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Abstract— Large-scale channel prediction, i.e., estimation of1

the pathloss from geographical/morphological/building maps,2

is an essential component of wireless network planning. Ray trac-3

ing (RT)-based methods have been widely used for many years,4

but they require significant computational effort that may become5

prohibitive with the increased network densification and/or use of6

higher frequencies in B5G/6G systems. In this paper, we propose7

a data-driven, model-free pathloss map prediction (PMP) method,8

called PMNet. PMNet uses a supervised learning approach: it9

is trained on a limited amount of RT data and map data.10

Once trained, PMNet can predict pathloss over location with11

high accuracy (an RMSE level of 10−2) in a few milliseconds.12

We further extend PMNet by employing transfer learning (TL).13

TL allows PMNet to learn a new network scenario quickly14

(×5.6 faster training) and efficiently (using ×4.5 less data) by15

transferring knowledge from a pre-trained model, while retaining16

accuracy. Our results demonstrate that PMNet is a scalable and17

generalizable ML-based PMP method, showing its potential to18

be used in several network optimization applications.19

Index Terms— Pathloss map prediction, ray tracing, machine20

learning, computer vision, transfer learning, network optimiza-21

tion, digital twin, 6G.22

I. INTRODUCTION23

DIGITAL twin (DT) network is emerging as a key enabler24

for the artificial intelligence (AI) and machine learning25

(ML)-driven design, simulation, and optimization of 6G sys-26

tems [3], [4]. A DT network is a dynamic, digital replica27

of a real-world network environment, providing real-time,28

accurate reflections of physical network scenarios. It can29

be used for a variety of applications, including dynamic30

resource allocation, beam management, and localization using31

ML-based PMP, which demands quick adjustments for new32

scenarios. However, implementing DT is challenging in 6G33

Manuscript received 6 December 2023; revised 20 February 2024 and
3 July 2024; accepted 27 August 2024. This work was supported by
NSF under Project 2133655 and Project 2008443. An earlier version of
this paper was presented in part at the 2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP 2023) [DOI:
10.1109/ICASSP49357.2023.10095257] and in part at the 2023 Global
Communications Conference (Globecom 2023) [DOI: 10.1109/GLOBE-
COM54140.2023.10437562]. The associate editor coordinating the review
of this article and approving it for publication was C. Han. (Corresponding
author: Ju-Hyung Lee.)

Ju-Hyung Lee was with Ming Hsieh Department of Electrical and Computer
Engineering, University of Southern California (USC), Los Angeles, CA
90007 USA. He is now with Nokia, Sunnyvale, CA 94085 USA (e-mail:
juhyung.lee@outlook.com).

Andreas F. Molisch is with the Ming Hsieh Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles,
CA 90089 USA (e-mail: molisch@usc.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2024.3457431.

Digital Object Identifier 10.1109/TWC.2024.3457431

networks, which are characterized by increased deployment 34

density, complex distributed architectures, and high-frequency 35

operation in millimeter wave (mmWave) and terahertz (THz) 36

bands. 37

Individually and taken together, these developments neces- 38

sitate dramatically faster large-scale channel prediction 39

methods.1 Since traditional ray tracing (RT) tools are too slow 40

for the repeated runs required in such DT implementation 41

processes, there is a strong need for new, accurate, and fast 42

methods for channel prediction over a large-scale area (e.g., 43

campus or city-map scale). 44

Several works have addressed this need by channel pre- 45

diction using powerful ML techniques. These works use 46

ground-truth channel data (from RT simulations or real 47

channel measurements/soundings campaigns) to train neural 48

networks (NNs). This eventually provides an accurate and 49

fast prediction of channel information (e.g., received power, 50

delay, angles, and so on) for a certain area, a technique called 51

ML-based site-specific radio propagation modeling. 52

Still, these ML-based approaches use supervised learning, 53

meaning they are trained to solve a specific network scenario 54

with a certain labeled dataset. In other words, the models may 55

need to be rebuilt for a new network scenario, e.g., different 56

map scales, environmental aspects, and/or network configura- 57

tion - a process that can be time-consuming and expensive. 58

This creates a need for a method that can furthermore transfer 59

knowledge of propagation channels across different network 60

scenarios and environments. 61

A. Related Works 62

Due to the high cost and complexity of field measurements 63

with channel sounders, most cellular deployment planning 64

has long replaced channel measurements with electromagnetic 65

(EM) simulation-based approaches, such as RT [5], [6] and 66

ray launching [7] simulation.2 Over the past 30 years, the 67

efficiency and accuracy of RT have improved significantly [9], 68

thanks to the prevalence of GPUs (graphic processing units) 69

that efficiently facilitate RT tasks. 70

However, due to the factors mentioned above (such as the 71

need for more detailed environmental consideration at higher 72

1The word “channel prediction” is often used for two different problems:
(i) computation of the propagation channel at a particular location based on
maps of the environment, and (ii) temporal prediction of the channel (often
for a mobile device moving on a trajectory), based on measurements in the
immediate past. This paper only considers the former case.

2Our research utilizes RT simulations via Wireless Insite to investigate
path loss. This simulation program has been validated against real-world
measurements, e.g., in [8] showing an acceptable error margin.
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Fig. 1. Overview of the pathloss map prediction (PMP) task and the
cross-scenario PMP. The input Map feature includes the transmitter (TX)
location.

frequencies and the need for fast simulations with higher73

deployment density), RT simulations are too computationally74

intensive for large-scale network deployment in 6G systems.75

Consequently, simplified model-based approaches like the76

dominant path model [10], or fine-tuning of generic pathloss77

models (e.g., 3GPP path gain model) with limited measure-78

ment data [11], [12] have been proposed over the years.79

Nevertheless, these approaches have gained limited acceptance80

by network operators due to their insufficient accuracy in81

predicting the propagation characteristics of signals in complex82

environments.83

In recent years, supervised ML has been applied to solve84

a variety of challenging problems in wireless communication,85

including channel measurement/prediction for 6G networks.86

Such an ML-based approach can be trained on a map of87

the environment (topology/morphology) and a relatively small88

set of measurement data to learn how to provide a virtual89

replica (e.g., DT) of a large-scale network environment in90

real-time while accurately modeling the behavior of channel91

characteristics.92

On the one hand, models like WiNeRT [13] and NeRF293

[14] are specifically developed to predict detailed chan-94

nel information (e.g., power, delay, and angle information)95

of each multi-path component (MPC) between TX and96

receiver (RX) with the input of detailed information, including97

spatial configuration and wireless configuration parameters.98

These models are particularly well-suited for applications in99

small-scale indoor areas, where high-detailed channel predic-100

tion is required (e.g., indoor sensing).101

On the other hand, models like RadioUNet [15] and102

FadeNet [16] aim to predict the path gain, received power,103

or coverage for TX-RX in a given area with the input of104

a building map. These models are designed for large-scale105

channel prediction, where fast operation is essential (e.g.,106

network optimization).107

In particular, several state-of-the-art works, such as108

Agile [17], PPNet [18], and PMNet [1], are pushing the109

boundaries of predictive accuracy and computational efficiency110

for large-scale channel prediction (e.g., radio environment map 111

estimation), as evidenced by their performance in ML compe- 112

titions such as the RadioMap Prediction Challenge (see details 113

in [19]). This highlights the applicability and importance of 114

large-scale channel prediction in evolving wireless network 115

optimization, which aligns with our research direction. 116

B. Contributions 117

This paper proposes a scalable and generalizable channel 118

prediction approach specifically designed for large-scale chan- 119

nel prediction, called PMP task. Our contributions can be 120

summarized as follows: 121

• We design a PMP-oriented NN architecture, called 122

PMNet, by leveraging computer-vision techniques, gen- 123

erating highly accurate channel prediction results for 124

a given map in few milliseconds. PMNet achieves the 125

best channel prediction accuracy compared to two base- 126

lines: a model-based scheme (3GPP-UMi model [20]) 127

and another ML-based scheme (RadioUNet [15]) (see 128

Table V in Sec. IV) and also in different PMP datasets. 129

PMNet achieved 1st-rank in the ICASSP 2023 Radio Map 130

Prediction Challenge [19].3 131

• We build three sets of real-world channel datasets using 132

a RT simulation tool, i.e., Wireless Insite, for training 133

and evaluation, which reflects different network scenarios 134

(e.g., different map scale, environment, and network 135

configuration) in two different light urban environments 136

(the USC and UCLA campuses) and a metropolitan area 137

(the Boston area), see Table I in Sec. III. 138

• We propose a method of predicting pathloss in unseen 139

network scenarios by using transfer learning (TL) with a 140

pre-trained model. We prepare three pre-trained models 141

for TL: VGG16 [22] and two pre-trained PMNet models 142

trained with 3GPP prediction results and RT simulation 143

results, respectively, and quantitatively and qualitatively 144

evaluate their accuracy (see Table IX and Fig. 8 in 145

Sec. V). 146

• We empirically demonstrate that our PMNet pre-trained 147

model has generalization capability for different network 148

scenarios, adjusting to new network scenarios ×5.6 faster 149

and using ×4.5 less data than a baseline model without 150

TL, while still achieving high accuracy of an RMSE of 151

10−2 level (see Fig. 6 and Table. VIII in Sec. V). 152

• We release source code for the experiments to promote 153

reproducible ML research in wireless communication.4 154

C. Paper Organization 155

The rest of the paper is organized as follows: Sec. II presents 156

the background on two important concepts: (1) ray tracing 157

simulation, which is used to generate ground-truth channel 158

information for training and evaluation; and (2) transfer 159

learning, which enables us to transfer the knowledge learned 160

3In this competition, PMNet demonstrated its high accuracy in the PMP
task on a different dataset [21], which featured a different map scale, network
configuration, and was generated by a different RT simulation tool, i.e.,
WinProp, highlighting PMNet’s generalization capability.

4https://github.com/abman23/PMNet
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from a source task/dataset to a new task/dataset (e.g., unseen161

network scenario). After introducing our dataset based on real162

geographical maps in Sec. III, Sec. IV introduces the PMP task163

and our proposed NN architecture (PMNet) for this channel164

prediction task. We also present the training and evaluation165

process, as well as simulation results. Then, Sec. V presents166

our approach for efficiently learning and predicting channels in167

unseen network environments by transferring the pre-trained168

knowledge from other networks. We provide extensive exper-169

imental results and quantitative and qualitative performance170

analysis, followed by concluding remarks in Sec. VI.171

Notation: Throughout this paper, we use the normal-face172

font to denote scalars and the boldface font to denote vectors.173

We use P (·) and P (·|·) to represent a marginal probability174

distribution and conditional distribution, respectively. We also175

use ∥ · ∥ to denote the L2-norm, which is an Euclidean norm.176

N (µ, σ) denotes the normal distribution with mean µ and177

standard deviation σ.178

II. BACKGROUND179

To provide a comprehensive understanding of our work,180

it is essential to cover Pathloss, Ray Tracing Simulation,181

and Transfer Learning, as these areas are integral to our182

methodology and analysis.183

A. Pathloss184

The link gain between a TX at location qTX and an RX at185

location qRX at time t and frequency f can be expressed as186

follows:187

|h(t, f, qTX, qRX)|2 =
PRX(t, f, qRX)
PTX(t, f, qTX)

(1)188

where PRX and PTX are received and transmitted power,189

respectively. This link gain includes the effects of antenna190

gains at TX and RX; when isotropic antennas are used,191

it becomes identical to the channel gain. It exhibits variations192

in time and/or location due to small-scale fading, shadowing,193

and large-scale distance changes. Averaging over small-scale194

fading removes (under certain circumstances, see [23, Ch. 7])195

the dependence on frequency and time, providing the path gain196

(PG) that can be written as a function of only the large-scale197

distance changes:198

PG(qTX, qRX) =
1
TS

1
BS

∫
TS

∫
BS

|h(t, f, qTX, qRX)|2 df dt.199

(2)200

Here, TS and BS denote the stationary-time and -bandwidth,201

respectively. The path gain can be represented as the sum of202

the powers of the N MPCs, as discussed further in Sec. III-A.203

For later reference, we note that the pathloss is the inverse204

of the path gain (or the sign-flipped value when expressed205

in dB).206

B. Ray Tracing (RT) Simulation207

RT is an approximate method for modeling the propa-208

gation of electromagnetic waves in wireless communication209

scenarios. It works by tracing the paths of individual rays as 210

they propagate through the environment, whose features are 211

represented in a geographical database. The rays are reflected, 212

deflected, and scattered by the objects in the environment, 213

with the various interaction processes computed according 214

to high-frequency approximations, namely (most commonly) 215

Snell’s laws for specular reflection and transmission, uniform 216

theory of diffraction (UTD) for diffraction, and Kirchhoff 217

scattering theory for diffuse scattering [23, Ch. 4].5 The 218

RT tool simulates radio wave propagation deterministically 219

based on physical laws, offering site-specific radio propagation 220

modeling, in contrast to stochastic wireless channel models 221

(e.g., 3GPP standardized channel model). 222

In this paper, we employ a commercial RT tool, Wire- 223

less Insite from Remcom [7] for all RT simulations, both 224

because of its user-friendliness and the fact that its accuracy 225

has been compared against a number of channel sounder 226

measurements [6], [24], [25]. RT can be used to predict 227

channel information, such as received signal strength, delay, 228

and angles, in a variety of wireless environments, both indoor 229

and outdoor. The accuracy of RT simulations depends on 230

various factors, such as the complexity of the environment, 231

the accuracy of the geographical database, and the carrier 232

frequency. The channel information obtained from the RT 233

can be utilized, inter alia, for various network optimiza- 234

tion tasks, including base station (BS) deployment planning, 235

BS parameter optimization, as well as beam management and 236

localization. 237

C. Transfer Learning (TL) 238

TL is a machine learning technique that leverages a 239

pre-trained model on a new task, significantly reducing the 240

amount of data and training time required for new scenarios. 241

This approach is particularly advantageous when there is 242

limited data available for the new task or when the new task 243

shares similarities with a previously learned task. By utilizing 244

knowledge from a related task, TL can enhance model perfor- 245

mance, expedite training processes, and mitigate overfitting, 246

especially in data-constrained environments. 247

For instance, a model pre-trained on image classification 248

tasks can be effectively repurposed for object detection or 249

semantic segmentation. This reuse is possible because the 250

model has already learned useful feature representations from 251

a large and diverse dataset, enabling it to adapt more efficiently 252

to new, related tasks. 253

One of the most popular pre-trained models is VGG16 254

[22], which is trained on more than a million images from 255

the ImageNet database for image classification. VGG16 has 256

demonstrated its versatility by being reused to improve perfor- 257

mance in various tasks, including semantic segmentation [26] 258

and object detection [27]. These applications showcase the 259

model’s ability to transfer learned features, thus enhancing 260

performance in new domains with minimal additional training. 261

However, it is important to note that the effectiveness of TL 262

depends on the similarity between the pre-trained task and the 263

5RT can be implemented via image-theory-based RT, or as ray launching.
We will henceforth use the expression RT for both those methods.
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target task.6 The transferability of deep feature representations264

decreases as the discrepancy between the pre-trained task and265

the target task increases [28]. In other words, the further apart266

the task is, the less transferable the knowledge. One example is267

catastrophic forgetting, which is a phenomenon that can occur268

when fine-tuning a pre-trained model on a new task, resulting269

in a loss of previously acquired knowledge [29].270

Research has shown that well-generalized models, particu-271

larly those with excellent pre-training performance [30], have272

the potential to require minimal fine-tuning or even none at273

all (e.g., zero-shot learning) for new tasks [31]. These suggest274

the importance of selecting a pre-trained model suitable for275

the target task.276

III. DATASET277

In this section, we discuss the dataset preparation process278

for our pathloss map datasets, reflecting real-world network279

scenarios in USC, UCLA, and Boston areas.280

We obtained the ground-truth channel data using the281

commercial RT tool Wireless Insite [7], which takes into282

account the geographical and morphological features of the283

propagation environment. We then pre-processed the data284

(e.g., interpolation and data augmentation) to prepare the285

ground-truth pathloss map.286

A. Channel Data287

1) RT Simulation: As discussed in Sec. II-A, RT emulates288

the behavior of each MPC between TX and RX, following289

physical principles including the free-space power loss and290

interaction with different interacting objects (IOs). This allows291

us to compute for each MPC the information of complex292

amplitude a, directions of departure Ω and arrival Ψ, and delay293

τ . The contribution of m-th MPC can be expressed as [32]:294

hm(t, τ, Ω, Ψ) = amδ(τ − τm)δ(Ω − Ωm)δ(Ψ − Ψm), (3)295

where the dependence of Ω, Ψ, τ, a on t is not written explic-296

itly on the r.h.s. The sum of contributions from all MPCs is297

given by298

h(t, τ, Ω, Ψ) =
N∑

m=1

hm(t, τ, Ω, Ψ). (4)299

Since Ω, Ψ, τ, |a| are constant over a stationarity-time and300

bandwidth, while arg(a) varies over many periods of 2π, and301

assuming isotropic antennas at TX and RX (so that Ω, Ψ do302

not matter), the path gain averaged over the small-scale fading303

can be computed from (2) as304

PG =
N∑

m=1

|hm(τ, Ω, Ψ)|2 =
N∑

m=1

|am|2. (5)305

6The wireless community has long classified environments—rural, sub-
urban, urban, and metropolitan—based on their channel characteristics,
a practice dating back to the COST 207 models of the mid-1980s. Despite the
subjective nature of these categories and the lack of specific numerical criteria,
their differentiation by factors like population density and infrastructure
complexity is widely accepted for assessing wireless signal propagation and
network performance and its similarity.

Fig. 2. Map of USC, UCLA, and Boston used in RT simulation. Fig. 2a
is imported and converted to Fig. 2b. The ground-truth pathloss map over
the USC campus is then obtained using Wireless Insite RT simulation and
pre-processing (e.g., interpolation, gray conversion, and data augmentation).

Note that our pathloss map uses the information of path gain 306

(in [dB]) while other information on angles and delay is 307

not needed (though this information can be used for further 308

applications, e.g., beamforming algorithms). 309

Thus, PRX (in [dBm]) can be expressed as a function of 310

PTX (in [dBm]) as follows: 311

PRX = PTX + PG. (6) 312

Note that we set PTX = 0 [dBm] in our RT dataset to simplify 313

the analysis, which makes PRX in [dBm] equal to PG in [dB]. 314

To generate a ground-truth (labeled) dataset that simulates 315

real-world network scenarios, we conduct Wireless Insite RT 316

simulations on the geographical and morphological maps of 317

the University of Southern California (USC) campus, the 318

University of California, Los Angeles (UCLA) campus, and 319

the Boston area. Both campus areas are in Los Angeles, CA, 320

and exhibit a (light) urban build-up, with most buildings being 321

five stories or less (with a few high-rises interspersed), gaps 322

between buildings along the street canyons, and some open 323

squares. The Boston area is in downtown of Boston, MA. It is 324

a metropolitan area with multiple high-rises; its streets are not 325

arranged along a rectangular grid. Each dataset has different 326

network configurations and environmental characteristics (e.g., 327

map scale, and geographical features, such as vegetation). See 328

Fig. 2 and Table I for more details.7 329

7It is worth noting that the simulations are performed at the sub-6 GHz
band, which is the most widely used cellular band. Similar simulations can
be performed in other frequency bands, such as the mmWave and THz bands,
with minor adjustments to the parameters. However, at those high frequency
bands, geographical data bases with higher resolution might be required for
comparable accuracy.
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TABLE I
PARAMETERS OF USC, UCLA, AND BOSTON DATASETS

We stress that the goal of our work is the correct pre-330

diction of “ground-truth” pathloss by ML techniques. The331

pathloss obtained from the RT simulations might deviate332

from measured values due to inaccuracies of the database333

or inherent approximations of RTs. However, such deviations334

are irrelevant to the assessment of our ML methods, since335

they only impact what is used as “ground-truth” and not the336

prediction process itself. In other words, if the ground-truth is337

more accurate (similar to measurement results), our prediction338

inherently becomes more accurate as well.8339

2) 3GPP Model: The 3GPP 38.901 channel model [20]340

(henceforth simply called the “3GPP model” for conciseness)341

is a widely used model for wireless system standardization342

that claims validity for frequencies spanning from 0.5 to343

100 [GHz].344

For the purposes of this paper, we only consider the 3GPP345

modeling of the pathloss, which follows the classical α − β346

model347

PLα−β(d) = 10α log10(d) + β + S, (7)348

where S ∼ N (0, σS) is a lognormally distributed random349

variable (with variance σS) representing the shadow fading,350

and α, β, and σ are parameters of the model that are351

based on measurement campaigns and that are different in352

different environments. Important for our later discussions,353

those parameters are also different depending on whether an354

unobstructed optical line of sight (LoS) exists between TX and355

RX or not.356

Specifically, for urban environments, the following describes357

the path gain:358

PGUMi−LoS =

{
PL1, (10[m] ≤ d2D ≤ dBP)
PL2, (dBP ≤ d2D ≤ 5[km])

(8)359

PGUMi−NLoS = max(PGUMi−LoS, PL3),360

(10[m] ≤ d2D ≤ 5[km]) (9)361

8Thus, if our proposed PMNet can accurately predict/reproduce RT results
when trained with RT data, it will also be able to do so for measurement data
when trained with measurement data.

where the two-dimensional xy-distance is d2D and the three- 362

dimensional xyz-distance is d3D, 363

PL1 = 32.4 + 21 log10(d3D) + 20 log10(fc), 364

PL2 = 32.4 + 40 log10(d3D) + 20 log10(fc) 365

− 9.5 log10((dBP)2 + (hBS − hUT)2), 366

PL3 = 22.4 + 35.3 log10(d3D) + 21.3 log10(fc) 367

− 0.6(hUT − 1.5). (10) 368

Here, the breakpoint distance is dBP = 2πhBShUTfc/c where 369

fc is the center frequency in [Hz] and c = 3.0 × 108[m/s] is 370

the speed of light. The antenna heights at the TX (e.g., base 371

station), hBS, and the RX (e.g., user terminal), hUT, are set to 372

1.5 [m] and 10 [m], respectively. Note that the model differs 373

for LoS and non-LoS (NLoS) situations. 374

This model is employed as one of our baselines for the 375

prediction (see Sec. IV-E). While the 3GPP model also models 376

shadowing, it incorporates it as stochastic variations that 377

cannot be related to particular map features; we therefore omit 378

them for the purposes of this paper. 379

B. Pre-Processing 380

The raw numeric data from the RT simulation is 381

pre-processed using gray conversion and interpolation meth- 382

ods to generate the ground-truth pathloss map, data augmen- 383

tation methods to create an increased amount of labeled data, 384

and sampling methods to divide them into training and testing 385

sets. 386

1) Gray Conversion: To generate the pathloss map, 387

we begin by converting the received power PRX (in [dBm]) 388

(or the path gain PG in [dB]) into grayscale between 1 and 389

255 using Min-Max normalization, with the minimum value 390

of −254 [dBm] and the maximum value of 0 [dBm]. While 391

the upper value is higher than physically reasonable, this pair 392

of values was chosen for convenience to have a 1 [dBm] per 393

gray value step mapping. A smaller (or larger) step size does 394

not have a significant impact on the prediction performance. 395

The gray value 0 is filled at pixels of building area, which 396

is not our region-of-interest (RoI), while, for our RoI, each 397

pixel is filled with gray values between 1 and 255, which 398

corresponds to PRX. Then, the pathloss map is generated after 399
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scaling the considered map scale into a 256×256 gray image.400

Note that the image size (256 × 256) has nothing to do with401

the grayscale (0 − 255).402

2) Interpolation: Since the RT simulations are carried out403

over a discrete set of RX locations, and it is computation-404

ally challenging to gather the channel information for every405

available RX location, there is missing channel information in406

a few pixel locations. To fill the missing part of the pathloss407

map, we utilize bilinear interpolation, which approximates the408

missing value with a weighted sum of the gray values of the409

adjacent locations.410

3) Data Augmentation: Typically, a larger dataset leads to411

improved performance of NN training. In other words, the412

larger the data set, the better the outcome. We thus use two413

augmentation methods - cropping and rotation - to increase414

the size of our data set.415

The entire map data is cropped into images of about a416

quarter of the size, taking TX as an anchor point. This417

augments the size of the dataset by a factor of 96. The image418

is first cropped as a 64×64 size image and then upsampled to419

a 256 × 256 size image. Note that some cropped images, not420

including any TX, are skipped since the TX location will be421

used as our second input feature. After cropping, the image422

sets are rotated by 90◦, 180◦, and 270◦, thus increasing the423

size of the dataset by a further factor of 4.424

4) Sampling: In the training and testing of PMNet on the425

pathloss map dataset, we employ an exclusive division scheme.426

Specifically, 90% and 10% of images are randomly split into427

the training and validation set, while the images from the same428

geographical map belong exclusively to either the training429

or the validation set. This approach is taken to enhance the430

generalization performance of PMNet.431

IV. PATHLOSS MAP PREDICTION432

A. Task (1): Pathloss Map Prediction433

We now formulate the prediction task in ML nomenclature.434

A domain (i.e., wireless channel prediction) is composed of a435

feature space X , where x ∈ X . Given the domain, a PMP task436

is defined as T = {Y, P (y|x)}, which is composed of a label437

space Y , where y ∈ Y . Given the task, a dataset is defined as438

D = {X ,Y}, which is a collection of |D| = N channel data439

that belong to a domain with a task T .440

For the PMP task, X consists of (1) a building map441

(including terrain, building, and/or foliage) and (2) a TX442

location and Y is a Pathloss map. The goal of the PMP443

task T is to find a predictive function f(·), which accurately444

predicts Y for a given X . It is worth noting that integrating445

RoI (denoted as A⋆) segmentation with path gain prediction446

simplifies the PMP task and eliminates the need for separate447

pre- or post-processing steps for the RoI segmentation for each448

map. Additionally, this integration helps NN better understand449

the different IOs in a given building map.450

In a nutshell, the PMP task is to predict the pathloss/path451

gain (and received power PRX using simple normalization)452

at RX locations qRX given TX location qTX in RoI A⋆.453

This channel prediction task exploits site-specific geographical454

information, focusing on the large-scale effects in the channel.455

We employ a supervised ML method for the PMP task. 456

We train the model on a dataset of RT channel for an area 457

of A, such as the USC dataset in Table I; see Fig. 3 for an 458

overview of the ML-based PMP approach. 459

B. Network Architecture 460

In this subsection, we present the design process of our 461

proposed PMP-oriented NN architecture, referred to as PMNet. 462

Our design principles are summarized as follows: (1) several 463

state-of-the-art techniques in the field of image processing are 464

carefully selected and tested, (2) some essential techniques are 465

selected following the concept of ablation study, and (3) the 466

NN with selected techniques is optimized with extensive 467

trials. 468

1) Design Choices: In the PMP task, the NN is required to 469

perform image segmentation to identify the RoI and predict 470

received power within the RoI, while accounting for complex 471

wireless propagation physics. To accomplish this, our proposed 472

PMNet is designed based on such methods, Encoder-Decoder 473

and Atrous convolution. 474

2) Encoder-Decoder: Encoder-Decoder networks are a 475

widely applied architecture for many computer vision tasks, 476

e.g., object detection [33], human pose estimation [34], and 477

semantic segmentation [35], [36], [37]. The encoder-decoder 478

architecture allows to learn a lower-dimensional representation 479

from a higher-dimensional dataset and utilize the learned rep- 480

resentation for various tasks. However, as the encoder shrinks 481

the input feature maps, it may lose essential information, lead- 482

ing to a bottleneck problem. Several architectures, including 483

U-Net [38], address the bottleneck problem by adding skip 484

connections between the encoder and the decoder parts. Skip 485

connections allow the decoder to access feature maps from 486

the encoder, which helps to propagate context information to 487

higher-resolution layers. 488

3) Atrous Convolution: Receptive field of a convolutional 489

layer is the region of the input feature map that contributes 490

to the output feature map at a given location. The size of the 491

receptive field is determined by the resolution of the input 492

feature map and the field-of-view (FoV) of the filter. There is 493

a logarithmic relationship between the localization accuracy 494

of a model and the size of its receptive field. This means the 495

receptive field size should be sufficient if the given dataset and 496

task are observed with wide FoV. A standard convolutional 497

filter detects a particular feature by sliding over the input 498

feature map, resulting in the output feature map seeing only 499

the adjacent part of the input feature map. In terms of 500

computational complexity, having a wide receptive field with 501

the standard convolutional filter is expensive. Thus, broadly 502

speaking, the receptive field of the standard convolution filter 503

is somewhat narrow, seeing only little context. 504

Atrous convolution, also known as dilated convolution, 505

is a technique that addresses this limitation [39]. It allows 506

capturing a larger context with a wider FoV by modifying 507

the standard convolution operation. For the two-dimensional 508

case, atrous convolution is applied over the input feature map 509

f to produce the output feature map g at location {i, j} using 510

the convolution filter w. This operation can be expressed as 511



LEE AND MOLISCH: SCALABLE AND GENERALIZABLE PATHLOSS MAP PREDICTION 7

Fig. 3. Overview of the PMP task and the PMNet architecture.

follows:512

g{i,j} =
k∑

m=1

k∑
n=1

f{i+rm,j+rn}w{m,n}. (11)513

Here, k represents the kernel size, and r is the atrous rate,514

which determines the stride level. Notably, the atrous rate r515

allows to adaptively control the FoV of the filter. For example,516

an atrous rate of r = 2 doubles the FoV of the filter, while an517

atrous rate of r = 3 triples it. The standard convolution can518

be seen as a special case of (11) where r = 1.519

In the context of the PMP task, the encoder-decoder520

architecture of PMNet facilitates efficient context propagation521

from the encoder to the decoder, while atrous convolution522

enables it to handle scale variations and capture broader523

context in map data, setting it apart from other UNet-based524

networks [15], [16], [17], [18]. The combination of these two525

features enables PMNet to efficiently and accurately predict526

pathloss maps, while also accounting for complex wireless527

propagation physics.528

4) Design Parameters: PMNet architectures are composed529

of a stack of ResLayers, each containing multiple residual530

blocks [40]. These ResLayers can be configured with varying531

numbers of blocks, atrous rates, multi-grids, and output strides.532

These elements are summarized as follows:533

• Number of blocks: The number of residual blocks in534

a ResLayer controls the complexity and depth of the535

network. Increasing the number of blocks may improve536

the accuracy of the model, but it also increases the537

computational cost.538

• Atrous rates: Atrous rates control the spacing between539

the convolutions in a ResLayer. Larger atrous rates allow540

the network to capture more larger spatial contexts in the541

PMP task.542

• Multi-grids: Multi-grids allow the network to capture543

multi-scale information from different levels of the CNN544

architecture.545

• Output stride: The output stride of a ResLayer controls546

the ratio between the resolution of the input image and the547

output image’s resolution. A higher output stride results548

in a lower-resolution output image. This can be useful to549

strike a balance between accuracy and speed.550

Parameters are optimized through thorough simulations. Note551

that the impact of output stride in the PMP task is shown in552

Table IV in Sec. IV-E (e.g., the case of H
8 ×W

8 ), demonstrating 553

the most substantial effect compared to other parameters. 554

With these design choices and parameters, PMNet effectively 555

predicts pathloss maps even for different channel datasets (e.g., 556

RadioMapSeer [21]). For an architectural overview, please 557

refer to Fig. 3 and Table II. For more details, please see our 558

source code repository. 559

C. Training 560

Table III lists the hyper-parameters that are used for the 561

training of PMNet. We implement the PMNet using PyTorch 562

and use an NVIDIA GeForce RTX 3080 Ti GPU. For more 563

stable training, we normalize the input values into [0, 1] via 564

scaling. During the training, we evaluate the PMNet by mean 565

squared error (MSE) on the validation set at the end of every 566

epoch. For testing, we use the parameters of PMNet with 567

the best MSE score on the validation set. Consequently, the 568

pathloss map for a given map can be generated within a few 569

milliseconds after training. 570

D. Evaluation 571

1) Root Mean Square Error (RMSE): RMSE is a widely 572

used loss function in regression analysis and is used as the 573

primary evaluation metric for this task. It measures the overall 574

difference between the prediction ŷ and ground-truth y and 575

quantifies the overall accuracy of the model. The formula for 576

RMSE is: 577

RMSE(ŷ, y) =

√√√√ 1
N

N∑
n=1

(ŷn − yn)2, (12) 578

where ŷn ∈ ŷ and yn ∈ y denote predicted and ground-truth 579

gray value (corresponding PRX) at the n-th pixel, respectively, 580

and N is the number of pixels in a pathloss map, i.e., 581

256×256. The RMSE averaged over all samples is the primary 582

evaluation metric for the PMP task. 583

2) RoI Segmentation Error: The RoI segmentation error, 584

calculated using the intersection over union (IoU) metric, 585

quantifies the accuracy of RoI and non-RoI area segmenta- 586

tion for all pixels in the ground-truth ({i, j}) and prediction 587

({̂i, ĵ}) - that is calculated as follows: 588

RoI Segmentation Err. =

∑
i

∑
j ErrB{i,j}∑

i

∑
j Bld{i,j}

. (13) 589
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TABLE II
PMNET ARCHITECTURES AND PARAMETERS. ↓ AND ↑ REPRESENT THE DOWNSAMPLING AND UPSAMPLING LAYERS, RESPECTIVELY

TABLE III
TRAINING CONFIGURATION AND HYPER-PARAMETERS

FOR PMNET TRAINING

Here, ErrB{i,j} and Bld{i,j} are defined as:590

ErrB{i,j} =


1, {i, j} ∈ B and {̂i, ĵ} ∈ A⋆

1, {i, j} ∈ A⋆ and {̂i, ĵ} ∈ B
0, otherwise

(14)591

Bld{i,j} =

{
1, {i, j} ∈ B
0. otherwise

(15)592

Within a given map, the non-RoI area, denoted as black (gray593

value 0), is represented by B, while the RoI area, denoted as594

non-black (grayscale 1 − 255), is represented by A⋆. B and595

A⋆ are complementary set within A. B can include buildings,596

foliage, and/or small objects.597

3) Channel Prediction Error: Channel prediction error598

directly evaluates path gain accuracy for pixels within the RoI599

area, evaluating power in [dBm] (or path gain in [dB]) unlike600

RMSE, which quantifies differences based on gray values.601

To calculate channel prediction error, gray values within the602

RoI area of both the predicted and ground-truth pathloss maps603

are converted into corresponding received power values. The604

RMSE formula is then applied to these power values:605

RMSE(p̂, p) =

√√√√ 1
N

N∑
n=1

(p̂n − pn)2, (16)606

where p̂n ∈ p̂ and pn ∈ p represent the predicted and ground-607

truth PRX at the n-th pixel, respectively. Channel Prediction608

Error is then computed by averaging RMSE(p̂, p) across all609

given samples.610

E. Simulation Result 611

1) Training Optimization: Table IV presents an ablation 612

study to identify the factors that significantly contribute to 613

PMNet’s performance in the PMP task, such as data augmen- 614

tation and feature map size.9 615

2) Impact of Data Augmentation: For the data augmenta- 616

tion, we do horizontal, vertical and diagonal flips. In other 617

words, including the original images, we use the ×4 number 618

of images for training. Note that data augmentation has several 619

advantages in general: first, it enhances the diversity of the 620

training data by generating additional examples that capture 621

various variations of the original data. Second, it reduces 622

overfitting by exposing the model to a wider range of input 623

patterns. Finally, data augmentation helps to make the model 624

more robust to noise and variability in the input data. As shown 625

in Table IV, it improves the performance of PMNet by 15.7% 626

in terms of RMSE. 627

3) Impact of Feature Map Size: We analyze the perfor- 628

mances of PMNet according to the size of the feature map, 629

which is the output of the encoder. Table IV compares the 630

results with the feature map sizes H
8 × W

8 and H
16 × W

16 , 631

where H and W are the height and width of an input image, 632

respectively. To adjust the feature map size, we modify the 633

strides of the convolution layers in the encoder. We employ 634

the feature map size of H
8 × W

8 as the default option, because 635

PMNet yields better performance with the feature map size of 636

H
8 × W

8 than that of H
16 × W

16 . 637

4) Accuracy: We compare the ML-based PMP with our 638

proposed PMNet model to two other methods for the PMP 639

task: a model-based approach, 3GPP, and an ML-based 640

approach, RadioUNet. All three methods produce a single- 641

channel 256 × 256 image of the pathloss map as the output, 642

given the input of a two-channel 256× 256 image containing 643

the geographical map and the TX location. Here are the details 644

of these baseline methods: 645

1) 3GPP (with map info.) As discussed in Sec. III-A.2, the 646

3GPP model determines the pathloss at a particular loca- 647

tion based on the Euclidean distance and whether the link 648

between the TX and RX is in LoS or NLoS. To ensure 649

a fair comparison with other baselines, we utilize map 650

information to determine the LoS or NLoS condition of 651

9Our extensive experiments tested other factors, such as different sampling
methods, training loss functions, and additional input features (e.g., TX dis-
tance heatmap), but these factors did not show a meaningful improvement to
justify the additional complexity.
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TABLE IV
ABLATION STUDY FOR PMNET TRAINING OPTIMIZATION. LOWER VALUES INDICATE BETTER PERFORMANCE

Fig. 4. Comparison of the predicted pathloss map of 3GPP, RadioUNet, and PMNet. in ground-truth represents the TX location. The scenes are randomly
selected, not cherry-picked.

specific pixels to the TX.10 Note that it does not require652

any NN training as it is a model-based approach.653

2) RadioUNet [15] is an ML-based PMP method that654

extends the UNet architecture by employing two UNets.655

Each UNet comprises 8 encoder layers with convolution,656

ReLU, and Maxpool layers, followed by 8 decoder lay-657

ers with transposed convolution and ReLU layers. The658

encoders and decoders are concatenated, as in the original659

UNet architecture. Here, RadioUNet employs curriculum660

training to enhance training: in the first stage, the first661

UNet is trained for a specific number of epochs, with662

the second UNet frozen. In the second stage, the second663

UNet is trained using the two-channel input features664

and the output of the first UNet, effectively making it665

a three-channel input network.666

3) PMNet (Proposed) is our proposed ML-based PMP667

method. This network employs several parallel atrous668

10The original 3GPP pathloss model uses a probabilistic model to determine
LoS/NLoS condition at a particular distance. However, to ensure a fair
comparison, we use here the deterministic LoS/NLoS condition determined
from the map information in calculating the pathloss gain.

convolutions with different rates and the encoder-decoder 669

network. The encoder consists of 6 ResNet-based layers. 670

Each ResNet layer comprises several bottleneck lay- 671

ers consisting of convolution, batch normalization, max 672

pooling, and ReLU. The decoder consists of 6 layers con- 673

sisting of convolution, adaptive average pooling, ReLU, 674

transposed convolution, and ReLU. Skip connections are 675

used between encoders and decoders. 676

5) Qualitative Analysis: Fig. 4 shows the prediction results 677

of the baselines. Recall that each pixel in the RoI corresponds 678

to the predicted received power PRX (or the path gain PG). 679

Note that some pixel values in the ground-truth data appear 680

noisy due to interpolation during the gray conversion process 681

after RT simulation. 682

3GPP exhibits a substantial deviation from ground-truth 683

obtained through RT simulation, highlighting the differences 684

between how RT simulation and 3GPP model calculate a 685

pathloss. Specifically, for RX locations with LoS conditions 686

close to the TX, the results obtained using the 3GPP model 687

approximately match the ground-truth data obtained from 688

Wireless Insite. However, for RX locations farther from the TX 689
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TABLE V
COMPARISON STUDY FOR PMP SCHEMES (3GPP, RADIOUNET, AND PMNET). LOWER VALUES INDICATE BETTER PERFORMANCE,

AND THE LOWEST ERRORS ARE HIGHLIGHTED

TABLE VI
NUMERICAL RESULTS OF PMNET ON AN UNSEEN NETWORK SCENARIO. PMNET WAS TRAINED ON THE USC DATASET

AND EVALUATED ON THE UCLA AND BOSTON DATASET

or under NLoS conditions, the 3GPP model exhibits significant690

discrepancy from the ground-truth data. It is worth noting that691

the 3GPP pathloss model does not provide results for near-field692

within a link distance of 10 meters; so, we arbitrarily set the693

power in the near-field area to gray value 255, which does694

not introduce significant errors. The 3GPP pathloss model is695

a simplified model that does not account for the complex696

wireless propagation physics of reflection, diffraction, and697

scattering (highlighted in ). Instead, it relies solely on two698

models for LoS and NLoS locations, respectively, and only699

considers link distance and carrier frequency. This simplified700

approach inevitably leads to significant inaccuracies in the701

pathloss prediction.702

RadioUNet demonstrates impressive RoI segmentation703

results, while its channel prediction outputs appear some-704

what blurry. It is worth noting that RadioUNet conducts705

curriculum-based training with 50 epochs each in the first706

and second stages, utilizing the same training/validation set707

as PMNet, which is trained with a total of 50 epochs.708

PMNet, on the other hand, achieves notable results for both709

RoI segmentation and channel prediction. As highlighted in ,710

PMNet effectively captures the intricate wireless propagation711

physics of reflection, diffraction, and scattering. This can712

be attributed to PMNet’s ability to incorporate a broader713

contextual understanding of the environment, enabling it to714

capture the representation of wireless propagation physics in715

the surrounding environment.716

6) Quantitative Analysis: Table V compares our proposed717

PMNet model to the model-based 3GPP method and the718

ML-based RadioUNet method in terms of three accuracy719

metrics for the PMP task: RMSE, RoI segmentation error, and720

channel prediction error. Note that the ground-truth dataset721

is made by RT simulation; therefore, the error shows the722

difference between a scheme and the RT simulation.723

The model-based 3GPP method has inferior results com-724

pared to ML-based methods, which can be explained by the725

oversimplifications inherent in this model, as discussed above.726

While our proposed PMNet model achieves the best score on727

all three metrics, another ML-based PMP method, RadioUNet,728

Fig. 5. Prediction results of PMNet on an unseen network scenario (i.e.,
cross-scenario evaluation). The model is trained on the USC dataset and
evaluated on the Boston dataset.

also achieves high accuracy (RMSE ≤ 0.03). This result 729

highlights the capability of ML-based PMP approaches to 730

learn a representation of the wireless propagation physics 731

implicit in the ground-truth RT channel data. 732

V. TRANSFERABLE PATHLOSS MAP PREDICTION 733

A. Challenge: PMP for Unseen Network Scenario 734

As demonstrated in the previous section, PMNet exhibits 735

high accuracy of the PMP task for a given dataset. How- 736

ever, minimizing re-training efforts for new network scenarios 737

remains a challenge. To evaluate PMNet’s generalizability 738

across different scenarios, we conducted a cross-scenario eval- 739

uation, testing PMNet trained on USC data on the Boston 740

dataset. 741

As shown in Fig. 5 and Table VI, the PMNet achieves 742

the RoI segmentation error on the order of 10−2 and the 743

channel prediction error on the order of 10−1 in a new 744

scenario. Such deterioration is due to differences in network 745

configuration and environmental characteristics between the 746

two scenarios (e.g., different map scales and geographical 747

features). This highlights the need for further development 748

to improve PMNet’s performance across different network 749

scenarios, a task we refer to as cross-scenario PMP. 750
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B. Task (2): Cross-Scenario PMP751

To enable better performance, we now allow cross-scenario752

PMP to improve the model trained on a different network753

scenario through training with a reduced-size training in the754

new scenario. This will allow the network to adapt to the new755

scenario with less time and resource effort, while maintaining756

high accuracy. To address this challenge, we leverage transfer757

learning (TL).758

1) Approach: Transfer Learning: TL is an ML technique759

that allows knowledge transfer from one task or dataset to760

another, reducing the amount of data and training time required761

for new scenarios. In the context of cross-scenario PMP,762

we can transfer the knowledge from the source scenario, which763

learns a predictive function fS(·) from a source dataset DS764

(e.g., USC), to the target scenario, which learns a predictive765

function fT (·) from a target dataset DT (e.g., UCLA and766

Boston).767

There are two main ways to use TL for the cross-scenario768

PMP.769

• Feature extraction: We can train a feature extractor on770

a source scenario and then use that feature extractor to771

extract features from data from a target scenario. Once we772

have extracted the features, we can train a simple model773

(e.g., a linear regressor) to predict the pathloss map for774

the target scenario.775

• Fine-tuning: We can fine-tune a pre-trained model on the776

target scenario. This can be done by unfreezing some or777

all of the layers of the pre-trained model and training the778

model on data from the target scenario.779

The choice between those two methods depends on a number780

of factors, including the size and complexity of the pre-trained781

model, the availability of training data for the target dataset,782

and the computational resources available.783

In this work, we focus on the fine-tuning TL approach with784

all of the layers of the pre-trained model unfrozen.11 This785

approach is simple yet effective, achieving higher accuracy on786

various cross-scenario PMP tasks with less training data and787

shorter training time, as elaborated in the following subsection.788

We prepare and use the following pre-trained models in our789

experiments:790

(i) VGG16ImgNet is the pre-trained CNN model trained791

on the ImageNet dataset, which contains 140k images792

belonging to 22k categories. It is a powerful image793

classification model that has been used to achieve state-794

of-the-art results on a variety of image classification795

benchmarks.796

(ii) PMNet3gpp is the pre-trained PMNet model trained on797

the 3GPP pathloss map dataset. The 3GPP pathloss map798

dataset is prepared with the 3GPP pathloss model in [20]799

(see 3GPP in Sec. IV-E.4, Fig. 4, and Table V).800

(iii) PMNetusc is the pre-trained PMNet model trained on the801

USC RT dataset. It is similar to PMNet3gpp but is trained802

on a different dataset. This is our main pre-trained model.803

Each pre-trained model is available on our GitHub page.804

11While we have performed sample experiments with unfreezing certain
layers, such as the encoder-frozen and decoder-unfrozen, performance did
not improve significantly. A more comprehensive investigation of this topic
is, however, beyond the scope of this paper.

TABLE VII
TRAINING CONFIGURATION AND HYPER-PARAMETERS

IN CROSS-SCENARIO PMP

TABLE VIII

IMPACT OF TL ON TRAINING SPEED (= 1
steps

). PMNET MODELS WITH

OR WITHOUT PMNETusc PRE-TRAINED MODEL ARE TRAINED AND
EVALUATED ON THE BOSTON DATASET

C. Simulation Results 805

As demonstrated in the cross-scenario evaluation results (in 806

Fig. 5 and Table VI), there is a need for further development 807

to make PMNet adapt to different network scenarios. To this 808

end, our approach is fine-tuning a pre-trained model with 809

down-sized data for the new scenario. Here, the main questions 810

in performing cross-scenario PMP are: (1) How quickly and 811

with how minimal data PMNet can effectively adapt to new 812

scenarios; and (2) Which pre-trained model should be utilized 813

for optimal performance in cross-scenario PMP. 814

1) Efficiency: For cross-scenario PMP, rapidly adapting 815

PMNet models to new network scenarios using limited data 816

is essential due to the time-consuming and expensive nature 817

of channel measurement using RT simulation or channel 818

sounder. This is particularly critical for applications like beam 819

management and localization using ML-based PMP, which 820

demand quick adjustments for new scenarios. 821

2) Impact of TL: TL can significantly improve the training 822

speed of PMNet models for cross-scenario PMP. As shown in 823

Fig. 6 and Table VIII, the TL case with the PMNetusc pre- 824

trained model achieves a given level of accuracy much faster 825

even with much less amount of training data. In particular, 826

PMNetusc achieves the same level of accuracy (RMSE ≤ 827

0.1 and RMSE ≈ 0.03) ×5.6 and ×4.1 faster, respectively, 828

as the Vanilla case (highlighted in ), where we define as 829

“Vanilla” the training from scratch in a particular environment. 830

Furthermore, the TL can also significantly save the required 831

amount of data for cross-scenario PMP. As shown in Fig. 7, the 832

TL (PMNetusc) trained with about 20% of the Boston dataset 833

achieves equivalent results to the Vanilla case trained with 834

about 90% of the dataset. 835

It is worth noting that limited training data can easily induce 836

overfitting, as observed in the Vanilla case with 20% Data 837

(highlighted in ). For the same amount of new scenario 838
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Fig. 6. Comparison of the training efficiency of PMNet models with and without TL. PMNet models are trained for 50 epochs and evaluated on the Boston
dataset.

TABLE IX
COMPARISON OF PRE-TRAINED MODELS (VGG16ImgNet , PMNET3gpp , AND PMNETusc) IN TERMS OF ACCURACY. MODELS ARE EVALUATED ON THE

UCLA AND BOSTON DATASETS, USING 90% OF THE DATA FOR TRAINING AND 10% OF THE DATA FOR VALIDATION. 50 EPOCHS ARE USED FOR
TRAINING. LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

Fig. 7. Impact of TL on training data requirements. PMNet models with or
without PMNetusc pre-trained model are trained with 50 epochs and evaluated
on the Boston dataset.

data, the TL case (PMNetusc (20%)) does not experience the839

overfitting issue. This suggests that TL also enhances training840

stability (less overfitting issue with limited data) in cross-841

scenario PMP.842

Our findings demonstrate that the pre-trained PMNetusc843

model efficiently accelerates the training process by leveraging844

its knowledge of PMP tasks, including the physics of wireless845

channel propagation and RoI segmentation, and this model846

can be readily adapted to new scenarios with minimal data847

and training steps.848

Consequently, we confirm that fine-tuning with a suitable849

pre-trained model is an effective cross-PMP task method.850

Another key question is which pre-trained model is suit-851

able and which is not, which is discussed further in the852

following.853

3) Accuracy: As discussed in Sec. V, the source and target 854

scenario (task or domain) should be sufficiently similar for 855

effective TL to occur. For instance, to successfully apply TL to 856

the target task of predicting wireless communication channels, 857

the NN should extract relevant features of wireless propagation 858

physics from the source task. 859

4) “Suitable” Pre-Trained Model: Table IX compares the 860

performance of the PMNet model with and without TL. The 861

baseline model, referred to as Vanilla, is trained without any 862

TL (without any pre-trained model). Additionally, we compare 863

the performance of TL using a pre-trained model trained on an 864

unrelated source scenario (i.e., VGG16 trained on ImageNet) 865

with TL using a pre-trained model trained on a related source 866

scenario (i.e., PMNet trained on USC or 3GPP datasets). 867

As shown in Table IX, both PMNet models trained on 868

PMNetusc and PMNet3gpp outperform the Vanilla case on all 869

performance metrics, suggesting that using a pre-trained model 870

trained on a related source task can significantly improve 871

accuracy. 872

Interestingly, while the VGG16 model trained on ImageNet 873

(VGG16ImgNet) outperforms the Vanilla for RoI segmentation, 874

it fails to do so for channel prediction (highlighted in ). This 875

discrepancy stems from the VGG16 pre-trained model, which 876

has an inherent understanding of segmentation and image 877

representation from its source task; however, does not have 878

any knowledge of the physics of wireless propagation. 879

Fig. 8 visually confirms the findings from Table IX. All 880

models achieve high accuracy for RoI segmentation, while 881
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Fig. 8. Comparison of the prediction results of pre-trained models (VGG16ImgNet, PMNet3gpp, and PMNetusc). 50 epochs are used for training. Brighter
colors indicate higher PG. Note that pixels with non-zero gray value are converted to color to highlight differences between results.

only the TL case using a pre-trained model trained on a related882

source scenario (e.g., PMNet3gpp and PMNetusc) achieves high883

accuracy for channel prediction, capturing subtle details of the884

wireless propagation physics. This suggests that our PMNet885

pre-trained model is generalizable to different scenarios due to886

its inherent knowledge of channel propagation representation,887

and that TL can further improve accuracy.888

These results empirically demonstrate that pre-trained889

model’s source dataset (task or domain) should be similar890

to the target dataset (task or domain) to transfer useful891

information during TL. Specifically, for cross-scenario PMP,892

it is important to use a pre-trained model that has been893

trained extensively on data related to wireless propagation894

physics.895

Therefore, we conclude that the suggested TL approach,896

fine-tuning with a stable and closely related pre-trained model897

(such as PMNetusc), is a simple yet effective way to address898

the cross-scenario PMP task, which is important for practical899

applications.900

VI. CONCLUSION901

This work introduces an ML-based large-scale channel pre-902

diction framework, PMNet, which can create highly accurate903

pathloss predictions for a given map in a few milliseconds.904

Utilizing an RT channel dataset of real-world scenarios (e.g.,905

USC, UCLA, and Boston area), PMNet is verified for its906

accuracy and training efficiency. In particular, TL with our907

PMNet pre-trained model, which has generalization capability908

for different network scenarios, enables the PMNet to adapt909

itself quickly and efficiently to a new network scenario, while910

achieving an RMSE of 10−2 level.911

The high accuracy and low runtime of the PMNet frame-912

work make it suitable for deployment planning in dense913

networks as well as online optimization of network parameters.914

Still, it remains an open question whether the knowledge of 915

wireless propagation physics in our PMNet pre-trained model 916

can be transferred to other downstream tasks beyond the PMP 917

task; this question will be the topic of our future research. 918
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A Scalable and Generalizable Pathloss
Map Prediction

Ju-Hyung Lee , Member, IEEE, and Andreas F. Molisch , Fellow, IEEE

Abstract— Large-scale channel prediction, i.e., estimation of1

the pathloss from geographical/morphological/building maps,2

is an essential component of wireless network planning. Ray trac-3

ing (RT)-based methods have been widely used for many years,4

but they require significant computational effort that may become5

prohibitive with the increased network densification and/or use of6

higher frequencies in B5G/6G systems. In this paper, we propose7

a data-driven, model-free pathloss map prediction (PMP) method,8

called PMNet. PMNet uses a supervised learning approach: it9

is trained on a limited amount of RT data and map data.10

Once trained, PMNet can predict pathloss over location with11

high accuracy (an RMSE level of 10−2) in a few milliseconds.12

We further extend PMNet by employing transfer learning (TL).13

TL allows PMNet to learn a new network scenario quickly14

(×5.6 faster training) and efficiently (using ×4.5 less data) by15

transferring knowledge from a pre-trained model, while retaining16

accuracy. Our results demonstrate that PMNet is a scalable and17

generalizable ML-based PMP method, showing its potential to18

be used in several network optimization applications.19

Index Terms— Pathloss map prediction, ray tracing, machine20

learning, computer vision, transfer learning, network optimiza-21

tion, digital twin, 6G.22

I. INTRODUCTION23

DIGITAL twin (DT) network is emerging as a key enabler24

for the artificial intelligence (AI) and machine learning25

(ML)-driven design, simulation, and optimization of 6G sys-26

tems [3], [4]. A DT network is a dynamic, digital replica27

of a real-world network environment, providing real-time,28

accurate reflections of physical network scenarios. It can29

be used for a variety of applications, including dynamic30

resource allocation, beam management, and localization using31

ML-based PMP, which demands quick adjustments for new32

scenarios. However, implementing DT is challenging in 6G33
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networks, which are characterized by increased deployment 34

density, complex distributed architectures, and high-frequency 35

operation in millimeter wave (mmWave) and terahertz (THz) 36

bands. 37

Individually and taken together, these developments neces- 38

sitate dramatically faster large-scale channel prediction 39

methods.1 Since traditional ray tracing (RT) tools are too slow 40

for the repeated runs required in such DT implementation 41

processes, there is a strong need for new, accurate, and fast 42

methods for channel prediction over a large-scale area (e.g., 43

campus or city-map scale). 44

Several works have addressed this need by channel pre- 45

diction using powerful ML techniques. These works use 46

ground-truth channel data (from RT simulations or real 47

channel measurements/soundings campaigns) to train neural 48

networks (NNs). This eventually provides an accurate and 49

fast prediction of channel information (e.g., received power, 50

delay, angles, and so on) for a certain area, a technique called 51

ML-based site-specific radio propagation modeling. 52

Still, these ML-based approaches use supervised learning, 53

meaning they are trained to solve a specific network scenario 54

with a certain labeled dataset. In other words, the models may 55

need to be rebuilt for a new network scenario, e.g., different 56

map scales, environmental aspects, and/or network configura- 57

tion - a process that can be time-consuming and expensive. 58

This creates a need for a method that can furthermore transfer 59

knowledge of propagation channels across different network 60

scenarios and environments. 61

A. Related Works 62

Due to the high cost and complexity of field measurements 63

with channel sounders, most cellular deployment planning 64

has long replaced channel measurements with electromagnetic 65

(EM) simulation-based approaches, such as RT [5], [6] and 66

ray launching [7] simulation.2 Over the past 30 years, the 67

efficiency and accuracy of RT have improved significantly [9], 68

thanks to the prevalence of GPUs (graphic processing units) 69

that efficiently facilitate RT tasks. 70

However, due to the factors mentioned above (such as the 71

need for more detailed environmental consideration at higher 72

1The word “channel prediction” is often used for two different problems:
(i) computation of the propagation channel at a particular location based on
maps of the environment, and (ii) temporal prediction of the channel (often
for a mobile device moving on a trajectory), based on measurements in the
immediate past. This paper only considers the former case.

2Our research utilizes RT simulations via Wireless Insite to investigate
path loss. This simulation program has been validated against real-world
measurements, e.g., in [8] showing an acceptable error margin.

1536-1276 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Overview of the pathloss map prediction (PMP) task and the
cross-scenario PMP. The input Map feature includes the transmitter (TX)
location.

frequencies and the need for fast simulations with higher73

deployment density), RT simulations are too computationally74

intensive for large-scale network deployment in 6G systems.75

Consequently, simplified model-based approaches like the76

dominant path model [10], or fine-tuning of generic pathloss77

models (e.g., 3GPP path gain model) with limited measure-78

ment data [11], [12] have been proposed over the years.79

Nevertheless, these approaches have gained limited acceptance80

by network operators due to their insufficient accuracy in81

predicting the propagation characteristics of signals in complex82

environments.83

In recent years, supervised ML has been applied to solve84

a variety of challenging problems in wireless communication,85

including channel measurement/prediction for 6G networks.86

Such an ML-based approach can be trained on a map of87

the environment (topology/morphology) and a relatively small88

set of measurement data to learn how to provide a virtual89

replica (e.g., DT) of a large-scale network environment in90

real-time while accurately modeling the behavior of channel91

characteristics.92

On the one hand, models like WiNeRT [13] and NeRF293

[14] are specifically developed to predict detailed chan-94

nel information (e.g., power, delay, and angle information)95

of each multi-path component (MPC) between TX and96

receiver (RX) with the input of detailed information, including97

spatial configuration and wireless configuration parameters.98

These models are particularly well-suited for applications in99

small-scale indoor areas, where high-detailed channel predic-100

tion is required (e.g., indoor sensing).101

On the other hand, models like RadioUNet [15] and102

FadeNet [16] aim to predict the path gain, received power,103

or coverage for TX-RX in a given area with the input of104

a building map. These models are designed for large-scale105

channel prediction, where fast operation is essential (e.g.,106

network optimization).107

In particular, several state-of-the-art works, such as108

Agile [17], PPNet [18], and PMNet [1], are pushing the109

boundaries of predictive accuracy and computational efficiency110

for large-scale channel prediction (e.g., radio environment map 111

estimation), as evidenced by their performance in ML compe- 112

titions such as the RadioMap Prediction Challenge (see details 113

in [19]). This highlights the applicability and importance of 114

large-scale channel prediction in evolving wireless network 115

optimization, which aligns with our research direction. 116

B. Contributions 117

This paper proposes a scalable and generalizable channel 118

prediction approach specifically designed for large-scale chan- 119

nel prediction, called PMP task. Our contributions can be 120

summarized as follows: 121

• We design a PMP-oriented NN architecture, called 122

PMNet, by leveraging computer-vision techniques, gen- 123

erating highly accurate channel prediction results for 124

a given map in few milliseconds. PMNet achieves the 125

best channel prediction accuracy compared to two base- 126

lines: a model-based scheme (3GPP-UMi model [20]) 127

and another ML-based scheme (RadioUNet [15]) (see 128

Table V in Sec. IV) and also in different PMP datasets. 129

PMNet achieved 1st-rank in the ICASSP 2023 Radio Map 130

Prediction Challenge [19].3 131

• We build three sets of real-world channel datasets using 132

a RT simulation tool, i.e., Wireless Insite, for training 133

and evaluation, which reflects different network scenarios 134

(e.g., different map scale, environment, and network 135

configuration) in two different light urban environments 136

(the USC and UCLA campuses) and a metropolitan area 137

(the Boston area), see Table I in Sec. III. 138

• We propose a method of predicting pathloss in unseen 139

network scenarios by using transfer learning (TL) with a 140

pre-trained model. We prepare three pre-trained models 141

for TL: VGG16 [22] and two pre-trained PMNet models 142

trained with 3GPP prediction results and RT simulation 143

results, respectively, and quantitatively and qualitatively 144

evaluate their accuracy (see Table IX and Fig. 8 in 145

Sec. V). 146

• We empirically demonstrate that our PMNet pre-trained 147

model has generalization capability for different network 148

scenarios, adjusting to new network scenarios ×5.6 faster 149

and using ×4.5 less data than a baseline model without 150

TL, while still achieving high accuracy of an RMSE of 151

10−2 level (see Fig. 6 and Table. VIII in Sec. V). 152

• We release source code for the experiments to promote 153

reproducible ML research in wireless communication.4 154

C. Paper Organization 155

The rest of the paper is organized as follows: Sec. II presents 156

the background on two important concepts: (1) ray tracing 157

simulation, which is used to generate ground-truth channel 158

information for training and evaluation; and (2) transfer 159

learning, which enables us to transfer the knowledge learned 160

3In this competition, PMNet demonstrated its high accuracy in the PMP
task on a different dataset [21], which featured a different map scale, network
configuration, and was generated by a different RT simulation tool, i.e.,
WinProp, highlighting PMNet’s generalization capability.

4https://github.com/abman23/PMNet
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from a source task/dataset to a new task/dataset (e.g., unseen161

network scenario). After introducing our dataset based on real162

geographical maps in Sec. III, Sec. IV introduces the PMP task163

and our proposed NN architecture (PMNet) for this channel164

prediction task. We also present the training and evaluation165

process, as well as simulation results. Then, Sec. V presents166

our approach for efficiently learning and predicting channels in167

unseen network environments by transferring the pre-trained168

knowledge from other networks. We provide extensive exper-169

imental results and quantitative and qualitative performance170

analysis, followed by concluding remarks in Sec. VI.171

Notation: Throughout this paper, we use the normal-face172

font to denote scalars and the boldface font to denote vectors.173

We use P (·) and P (·|·) to represent a marginal probability174

distribution and conditional distribution, respectively. We also175

use ∥ · ∥ to denote the L2-norm, which is an Euclidean norm.176

N (µ, σ) denotes the normal distribution with mean µ and177

standard deviation σ.178

II. BACKGROUND179

To provide a comprehensive understanding of our work,180

it is essential to cover Pathloss, Ray Tracing Simulation,181

and Transfer Learning, as these areas are integral to our182

methodology and analysis.183

A. Pathloss184

The link gain between a TX at location qTX and an RX at185

location qRX at time t and frequency f can be expressed as186

follows:187

|h(t, f, qTX, qRX)|2 =
PRX(t, f, qRX)
PTX(t, f, qTX)

(1)188

where PRX and PTX are received and transmitted power,189

respectively. This link gain includes the effects of antenna190

gains at TX and RX; when isotropic antennas are used,191

it becomes identical to the channel gain. It exhibits variations192

in time and/or location due to small-scale fading, shadowing,193

and large-scale distance changes. Averaging over small-scale194

fading removes (under certain circumstances, see [23, Ch. 7])195

the dependence on frequency and time, providing the path gain196

(PG) that can be written as a function of only the large-scale197

distance changes:198

PG(qTX, qRX) =
1
TS

1
BS

∫
TS

∫
BS

|h(t, f, qTX, qRX)|2 df dt.199

(2)200

Here, TS and BS denote the stationary-time and -bandwidth,201

respectively. The path gain can be represented as the sum of202

the powers of the N MPCs, as discussed further in Sec. III-A.203

For later reference, we note that the pathloss is the inverse204

of the path gain (or the sign-flipped value when expressed205

in dB).206

B. Ray Tracing (RT) Simulation207

RT is an approximate method for modeling the propa-208

gation of electromagnetic waves in wireless communication209

scenarios. It works by tracing the paths of individual rays as 210

they propagate through the environment, whose features are 211

represented in a geographical database. The rays are reflected, 212

deflected, and scattered by the objects in the environment, 213

with the various interaction processes computed according 214

to high-frequency approximations, namely (most commonly) 215

Snell’s laws for specular reflection and transmission, uniform 216

theory of diffraction (UTD) for diffraction, and Kirchhoff 217

scattering theory for diffuse scattering [23, Ch. 4].5 The 218

RT tool simulates radio wave propagation deterministically 219

based on physical laws, offering site-specific radio propagation 220

modeling, in contrast to stochastic wireless channel models 221

(e.g., 3GPP standardized channel model). 222

In this paper, we employ a commercial RT tool, Wire- 223

less Insite from Remcom [7] for all RT simulations, both 224

because of its user-friendliness and the fact that its accuracy 225

has been compared against a number of channel sounder 226

measurements [6], [24], [25]. RT can be used to predict 227

channel information, such as received signal strength, delay, 228

and angles, in a variety of wireless environments, both indoor 229

and outdoor. The accuracy of RT simulations depends on 230

various factors, such as the complexity of the environment, 231

the accuracy of the geographical database, and the carrier 232

frequency. The channel information obtained from the RT 233

can be utilized, inter alia, for various network optimiza- 234

tion tasks, including base station (BS) deployment planning, 235

BS parameter optimization, as well as beam management and 236

localization. 237

C. Transfer Learning (TL) 238

TL is a machine learning technique that leverages a 239

pre-trained model on a new task, significantly reducing the 240

amount of data and training time required for new scenarios. 241

This approach is particularly advantageous when there is 242

limited data available for the new task or when the new task 243

shares similarities with a previously learned task. By utilizing 244

knowledge from a related task, TL can enhance model perfor- 245

mance, expedite training processes, and mitigate overfitting, 246

especially in data-constrained environments. 247

For instance, a model pre-trained on image classification 248

tasks can be effectively repurposed for object detection or 249

semantic segmentation. This reuse is possible because the 250

model has already learned useful feature representations from 251

a large and diverse dataset, enabling it to adapt more efficiently 252

to new, related tasks. 253

One of the most popular pre-trained models is VGG16 254

[22], which is trained on more than a million images from 255

the ImageNet database for image classification. VGG16 has 256

demonstrated its versatility by being reused to improve perfor- 257

mance in various tasks, including semantic segmentation [26] 258

and object detection [27]. These applications showcase the 259

model’s ability to transfer learned features, thus enhancing 260

performance in new domains with minimal additional training. 261

However, it is important to note that the effectiveness of TL 262

depends on the similarity between the pre-trained task and the 263

5RT can be implemented via image-theory-based RT, or as ray launching.
We will henceforth use the expression RT for both those methods.



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

target task.6 The transferability of deep feature representations264

decreases as the discrepancy between the pre-trained task and265

the target task increases [28]. In other words, the further apart266

the task is, the less transferable the knowledge. One example is267

catastrophic forgetting, which is a phenomenon that can occur268

when fine-tuning a pre-trained model on a new task, resulting269

in a loss of previously acquired knowledge [29].270

Research has shown that well-generalized models, particu-271

larly those with excellent pre-training performance [30], have272

the potential to require minimal fine-tuning or even none at273

all (e.g., zero-shot learning) for new tasks [31]. These suggest274

the importance of selecting a pre-trained model suitable for275

the target task.276

III. DATASET277

In this section, we discuss the dataset preparation process278

for our pathloss map datasets, reflecting real-world network279

scenarios in USC, UCLA, and Boston areas.280

We obtained the ground-truth channel data using the281

commercial RT tool Wireless Insite [7], which takes into282

account the geographical and morphological features of the283

propagation environment. We then pre-processed the data284

(e.g., interpolation and data augmentation) to prepare the285

ground-truth pathloss map.286

A. Channel Data287

1) RT Simulation: As discussed in Sec. II-A, RT emulates288

the behavior of each MPC between TX and RX, following289

physical principles including the free-space power loss and290

interaction with different interacting objects (IOs). This allows291

us to compute for each MPC the information of complex292

amplitude a, directions of departure Ω and arrival Ψ, and delay293

τ . The contribution of m-th MPC can be expressed as [32]:294

hm(t, τ, Ω, Ψ) = amδ(τ − τm)δ(Ω − Ωm)δ(Ψ − Ψm), (3)295

where the dependence of Ω, Ψ, τ, a on t is not written explic-296

itly on the r.h.s. The sum of contributions from all MPCs is297

given by298

h(t, τ, Ω, Ψ) =
N∑

m=1

hm(t, τ, Ω, Ψ). (4)299

Since Ω, Ψ, τ, |a| are constant over a stationarity-time and300

bandwidth, while arg(a) varies over many periods of 2π, and301

assuming isotropic antennas at TX and RX (so that Ω, Ψ do302

not matter), the path gain averaged over the small-scale fading303

can be computed from (2) as304

PG =
N∑

m=1

|hm(τ,Ω, Ψ)|2 =
N∑

m=1

|am|2. (5)305

6The wireless community has long classified environments—rural, sub-
urban, urban, and metropolitan—based on their channel characteristics,
a practice dating back to the COST 207 models of the mid-1980s. Despite the
subjective nature of these categories and the lack of specific numerical criteria,
their differentiation by factors like population density and infrastructure
complexity is widely accepted for assessing wireless signal propagation and
network performance and its similarity.

Fig. 2. Map of USC, UCLA, and Boston used in RT simulation. Fig. 2a
is imported and converted to Fig. 2b. The ground-truth pathloss map over
the USC campus is then obtained using Wireless Insite RT simulation and
pre-processing (e.g., interpolation, gray conversion, and data augmentation).

Note that our pathloss map uses the information of path gain 306

(in [dB]) while other information on angles and delay is 307

not needed (though this information can be used for further 308

applications, e.g., beamforming algorithms). 309

Thus, PRX (in [dBm]) can be expressed as a function of 310

PTX (in [dBm]) as follows: 311

PRX = PTX + PG. (6) 312

Note that we set PTX = 0 [dBm] in our RT dataset to simplify 313

the analysis, which makes PRX in [dBm] equal to PG in [dB]. 314

To generate a ground-truth (labeled) dataset that simulates 315

real-world network scenarios, we conduct Wireless Insite RT 316

simulations on the geographical and morphological maps of 317

the University of Southern California (USC) campus, the 318

University of California, Los Angeles (UCLA) campus, and 319

the Boston area. Both campus areas are in Los Angeles, CA, 320

and exhibit a (light) urban build-up, with most buildings being 321

five stories or less (with a few high-rises interspersed), gaps 322

between buildings along the street canyons, and some open 323

squares. The Boston area is in downtown of Boston, MA. It is 324

a metropolitan area with multiple high-rises; its streets are not 325

arranged along a rectangular grid. Each dataset has different 326

network configurations and environmental characteristics (e.g., 327

map scale, and geographical features, such as vegetation). See 328

Fig. 2 and Table I for more details.7 329

7It is worth noting that the simulations are performed at the sub-6 GHz
band, which is the most widely used cellular band. Similar simulations can
be performed in other frequency bands, such as the mmWave and THz bands,
with minor adjustments to the parameters. However, at those high frequency
bands, geographical data bases with higher resolution might be required for
comparable accuracy.
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TABLE I
PARAMETERS OF USC, UCLA, AND BOSTON DATASETS

We stress that the goal of our work is the correct pre-330

diction of “ground-truth” pathloss by ML techniques. The331

pathloss obtained from the RT simulations might deviate332

from measured values due to inaccuracies of the database333

or inherent approximations of RTs. However, such deviations334

are irrelevant to the assessment of our ML methods, since335

they only impact what is used as “ground-truth” and not the336

prediction process itself. In other words, if the ground-truth is337

more accurate (similar to measurement results), our prediction338

inherently becomes more accurate as well.8339

2) 3GPP Model: The 3GPP 38.901 channel model [20]340

(henceforth simply called the “3GPP model” for conciseness)341

is a widely used model for wireless system standardization342

that claims validity for frequencies spanning from 0.5 to343

100 [GHz].344

For the purposes of this paper, we only consider the 3GPP345

modeling of the pathloss, which follows the classical α − β346

model347

PLα−β(d) = 10α log10(d) + β + S, (7)348

where S ∼ N (0, σS) is a lognormally distributed random349

variable (with variance σS) representing the shadow fading,350

and α, β, and σ are parameters of the model that are351

based on measurement campaigns and that are different in352

different environments. Important for our later discussions,353

those parameters are also different depending on whether an354

unobstructed optical line of sight (LoS) exists between TX and355

RX or not.356

Specifically, for urban environments, the following describes357

the path gain:358

PGUMi−LoS =

{
PL1, (10[m] ≤ d2D ≤ dBP)
PL2, (dBP ≤ d2D ≤ 5[km])

(8)359

PGUMi−NLoS = max(PGUMi−LoS, PL3),360

(10[m] ≤ d2D ≤ 5[km]) (9)361

8Thus, if our proposed PMNet can accurately predict/reproduce RT results
when trained with RT data, it will also be able to do so for measurement data
when trained with measurement data.

where the two-dimensional xy-distance is d2D and the three- 362

dimensional xyz-distance is d3D, 363

PL1 = 32.4 + 21 log10(d3D) + 20 log10(fc), 364

PL2 = 32.4 + 40 log10(d3D) + 20 log10(fc) 365

− 9.5 log10((dBP)2 + (hBS − hUT)2), 366

PL3 = 22.4 + 35.3 log10(d3D) + 21.3 log10(fc) 367

− 0.6(hUT − 1.5). (10) 368

Here, the breakpoint distance is dBP = 2πhBShUTfc/c where 369

fc is the center frequency in [Hz] and c = 3.0 × 108[m/s] is 370

the speed of light. The antenna heights at the TX (e.g., base 371

station), hBS, and the RX (e.g., user terminal), hUT, are set to 372

1.5 [m] and 10 [m], respectively. Note that the model differs 373

for LoS and non-LoS (NLoS) situations. 374

This model is employed as one of our baselines for the 375

prediction (see Sec. IV-E). While the 3GPP model also models 376

shadowing, it incorporates it as stochastic variations that 377

cannot be related to particular map features; we therefore omit 378

them for the purposes of this paper. 379

B. Pre-Processing 380

The raw numeric data from the RT simulation is 381

pre-processed using gray conversion and interpolation meth- 382

ods to generate the ground-truth pathloss map, data augmen- 383

tation methods to create an increased amount of labeled data, 384

and sampling methods to divide them into training and testing 385

sets. 386

1) Gray Conversion: To generate the pathloss map, 387

we begin by converting the received power PRX (in [dBm]) 388

(or the path gain PG in [dB]) into grayscale between 1 and 389

255 using Min-Max normalization, with the minimum value 390

of −254 [dBm] and the maximum value of 0 [dBm]. While 391

the upper value is higher than physically reasonable, this pair 392

of values was chosen for convenience to have a 1 [dBm] per 393

gray value step mapping. A smaller (or larger) step size does 394

not have a significant impact on the prediction performance. 395

The gray value 0 is filled at pixels of building area, which 396

is not our region-of-interest (RoI), while, for our RoI, each 397

pixel is filled with gray values between 1 and 255, which 398

corresponds to PRX. Then, the pathloss map is generated after 399
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scaling the considered map scale into a 256×256 gray image.400

Note that the image size (256 × 256) has nothing to do with401

the grayscale (0 − 255).402

2) Interpolation: Since the RT simulations are carried out403

over a discrete set of RX locations, and it is computation-404

ally challenging to gather the channel information for every405

available RX location, there is missing channel information in406

a few pixel locations. To fill the missing part of the pathloss407

map, we utilize bilinear interpolation, which approximates the408

missing value with a weighted sum of the gray values of the409

adjacent locations.410

3) Data Augmentation: Typically, a larger dataset leads to411

improved performance of NN training. In other words, the412

larger the data set, the better the outcome. We thus use two413

augmentation methods - cropping and rotation - to increase414

the size of our data set.415

The entire map data is cropped into images of about a416

quarter of the size, taking TX as an anchor point. This417

augments the size of the dataset by a factor of 96. The image418

is first cropped as a 64×64 size image and then upsampled to419

a 256 × 256 size image. Note that some cropped images, not420

including any TX, are skipped since the TX location will be421

used as our second input feature. After cropping, the image422

sets are rotated by 90◦, 180◦, and 270◦, thus increasing the423

size of the dataset by a further factor of 4.424

4) Sampling: In the training and testing of PMNet on the425

pathloss map dataset, we employ an exclusive division scheme.426

Specifically, 90% and 10% of images are randomly split into427

the training and validation set, while the images from the same428

geographical map belong exclusively to either the training429

or the validation set. This approach is taken to enhance the430

generalization performance of PMNet.431

IV. PATHLOSS MAP PREDICTION432

A. Task (1): Pathloss Map Prediction433

We now formulate the prediction task in ML nomenclature.434

A domain (i.e., wireless channel prediction) is composed of a435

feature space X , where x ∈ X . Given the domain, a PMP task436

is defined as T = {Y, P (y|x)}, which is composed of a label437

space Y , where y ∈ Y . Given the task, a dataset is defined as438

D = {X ,Y}, which is a collection of |D| = N channel data439

that belong to a domain with a task T .440

For the PMP task, X consists of (1) a building map441

(including terrain, building, and/or foliage) and (2) a TX442

location and Y is a Pathloss map. The goal of the PMP443

task T is to find a predictive function f(·), which accurately444

predicts Y for a given X . It is worth noting that integrating445

RoI (denoted as A⋆) segmentation with path gain prediction446

simplifies the PMP task and eliminates the need for separate447

pre- or post-processing steps for the RoI segmentation for each448

map. Additionally, this integration helps NN better understand449

the different IOs in a given building map.450

In a nutshell, the PMP task is to predict the pathloss/path451

gain (and received power PRX using simple normalization)452

at RX locations qRX given TX location qTX in RoI A⋆.453

This channel prediction task exploits site-specific geographical454

information, focusing on the large-scale effects in the channel.455

We employ a supervised ML method for the PMP task. 456

We train the model on a dataset of RT channel for an area 457

of A, such as the USC dataset in Table I; see Fig. 3 for an 458

overview of the ML-based PMP approach. 459

B. Network Architecture 460

In this subsection, we present the design process of our 461

proposed PMP-oriented NN architecture, referred to as PMNet. 462

Our design principles are summarized as follows: (1) several 463

state-of-the-art techniques in the field of image processing are 464

carefully selected and tested, (2) some essential techniques are 465

selected following the concept of ablation study, and (3) the 466

NN with selected techniques is optimized with extensive 467

trials. 468

1) Design Choices: In the PMP task, the NN is required to 469

perform image segmentation to identify the RoI and predict 470

received power within the RoI, while accounting for complex 471

wireless propagation physics. To accomplish this, our proposed 472

PMNet is designed based on such methods, Encoder-Decoder 473

and Atrous convolution. 474

2) Encoder-Decoder: Encoder-Decoder networks are a 475

widely applied architecture for many computer vision tasks, 476

e.g., object detection [33], human pose estimation [34], and 477

semantic segmentation [35], [36], [37]. The encoder-decoder 478

architecture allows to learn a lower-dimensional representation 479

from a higher-dimensional dataset and utilize the learned rep- 480

resentation for various tasks. However, as the encoder shrinks 481

the input feature maps, it may lose essential information, lead- 482

ing to a bottleneck problem. Several architectures, including 483

U-Net [38], address the bottleneck problem by adding skip 484

connections between the encoder and the decoder parts. Skip 485

connections allow the decoder to access feature maps from 486

the encoder, which helps to propagate context information to 487

higher-resolution layers. 488

3) Atrous Convolution: Receptive field of a convolutional 489

layer is the region of the input feature map that contributes 490

to the output feature map at a given location. The size of the 491

receptive field is determined by the resolution of the input 492

feature map and the field-of-view (FoV) of the filter. There is 493

a logarithmic relationship between the localization accuracy 494

of a model and the size of its receptive field. This means the 495

receptive field size should be sufficient if the given dataset and 496

task are observed with wide FoV. A standard convolutional 497

filter detects a particular feature by sliding over the input 498

feature map, resulting in the output feature map seeing only 499

the adjacent part of the input feature map. In terms of 500

computational complexity, having a wide receptive field with 501

the standard convolutional filter is expensive. Thus, broadly 502

speaking, the receptive field of the standard convolution filter 503

is somewhat narrow, seeing only little context. 504

Atrous convolution, also known as dilated convolution, 505

is a technique that addresses this limitation [39]. It allows 506

capturing a larger context with a wider FoV by modifying 507

the standard convolution operation. For the two-dimensional 508

case, atrous convolution is applied over the input feature map 509

f to produce the output feature map g at location {i, j} using 510

the convolution filter w. This operation can be expressed as 511
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Fig. 3. Overview of the PMP task and the PMNet architecture.

follows:512

g{i,j} =
k∑

m=1

k∑
n=1

f{i+rm,j+rn}w{m,n}. (11)513

Here, k represents the kernel size, and r is the atrous rate,514

which determines the stride level. Notably, the atrous rate r515

allows to adaptively control the FoV of the filter. For example,516

an atrous rate of r = 2 doubles the FoV of the filter, while an517

atrous rate of r = 3 triples it. The standard convolution can518

be seen as a special case of (11) where r = 1.519

In the context of the PMP task, the encoder-decoder520

architecture of PMNet facilitates efficient context propagation521

from the encoder to the decoder, while atrous convolution522

enables it to handle scale variations and capture broader523

context in map data, setting it apart from other UNet-based524

networks [15], [16], [17], [18]. The combination of these two525

features enables PMNet to efficiently and accurately predict526

pathloss maps, while also accounting for complex wireless527

propagation physics.528

4) Design Parameters: PMNet architectures are composed529

of a stack of ResLayers, each containing multiple residual530

blocks [40]. These ResLayers can be configured with varying531

numbers of blocks, atrous rates, multi-grids, and output strides.532

These elements are summarized as follows:533

• Number of blocks: The number of residual blocks in534

a ResLayer controls the complexity and depth of the535

network. Increasing the number of blocks may improve536

the accuracy of the model, but it also increases the537

computational cost.538

• Atrous rates: Atrous rates control the spacing between539

the convolutions in a ResLayer. Larger atrous rates allow540

the network to capture more larger spatial contexts in the541

PMP task.542

• Multi-grids: Multi-grids allow the network to capture543

multi-scale information from different levels of the CNN544

architecture.545

• Output stride: The output stride of a ResLayer controls546

the ratio between the resolution of the input image and the547

output image’s resolution. A higher output stride results548

in a lower-resolution output image. This can be useful to549

strike a balance between accuracy and speed.550

Parameters are optimized through thorough simulations. Note551

that the impact of output stride in the PMP task is shown in552

Table IV in Sec. IV-E (e.g., the case of H
8 ×W

8 ), demonstrating 553

the most substantial effect compared to other parameters. 554

With these design choices and parameters, PMNet effectively 555

predicts pathloss maps even for different channel datasets (e.g., 556

RadioMapSeer [21]). For an architectural overview, please 557

refer to Fig. 3 and Table II. For more details, please see our 558

source code repository. 559

C. Training 560

Table III lists the hyper-parameters that are used for the 561

training of PMNet. We implement the PMNet using PyTorch 562

and use an NVIDIA GeForce RTX 3080 Ti GPU. For more 563

stable training, we normalize the input values into [0, 1] via 564

scaling. During the training, we evaluate the PMNet by mean 565

squared error (MSE) on the validation set at the end of every 566

epoch. For testing, we use the parameters of PMNet with 567

the best MSE score on the validation set. Consequently, the 568

pathloss map for a given map can be generated within a few 569

milliseconds after training. 570

D. Evaluation 571

1) Root Mean Square Error (RMSE): RMSE is a widely 572

used loss function in regression analysis and is used as the 573

primary evaluation metric for this task. It measures the overall 574

difference between the prediction ŷ and ground-truth y and 575

quantifies the overall accuracy of the model. The formula for 576

RMSE is: 577

RMSE(ŷ, y) =

√√√√ 1
N

N∑
n=1

(ŷn − yn)2, (12) 578

where ŷn ∈ ŷ and yn ∈ y denote predicted and ground-truth 579

gray value (corresponding PRX) at the n-th pixel, respectively, 580

and N is the number of pixels in a pathloss map, i.e., 581

256×256. The RMSE averaged over all samples is the primary 582

evaluation metric for the PMP task. 583

2) RoI Segmentation Error: The RoI segmentation error, 584

calculated using the intersection over union (IoU) metric, 585

quantifies the accuracy of RoI and non-RoI area segmenta- 586

tion for all pixels in the ground-truth ({i, j}) and prediction 587

({̂i, ĵ}) - that is calculated as follows: 588

RoI Segmentation Err. =

∑
i

∑
j ErrB{i,j}∑

i

∑
j Bld{i,j}

. (13) 589
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TABLE II
PMNET ARCHITECTURES AND PARAMETERS. ↓ AND ↑ REPRESENT THE DOWNSAMPLING AND UPSAMPLING LAYERS, RESPECTIVELY

TABLE III
TRAINING CONFIGURATION AND HYPER-PARAMETERS

FOR PMNET TRAINING

Here, ErrB{i,j} and Bld{i,j} are defined as:590

ErrB{i,j} =


1, {i, j} ∈ B and {̂i, ĵ} ∈ A⋆

1, {i, j} ∈ A⋆ and {̂i, ĵ} ∈ B
0, otherwise

(14)591

Bld{i,j} =

{
1, {i, j} ∈ B
0. otherwise

(15)592

Within a given map, the non-RoI area, denoted as black (gray593

value 0), is represented by B, while the RoI area, denoted as594

non-black (grayscale 1 − 255), is represented by A⋆. B and595

A⋆ are complementary set within A. B can include buildings,596

foliage, and/or small objects.597

3) Channel Prediction Error: Channel prediction error598

directly evaluates path gain accuracy for pixels within the RoI599

area, evaluating power in [dBm] (or path gain in [dB]) unlike600

RMSE, which quantifies differences based on gray values.601

To calculate channel prediction error, gray values within the602

RoI area of both the predicted and ground-truth pathloss maps603

are converted into corresponding received power values. The604

RMSE formula is then applied to these power values:605

RMSE(p̂, p) =

√√√√ 1
N

N∑
n=1

(p̂n − pn)2, (16)606

where p̂n ∈ p̂ and pn ∈ p represent the predicted and ground-607

truth PRX at the n-th pixel, respectively. Channel Prediction608

Error is then computed by averaging RMSE(p̂, p) across all609

given samples.610

E. Simulation Result 611

1) Training Optimization: Table IV presents an ablation 612

study to identify the factors that significantly contribute to 613

PMNet’s performance in the PMP task, such as data augmen- 614

tation and feature map size.9 615

2) Impact of Data Augmentation: For the data augmenta- 616

tion, we do horizontal, vertical and diagonal flips. In other 617

words, including the original images, we use the ×4 number 618

of images for training. Note that data augmentation has several 619

advantages in general: first, it enhances the diversity of the 620

training data by generating additional examples that capture 621

various variations of the original data. Second, it reduces 622

overfitting by exposing the model to a wider range of input 623

patterns. Finally, data augmentation helps to make the model 624

more robust to noise and variability in the input data. As shown 625

in Table IV, it improves the performance of PMNet by 15.7% 626

in terms of RMSE. 627

3) Impact of Feature Map Size: We analyze the perfor- 628

mances of PMNet according to the size of the feature map, 629

which is the output of the encoder. Table IV compares the 630

results with the feature map sizes H
8 × W

8 and H
16 × W

16 , 631

where H and W are the height and width of an input image, 632

respectively. To adjust the feature map size, we modify the 633

strides of the convolution layers in the encoder. We employ 634

the feature map size of H
8 × W

8 as the default option, because 635

PMNet yields better performance with the feature map size of 636

H
8 × W

8 than that of H
16 × W

16 . 637

4) Accuracy: We compare the ML-based PMP with our 638

proposed PMNet model to two other methods for the PMP 639

task: a model-based approach, 3GPP, and an ML-based 640

approach, RadioUNet. All three methods produce a single- 641

channel 256 × 256 image of the pathloss map as the output, 642

given the input of a two-channel 256× 256 image containing 643

the geographical map and the TX location. Here are the details 644

of these baseline methods: 645

1) 3GPP (with map info.) As discussed in Sec. III-A.2, the 646

3GPP model determines the pathloss at a particular loca- 647

tion based on the Euclidean distance and whether the link 648

between the TX and RX is in LoS or NLoS. To ensure 649

a fair comparison with other baselines, we utilize map 650

information to determine the LoS or NLoS condition of 651

9Our extensive experiments tested other factors, such as different sampling
methods, training loss functions, and additional input features (e.g., TX dis-
tance heatmap), but these factors did not show a meaningful improvement to
justify the additional complexity.
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TABLE IV
ABLATION STUDY FOR PMNET TRAINING OPTIMIZATION. LOWER VALUES INDICATE BETTER PERFORMANCE

Fig. 4. Comparison of the predicted pathloss map of 3GPP, RadioUNet, and PMNet. in ground-truth represents the TX location. The scenes are randomly
selected, not cherry-picked.

specific pixels to the TX.10 Note that it does not require652

any NN training as it is a model-based approach.653

2) RadioUNet [15] is an ML-based PMP method that654

extends the UNet architecture by employing two UNets.655

Each UNet comprises 8 encoder layers with convolution,656

ReLU, and Maxpool layers, followed by 8 decoder lay-657

ers with transposed convolution and ReLU layers. The658

encoders and decoders are concatenated, as in the original659

UNet architecture. Here, RadioUNet employs curriculum660

training to enhance training: in the first stage, the first661

UNet is trained for a specific number of epochs, with662

the second UNet frozen. In the second stage, the second663

UNet is trained using the two-channel input features664

and the output of the first UNet, effectively making it665

a three-channel input network.666

3) PMNet (Proposed) is our proposed ML-based PMP667

method. This network employs several parallel atrous668

10The original 3GPP pathloss model uses a probabilistic model to determine
LoS/NLoS condition at a particular distance. However, to ensure a fair
comparison, we use here the deterministic LoS/NLoS condition determined
from the map information in calculating the pathloss gain.

convolutions with different rates and the encoder-decoder 669

network. The encoder consists of 6 ResNet-based layers. 670

Each ResNet layer comprises several bottleneck lay- 671

ers consisting of convolution, batch normalization, max 672

pooling, and ReLU. The decoder consists of 6 layers con- 673

sisting of convolution, adaptive average pooling, ReLU, 674

transposed convolution, and ReLU. Skip connections are 675

used between encoders and decoders. 676

5) Qualitative Analysis: Fig. 4 shows the prediction results 677

of the baselines. Recall that each pixel in the RoI corresponds 678

to the predicted received power PRX (or the path gain PG). 679

Note that some pixel values in the ground-truth data appear 680

noisy due to interpolation during the gray conversion process 681

after RT simulation. 682

3GPP exhibits a substantial deviation from ground-truth 683

obtained through RT simulation, highlighting the differences 684

between how RT simulation and 3GPP model calculate a 685

pathloss. Specifically, for RX locations with LoS conditions 686

close to the TX, the results obtained using the 3GPP model 687

approximately match the ground-truth data obtained from 688

Wireless Insite. However, for RX locations farther from the TX 689
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TABLE V
COMPARISON STUDY FOR PMP SCHEMES (3GPP, RADIOUNET, AND PMNET). LOWER VALUES INDICATE BETTER PERFORMANCE,

AND THE LOWEST ERRORS ARE HIGHLIGHTED

TABLE VI
NUMERICAL RESULTS OF PMNET ON AN UNSEEN NETWORK SCENARIO. PMNET WAS TRAINED ON THE USC DATASET

AND EVALUATED ON THE UCLA AND BOSTON DATASET

or under NLoS conditions, the 3GPP model exhibits significant690

discrepancy from the ground-truth data. It is worth noting that691

the 3GPP pathloss model does not provide results for near-field692

within a link distance of 10 meters; so, we arbitrarily set the693

power in the near-field area to gray value 255, which does694

not introduce significant errors. The 3GPP pathloss model is695

a simplified model that does not account for the complex696

wireless propagation physics of reflection, diffraction, and697

scattering (highlighted in ). Instead, it relies solely on two698

models for LoS and NLoS locations, respectively, and only699

considers link distance and carrier frequency. This simplified700

approach inevitably leads to significant inaccuracies in the701

pathloss prediction.702

RadioUNet demonstrates impressive RoI segmentation703

results, while its channel prediction outputs appear some-704

what blurry. It is worth noting that RadioUNet conducts705

curriculum-based training with 50 epochs each in the first706

and second stages, utilizing the same training/validation set707

as PMNet, which is trained with a total of 50 epochs.708

PMNet, on the other hand, achieves notable results for both709

RoI segmentation and channel prediction. As highlighted in ,710

PMNet effectively captures the intricate wireless propagation711

physics of reflection, diffraction, and scattering. This can712

be attributed to PMNet’s ability to incorporate a broader713

contextual understanding of the environment, enabling it to714

capture the representation of wireless propagation physics in715

the surrounding environment.716

6) Quantitative Analysis: Table V compares our proposed717

PMNet model to the model-based 3GPP method and the718

ML-based RadioUNet method in terms of three accuracy719

metrics for the PMP task: RMSE, RoI segmentation error, and720

channel prediction error. Note that the ground-truth dataset721

is made by RT simulation; therefore, the error shows the722

difference between a scheme and the RT simulation.723

The model-based 3GPP method has inferior results com-724

pared to ML-based methods, which can be explained by the725

oversimplifications inherent in this model, as discussed above.726

While our proposed PMNet model achieves the best score on727

all three metrics, another ML-based PMP method, RadioUNet,728

Fig. 5. Prediction results of PMNet on an unseen network scenario (i.e.,
cross-scenario evaluation). The model is trained on the USC dataset and
evaluated on the Boston dataset.

also achieves high accuracy (RMSE ≤ 0.03). This result 729

highlights the capability of ML-based PMP approaches to 730

learn a representation of the wireless propagation physics 731

implicit in the ground-truth RT channel data. 732

V. TRANSFERABLE PATHLOSS MAP PREDICTION 733

A. Challenge: PMP for Unseen Network Scenario 734

As demonstrated in the previous section, PMNet exhibits 735

high accuracy of the PMP task for a given dataset. How- 736

ever, minimizing re-training efforts for new network scenarios 737

remains a challenge. To evaluate PMNet’s generalizability 738

across different scenarios, we conducted a cross-scenario eval- 739

uation, testing PMNet trained on USC data on the Boston 740

dataset. 741

As shown in Fig. 5 and Table VI, the PMNet achieves 742

the RoI segmentation error on the order of 10−2 and the 743

channel prediction error on the order of 10−1 in a new 744

scenario. Such deterioration is due to differences in network 745

configuration and environmental characteristics between the 746

two scenarios (e.g., different map scales and geographical 747

features). This highlights the need for further development 748

to improve PMNet’s performance across different network 749

scenarios, a task we refer to as cross-scenario PMP. 750
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B. Task (2): Cross-Scenario PMP751

To enable better performance, we now allow cross-scenario752

PMP to improve the model trained on a different network753

scenario through training with a reduced-size training in the754

new scenario. This will allow the network to adapt to the new755

scenario with less time and resource effort, while maintaining756

high accuracy. To address this challenge, we leverage transfer757

learning (TL).758

1) Approach: Transfer Learning: TL is an ML technique759

that allows knowledge transfer from one task or dataset to760

another, reducing the amount of data and training time required761

for new scenarios. In the context of cross-scenario PMP,762

we can transfer the knowledge from the source scenario, which763

learns a predictive function fS(·) from a source dataset DS764

(e.g., USC), to the target scenario, which learns a predictive765

function fT (·) from a target dataset DT (e.g., UCLA and766

Boston).767

There are two main ways to use TL for the cross-scenario768

PMP.769

• Feature extraction: We can train a feature extractor on770

a source scenario and then use that feature extractor to771

extract features from data from a target scenario. Once we772

have extracted the features, we can train a simple model773

(e.g., a linear regressor) to predict the pathloss map for774

the target scenario.775

• Fine-tuning: We can fine-tune a pre-trained model on the776

target scenario. This can be done by unfreezing some or777

all of the layers of the pre-trained model and training the778

model on data from the target scenario.779

The choice between those two methods depends on a number780

of factors, including the size and complexity of the pre-trained781

model, the availability of training data for the target dataset,782

and the computational resources available.783

In this work, we focus on the fine-tuning TL approach with784

all of the layers of the pre-trained model unfrozen.11 This785

approach is simple yet effective, achieving higher accuracy on786

various cross-scenario PMP tasks with less training data and787

shorter training time, as elaborated in the following subsection.788

We prepare and use the following pre-trained models in our789

experiments:790

(i) VGG16ImgNet is the pre-trained CNN model trained791

on the ImageNet dataset, which contains 140k images792

belonging to 22k categories. It is a powerful image793

classification model that has been used to achieve state-794

of-the-art results on a variety of image classification795

benchmarks.796

(ii) PMNet3gpp is the pre-trained PMNet model trained on797

the 3GPP pathloss map dataset. The 3GPP pathloss map798

dataset is prepared with the 3GPP pathloss model in [20]799

(see 3GPP in Sec. IV-E.4, Fig. 4, and Table V).800

(iii) PMNetusc is the pre-trained PMNet model trained on the801

USC RT dataset. It is similar to PMNet3gpp but is trained802

on a different dataset. This is our main pre-trained model.803

Each pre-trained model is available on our GitHub page.804

11While we have performed sample experiments with unfreezing certain
layers, such as the encoder-frozen and decoder-unfrozen, performance did
not improve significantly. A more comprehensive investigation of this topic
is, however, beyond the scope of this paper.

TABLE VII
TRAINING CONFIGURATION AND HYPER-PARAMETERS

IN CROSS-SCENARIO PMP

TABLE VIII

IMPACT OF TL ON TRAINING SPEED (= 1
steps

). PMNET MODELS WITH

OR WITHOUT PMNETusc PRE-TRAINED MODEL ARE TRAINED AND
EVALUATED ON THE BOSTON DATASET

C. Simulation Results 805

As demonstrated in the cross-scenario evaluation results (in 806

Fig. 5 and Table VI), there is a need for further development 807

to make PMNet adapt to different network scenarios. To this 808

end, our approach is fine-tuning a pre-trained model with 809

down-sized data for the new scenario. Here, the main questions 810

in performing cross-scenario PMP are: (1) How quickly and 811

with how minimal data PMNet can effectively adapt to new 812

scenarios; and (2) Which pre-trained model should be utilized 813

for optimal performance in cross-scenario PMP. 814

1) Efficiency: For cross-scenario PMP, rapidly adapting 815

PMNet models to new network scenarios using limited data 816

is essential due to the time-consuming and expensive nature 817

of channel measurement using RT simulation or channel 818

sounder. This is particularly critical for applications like beam 819

management and localization using ML-based PMP, which 820

demand quick adjustments for new scenarios. 821

2) Impact of TL: TL can significantly improve the training 822

speed of PMNet models for cross-scenario PMP. As shown in 823

Fig. 6 and Table VIII, the TL case with the PMNetusc pre- 824

trained model achieves a given level of accuracy much faster 825

even with much less amount of training data. In particular, 826

PMNetusc achieves the same level of accuracy (RMSE ≤ 827

0.1 and RMSE ≈ 0.03) ×5.6 and ×4.1 faster, respectively, 828

as the Vanilla case (highlighted in ), where we define as 829

“Vanilla” the training from scratch in a particular environment. 830

Furthermore, the TL can also significantly save the required 831

amount of data for cross-scenario PMP. As shown in Fig. 7, the 832

TL (PMNetusc) trained with about 20% of the Boston dataset 833

achieves equivalent results to the Vanilla case trained with 834

about 90% of the dataset. 835

It is worth noting that limited training data can easily induce 836

overfitting, as observed in the Vanilla case with 20% Data 837

(highlighted in ). For the same amount of new scenario 838
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Fig. 6. Comparison of the training efficiency of PMNet models with and without TL. PMNet models are trained for 50 epochs and evaluated on the Boston
dataset.

TABLE IX
COMPARISON OF PRE-TRAINED MODELS (VGG16ImgNet , PMNET3gpp , AND PMNETusc) IN TERMS OF ACCURACY. MODELS ARE EVALUATED ON THE

UCLA AND BOSTON DATASETS, USING 90% OF THE DATA FOR TRAINING AND 10% OF THE DATA FOR VALIDATION. 50 EPOCHS ARE USED FOR
TRAINING. LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

Fig. 7. Impact of TL on training data requirements. PMNet models with or
without PMNetusc pre-trained model are trained with 50 epochs and evaluated
on the Boston dataset.

data, the TL case (PMNetusc (20%)) does not experience the839

overfitting issue. This suggests that TL also enhances training840

stability (less overfitting issue with limited data) in cross-841

scenario PMP.842

Our findings demonstrate that the pre-trained PMNetusc843

model efficiently accelerates the training process by leveraging844

its knowledge of PMP tasks, including the physics of wireless845

channel propagation and RoI segmentation, and this model846

can be readily adapted to new scenarios with minimal data847

and training steps.848

Consequently, we confirm that fine-tuning with a suitable849

pre-trained model is an effective cross-PMP task method.850

Another key question is which pre-trained model is suit-851

able and which is not, which is discussed further in the852

following.853

3) Accuracy: As discussed in Sec. V, the source and target 854

scenario (task or domain) should be sufficiently similar for 855

effective TL to occur. For instance, to successfully apply TL to 856

the target task of predicting wireless communication channels, 857

the NN should extract relevant features of wireless propagation 858

physics from the source task. 859

4) “Suitable” Pre-Trained Model: Table IX compares the 860

performance of the PMNet model with and without TL. The 861

baseline model, referred to as Vanilla, is trained without any 862

TL (without any pre-trained model). Additionally, we compare 863

the performance of TL using a pre-trained model trained on an 864

unrelated source scenario (i.e., VGG16 trained on ImageNet) 865

with TL using a pre-trained model trained on a related source 866

scenario (i.e., PMNet trained on USC or 3GPP datasets). 867

As shown in Table IX, both PMNet models trained on 868

PMNetusc and PMNet3gpp outperform the Vanilla case on all 869

performance metrics, suggesting that using a pre-trained model 870

trained on a related source task can significantly improve 871

accuracy. 872

Interestingly, while the VGG16 model trained on ImageNet 873

(VGG16ImgNet) outperforms the Vanilla for RoI segmentation, 874

it fails to do so for channel prediction (highlighted in ). This 875

discrepancy stems from the VGG16 pre-trained model, which 876

has an inherent understanding of segmentation and image 877

representation from its source task; however, does not have 878

any knowledge of the physics of wireless propagation. 879

Fig. 8 visually confirms the findings from Table IX. All 880

models achieve high accuracy for RoI segmentation, while 881
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Fig. 8. Comparison of the prediction results of pre-trained models (VGG16ImgNet, PMNet3gpp, and PMNetusc). 50 epochs are used for training. Brighter
colors indicate higher PG. Note that pixels with non-zero gray value are converted to color to highlight differences between results.

only the TL case using a pre-trained model trained on a related882

source scenario (e.g., PMNet3gpp and PMNetusc) achieves high883

accuracy for channel prediction, capturing subtle details of the884

wireless propagation physics. This suggests that our PMNet885

pre-trained model is generalizable to different scenarios due to886

its inherent knowledge of channel propagation representation,887

and that TL can further improve accuracy.888

These results empirically demonstrate that pre-trained889

model’s source dataset (task or domain) should be similar890

to the target dataset (task or domain) to transfer useful891

information during TL. Specifically, for cross-scenario PMP,892

it is important to use a pre-trained model that has been893

trained extensively on data related to wireless propagation894

physics.895

Therefore, we conclude that the suggested TL approach,896

fine-tuning with a stable and closely related pre-trained model897

(such as PMNetusc), is a simple yet effective way to address898

the cross-scenario PMP task, which is important for practical899

applications.900

VI. CONCLUSION901

This work introduces an ML-based large-scale channel pre-902

diction framework, PMNet, which can create highly accurate903

pathloss predictions for a given map in a few milliseconds.904

Utilizing an RT channel dataset of real-world scenarios (e.g.,905

USC, UCLA, and Boston area), PMNet is verified for its906

accuracy and training efficiency. In particular, TL with our907

PMNet pre-trained model, which has generalization capability908

for different network scenarios, enables the PMNet to adapt909

itself quickly and efficiently to a new network scenario, while910

achieving an RMSE of 10−2 level.911

The high accuracy and low runtime of the PMNet frame-912

work make it suitable for deployment planning in dense913

networks as well as online optimization of network parameters.914

Still, it remains an open question whether the knowledge of 915

wireless propagation physics in our PMNet pre-trained model 916

can be transferred to other downstream tasks beyond the PMP 917

task; this question will be the topic of our future research. 918
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