOUNET, AND PMNET). LOWER VALUES INDICATE BETTER PERFORMANCE,
AND THE LOWEST ERRORS ARE HIGHLIGHTED

Scheme || ML-based || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.
3GPP (with map info.) [20] X 15.9451 - 17.5973
RadioUNet [15] v 0.02634 0.00840 0.01249
PMNet v 0.01057 0.00096 0.01175

TABLE VI

NUMERICAL RESULTS OF PMNET ON AN UNSEEN NETWORK SCENARIO. PMNET WAS TRAINED ON THE USC DATASET
AND EVALUATED ON THE UCLA AND BOSTON DATASET

Case || Model  Train Data  Eval. Data || RMSE| Rol Segmentation Err.|  Channel Prediction Err.|
Vanilla || PMNet USC uscC || 0.01057 0.00096 0.01175
Cross-scenario (UCLA) PMNet USC UCLA 0.19146 0.03925 0.21700
Cross-scenario (Boston) PMNet USC Boston 0.25842 0.04602 0.32436

or under NLoS conditions, the 3GPP model exhibits significant
discrepancy from the ground-truth data. It is worth noting that
the 3GPP pathloss model does not provide results for near-field
within a link distance of 10 meters; so, we arbitrarily set the
power in the near-field area to gray value 255, which does
not introduce significant errors. The 3GPP pathloss model is
a simplified model that does not account for the complex
wireless propagation physics of reflection, diffraction, and
scattering (highlighted in @). Instead, it relies solely on two
models for LoS and NLoS locations, respectively, and only
considers link distance and carrier frequency. This simplified
approach inevitably leads to significant inaccuracies in the
pathloss prediction.

RadioUNet demonstrates impressive Rol segmentation
results, while its channel prediction outputs appear some-
what blurry. It is worth noting that RadioUNet conducts
curriculum-based training with 50 epochs each in the first
and second stages, utilizing the same training/validation set
as PMNet, which is trained with a total of 50 epochs.

PMNet, on the other hand, achieves notable results for both
Rol segmentation and channel prediction. As highlighted in @),
PMNet effectively captures the intricate wireless propagation
physics of reflection, diffraction, and scattering. This can
be attributed to PMNet’s ability to incorporate a broader
contextual understanding of the environment, enabling it to
capture the representation of wireless propagation physics in
the surrounding environment.

6) Quantitative Analysis: Table V compares our proposed
PMNet model to the model-based 3GPP method and the
ML-based RadioUNet method in terms of three accuracy
metrics for the PMP task: RMSE, Rol segmentation error, and
channel prediction error. Note that the ground-truth dataset
is made by RT simulation; therefore, the error shows the
difference between a scheme and the RT simulation.

The model-based 3GPP method has inferior results com-
pared to ML-based methods, which can be explained by the
oversimplifications inherent in this model, as discussed above.
While our proposed PMNet model achieves the best score on
all three metrics, another ML-based PMP method, RadioUNet,

oF L

(a) Ground-truth (Wireless In-
site)

(b) Prediction (PMNet)

Fig. 5. Prediction results of PMNet on an unseen network scenario (i.e.,
cross-scenario evaluation). The model is trained on the USC dataset and
evaluated on the Boston dataset.

also achieves high accuracy (RMSE < 0.03). This result
highlights the capability of ML-based PMP approaches to
learn a representation of the wireless propagation physics
implicit in the ground-truth RT channel data.

V. TRANSFERABLE PATHLOSS MAP PREDICTION
A. Challenge: PMP for Unseen Network Scenario

As demonstrated in the previous section, PMNet exhibits
high accuracy of the PMP task for a given dataset. How-
ever, minimizing re-training efforts for new network scenarios
remains a challenge. To evaluate PMNet’s generalizability
across different scenarios, we conducted a cross-scenario eval-
uation, testing PMNet trained on USC data on the Boston
dataset.

As shown in Fig. 5 and Table VI, the PMNet achieves
the Rol segmentation error on the order of 1072 and the
channel prediction error on the order of 10~! in a new
scenario. Such deterioration is due to differences in network
configuration and environmental characteristics between the
two scenarios (e.g., different map scales and geographical
features). This highlights the need for further development
to improve PMNet’s performance across different network
scenarios, a task we refer to as cross-scenario PMP.
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B. Task (2): Cross-Scenario PMP

To enable better performance, we now allow cross-scenario
PMP to improve the model trained on a different network
scenario through training with a reduced-size training in the
new scenario. This will allow the network to adapt to the new
scenario with less time and resource effort, while maintaining
high accuracy. To address this challenge, we leverage transfer
learning (TL).

1) Approach: Transfer Learning: TL is an ML technique
that allows knowledge transfer from one task or dataset to
another, reducing the amount of data and training time required
for new scenarios. In the context of cross-scenario PMP,
we can transfer the knowledge from the source scenario, which
learns a predictive function fg(-) from a source dataset Dg
(e.g., USC), to the target scenario, which learns a predictive
function fr(-) from a target dataset Dy (e.g., UCLA and
Boston).

There are two main ways to use TL for the cross-scenario
PMP.

e Feature extraction: We can train a feature extractor on

a source scenario and then use that feature extractor to
extract features from data from a target scenario. Once we
have extracted the features, we can train a simple model
(e.g., a linear regressor) to predict the pathloss map for
the target scenario.

o Fine-tuning: We can fine-tune a pre-trained model on the
target scenario. This can be done by unfreezing some or
all of the layers of the pre-trained model and training the
model on data from the target scenario.

The choice between those two methods depends on a number
of factors, including the size and complexity of the pre-trained
model, the availability of training data for the target dataset,
and the computational resources available.

In this work, we focus on the fine-tuning TL approach with
all of the layers of the pre-trained model unfrozen.'' This
approach is simple yet effective, achieving higher accuracy on
various cross-scenario PMP tasks with less training data and
shorter training time, as elaborated in the following subsection.

We prepare and use the following pre-trained models in our
experiments:

(i) VGG161mgNet is the pre-trained CNN model trained
on the ImageNet dataset, which contains 140k images
belonging to 22k categories. It is a powerful image
classification model that has been used to achieve state-
of-the-art results on a variety of image classification
benchmarks.

PMNet3gpp, is the pre-trained PMNet model trained on
the 3GPP pathloss map dataset. The 3GPP pathloss map
dataset is prepared with the 3GPP pathloss model in [20]
(see 3GPP in Sec. IV-E .4, Fig. 4, and Table V).

PMNet,. is the pre-trained PMNet model trained on the
USC RT dataset. It is similar to PMNetggpp but is trained
on a different dataset. This is our main pre-trained model.

(ii)

(iii)

Each pre-trained model is available on our GitHub page.

"'While we have performed sample experiments with unfreezing certain
layers, such as the encoder-frozen and decoder-unfrozen, performance did
not improve significantly. A more comprehensive investigation of this topic
is, however, beyond the scope of this paper.

TABLE VII

TRAINING CONFIGURATION AND HYPER-PARAMETERS
IN CROSS-SCENARIO PMP

Model

Backbone
Pre-trained model

Dataset (UCLA, Boston)

Map
Split for training (test) set

PMNet, VGG16
PMNetysc, PMNetsgpp, VGG161mgNet

UCLA campus, Boston
10% ~ 90% (10%) of dataset

Hyper-parameter
LR 1073 ~5x107*
LR gamma, step size 0.5, 10
Batch size 16
Optimizer Adam
# of of epochs 50
TABLE VIII

IMPACT OF TL ON TRAINING SPEED (= st;ps). PMNET MODELS WITH
OR WITHOUT PMNETyusc PRE-TRAINED MODEL ARE TRAINED AND

EVALUATED ON THE BOSTON DATASET

Case # of Required Step (Training Speed)

RMSE < 0.1 RMSE ~ 0.03
Vanilla (90% Data) 5841 (x1.0) 6195 (x1.0)
PMNetyse (20% Data) 1040 B (x5.6) 1520 W (x4.1)

C. Simulation Results

As demonstrated in the cross-scenario evaluation results (in
Fig. 5 and Table VI), there is a need for further development
to make PMNet adapt to different network scenarios. To this
end, our approach is fine-tuning a pre-trained model with
down-sized data for the new scenario. Here, the main questions
in performing cross-scenario PMP are: (1) How quickly and
with how minimal data PMNet can effectively adapt to new
scenarios; and (2) Which pre-trained model should be utilized
for optimal performance in cross-scenario PMP.

1) Efficiency: For cross-scenario PMP, rapidly adapting
PMNet models to new network scenarios using limited data
is essential due to the time-consuming and expensive nature
of channel measurement using RT simulation or channel
sounder. This is particularly critical for applications like beam
management and localization using ML-based PMP, which
demand quick adjustments for new scenarios.

2) Impact of TL: TL can significantly improve the training
speed of PMNet models for cross-scenario PMP. As shown in
Fig. 6 and Table VIII, the TL case with the PMNet,s. pre-
trained model achieves a given level of accuracy much faster
even with much less amount of training data. In particular,
PMNet,s. achieves the same level of accuracy (RMSE <
0.1 and RMSE =~ 0.03) x5.6 and x4.1 faster, respectively,
as the Vanilla case (highlighted in @), where we define as
“Vanilla” the training from scratch in a particular environment.

Furthermore, the TL can also significantly save the required
amount of data for cross-scenario PMP. As shown in Fig. 7, the
TL (PMNet,s.) trained with about 20% of the Boston dataset
achieves equivalent results to the Vanilla case trained with
about 90% of the dataset.

It is worth noting that limited training data can easily induce
overfitting, as observed in the Vanilla case with 20% Data
(highlighted in @). For the same amount of new scenario
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Vanilla (20% Data)
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1
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Fig. 6. Comparison of the training efficiency of PMNet models with and without TL. PMNet models are trained for 50 epochs and evaluated on the Boston

dataset.

TABLE IX

COMPARISON OF PRE-TRAINED MODELS (VGG 161mgNet, PMNET3gpp, AND PMNETysc) IN TERMS OF ACCURACY. MODELS ARE EVALUATED ON THE
UCLA AND BOSTON DATASETS, USING 90% OF THE DATA FOR TRAINING AND 10% OF THE DATA FOR VALIDATION. 50 EPOCHS ARE USED FOR
TRAINING. LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

Case || Pre-training Model || RMSE|  Rol Segmentation Err.|  Channel Prediction Err.|
Vanilla X PMNet 0.03415 0.02935 0.03844
TL (ImageNet) v (ImageNet) VGGI16 0.04528 0.01814 0.05108 @
TL (3GPP) v (3GPP) PMNet 0.02809 0.00655 0.03238
TL (USC) v (USC) PMNet 0.02792 0.01666 0.03145
(a) UCLA
Case || Pre-training Model || RMSE]  Rol Segmentation Err.|  Channel Prediction Err.|
Vanilla X PMNet 0.01736 0.02417 0.02125
TL (ImageNet) v (ImageNet) VGGI16 0.01999 0.02040 0.02512
TL (3GPP) v (3GPP) PMNet 0.01762 0.04030 0.02187
TL (USC) v (USC) PMNet 0.00987 0.03530 0.01225
(b) Boston
10° T g 10 3) Accuracy: As discussed in Sec. V, the source and target
—PMNenm‘ = scenario (task or domain) should be sufficiently similar for
E . effective TL to occur. For instance, to successfully apply TL to
3 10 the target task of predicting wireless communication channels,
g \ the NN should extract relevant features of wireless propagation
10 S 102 physics from the source task.

10 20 40 60 80 90
% of Dataset for Training

(b) Channel prediction error

-2 . . .
10 20 40 60 80 90
% of Dataset for Training
(a) RMSE
Fig. 7. Impact of TL on training data requirements. PMNet models with or

without PMNetysc pre-trained model are trained with 50 epochs and evaluated
on the Boston dataset.

data, the TL case (PMNet,s. (20%)) does not experience the
overfitting issue. This suggests that TL also enhances training
stability (less overfitting issue with limited data) in cross-
scenario PMP.

Our findings demonstrate that the pre-trained PMNet,.
model efficiently accelerates the training process by leveraging
its knowledge of PMP tasks, including the physics of wireless
channel propagation and Rol segmentation, and this model
can be readily adapted to new scenarios with minimal data
and training steps.

Consequently, we confirm that fine-tuning with a suitable
pre-trained model is an effective cross-PMP task method.
Another key question is which pre-trained model is suit-
able and which is not, which is discussed further in the
following.

4) “Suitable” Pre-Trained Model: Table IX compares the
performance of the PMNet model with and without TL. The
baseline model, referred to as Vanilla, is trained without any
TL (without any pre-trained model). Additionally, we compare
the performance of TL using a pre-trained model trained on an
unrelated source scenario (i.e., VGG16 trained on ImageNet)
with TL using a pre-trained model trained on a related source
scenario (i.e., PMNet trained on USC or 3GPP datasets).

As shown in Table IX, both PMNet models trained on
PMNet,s. and PMNets,p,,, outperform the Vanilla case on all
performance metrics, suggesting that using a pre-trained model
trained on a related source task can significantly improve
accuracy.

Interestingly, while the VGG16 model trained on ImageNet
(VGG161meNet) outperforms the Vanilla for Rol segmentation,
it fails to do so for channel prediction (highlighted in @). This
discrepancy stems from the VGG16 pre-trained model, which
has an inherent understanding of segmentation and image
representation from its source task; however, does not have
any knowledge of the physics of wireless propagation.

Fig. 8 visually confirms the findings from Table IX. All
models achieve high accuracy for Rol segmentation, while
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Comparison of the prediction results of pre-trained models (VGG161mgNet, PMNetsgpp, and PMNetysc). 50 epochs are used for training. Brighter

colors indicate higher PG. Note that pixels with non-zero gray value are converted to color to highlight differences between results.

only the TL case using a pre-trained model trained on a related
source scenario (e.g., PMNetsgp,, and PMNet,.) achieves high
accuracy for channel prediction, capturing subtle details of the
wireless propagation physics. This suggests that our PMNet
pre-trained model is generalizable to different scenarios due to
its inherent knowledge of channel propagation representation,
and that TL can further improve accuracy.

These results empirically demonstrate that pre-trained
model’s source dataset (task or domain) should be similar
to the target dataset (task or domain) to transfer useful
information during TL. Specifically, for cross-scenario PMP,
it is important to use a pre-trained model that has been
trained extensively on data related to wireless propagation
physics.

Therefore, we conclude that the suggested TL approach,
fine-tuning with a stable and closely related pre-trained model
(such as PMNet,s.), is a simple yet effective way to address
the cross-scenario PMP task, which is important for practical
applications.

VI. CONCLUSION

This work introduces an ML-based large-scale channel pre-
diction framework, PMNet, which can create highly accurate
pathloss predictions for a given map in a few milliseconds.
Utilizing an RT channel dataset of real-world scenarios (e.g.,
USC, UCLA, and Boston area), PMNet is verified for its
accuracy and training efficiency. In particular, TL with our
PMNet pre-trained model, which has generalization capability
for different network scenarios, enables the PMNet to adapt
itself quickly and efficiently to a new network scenario, while
achieving an RMSE of 102 level.

The high accuracy and low runtime of the PMNet frame-
work make it suitable for deployment planning in dense
networks as well as online optimization of network parameters.

Still, it remains an open question whether the knowledge of
wireless propagation physics in our PMNet pre-trained model
can be transferred to other downstream tasks beyond the PMP
task; this question will be the topic of our future research.
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