

A Scalable and Generalizable Pathloss Map Prediction

Ju-Hyung Lee¹, Member, IEEE, and Andreas F. Molisch¹, Fellow, IEEE

Abstract— Large-scale channel prediction, *i.e.*, estimation of the pathloss from geographical/morphological/building maps, is an essential component of wireless network planning. Ray tracing (RT)-based methods have been widely used for many years, but they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in B5G/6G systems. In this paper, we propose a data-driven, model-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a supervised learning approach: it is trained on a limited amount of RT data and map data. Once trained, PMNet can predict pathloss over location with high accuracy (an RMSE level of 10^{-2}) in a few milliseconds. We further extend PMNet by employing transfer learning (TL). TL allows PMNet to learn a new network scenario quickly ($\times 5.6$ faster training) and efficiently (using $\times 4.5$ less data) by transferring knowledge from a pre-trained model, while retaining accuracy. Our results demonstrate that PMNet is a scalable and generalizable ML-based PMP method, showing its potential to be used in several network optimization applications.

Index Terms— Pathloss map prediction, ray tracing, machine learning, computer vision, transfer learning, network optimization, digital twin, 6G.

I. INTRODUCTION

DIGITAL twin (DT) network is emerging as a key enabler for the artificial intelligence (AI) and machine learning (ML)-driven design, simulation, and optimization of 6G systems [3], [4]. A DT network is a dynamic, digital replica of a real-world network environment, providing real-time, accurate reflections of physical network scenarios. It can be used for a variety of applications, including dynamic resource allocation, beam management, and localization using ML-based PMP, which demands quick adjustments for new scenarios. However, implementing DT is challenging in 6G

Manuscript received 6 December 2023; revised 20 February 2024 and 3 July 2024; accepted 27 August 2024. This work was supported by NSF under Project 2133655 and Project 2008443. An earlier version of this paper was presented in part at the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023) [DOI: 10.1109/ICASSP49357.2023.10095257] and in part at the 2023 Global Communications Conference (Globecom 2023) [DOI: 10.1109/GLOBECOM54140.2023.10437562]. The associate editor coordinating the review of this article and approving it for publication was C. Han. (*Corresponding author: Ju-Hyung Lee*.)

Ju-Hyung Lee was with Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California (USC), Los Angeles, CA 90007 USA. He is now with Nokia, Sunnyvale, CA 94085 USA (e-mail: juhyung.lee@outlook.com).

Andreas F. Molisch is with the Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089 USA (e-mail: molisch@usc.edu).

Color versions of one or more figures in this article are available at <https://doi.org/10.1109/TWC.2024.3457431>.

Digital Object Identifier 10.1109/TWC.2024.3457431

networks, which are characterized by increased deployment density, complex distributed architectures, and high-frequency operation in millimeter wave (mmWave) and terahertz (THz) bands.

Individually and taken together, these developments necessitate dramatically faster large-scale channel prediction methods.¹ Since traditional ray tracing (RT) tools are too slow for the repeated runs required in such DT implementation processes, there is a strong need for new, accurate, and fast methods for channel prediction over a large-scale area (*e.g.*, campus or city-map scale).

Several works have addressed this need by channel prediction using powerful ML techniques. These works use ground-truth channel data (from RT simulations or real channel measurements/soundings campaigns) to train neural networks (NNs). This eventually provides an accurate and fast prediction of channel information (*e.g.*, received power, delay, angles, and so on) for a certain area, a technique called ML-based site-specific radio propagation modeling.

Still, these ML-based approaches use supervised learning, meaning they are trained to solve a specific network scenario with a certain labeled dataset. In other words, the models may need to be rebuilt for a new network scenario, *e.g.*, different map scales, environmental aspects, and/or network configuration - a process that can be time-consuming and expensive. This creates a need for a method that can furthermore transfer knowledge of propagation channels across different network scenarios and environments.

A. Related Works

Due to the high cost and complexity of field measurements with channel sounders, most cellular deployment planning has long replaced channel measurements with *electromagnetic (EM) simulation-based* approaches, such as RT [5], [6] and ray launching [7] simulation.² Over the past 30 years, the efficiency and accuracy of RT have improved significantly [9], thanks to the prevalence of GPUs (graphic processing units) that efficiently facilitate RT tasks.

However, due to the factors mentioned above (such as the need for more detailed environmental consideration at higher

¹The word “channel prediction” is often used for two different problems: (i) computation of the propagation channel at a particular location based on maps of the environment, and (ii) temporal prediction of the channel (often for a mobile device moving on a trajectory), based on measurements in the immediate past. This paper only considers the former case.

²Our research utilizes RT simulations via Wireless Insite to investigate path loss. This simulation program has been validated against real-world measurements, *e.g.*, in [8] showing an acceptable error margin.

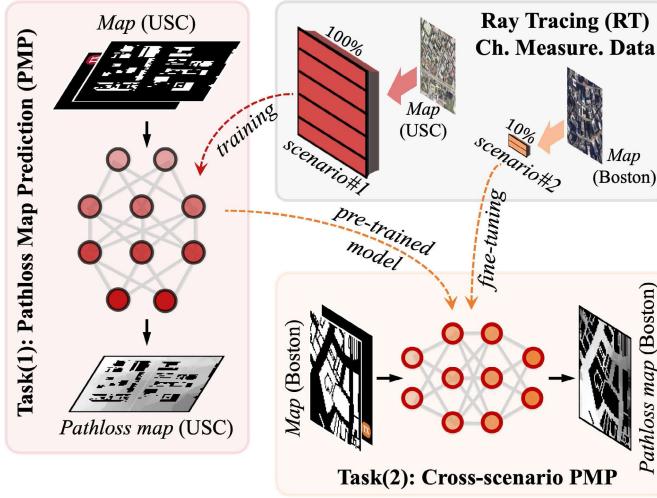


Fig. 1. Overview of the pathloss map prediction (PMP) task and the cross-scenario PMP. The input Map feature includes the transmitter (TX) location.

for large-scale channel prediction (*e.g.*, radio environment map estimation), as evidenced by their performance in ML competitions such as the *RadioMap Prediction Challenge* (see details in [19]). This highlights the applicability and importance of large-scale channel prediction in evolving wireless network optimization, which aligns with our research direction.

B. Contributions

This paper proposes a scalable and generalizable channel prediction approach specifically designed for large-scale channel prediction, called PMP task. Our contributions can be summarized as follows:

- We design a PMP-oriented NN architecture, called PMNet, by leveraging computer-vision techniques, generating highly accurate channel prediction results for a given map in few milliseconds. PMNet achieves the best channel prediction accuracy compared to two baselines: a model-based scheme (3GPP-UMi model [20]) and another ML-based scheme (*RadioUNet* [15]) (see **Table V** in Sec. IV) and also in different PMP datasets. PMNet achieved *1st*-rank in the ICASSP 2023 Radio Map Prediction Challenge [19].³
- We build three sets of real-world channel datasets using a RT simulation tool, *i.e.*, *Wireless Insite*, for training and evaluation, which reflects different network scenarios (*e.g.*, different map scale, environment, and network configuration) in two different light urban environments (the USC and UCLA campuses) and a metropolitan area (the Boston area), see **Table I** in Sec. III.
- We propose a method of predicting pathloss in unseen network scenarios by using transfer learning (TL) with a pre-trained model. We prepare three pre-trained models for TL: VGG16 [22] and two pre-trained PMNet models trained with 3GPP prediction results and RT simulation results, respectively, and quantitatively and qualitatively evaluate their accuracy (see **Table IX** and **Fig. 8** in Sec. V).
- We empirically demonstrate that our PMNet pre-trained model has generalization capability for different network scenarios, adjusting to new network scenarios $\times 5.6$ faster and using $\times 4.5$ less data than a baseline model without TL, while still achieving high accuracy of an RMSE of 10^{-2} level (see **Fig. 6** and **Table. VIII** in Sec. V).
- We release source code for the experiments to promote reproducible ML research in wireless communication.⁴

C. Paper Organization

The rest of the paper is organized as follows: Sec. II presents the background on two important concepts: (1) *ray tracing simulation*, which is used to generate ground-truth channel information for training and evaluation; and (2) *transfer learning*, which enables us to transfer the knowledge learned

³In this competition, PMNet demonstrated its high accuracy in the PMP task on a different dataset [21], which featured a different map scale, network configuration, and was generated by a different RT simulation tool, *i.e.*, *WinProp*, highlighting PMNet's generalization capability.

⁴<https://github.com/abman23/PMNet>

from a source task/dataset to a new task/dataset (*e.g.*, unseen network scenario). After introducing our dataset based on real geographical maps in Sec. III, Sec. IV introduces the PMP task and our proposed NN architecture (PMNet) for this channel prediction task. We also present the training and evaluation process, as well as simulation results. Then, Sec. V presents our approach for efficiently learning and predicting channels in unseen network environments by transferring the pre-trained knowledge from other networks. We provide extensive experimental results and quantitative and qualitative performance analysis, followed by concluding remarks in Sec. VI.

Notation: Throughout this paper, we use the normal-face font to denote scalars and the boldface font to denote vectors. We use $P(\cdot)$ and $P(\cdot|\cdot)$ to represent a marginal probability distribution and conditional distribution, respectively. We also use $\|\cdot\|$ to denote the L^2 -norm, which is an Euclidean norm. $\mathcal{N}(\mu, \sigma)$ denotes the normal distribution with mean μ and standard deviation σ .

II. BACKGROUND

To provide a comprehensive understanding of our work, it is essential to cover Pathloss, Ray Tracing Simulation, and Transfer Learning, as these areas are integral to our methodology and analysis.

A. Pathloss

The link gain between a TX at location \mathbf{q}_{TX} and an RX at location \mathbf{q}_{RX} at time t and frequency f can be expressed as follows:

$$|h(t, f, \mathbf{q}_{\text{TX}}, \mathbf{q}_{\text{RX}})|^2 = \frac{P_{\text{RX}}(t, f, \mathbf{q}_{\text{RX}})}{P_{\text{TX}}(t, f, \mathbf{q}_{\text{TX}})} \quad (1)$$

where P_{RX} and P_{TX} are received and transmitted power, respectively. This link gain includes the effects of antenna gains at TX and RX; when isotropic antennas are used, it becomes identical to the channel gain. It exhibits variations in time and/or location due to small-scale fading, shadowing, and large-scale distance changes. Averaging over small-scale fading removes (under certain circumstances, see [23, Ch. 7]) the dependence on frequency and time, providing the *path gain* (PG) that can be written as a function of only the large-scale distance changes:

$$\text{PG}(\mathbf{q}_{\text{TX}}, \mathbf{q}_{\text{RX}}) = \frac{1}{T_{\text{S}}} \frac{1}{B_{\text{S}}} \int \int |h(t, f, \mathbf{q}_{\text{TX}}, \mathbf{q}_{\text{RX}})|^2 df dt. \quad (2)$$

Here, T_{S} and B_{S} denote the stationary-time and -bandwidth, respectively. The path gain can be represented as the sum of the powers of the N MPCs, as discussed further in Sec. III-A. For later reference, we note that the pathloss is the inverse of the path gain (or the sign-flipped value when expressed in dB).

B. Ray Tracing (RT) Simulation

RT is an approximate method for modeling the propagation of electromagnetic waves in wireless communication

scenarios. It works by tracing the paths of individual rays as they propagate through the environment, whose features are represented in a geographical database. The rays are reflected, deflected, and scattered by the objects in the environment, with the various interaction processes computed according to high-frequency approximations, namely (most commonly) Snell's laws for specular reflection and transmission, uniform theory of diffraction (UTD) for diffraction, and Kirchhoff scattering theory for diffuse scattering [23, Ch. 4].⁵ The RT tool simulates radio wave propagation deterministically based on physical laws, offering site-specific radio propagation modeling, in contrast to stochastic wireless channel models (*e.g.*, 3GPP standardized channel model).

In this paper, we employ a commercial RT tool, *Wireless Insite* from Remcom [7] for all RT simulations, both because of its user-friendliness and the fact that its accuracy has been compared against a number of channel sounder measurements [6], [24], [25]. RT can be used to predict channel information, such as received signal strength, delay, and angles, in a variety of wireless environments, both indoor and outdoor. The accuracy of RT simulations depends on various factors, such as the complexity of the environment, the accuracy of the geographical database, and the carrier frequency. The channel information obtained from the RT can be utilized, *inter alia*, for various network optimization tasks, including base station (BS) deployment planning, BS parameter optimization, as well as beam management and localization.

C. Transfer Learning (TL)

TL is a machine learning technique that leverages a pre-trained model on a new task, significantly reducing the amount of data and training time required for new scenarios. This approach is particularly advantageous when there is limited data available for the new task or when the new task shares similarities with a previously learned task. By utilizing knowledge from a related task, TL can enhance model performance, expedite training processes, and mitigate overfitting, especially in data-constrained environments.

For instance, a model pre-trained on image classification tasks can be effectively repurposed for object detection or semantic segmentation. This reuse is possible because the model has already learned useful *feature representations* from a large and diverse dataset, enabling it to adapt more efficiently to new, related tasks.

One of the most popular pre-trained models is VGG16 [22], which is trained on more than a million images from the ImageNet database for image classification. VGG16 has demonstrated its versatility by being reused to improve performance in various tasks, including semantic segmentation [26] and object detection [27]. These applications showcase the model's ability to transfer learned features, thus enhancing performance in new domains with minimal additional training.

However, it is important to note that the effectiveness of TL depends on the *similarity* between the pre-trained task and the

⁵RT can be implemented via image-theory-based RT, or as ray launching. We will henceforth use the expression RT for both those methods.

target task.⁶ The transferability of deep feature representations decreases as the discrepancy between the pre-trained task and the target task increases [28]. In other words, the further apart the task is, the less transferable the knowledge. One example is catastrophic forgetting, which is a phenomenon that can occur when fine-tuning a pre-trained model on a new task, resulting in a loss of previously acquired knowledge [29].

Research has shown that well-generalized models, particularly those with excellent pre-training performance [30], have the potential to require minimal fine-tuning or even none at all (e.g., zero-shot learning) for new tasks [31]. These suggest the importance of selecting a pre-trained model suitable for the target task.

III. DATASET

In this section, we discuss the dataset preparation process for our pathloss map datasets, reflecting real-world network scenarios in USC, UCLA, and Boston areas.

We obtained the ground-truth channel data using the commercial RT tool *Wireless Insite* [7], which takes into account the geographical and morphological features of the propagation environment. We then pre-processed the data (e.g., interpolation and data augmentation) to prepare the ground-truth pathloss map.

A. Channel Data

1) *RT Simulation*: As discussed in Sec. II-A, RT emulates the behavior of each MPC between TX and RX, following physical principles including the free-space power loss and interaction with different interacting objects (IOs). This allows us to compute for each MPC the information of complex amplitude a , directions of departure Ω and arrival Ψ , and delay τ . The contribution of m -th MPC can be expressed as [32]:

$$h_m(t, \tau, \Omega, \Psi) = a_m \delta(\tau - \tau_m) \delta(\Omega - \Omega_m) \delta(\Psi - \Psi_m), \quad (3)$$

where the dependence of Ω, Ψ, τ, a on t is not written explicitly on the r.h.s. The sum of contributions from all MPCs is given by

$$h(t, \tau, \Omega, \Psi) = \sum_{m=1}^N h_m(t, \tau, \Omega, \Psi). \quad (4)$$

Since $\Omega, \Psi, \tau, |a|$ are constant over a stationarity-time and bandwidth, while $\arg(a)$ varies over many periods of 2π , and assuming isotropic antennas at TX and RX (so that Ω, Ψ do not matter), the path gain averaged over the small-scale fading can be computed from (2) as

$$PG = \sum_{m=1}^N |h_m(\tau, \Omega, \Psi)|^2 = \sum_{m=1}^N |a_m|^2. \quad (5)$$

⁶The wireless community has long classified environments—rural, suburban, urban, and metropolitan—based on their channel characteristics, a practice dating back to the COST 207 models of the mid-1980s. Despite the subjective nature of these categories and the lack of specific numerical criteria, their differentiation by factors like population density and infrastructure complexity is widely accepted for assessing wireless signal propagation and network performance and its *similarity*.

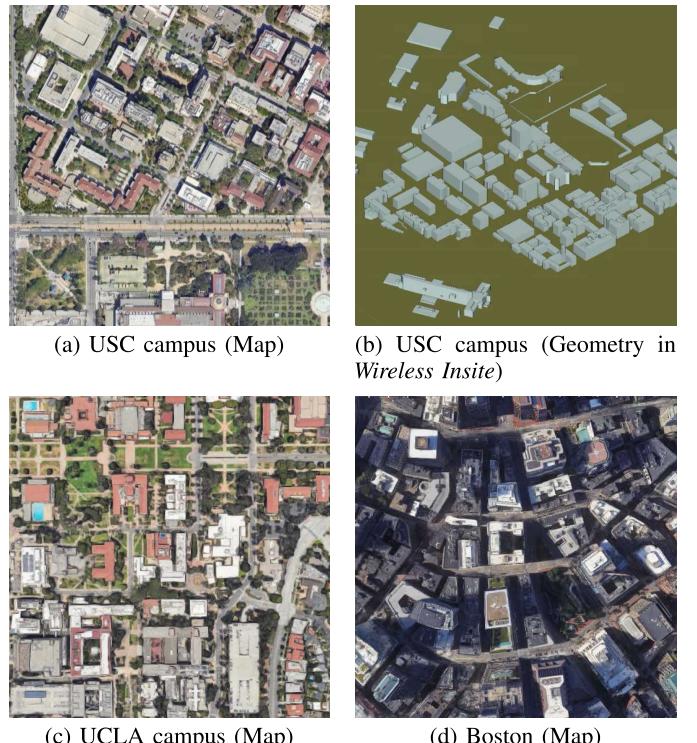


Fig. 2. Map of USC, UCLA, and Boston used in RT simulation. Fig. 2a is imported and converted to Fig. 2b. The ground-truth pathloss map over the USC campus is then obtained using *Wireless Insite* RT simulation and pre-processing (e.g., interpolation, gray conversion, and data augmentation).

Note that our pathloss map uses the information of path gain (in [dB]) while other information on angles and delay is not needed (though this information can be used for further applications, e.g., beamforming algorithms).

Thus, P_{RX} (in [dBm]) can be expressed as a function of P_{TX} (in [dBm]) as follows:

$$P_{RX} = P_{TX} + PG. \quad (6)$$

Note that we set $P_{TX} = 0$ [dBm] in our RT dataset to simplify the analysis, which makes P_{RX} in [dBm] equal to PG in [dB].

To generate a ground-truth (labeled) dataset that simulates real-world network scenarios, we conduct *Wireless Insite* RT simulations on the geographical and morphological maps of the University of Southern California (USC) campus, the University of California, Los Angeles (UCLA) campus, and the Boston area. Both campus areas are in Los Angeles, CA, and exhibit a (light) urban build-up, with most buildings being five stories or less (with a few high-rises interspersed), gaps between buildings along the street canyons, and some open squares. The Boston area is in downtown of Boston, MA. It is a metropolitan area with multiple high-rises; its streets are *not* arranged along a rectangular grid. Each dataset has different network configurations and environmental characteristics (e.g., map scale, and geographical features, such as vegetation). See Fig. 2 and Table I for more details.⁷

⁷It is worth noting that the simulations are performed at the sub-6 GHz band, which is the most widely used cellular band. Similar simulations can be performed in other frequency bands, such as the mmWave and THz bands, with minor adjustments to the parameters. However, at those high frequency bands, geographical data bases with higher resolution might be required for comparable accuracy.

TABLE I
PARAMETERS OF USC, UCLA, AND BOSTON DATASETS

Parameter	Dataset		
	USC	UCLA	Boston
Map scale	880 × 880 [m ²]	760 × 760 [m ²]	553 × 553 [m ²]
Cropped map scale (per pixel)	221 × 221 [m ²] (0.86 × 0.86 [m ²])	225 × 225 [m ²] (0.88 × 0.88 [m ²])	187 × 187 [m ²] (0.73 × 0.73 [m ²])
Terrain	✓	✓	✓
Buildings	✓	✓	✓
Foliage ^a	✗	✗	✗
Carrier frequency	2.5 [GHz]	3.0 [GHz]	3.0 [GHz]
Transmit power	0 [dBm]	0 [dBm]	0 [dBm]
TX antenna type ^b	Isotropic (vertical)	Half-wave dipole (vertical)	Half-wave dipole (vertical)
Total # of data/scene	4754	3776	3143

^aOur study assesses PMP accuracy across datasets varying in map scale, network configurations, and geography, focusing on how factors like foliage impact path loss predictions.

^bIsotropic and half-wave dipole antennas provide almost identical radiation patterns within a certain angular extent. MPC induced outside of the angular extent does not contribute significantly to the link.

330 We stress that the goal of our work is the correct prediction of “ground-truth” pathloss by ML techniques. The
331 pathloss obtained from the RT simulations might deviate
332 from measured values due to inaccuracies of the database
333 or inherent approximations of RTs. However, such deviations
334 are irrelevant to the assessment of our ML methods, since
335 they only impact what is used as “ground-truth” and not the
336 prediction process itself. In other words, if the ground-truth is
337 more accurate (similar to measurement results), our prediction
338 inherently becomes more accurate as well.⁸

340 *2) 3GPP Model:* The 3GPP 38.901 channel model [20]
341 (henceforth simply called the “3GPP model” for conciseness)
342 is a widely used model for wireless system standardization
343 that claims validity for frequencies spanning from 0.5 to
344 100 [GHz].

345 For the purposes of this paper, we only consider the 3GPP
346 modeling of the pathloss, which follows the classical $\alpha - \beta$
347 model

$$348 \quad PL_{\alpha-\beta}(d) = 10\alpha \log_{10}(d) + \beta + S, \quad (7)$$

349 where $S \sim \mathcal{N}(0, \sigma_S)$ is a lognormally distributed random
350 variable (with variance σ_S) representing the shadow fading,
351 and α , β , and σ are parameters of the model that are
352 based on measurement campaigns and that are different in
353 different environments. Important for our later discussions,
354 those parameters are also different depending on whether an
355 unobstructed optical line of sight (LoS) exists between TX and
356 RX or not.

357 Specifically, for urban environments, the following describes
358 the path gain:

$$359 \quad PG_{UMi-LoS} = \begin{cases} PL_1, & (10[m] \leq d_{2D} \leq d_{BP}) \\ PL_2, & (d_{BP} \leq d_{2D} \leq 5[km]) \end{cases} \quad (8)$$

$$360 \quad PG_{UMi-NLoS} = \max(PG_{UMi-LoS}, PL_3), \quad (10[m] \leq d_{2D} \leq 5[km]) \quad (9)$$

⁸Thus, if our proposed PMNet can accurately predict/reproduce RT results when trained with RT data, it will also be able to do so for measurement data when trained with measurement data.

362 where the two-dimensional xy -distance is d_{2D} and the three-
363 dimensional xyz -distance is d_{3D} ,

$$364 \quad PL_1 = 32.4 + 21 \log_{10}(d_{3D}) + 20 \log_{10}(f_c), \quad (364)$$

$$365 \quad PL_2 = 32.4 + 40 \log_{10}(d_{3D}) + 20 \log_{10}(f_c) \quad (365)$$

$$366 \quad - 9.5 \log_{10}((d_{BP})^2 + (h_{BS} - h_{UT})^2), \quad (366)$$

$$367 \quad PL_3 = 22.4 + 35.3 \log_{10}(d_{3D}) + 21.3 \log_{10}(f_c) \quad (367)$$

$$368 \quad - 0.6(h_{UT} - 1.5). \quad (10) \quad (368)$$

369 Here, the breakpoint distance is $d_{BP} = 2\pi h_{BS} h_{UT} f_c / c$ where
370 f_c is the center frequency in [Hz] and $c = 3.0 \times 10^8$ [m/s] is
371 the speed of light. The antenna heights at the TX (e.g., base
372 station), h_{BS} , and the RX (e.g., user terminal), h_{UT} , are set to
373 1.5 [m] and 10 [m], respectively. Note that the model differs
374 for LoS and non-LoS (NLoS) situations.

375 This model is employed as one of our baselines for the
376 prediction (see Sec. IV-E). While the 3GPP model also models
377 shadowing, it incorporates it as *stochastic* variations that
378 cannot be related to particular map features; we therefore omit
379 them for the purposes of this paper.

B. Pre-Processing

380 The raw numeric data from the RT simulation is
381 pre-processed using *gray conversion* and *interpolation* meth-
382 ods to generate the ground-truth pathloss map, *data augmen-
383 tation* methods to create an increased amount of labeled data,
384 and *sampling* methods to divide them into training and testing
385 sets.

386 *1) Gray Conversion:* To generate the pathloss map,
387 we begin by converting the received power P_{RX} (in [dBm])
388 (or the path gain PG in [dB]) into grayscale between 1 and
389 255 using *Min-Max* normalization, with the minimum value
390 of -254 [dBm] and the maximum value of 0 [dBm]. While
391 the upper value is higher than physically reasonable, this pair
392 of values was chosen for convenience to have a 1 [dBm] per
393 gray value step mapping. A smaller (or larger) step size does
394 not have a significant impact on the prediction performance.

395 The gray value 0 is filled at pixels of building area, which
396 is not our region-of-interest (RoI), while, for our RoI, each
397 pixel is filled with gray values between 1 and 255, which
398 corresponds to P_{RX} . Then, the pathloss map is generated after

400 scaling the considered map scale into a 256×256 gray image.
 401 Note that the image size (256×256) has nothing to do with
 402 the grayscale ($0 - 255$).

403 *2) Interpolation:* Since the RT simulations are carried out
 404 over a discrete set of RX locations, and it is computationally
 405 challenging to gather the channel information for every
 406 available RX location, there is missing channel information in
 407 a few pixel locations. To fill the missing part of the pathloss
 408 map, we utilize *bilinear interpolation*, which approximates the
 409 missing value with a weighted sum of the gray values of the
 410 adjacent locations.

411 *3) Data Augmentation:* Typically, a larger dataset leads to
 412 improved performance of NN training. In other words, the
 413 larger the data set, the better the outcome. We thus use two
 414 augmentation methods - cropping and rotation - to increase
 415 the size of our data set.

416 The entire map data is cropped into images of about a
 417 quarter of the size, taking TX as an anchor point. This
 418 augments the size of the dataset by a factor of 96. The image
 419 is first cropped as a 64×64 size image and then upsampled to
 420 a 256×256 size image. Note that some cropped images, not
 421 including any TX, are skipped since the TX location will be
 422 used as our second input feature. After cropping, the image
 423 sets are rotated by 90° , 180° , and 270° , thus increasing the
 424 size of the dataset by a further factor of 4.

425 *4) Sampling:* In the training and testing of PMNet on the
 426 pathloss map dataset, we employ an exclusive division scheme.
 427 Specifically, 90% and 10% of images are randomly split into
 428 the training and validation set, while the images from the same
 429 geographical map belong exclusively to either the training
 430 or the validation set. This approach is taken to enhance the
 431 generalization performance of PMNet.

432 IV. PATHLOSS MAP PREDICTION

433 A. Task (1): Pathloss Map Prediction

434 We now formulate the prediction task in ML nomenclature.
 435 A domain (*i.e.*, wireless channel prediction) is composed of a
 436 feature space \mathcal{X} , where $x \in \mathcal{X}$. Given the domain, a PMP task
 437 is defined as $\mathcal{T} = \{\mathcal{Y}, P(y|x)\}$, which is composed of a label
 438 space \mathcal{Y} , where $y \in \mathcal{Y}$. Given the task, a dataset is defined as
 439 $\mathcal{D} = \{\mathcal{X}, \mathcal{Y}\}$, which is a collection of $|\mathcal{D}| = \mathcal{N}$ channel data
 440 that belong to a domain with a task \mathcal{T} .

441 For the PMP task, \mathcal{X} consists of (1) a building map
 442 (including terrain, building, and/or foliage) and (2) a TX
 443 location and \mathcal{Y} is a Pathloss map. The goal of the PMP
 444 task \mathcal{T} is to find a predictive function $f(\cdot)$, which accurately
 445 predicts \mathcal{Y} for a given \mathcal{X} . It is worth noting that integrating
 446 ROI (denoted as \mathcal{A}^*) segmentation with path gain prediction
 447 simplifies the PMP task and eliminates the need for separate
 448 pre- or post-processing steps for the ROI segmentation for each
 449 map. Additionally, this integration helps NN better understand
 450 the different IOs in a given building map.

451 In a nutshell, the PMP task is to predict the pathloss/path
 452 gain (and received power P_{RX} using simple normalization)
 453 at RX locations q_{RX} given TX location q_{TX} in ROI \mathcal{A}^* .
 454 This channel prediction task exploits *site-specific* geographical
 455 information, focusing on the large-scale effects in the channel.

456 We employ a supervised ML method for the PMP task.
 457 We train the model on a dataset of RT channel for an area
 458 of \mathcal{A} , such as the USC dataset in Table I; see Fig. 3 for an
 459 overview of the ML-based PMP approach.

460 B. Network Architecture

461 In this subsection, we present the design process of our
 462 proposed PMP-oriented NN architecture, referred to as *PMNet*.
 463 Our design principles are summarized as follows: (1) several
 464 state-of-the-art techniques in the field of image processing are
 465 carefully selected and tested, (2) some essential techniques are
 466 selected following the concept of ablation study, and (3) the
 467 NN with selected techniques is optimized with extensive
 468 trials.

469 *1) Design Choices:* In the PMP task, the NN is required to
 470 perform image segmentation to identify the ROI and predict
 471 received power within the ROI, while accounting for complex
 472 wireless propagation physics. To accomplish this, our proposed
 473 PMNet is designed based on such methods, *Encoder-Decoder*
 474 and *Atrous convolution*.

475 *2) Encoder-Decoder:* Encoder-Decoder networks are a
 476 widely applied architecture for many computer vision tasks,
 477 *e.g.*, object detection [33], human pose estimation [34], and
 478 semantic segmentation [35], [36], [37]. The encoder-decoder
 479 architecture allows to learn a lower-dimensional representation
 480 from a higher-dimensional dataset and utilize the learned rep-
 481 resentation for various tasks. However, as the encoder shrinks
 482 the input feature maps, it may lose essential information, lead-
 483 ing to a *bottleneck problem*. Several architectures, including
 484 U-Net [38], address the bottleneck problem by adding *skip
 485 connections* between the encoder and the decoder parts. Skip
 486 connections allow the decoder to access feature maps from
 487 the encoder, which helps to propagate context information to
 488 higher-resolution layers.

489 *3) Atrous Convolution:* *Receptive field* of a convolutional
 490 layer is the region of the input feature map that contributes
 491 to the output feature map at a given location. The size of the
 492 receptive field is determined by the resolution of the input
 493 feature map and the field-of-view (FoV) of the filter. There is
 494 a logarithmic relationship between the localization accuracy
 495 of a model and the size of its receptive field. This means the
 496 receptive field size should be sufficient if the given dataset and
 497 task are observed with wide FoV. A standard convolutional
 498 filter detects a particular feature by sliding over the input
 499 feature map, resulting in the output feature map seeing only
 500 the adjacent part of the input feature map. In terms of
 501 computational complexity, having a wide receptive field with
 502 the standard convolutional filter is expensive. Thus, broadly
 503 speaking, the receptive field of the standard convolution filter
 504 is somewhat narrow, seeing only little context.

505 Atrous convolution, also known as dilated convolution,
 506 is a technique that addresses this limitation [39]. It allows
 507 capturing a larger context with a wider FoV by modifying
 508 the standard convolution operation. For the two-dimensional
 509 case, atrous convolution is applied over the input feature map
 510 f to produce the output feature map g at location $\{i, j\}$ using
 511 the convolution filter w . This operation can be expressed as

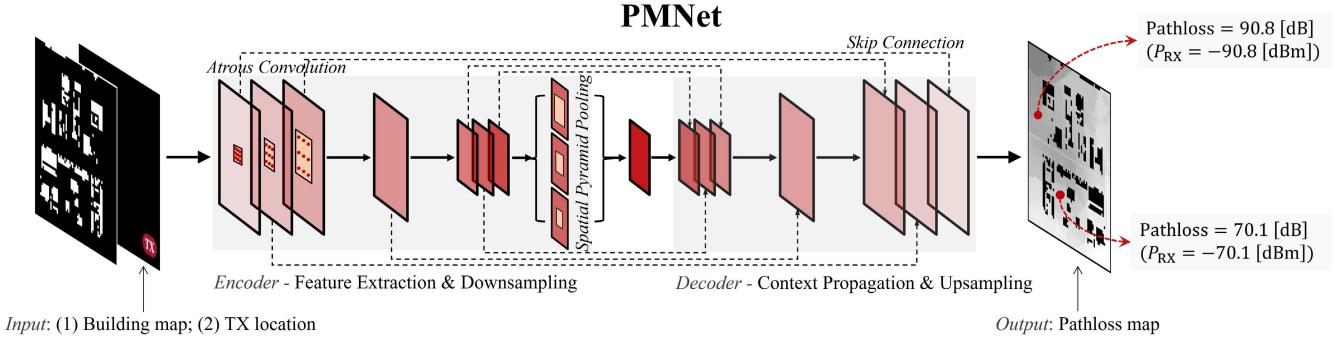


Fig. 3. Overview of the PMP task and the PMNet architecture.

512 follows:

$$g_{\{i,j\}} = \sum_{m=1}^k \sum_{n=1}^k f_{\{i+rm, j+rn\}} w_{\{m,n\}}. \quad (11)$$

514 Here, k represents the kernel size, and r is the atrous rate, 515 which determines the stride level. Notably, the atrous rate r 516 allows to adaptively control the FoV of the filter. For example, 517 an atrous rate of $r = 2$ doubles the FoV of the filter, while an 518 atrous rate of $r = 3$ triples it. The standard convolution can 519 be seen as a special case of (11) where $r = 1$.

520 In the context of the PMP task, the encoder-decoder 521 architecture of PMNet facilitates efficient context propagation 522 from the encoder to the decoder, while atrous convolution 523 enables it to handle scale variations and capture broader 524 context in map data, setting it apart from other UNet-based 525 networks [15], [16], [17], [18]. The combination of these two 526 features enables PMNet to efficiently and accurately predict 527 pathloss maps, while also accounting for complex wireless 528 propagation physics.

529 *4) Design Parameters:* PMNet architectures are composed 530 of a stack of *ResLayers*, each containing multiple residual 531 blocks [40]. These ResLayers can be configured with varying 532 numbers of blocks, atrous rates, multi-grids, and output strides. 533 These elements are summarized as follows:

- 534 • *Number of blocks:* The number of residual blocks in 535 a ResLayer controls the complexity and depth of the 536 network. Increasing the number of blocks may improve 537 the accuracy of the model, but it also increases the 538 computational cost.
- 539 • *Atrous rates:* Atrous rates control the spacing between 540 the convolutions in a ResLayer. Larger atrous rates allow 541 the network to capture more larger spatial contexts in the 542 PMP task.
- 543 • *Multi-grids:* Multi-grids allow the network to capture 544 multi-scale information from different levels of the CNN 545 architecture.
- 546 • *Output stride:* The output stride of a ResLayer controls 547 the ratio between the resolution of the input image and the 548 output image's resolution. A higher output stride results 549 in a lower-resolution output image. This can be useful to 550 strike a balance between accuracy and speed.

551 Parameters are optimized through thorough simulations. Note 552 that the impact of output stride in the PMP task is shown in

553 Table IV in Sec. IV-E (e.g., the case of $\frac{H}{8} \times \frac{W}{8}$), demonstrating 554 the most substantial effect compared to other parameters. 555 With these design choices and parameters, PMNet effectively 556 predicts pathloss maps even for different channel datasets (e.g., 557 *RadioMapSeer* [21]). For an architectural overview, please 558 refer to Fig. 3 and Table II. For more details, please see our 559 source code repository.

C. Training

560 Table III lists the hyper-parameters that are used for the 561 training of PMNet. We implement the PMNet using PyTorch 562 and use an NVIDIA GeForce RTX 3080 Ti GPU. For more 563 stable training, we normalize the input values into $[0, 1]$ via 564 scaling. During the training, we evaluate the PMNet by mean 565 squared error (MSE) on the validation set at the end of every 566 epoch. For testing, we use the parameters of PMNet with 567 the best MSE score on the validation set. Consequently, the 568 pathloss map for a given map can be generated within a few 569 milliseconds after training.

D. Evaluation

571 *1) Root Mean Square Error (RMSE):* RMSE is a widely 572 used loss function in regression analysis and is used as the 573 primary evaluation metric for this task. It measures the overall 574 difference between the prediction $\hat{\mathbf{y}}$ and ground-truth \mathbf{y} and 575 quantifies the overall accuracy of the model. The formula for 576 RMSE is:

$$\text{RMSE}(\hat{\mathbf{y}}, \mathbf{y}) = \sqrt{\frac{1}{N} \sum_{n=1}^N (\hat{y}_n - y_n)^2}, \quad (12)$$

577 where $\hat{y}_n \in \hat{\mathbf{y}}$ and $y_n \in \mathbf{y}$ denote predicted and ground-truth 578 gray value (corresponding P_{RX}) at the n -th pixel, respectively, 579 and N is the number of pixels in a pathloss map, i.e., 580 256×256 . The RMSE averaged over all samples is the primary 581 evaluation metric for the PMP task.

582 *2) ROI Segmentation Error:* The ROI segmentation error, 583 calculated using the intersection over union (IoU) metric, 584 quantifies the accuracy of ROI and non-ROI area segmentation 585 for all pixels in the ground-truth ($\{i, j\}$) and prediction 586 ($\{\hat{i}, \hat{j}\}$) - that is calculated as follows:

$$\text{ROI Segmentation Err.} = \frac{\sum_i \sum_j \text{Err}^B_{\{i,j\}}}{\sum_i \sum_j \text{Bld}_{\{i,j\}}}. \quad (13)$$

TABLE II
PMNET ARCHITECTURES AND PARAMETERS. \downarrow AND \uparrow REPRESENT THE DOWNSAMPLING AND UPSAMPLING LAYERS, RESPECTIVELY

PMNet					
Encoder			Decoder		
#	Type	Output Size	#	Type	Output Size
Input	Image	$2 \times 256 \times 256$	Output	Image	$1 \times 256 \times 256$
1(\downarrow)	Conv2d, MaxPool2d	$64 \times 65 \times 65$	1(\uparrow)	Conv2d	$(128 + 2) \times 256 \times 256$
2	ResLayer	$256 \times 65 \times 65$	2	Conv2d	$(256 + 64) \times 65 \times 65$
3(\downarrow)	ResLayer	$512 \times 33 \times 33$	3	Conv2d	$(256 + 256) \times 65 \times 65$
4(\downarrow)	ResLayer	$512 \times 17 \times 17$	4(\uparrow)	ConvTranspose2d	$(256 + 256) \times 65 \times 65$
5	ResLayer	$1024 \times 17 \times 17$	5(\uparrow)	ConvTranspose2d	$(512 + 512) \times 33 \times 33$
6	Conv2d, AdaptiveAvgPool2d	$512 \times 17 \times 17$	6	Conv2d	$(512 + 512) \times 17 \times 17$

TABLE III
TRAINING CONFIGURATION AND HYPER-PARAMETERS
FOR PMNET TRAINING

Model	PMNet
Dataset (USC)	
Map	USC campus
Split for training (test) set	
Hyper-parameter	
Learning rate (LR)	$10^{-3} \sim 5 \times 10^{-4}$
LR gamma, step size	0.5, 10
Batch size	$16 \sim 32$
Optimizer	Adam
# of of epochs	50

590 Here, $\text{Err}^B_{\{i,j\}}$ and $\text{Bld}_{\{i,j\}}$ are defined as:

$$\text{591 } \text{Err}^B_{\{i,j\}} = \begin{cases} 1, & \{i,j\} \in \mathcal{B} \text{ and } \{\hat{i},\hat{j}\} \in \mathcal{A}^* \\ 1, & \{i,j\} \in \mathcal{A}^* \text{ and } \{\hat{i},\hat{j}\} \in \mathcal{B} \\ 0, & \text{otherwise} \end{cases} \quad (14)$$

$$\text{592 } \text{Bld}_{\{i,j\}} = \begin{cases} 1, & \{i,j\} \in \mathcal{B} \\ 0, & \text{otherwise} \end{cases} \quad (15)$$

593 Within a given map, the non-RoI area, denoted as black (gray
594 value 0), is represented by \mathcal{B} , while the RoI area, denoted as
595 non-black (grayscale 1 – 255), is represented by \mathcal{A}^* . \mathcal{B} and
596 \mathcal{A}^* are complementary set within \mathcal{A} . \mathcal{B} can include buildings,
597 foliage, and/or small objects.

598 *3) Channel Prediction Error:* Channel prediction error
599 directly evaluates path gain accuracy for pixels within the RoI
600 area, evaluating power in [dBm] (or path gain in [dB]) unlike
601 RMSE, which quantifies differences based on gray values.

602 To calculate channel prediction error, gray values within the
603 RoI area of both the predicted and ground-truth pathloss maps
604 are converted into corresponding received power values. The
605 RMSE formula is then applied to these power values:

$$\text{606 } \text{RMSE}(\hat{\mathbf{p}}, \mathbf{p}) = \sqrt{\frac{1}{N} \sum_{n=1}^N (\hat{p}_n - p_n)^2}, \quad (16)$$

607 where $\hat{p}_n \in \hat{\mathbf{p}}$ and $p_n \in \mathbf{p}$ represent the predicted and ground-
608 truth P_{RX} at the n -th pixel, respectively. Channel Prediction
609 Error is then computed by averaging $\text{RMSE}(\hat{\mathbf{p}}, \mathbf{p})$ across all
610 given samples.

E. Simulation Result

611 *1) Training Optimization:* Table IV presents an ablation
612 study to identify the factors that significantly contribute to
613 PMNet’s performance in the PMP task, such as *data augmen-*
614 *tation* and *feature map size*.⁹

615 *2) Impact of Data Augmentation:* For the data augmentation,
616 we do horizontal, vertical and diagonal flips. In other
617 words, including the original images, we use the $\times 4$ number
618 of images for training. Note that data augmentation has several
619 advantages in general: first, it enhances the diversity of the
620 training data by generating additional examples that capture
621 various variations of the original data. Second, it reduces
622 overfitting by exposing the model to a wider range of input
623 patterns. Finally, data augmentation helps to make the model
624 more robust to noise and variability in the input data. As shown
625 in Table IV, it improves the performance of PMNet by 15.7%
626 in terms of RMSE.

627 *3) Impact of Feature Map Size:* We analyze the perfor-
628 mances of PMNet according to the size of the feature map,
629 which is the output of the encoder. Table IV compares the
630 results with the feature map sizes $\frac{H}{8} \times \frac{W}{8}$ and $\frac{H}{16} \times \frac{W}{16}$,
631 where H and W are the height and width of an input image,
632 respectively. To adjust the feature map size, we modify the
633 strides of the convolution layers in the encoder. We employ
634 the feature map size of $\frac{H}{8} \times \frac{W}{8}$ as the default option, because
635 PMNet yields better performance with the feature map size of
636 $\frac{H}{8} \times \frac{W}{8}$ than that of $\frac{H}{16} \times \frac{W}{16}$.

637 *4) Accuracy:* We compare the ML-based PMP with our
638 proposed PMNet model to two other methods for the PMP
639 task: a model-based approach, 3GPP, and an ML-based
640 approach, RadioUNet. All three methods produce a single-
641 channel 256×256 image of the pathloss map as the output,
642 given the input of a two-channel 256×256 image containing
643 the geographical map and the TX location. Here are the details
644 of these baseline methods:

645 *1) 3GPP (with map info.)* As discussed in Sec. III-A.2, the
646 3GPP model determines the pathloss at a particular loca-
647 tion based on the Euclidean distance and whether the link
648 between the TX and RX is in LoS or NLoS. To ensure
649 a fair comparison with other baselines, we utilize map
650 information to determine the LoS or NLoS condition of

651 ⁹Our extensive experiments tested other factors, such as different sampling
652 methods, training loss functions, and additional input features (e.g., TX dis-
653 tance heatmap), but these factors did not show a meaningful improvement to
654 justify the additional complexity.

TABLE IV
ABLATION STUDY FOR PMNET TRAINING OPTIMIZATION. LOWER VALUES INDICATE BETTER PERFORMANCE

Case	Data Aug. ($\times 4$)	Feature Size	RMSE \downarrow	RoI Segmentation Err. \downarrow	Channel Prediction Err. \downarrow
w/o Data-Aug.	\times	$\frac{H}{16} \times \frac{W}{16}$	0.01637	0.00263	0.01860
w/ Data-Aug.	\checkmark	$\frac{H}{16} \times \frac{W}{16}$	0.01259	0.00025	0.01403
$\frac{H}{8} \times \frac{W}{8}$	\checkmark	$\frac{H}{8} \times \frac{W}{8}$	0.01057	0.00096	0.01175

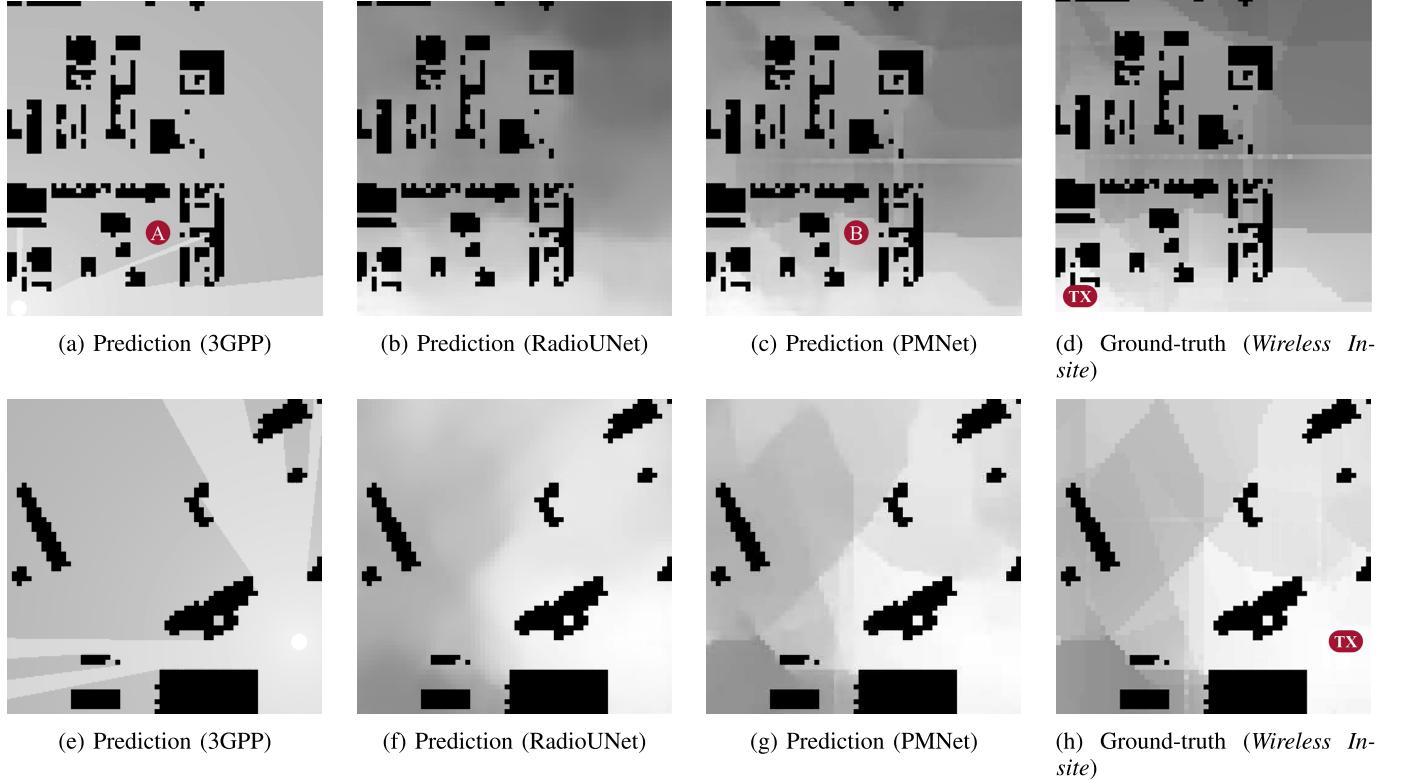


Fig. 4. Comparison of the predicted pathloss map of 3GPP, RadioUNet, and PMNet. TX in ground-truth represents the TX location. The scenes are randomly selected, not cherry-picked.

specific pixels to the TX.¹⁰ Note that it does not require any NN training as it is a model-based approach.

652 2) **RadioUNet** [15] is an ML-based PMP method that
653 extends the UNet architecture by employing two UNets.
654 Each UNet comprises 8 encoder layers with convolution,
655 ReLU, and Maxpool layers, followed by 8 decoder layers
656 with transposed convolution and ReLU layers. The
657 encoders and decoders are concatenated, as in the original
658 UNet architecture. Here, RadioUNet employs curriculum
659 training to enhance training: in the first stage, the first
660 UNet is trained for a specific number of epochs, with
661 the second UNet frozen. In the second stage, the second
662 UNet is trained using the two-channel input features
663 and the output of the first UNet, effectively making it
664 a three-channel input network.
665 3) **PMNet (Proposed)** is our proposed ML-based PMP
666 method. This network employs several parallel atrous

667 convolutions with different rates and the encoder-decoder
668 network. The encoder consists of 6 ResNet-based layers.
669 Each ResNet layer comprises several bottleneck layers
670 consisting of convolution, batch normalization, max
671 pooling, and ReLU. The decoder consists of 6 layers
672 consisting of convolution, adaptive average pooling, ReLU,
673 transposed convolution, and ReLU. Skip connections are
674 used between encoders and decoders.
675

677 5) *Qualitative Analysis:* Fig. 4 shows the prediction results
678 of the baselines. Recall that each pixel in the ROI corresponds
679 to the predicted received power P_{RX} (or the path gain PG).
680 Note that some pixel values in the ground-truth data appear
681 noisy due to interpolation during the gray conversion process
682 after RT simulation.
683

684 3GPP exhibits a substantial deviation from ground-truth
685 obtained through RT simulation, highlighting the differences
686 between how RT simulation and 3GPP model calculate a
687 pathloss. Specifically, for RX locations with LoS conditions
688 close to the TX, the results obtained using the 3GPP model
689 approximately match the ground-truth data obtained from
690 *Wireless Insite*. However, for RX locations farther from the TX

¹⁰The original 3GPP pathloss model uses a probabilistic model to determine LoS/NLoS condition at a particular distance. However, to ensure a fair comparison, we use here the deterministic LoS/NLoS condition determined from the map information in calculating the pathloss gain.

TABLE V
COMPARISON STUDY FOR PMP SCHEMES (3GPP, RADIOUNET, AND PMNET). LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

<i>Scheme</i>	<i>ML-based</i>	<i>RMSE</i> ↓	<i>RoI Segmentation Err.</i> ↓	<i>Channel Prediction Err.</i> ↓
3GPP (with map info.) [20]	✗	15.9451	-	17.5973
RadioUNet [15]	✓	0.02634	0.00840	0.01249
PMNet	✓	0.01057	0.00096	0.01175

TABLE VI
NUMERICAL RESULTS OF PMNET ON AN UNSEEN NETWORK SCENARIO. PMNET WAS TRAINED ON THE USC DATASET AND EVALUATED ON THE UCLA AND BOSTON DATASET

<i>Case</i>	<i>Model</i>	<i>Train Data</i>	<i>Eval. Data</i>	<i>RMSE</i> ↓	<i>RoI Segmentation Err.</i> ↓	<i>Channel Prediction Err.</i> ↓
Vanilla	PMNet	USC	USC	0.01057	0.00096	0.01175
Cross-scenario (UCLA)	PMNet	USC	UCLA	0.19146	0.03925	0.21700
Cross-scenario (Boston)	PMNet	USC	Boston	0.25842	0.04602	0.32436

690 or under NLoS conditions, the 3GPP model exhibits significant
691 discrepancy from the ground-truth data. It is worth noting that
692 the 3GPP pathloss model does not provide results for near-field
693 within a link distance of 10 meters; so, we arbitrarily set the
694 power in the near-field area to gray value 255, which does
695 not introduce significant errors. The 3GPP pathloss model is
696 a simplified model that does not account for the complex
697 wireless propagation physics of reflection, diffraction, and
698 scattering (highlighted in **A**). Instead, it relies solely on two
699 models for LoS and NLoS locations, respectively, and only
700 considers link distance and carrier frequency. This simplified
701 approach inevitably leads to significant inaccuracies in the
702 pathloss prediction.

703 RadioUNet demonstrates impressive RoI segmentation
704 results, while its channel prediction outputs appear some-
705 what blurry. It is worth noting that RadioUNet conducts
706 curriculum-based training with 50 epochs each in the first
707 and second stages, utilizing the same training/validation set
708 as PMNet, which is trained with a total of 50 epochs.

709 PMNet, on the other hand, achieves notable results for both
710 RoI segmentation and channel prediction. As highlighted in **B**,
711 PMNet effectively captures the intricate wireless propagation
712 physics of reflection, diffraction, and scattering. This can
713 be attributed to PMNet's ability to incorporate a broader
714 contextual understanding of the environment, enabling it to
715 capture the representation of wireless propagation physics in
716 the surrounding environment.

717 6) *Quantitative Analysis*: Table V compares our proposed
718 PMNet model to the model-based 3GPP method and the
719 ML-based RadioUNet method in terms of three accuracy
720 metrics for the PMP task: RMSE, RoI segmentation error, and
721 channel prediction error. Note that the ground-truth dataset
722 is made by RT simulation; therefore, the error shows the
723 difference between a scheme and the RT simulation.

724 The model-based 3GPP method has inferior results com-
725 pared to ML-based methods, which can be explained by the
726 oversimplifications inherent in this model, as discussed above.
727 While our proposed PMNet model achieves the best score on
728 all three metrics, another ML-based PMP method, RadioUNet,

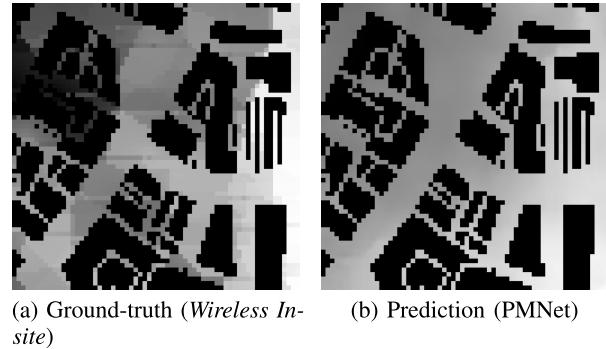


Fig. 5. Prediction results of PMNet on an unseen network scenario (*i.e.*, cross-scenario evaluation). The model is trained on the USC dataset and evaluated on the Boston dataset.

729 also achieves high accuracy ($RMSE \leq 0.03$). This result
730 highlights the capability of ML-based PMP approaches to
731 learn a representation of the wireless propagation physics
732 implicit in the ground-truth RT channel data.

V. TRANSFERABLE PATHLOSS MAP PREDICTION

A. Challenge: PMP for Unseen Network Scenario

733 As demonstrated in the previous section, PMNet exhibits
734 high accuracy of the PMP task for a given dataset. How-
735 ever, minimizing re-training efforts for new network scenarios
736 remains a challenge. To evaluate PMNet's generalizability
737 across different scenarios, we conducted a cross-scenario eval-
738 uation, testing PMNet trained on USC data on the Boston
739 dataset.

740 As shown in Fig. 5 and Table VI, the PMNet achieves
741 the RoI segmentation error on the order of 10^{-2} and the
742 channel prediction error on the order of 10^{-1} in a new
743 scenario. Such deterioration is due to differences in network
744 configuration and environmental characteristics between the
745 two scenarios (*e.g.*, different map scales and geographical
746 features). This highlights the need for further development
747 to improve PMNet's performance across different network
748 scenarios, a task we refer to as *cross-scenario PMP*.

751 **B. Task (2): Cross-Scenario PMP**

752 To enable better performance, we now allow cross-scenario
 753 PMP to *improve* the model trained on a different network
 754 scenario through training with a *reduced-size* training in the
 755 new scenario. This will allow the network to adapt to the new
 756 scenario with less time and resource effort, while maintaining
 757 high accuracy. To address this challenge, we leverage *transfer
 758 learning* (TL).

759 *1) Approach: Transfer Learning:* TL is an ML technique
 760 that allows knowledge transfer from one task or dataset to
 761 another, reducing the amount of data and training time required
 762 for new scenarios. In the context of cross-scenario PMP,
 763 we can transfer the knowledge from the source scenario, which
 764 learns a predictive function $f_S(\cdot)$ from a source dataset \mathcal{D}_S
 765 (e.g., USC), to the target scenario, which learns a predictive
 766 function $f_T(\cdot)$ from a target dataset \mathcal{D}_T (e.g., UCLA and
 767 Boston).

768 There are two main ways to use TL for the cross-scenario
 769 PMP.

- 770 • *Feature extraction:* We can train a feature extractor on
 771 a source scenario and then use that feature extractor to
 772 extract features from data from a target scenario. Once we
 773 have extracted the features, we can train a simple model
 774 (e.g., a linear regressor) to predict the pathloss map for
 775 the target scenario.
- 776 • *Fine-tuning:* We can fine-tune a pre-trained model on the
 777 target scenario. This can be done by unfreezing some or
 778 all of the layers of the pre-trained model and training the
 779 model on data from the target scenario.

780 The choice between those two methods depends on a number
 781 of factors, including the size and complexity of the pre-trained
 782 model, the availability of training data for the target dataset,
 783 and the computational resources available.

784 In this work, we focus on the fine-tuning TL approach with
 785 all of the layers of the pre-trained model unfrozen.¹¹ This
 786 approach is simple yet effective, achieving higher accuracy on
 787 various cross-scenario PMP tasks with less training data and
 788 shorter training time, as elaborated in the following subsection.

789 We prepare and use the following pre-trained models in our
 790 experiments:

- 791 (i) **VGG16_{ImgNet}** is the pre-trained CNN model trained
 792 on the ImageNet dataset, which contains 140k images
 793 belonging to 22k categories. It is a powerful image
 794 classification model that has been used to achieve state-
 795 of-the-art results on a variety of image classification
 796 benchmarks.
- 797 (ii) **PMNet_{3gpp}** is the pre-trained PMNet model trained on
 798 the 3GPP pathloss map dataset. The 3GPP pathloss map
 799 dataset is prepared with the 3GPP pathloss model in [20]
 800 (see 3GPP in Sec. IV-E.4, Fig. 4, and Table V).
- 801 (iii) **PMNet_{usc}** is the pre-trained PMNet model trained on the
 802 USC RT dataset. It is similar to PMNet_{3gpp} but is trained
 803 on a different dataset. This is our main pre-trained model.
 804 Each pre-trained model is available on our GitHub page.

¹¹While we have performed sample experiments with unfreezing certain layers, such as the encoder-frozen and decoder-unfrozen, performance did not improve significantly. A more comprehensive investigation of this topic is, however, beyond the scope of this paper.

TABLE VII
 TRAINING CONFIGURATION AND HYPER-PARAMETERS
 IN CROSS-SCENARIO PMP

Model	
Backbone	PMNet, VGG16
Pre-trained model	PMNet _{usc} , PMNet _{3gpp} , VGG16 _{ImgNet}
Dataset (UCLA, Boston)	
Map	UCLA campus, Boston
Split for training (test) set	10% ~ 90% (10%) of dataset
Hyper-parameter	
LR	$10^{-3} \sim 5 \times 10^{-4}$
LR gamma, step size	0.5, 10
Batch size	16
Optimizer	Adam
# of epochs	50

TABLE VIII
 IMPACT OF TL ON TRAINING SPEED ($= \frac{1}{\text{steps}}$). PMNET MODELS WITH
 OR WITHOUT PMNET_{usc} PRE-TRAINED MODEL ARE TRAINED AND
 EVALUATED ON THE BOSTON DATASET

Case	# of Required Step (Training Speed)	
	RMSE ≤ 0.1	RMSE ≈ 0.03
Vanilla (90% Data)	5841 (x1.0)	6195 (x1.0)
PMNet _{usc} (20% Data)	1040 (x5.6)	1520 (x4.1)

805 **C. Simulation Results**

806 As demonstrated in the cross-scenario evaluation results (in
 807 Fig. 5 and Table VI), there is a need for further development
 808 to make PMNet adapt to different network scenarios. To this
 809 end, our approach is fine-tuning a pre-trained model with
 810 down-sized data for the new scenario. Here, the main questions
 811 in performing cross-scenario PMP are: (1) How quickly and
 812 with how minimal data PMNet can effectively adapt to new
 813 scenarios; and (2) Which pre-trained model should be utilized
 814 for optimal performance in cross-scenario PMP.

815 *1) Efficiency:* For cross-scenario PMP, rapidly adapting
 816 PMNet models to new network scenarios using limited data
 817 is essential due to the time-consuming and expensive nature
 818 of channel measurement using RT simulation or channel
 819 sounder. This is particularly critical for applications like beam
 820 management and localization using ML-based PMP, which
 821 demand quick adjustments for new scenarios.

822 *2) Impact of TL:* TL can significantly improve the training
 823 speed of PMNet models for cross-scenario PMP. As shown in
 824 Fig. 6 and Table VIII, the TL case with the PMNet_{usc} pre-
 825 trained model achieves a given level of accuracy much faster
 826 even with much less amount of training data. In particular,
 827 PMNet_{usc} achieves the same level of accuracy ($RMSE \leq$
 828 0.1 and $RMSE \approx 0.03$) $\times 5.6$ and $\times 4.1$ faster, respectively,
 829 as the Vanilla case (highlighted in C), where we define as
 830 “Vanilla” the training from scratch in a particular environment.

831 Furthermore, the TL can also significantly save the required
 832 amount of data for cross-scenario PMP. As shown in Fig. 7, the
 833 TL (PMNet_{usc}) trained with about 20% of the Boston dataset
 834 achieves equivalent results to the Vanilla case trained with
 835 about 90% of the dataset.

836 It is worth noting that limited training data can easily induce
 837 overfitting, as observed in the Vanilla case with 20% Data
 838 (highlighted in D). For the same amount of new scenario

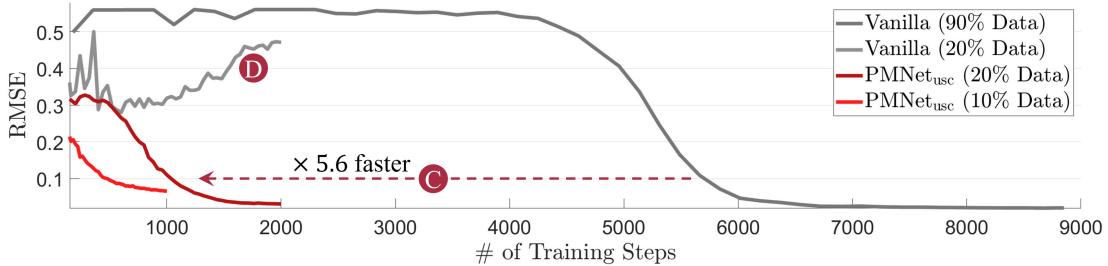


Fig. 6. Comparison of the training efficiency of PMNet models with and without TL. PMNet models are trained for 50 epochs and evaluated on the Boston dataset.

TABLE IX

COMPARISON OF PRE-TRAINED MODELS ($\text{VGG16}_{\text{ImgNet}}$, $\text{PMNET}_{\text{3GPP}}$, AND $\text{PMNET}_{\text{usc}}$) IN TERMS OF ACCURACY. MODELS ARE EVALUATED ON THE UCLA AND BOSTON DATASETS, USING 90% OF THE DATA FOR TRAINING AND 10% OF THE DATA FOR VALIDATION. 50 EPOCHS ARE USED FOR TRAINING. LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

Case	Pre-training	Model	RMSE \downarrow	RoI Segmentation Err. \downarrow	Channel Prediction Err. \downarrow
Vanilla	✗	PMNet	0.03415	0.02935	0.03844
TL (ImageNet)	✓ (ImageNet)	VGG16	0.04528	0.01814	0.05108
TL (3GPP)	✓ (3GPP)	PMNet	0.02809	0.00655	0.03238
TL (USC)	✓ (USC)	PMNet	0.02792	0.01666	0.03145

(a) UCLA

Case	Pre-training	Model	RMSE \downarrow	RoI Segmentation Err. \downarrow	Channel Prediction Err. \downarrow
Vanilla	✗	PMNet	0.01736	0.02417	0.02125
TL (ImageNet)	✓ (ImageNet)	VGG16	0.01999	0.02040	0.02512
TL (3GPP)	✓ (3GPP)	PMNet	0.01762	0.04030	0.02187
TL (USC)	✓ (USC)	PMNet	0.00987	0.03530	0.01225

(b) Boston

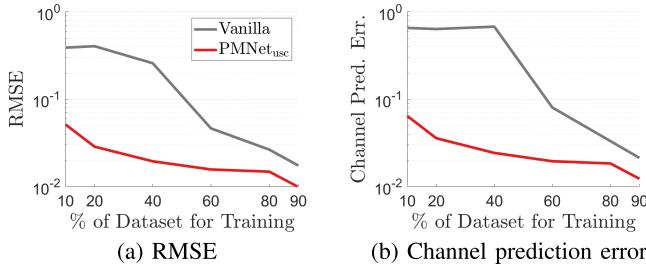


Fig. 7. Impact of TL on training data requirements. PMNet models with or without $\text{PMNet}_{\text{usc}}$ pre-trained model are trained with 50 epochs and evaluated on the Boston dataset.

839 data, the TL case ($\text{PMNet}_{\text{usc}}$ (20%)) does not experience the
840 overfitting issue. This suggests that TL also enhances training
841 stability (less overfitting issue with limited data) in cross-
842 scenario PMP.

843 Our findings demonstrate that the pre-trained $\text{PMNet}_{\text{usc}}$
844 model efficiently accelerates the training process by leveraging
845 its knowledge of PMP tasks, including the physics of wireless
846 channel propagation and RoI segmentation, and this model
847 can be readily adapted to new scenarios with minimal data
848 and training steps.

849 Consequently, we confirm that fine-tuning with a *suitable*
850 pre-trained model is an effective cross-PMP task method.
851 Another key question is which pre-trained model is suit-
852 able and which is not, which is discussed further in the
853 following.

854 3) *Accuracy*: As discussed in Sec. V, the source and target
855 scenario (task or domain) should be sufficiently similar for
856 effective TL to occur. For instance, to successfully apply TL to
857 the target task of predicting wireless communication channels,
858 the NN should extract relevant features of wireless propagation
859 physics from the source task.

860 4) “*Suitable*” Pre-Trained Model: Table IX compares the
861 performance of the PMNet model with and without TL. The
862 baseline model, referred to as Vanilla, is trained without any
863 TL (without any pre-trained model). Additionally, we compare
864 the performance of TL using a pre-trained model trained on an
865 unrelated source scenario (*i.e.*, VGG16 trained on ImageNet)
866 with TL using a pre-trained model trained on a related source
867 scenario (*i.e.*, PMNet trained on USC or 3GPP datasets).

868 As shown in Table IX, both PMNet models trained on
869 $\text{PMNet}_{\text{usc}}$ and $\text{PMNet}_{\text{3GPP}}$ outperform the Vanilla case on all
870 performance metrics, suggesting that using a pre-trained model
871 trained on a related source task can significantly improve
872 accuracy.

873 Interestingly, while the VGG16 model trained on ImageNet
874 ($\text{VGG16}_{\text{ImgNet}}$) outperforms the Vanilla for RoI segmentation,
875 it fails to do so for channel prediction (highlighted in E). This
876 discrepancy stems from the VGG16 pre-trained model, which
877 has an inherent understanding of segmentation and image
878 representation from its source task; however, does not have
879 any knowledge of the physics of wireless propagation.

880 Fig. 8 visually confirms the findings from Table IX. All
881 models achieve high accuracy for RoI segmentation, while

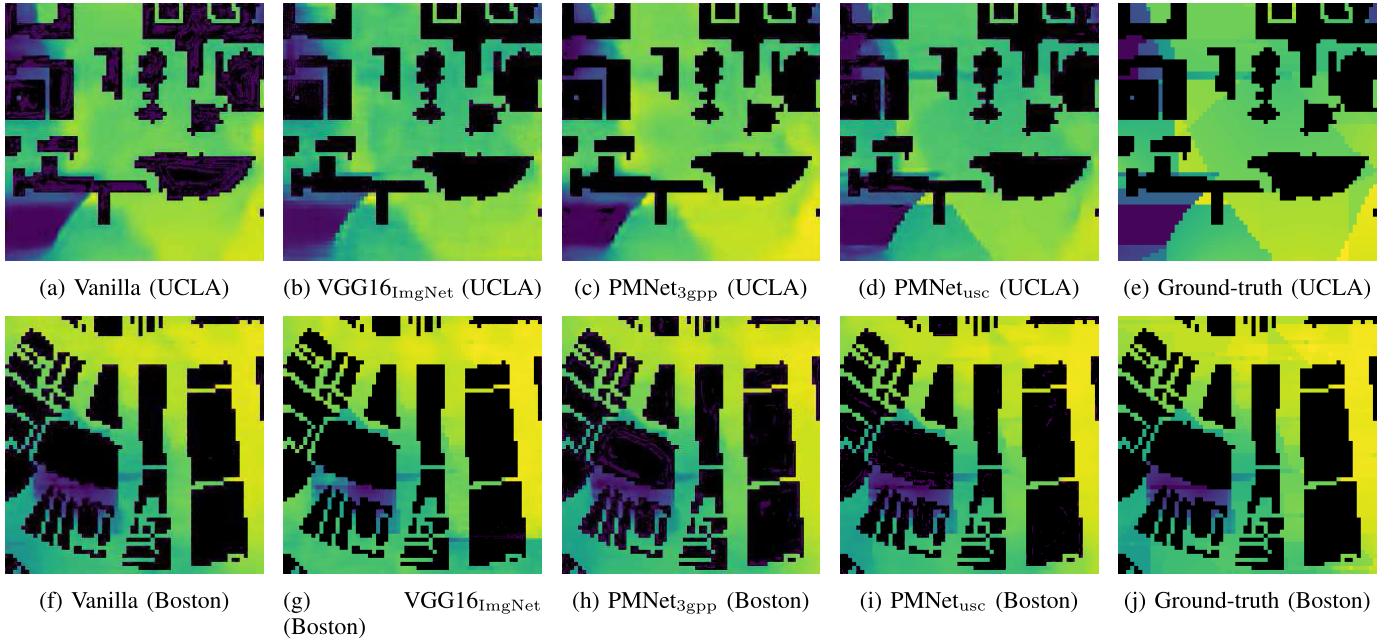


Fig. 8. Comparison of the prediction results of pre-trained models (VGG16_{ImgNet}, PMNet_{3gpp}, and PMNet_{usc}). 50 epochs are used for training. Brighter colors indicate higher PG. Note that pixels with non-zero gray value are converted to color to highlight differences between results.

882 only the TL case using a pre-trained model trained on a related
 883 source scenario (e.g., PMNet_{3gpp} and PMNet_{usc}) achieves high
 884 accuracy for channel prediction, capturing subtle details of the
 885 wireless propagation physics. This suggests that our PMNet
 886 pre-trained model is generalizable to different scenarios due to
 887 its inherent knowledge of channel propagation representation,
 888 and that TL can further improve accuracy.

889 These results empirically demonstrate that pre-trained
 890 model's source dataset (task or domain) should be similar
 891 to the target dataset (task or domain) to transfer useful
 892 information during TL. Specifically, for cross-scenario PMP,
 893 it is important to use a pre-trained model that has been
 894 trained extensively on data related to wireless propagation
 895 physics.

896 Therefore, we conclude that the suggested TL approach,
 897 fine-tuning with a stable and closely related pre-trained model
 898 (such as PMNet_{usc}), is a simple yet effective way to address
 899 the cross-scenario PMP task, which is important for practical
 900 applications.

VI. CONCLUSION

902 This work introduces an ML-based large-scale channel pre-
 903 diction framework, PMNet, which can create highly accurate
 904 pathloss predictions for a given map in a few milliseconds.
 905 Utilizing an RT channel dataset of real-world scenarios (e.g.,
 906 USC, UCLA, and Boston area), PMNet is verified for its
 907 accuracy and training efficiency. In particular, TL with our
 908 PMNet pre-trained model, which has generalization capability
 909 for different network scenarios, enables the PMNet to adapt
 910 itself quickly and efficiently to a new network scenario, while
 911 achieving an RMSE of 10^{-2} level.

912 The high accuracy and low runtime of the PMNet frame-
 913 work make it suitable for deployment planning in dense
 914 networks as well as online optimization of network parameters.

915 Still, it remains an open question whether the knowledge of
 916 wireless propagation physics in our PMNet pre-trained model
 917 can be transferred to other downstream tasks beyond the PMP
 918 task; this question will be the topic of our future research.

ACKNOWLEDGMENT

920 The help of Dr. Zheda Li in the creation of the USC data
 921 set is gratefully acknowledged.

REFERENCES

- [1] J.-H. Lee, J. Lee, S.-H. Lee, and A. F. Molisch, "PMNet: Large-scale channel prediction system for ICASSP 2023 first pathloss radio map prediction challenge," in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)*, Jun. 2023, pp. 1–2.
- [2] J.-H. Lee, O. G. Serbetci, D. P. Selvam, and A. F. Molisch, "PMNet: Robust pathloss map prediction via supervised learning," in *Proc. IEEE Global Commun. Conf.*, Dec. 2023, pp. 1–20.
- [3] X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, "6G digital twin networks: From theory to practice," *IEEE Commun. Mag.*, vol. 1, no. 1, pp. 1–7, Aug. 2023.
- [4] A. Alkhateeb, S. Jiang, and G. Charan, "Real-time digital twins: Vision and research directions for 6G and beyond," *IEEE Commun. Mag.*, vol. 61, no. 11, pp. 128–134, Nov. 2023.
- [5] R. Valenzuela, "A ray tracing approach to predicting indoor wireless transmission," in *Proc. IEEE 43rd Veh. Technol. Conf.*, Apr. 1993, pp. 214–218.
- [6] S.-C. Kim et al., "Radio propagation measurements and prediction using three-dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz," *IEEE Trans. Veh. Technol.*, vol. 48, no. 3, pp. 931–946, May 1999.
- [7] *Wireless Insite*. Accessed: Sep. 2024. [Online]. Available: <https://www.remcom.com/wirelessinsite>
- [8] (2024). *Path Loss Comparison in Rosslyn*. [Online]. Available: <https://www.remcom.com/examples/path-loss-comparison-in-rosslyn-virginia.html>
- [9] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, "Measurement and modelling of scattering from buildings," *IEEE Trans. Antennas Propag.*, vol. 55, no. 1, pp. 143–153, Jan. 2007.
- [10] R. Wahl, G. Wolfe, P. Wildbolz, and F. Landstorfer, "Dominant path prediction model for urban scenarios," in *Proc. 14th IST Mobile Wireless Commun. Summit*, 2005, pp. 1–26.

954 [11] M. Lee and D. Han, "Voronoi tessellation based interpolation method
955 for Wi-Fi radio map construction," *IEEE Commun. Lett.*, vol. 16, no. 3,
956 pp. 404–407, Mar. 2012.

957 [12] D. Romero and S.-J. Kim, "Radio map estimation: A data-driven
958 approach to spectrum cartography," 2022, *arXiv:2202.03269*.

959 [13] T. Orekondy, P. Kumar, S. Kadambi, H. Ye, J. Soriaga, and A. Behboodi,
960 "WiNeRT: Towards neural ray tracing for wireless channel modelling
961 and differentiable simulations," in *Proc. Int. Conf. Learn. Represent.*,
962 2023, pp. 1–20.

963 [14] X. Zhao, Z. An, Q. Pan, and L. Yang, "NeRF2: Neural radio-frequency
964 radiance fields," in *Proc. 29th Annu. Int. Conf. Mobile Comput. Netw.*,
965 vol. 33, Oct. 2023, pp. 1–15.

966 [15] R. Levie, Ç. Yapar, G. Kutyniok, and G. Caire, "RadioUNet: Fast
967 radio map estimation with convolutional neural networks," *IEEE Trans.
968 Wireless Commun.*, vol. 20, no. 6, pp. 4001–4015, Jun. 2021.

969 [16] V. V. Ratnam et al., "FadeNet: Deep learning-based mm-Wave large-
970 scale channel fading prediction and its applications," *IEEE Access*,
971 vol. 9, pp. 3278–3290, 2021.

972 [17] E. Kriještorac, H. Sallouha, S. Sarkar, and D. Cabric, "Agile radio map
973 prediction using deep learning," in *Proc. IEEE Int. Conf. Acoust., Speech
974 Signal Process. (ICASSP)*, Jun. 2023, pp. 1–2.

975 [18] K. Qiu, S. Bakirtzis, H. Song, I. Wassell, and J. Zhang, "Deep learning-
976 based path loss prediction for outdoor wireless communication systems,"
977 in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)*,
978 Jun. 2023, pp. 1–2.

979 [19] Ç. Yapar, F. Jaensch, R. Levie, G. Kutyniok, and G. Caire, "The first
980 pathloss radio map prediction challenge," 2023, *arXiv:2310.07658*.

981 [20] *Study on Channel Model for Frequencies From 0.5 to 100 GHz*, Standard
982 TR 38.901, 2018.

983 [21] Ç. Yapar, R. Levie, G. Kutyniok, and G. Caire, "Dataset of pathloss and
984 ToA radio maps with localization application," 2022, *arXiv:2212.11777*.

985 [22] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
986 large-scale image recognition," 2014, *arXiv:1409.1556*.

987 [23] A. F. Molisch, *Wireless Communications: From Fundamentals to Beyond
988 5G*, 3rd ed., Hoboken, NJ, USA: Wiley, 2023.

989 [24] F. Fuschini, H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci,
990 and P. Vainikainen, "Analysis of multipath propagation in urban environment
991 through multidimensional measurements and advanced ray tracing simulation,"
992 *IEEE Trans. Antenna Propag.*, vol. 56, no. 3, pp. 848–857, Mar. 2008.

993 [25] T. Rautiainen, G. Wolfle, and R. Hoppe, "Verifying path loss and delay
994 spread predictions of a 3D ray tracing propagation model in urban
995 environment," in *Proc. IEEE 56th Veh. Technol. Conf.*, vol. 4, Jun. 2002,
996 pp. 2470–2474.

997 [26] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks
998 for semantic segmentation," in *Proc. IEEE Conf. Comput. Vis. Pattern
999 Recognit. (CVPR)*, Jun. 2015, pp. 3431–3440.

1000 [27] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-
1001 time object detection with region proposal networks," in *Proc. Adv.
1002 Neural Inf. Process. Syst.*, vol. 28, 2015, pp. 1–20.

1003 [28] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are
1004 features in deep neural networks?" 2014, *arXiv:1411.1792*.

1005 [29] K. James et al., "Overcoming catastrophic forgetting in neural networks,"
1006 *Proc. Nat. Acad. Sci. USA*, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

1007 [30] S. Kornblith, J. Shlens, and Q. V. Le, "Do better ImageNet models
1008 transfer better?" 2018, *arXiv:1805.08974*.

1009 [31] M. Huh, P. Agrawal, and A. A. Efros, "What makes ImageNet good for
1010 transfer learning?" 2016, *arXiv:1608.08614*.

1011 [32] M. Steinbauer, A. F. Molisch, and E. Bonek, "The double-directional
1012 radio channel," *IEEE Antennas Propag. Mag.*, vol. 43, no. 4, pp. 51–63,
1013 Aug. 2001, doi: [10.1109/74.951559](https://doi.org/10.1109/74.951559).

1014 [33] R. Araki, T. Onishi, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, "MT-
1015 DSSD: Deconvolutional single shot detector using multi task learning for
1016 object detection, segmentation, and grasping detection," in *Proc. IEEE
1017 Int. Conf. Robot. Autom. (ICRA)*, May 2020, pp. 10487–10493.

1018 [34] T. Xu and W. Takano, "Graph stacked hourglass networks for 3D
1019 human pose estimation," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern
1020 Recognit. (CVPR)*, Jun. 2021, pp. 1–23.

1021 [35] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
1022 "Encoder-decoder with atrous separable convolution for semantic image
1023 segmentation," in *Proc. ECCV*, 2018, pp. 1–27.

1024 [36] G. Lin, A. Milan, C. Shen, and I. Reid, "RefineNet: Multi-path
1025 refinement networks for high-resolution semantic segmentation," in
1026 *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jul. 2017,
1027 pp. 5168–5177.

1028 [37] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, "Large kernel matters—
1029 Improve semantic segmentation by global convolutional network," in
1030 *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jul. 2017,
1031 pp. 1743–1751.

1032 [38] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional
1033 networks for biomedical image segmentation," in *Medical Image
1034 Computing and Computer-Assisted Intervention*. Cham, Switzerland:
1035 Springer, 2015, pp. 234–241.

1036 [39] F. Yu and V. Koltun, "Multi-scale context aggregation by dilated
1037 convolutions," in *Proc. ICLR*, 2016, pp. 1–29.

1038 [40] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for
1039 image recognition," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
1040 (CVPR)*, Jun. 2016, pp. 770–778.

Ju-Hyung Lee (Member, IEEE) received the Ph.D. degree from Korea University, Seoul, South Korea. He was a Post-Doctoral Researcher in electrical and computer engineering with the University of Southern California (USC), Los Angeles, CA, USA, where he worked under the supervision of Prof. Andreas F. Molisch. Before that, he was a Research Professor with Korea University. He is currently a Principal Researcher with Nokia, Sunnyvale, CA, USA. His research interests include generative AI solutions for wireless communication systems and on-device AI/LLM. He has been recognized with several prestigious awards, including first rank in a machine learning (ML) competition, best paper awards at key IEEE conferences, and the Grand Prize for Research Excellence from Korea University. For more information visit the link (<https://juhyung-lee.com/>) and (<https://juhyung-lee.com/>).

Andreas F. Molisch (Fellow, IEEE) received the Dipl. (Ing.), Ph.D., and Habilitation degrees from Technical University Vienna, Austria, in 1990, 1994, and 1999, respectively.

He spent the next ten years in industry, FTW, AT&T (Bell) Laboratories, and Mitsubishi Electric Research Laboratories (where he rose to the Chief Wireless Standards Architect). In 2009, he joined the University of Southern California (USC), Los Angeles, CA, USA, as a Professor and founded the Wireless Devices and Systems (WiDeS)

Group. In 2017, he was appointed to the Solomon Golomb—Andrew and Erna Viterbi Chair. His research interests revolve around wireless propagation channels, wireless systems design and their interaction, wireless channel measurement and modeling for 5G and 6G systems, joint communication-caching-computation, hybrid beamforming, UWB/TOA-based localization, and novel modulation/multiple access methods. Overall, he has published five books [among them the textbook *Wireless Communications* (third edition in 2023)], 22 book chapters, more than 300 journal articles, and more than 400 conference papers. He is also the inventor of 80 patents, and the co-author of some 70 standards contributions. His work has been cited more than 73,000 times, his H-index is 113, and he is a Clarivate Highly Cited Researcher.

Dr. Molisch is a fellow of the National Academy of Inventors, AAAS, and IET; an IEEE Distinguished Lecturer, and a member of Austrian Academy of Sciences. He has received numerous awards, among them the IET Achievement Medal, the Technical Achievement Awards of IEEE Vehicular Technology Society (Evans Avant-Garde Award) and the IEEE Communications Society (Edwin Howard Armstrong Award), and the Technical Field Award of the IEEE for Communications (Eric Sumner Award). He has been an editor of a number of journals and special issues, the general chair, the technical program committee chair, or the symposium chair of multiple international conferences; and the Chairperson of various international standardization groups.

A Scalable and Generalizable Pathloss Map Prediction

Ju-Hyung Lee[✉], Member, IEEE, and Andreas F. Molisch[✉], Fellow, IEEE

Abstract—Large-scale channel prediction, *i.e.*, estimation of the pathloss from geographical/morphological/building maps, is an essential component of wireless network planning. Ray tracing (RT)-based methods have been widely used for many years, but they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in B5G/6G systems. In this paper, we propose a data-driven, model-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a supervised learning approach: it is trained on a limited amount of RT data and map data. Once trained, PMNet can predict pathloss over location with high accuracy (an RMSE level of 10^{-2}) in a few milliseconds. We further extend PMNet by employing transfer learning (TL). TL allows PMNet to learn a new network scenario quickly ($\times 5.6$ faster training) and efficiently (using $\times 4.5$ less data) by transferring knowledge from a pre-trained model, while retaining accuracy. Our results demonstrate that PMNet is a scalable and generalizable ML-based PMP method, showing its potential to be used in several network optimization applications.

Index Terms—Pathloss map prediction, ray tracing, machine learning, computer vision, transfer learning, network optimization, digital twin, 6G.

I. INTRODUCTION

DIGITAL twin (DT) network is emerging as a key enabler for the artificial intelligence (AI) and machine learning (ML)-driven design, simulation, and optimization of 6G systems [3], [4]. A DT network is a dynamic, digital replica of a real-world network environment, providing real-time, accurate reflections of physical network scenarios. It can be used for a variety of applications, including dynamic resource allocation, beam management, and localization using ML-based PMP, which demands quick adjustments for new scenarios. However, implementing DT is challenging in 6G

Manuscript received 6 December 2023; revised 20 February 2024 and 3 July 2024; accepted 27 August 2024. This work was supported by NSF under Project 2133655 and Project 2008443. An earlier version of this paper was presented in part at the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023) [DOI: 10.1109/ICASSP49357.2023.10095257] and in part at the 2023 Global Communications Conference (Globecom 2023) [DOI: 10.1109/GLOBECOM54140.2023.10437562]. The associate editor coordinating the review of this article and approving it for publication was C. Han. (*Corresponding author: Ju-Hyung Lee*.)

Ju-Hyung Lee was with Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California (USC), Los Angeles, CA 90007 USA. He is now with Nokia, Sunnyvale, CA 94085 USA (e-mail: juhyung.lee@outlook.com).

Andreas F. Molisch is with the Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089 USA (e-mail: molisch@usc.edu).

Color versions of one or more figures in this article are available at <https://doi.org/10.1109/TWC.2024.3457431>.

Digital Object Identifier 10.1109/TWC.2024.3457431

networks, which are characterized by increased deployment density, complex distributed architectures, and high-frequency operation in millimeter wave (mmWave) and terahertz (THz) bands.

Individually and taken together, these developments necessitate dramatically faster large-scale channel prediction methods.¹ Since traditional ray tracing (RT) tools are too slow for the repeated runs required in such DT implementation processes, there is a strong need for new, accurate, and fast methods for channel prediction over a large-scale area (*e.g.*, campus or city-map scale).

Several works have addressed this need by channel prediction using powerful ML techniques. These works use ground-truth channel data (from RT simulations or real channel measurements/soundings campaigns) to train neural networks (NNs). This eventually provides an accurate and fast prediction of channel information (*e.g.*, received power, delay, angles, and so on) for a certain area, a technique called ML-based site-specific radio propagation modeling.

Still, these ML-based approaches use supervised learning, meaning they are trained to solve a specific network scenario with a certain labeled dataset. In other words, the models may need to be rebuilt for a new network scenario, *e.g.*, different map scales, environmental aspects, and/or network configuration - a process that can be time-consuming and expensive. This creates a need for a method that can furthermore transfer knowledge of propagation channels across different network scenarios and environments.

A. Related Works

Due to the high cost and complexity of field measurements with channel sounders, most cellular deployment planning has long replaced channel measurements with *electromagnetic (EM) simulation-based* approaches, such as RT [5], [6] and ray launching [7] simulation.² Over the past 30 years, the efficiency and accuracy of RT have improved significantly [9], thanks to the prevalence of GPUs (graphic processing units) that efficiently facilitate RT tasks.

However, due to the factors mentioned above (such as the need for more detailed environmental consideration at higher

¹The word “channel prediction” is often used for two different problems: (i) computation of the propagation channel at a particular location based on maps of the environment, and (ii) temporal prediction of the channel (often for a mobile device moving on a trajectory), based on measurements in the immediate past. This paper only considers the former case.

²Our research utilizes RT simulations via Wireless Insite to investigate path loss. This simulation program has been validated against real-world measurements, *e.g.*, in [8] showing an acceptable error margin.

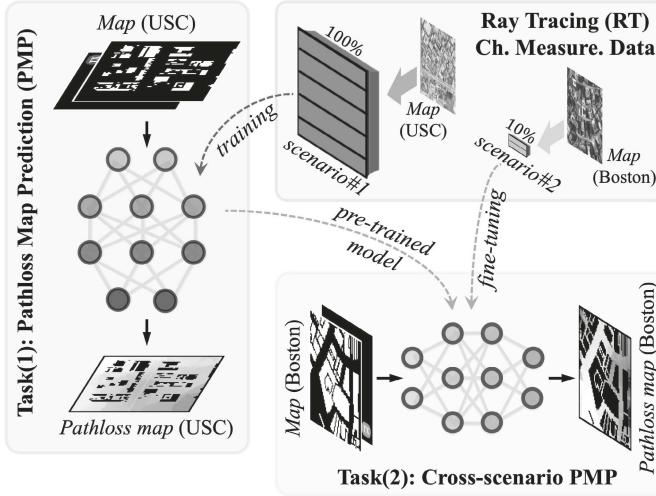


Fig. 1. Overview of the pathloss map prediction (PMP) task and the cross-scenario PMP. The input Map feature includes the transmitter (TX) location.

73 frequencies and the need for fast simulations with higher
 74 deployment density), RT simulations are too computationally
 75 intensive for large-scale network deployment in 6G systems.
 76 Consequently, simplified *model-based* approaches like the
 77 dominant path model [10], or fine-tuning of generic pathloss
 78 models (e.g., 3GPP path gain model) with limited measure-
 79 ment data [11], [12] have been proposed over the years.
 80 Nevertheless, these approaches have gained limited acceptance
 81 by network operators due to their insufficient accuracy in
 82 predicting the propagation characteristics of signals in complex
 83 environments.

84 In recent years, supervised ML has been applied to solve
 85 a variety of challenging problems in wireless communication,
 86 including channel measurement/prediction for 6G networks.
 87 Such an *ML-based* approach can be trained on a map of
 88 the environment (topology/morphology) and a relatively small
 89 set of measurement data to learn how to provide a virtual
 90 replica (e.g., DT) of a large-scale network environment in
 91 real-time while accurately modeling the behavior of channel
 92 characteristics.

93 On the one hand, models like WiNeRT [13] and NeRF2
 94 are specifically developed to predict detailed channel
 95 information (e.g., power, delay, and angle information)
 96 of each multi-path component (MPC) between TX and
 97 receiver (RX) with the input of detailed information, including
 98 spatial configuration and wireless configuration parameters.
 99 These models are particularly well-suited for applications in
 100 small-scale indoor areas, where high-detailed channel prediction
 101 is required (e.g., indoor sensing).

102 On the other hand, models like RadioUNet [15] and
 103 FadeNet [16] aim to predict the path gain, received power,
 104 or coverage for TX-RX in a given area with the input of
 105 a building map. These models are designed for large-scale
 106 channel prediction, where fast operation is essential (e.g.,
 107 network optimization).

108 In particular, several state-of-the-art works, such as
 109 Agile [17], PPNet [18], and PMNet [1], are pushing the
 110 boundaries of predictive accuracy and computational efficiency

111 for large-scale channel prediction (e.g., radio environment map
 112 estimation), as evidenced by their performance in ML com-
 113 petitions such as the *RadioMap Prediction Challenge* (see details
 114 in [19]). This highlights the applicability and importance of
 115 large-scale channel prediction in evolving wireless network
 116 optimization, which aligns with our research direction.

B. Contributions

117 This paper proposes a scalable and generalizable channel
 118 prediction approach specifically designed for large-scale chan-
 119 nel prediction, called PMP task. Our contributions can be
 120 summarized as follows:

- 121 • We design a PMP-oriented NN architecture, called
 122 **PMNet**, by leveraging computer-vision techniques, gen-
 123 erating highly accurate channel prediction results for
 124 a given map in few milliseconds. PMNet achieves the
 125 best channel prediction accuracy compared to two base-
 126 lines: a model-based scheme (*3GPP-UMi* model [20])
 127 and another ML-based scheme (*RadioUNet* [15]) (see
 128 **Table V** in Sec. IV) and also in different PMP datasets.
 129 PMNet achieved *1st*-rank in the ICASSP 2023 Radio Map
 130 Prediction Challenge [19].³
- 131 • We build three sets of real-world channel datasets using
 132 a RT simulation tool, *i.e.*, *Wireless Insite*, for training
 133 and evaluation, which reflects different network scenarios
 134 (e.g., different map scale, environment, and network
 135 configuration) in two different light urban environments
 136 (the USC and UCLA campuses) and a metropolitan area
 137 (the Boston area), see **Table I** in Sec. III.
- 138 • We propose a method of predicting pathloss in unseen
 139 network scenarios by using transfer learning (TL) with a
 140 pre-trained model. We prepare three pre-trained models
 141 for TL: VGG16 [22] and two pre-trained PMNet models
 142 trained with 3GPP prediction results and RT simulation
 143 results, respectively, and quantitatively and qualitatively
 144 evaluate their accuracy (see **Table IX** and **Fig. 8** in
 145 Sec. V).
- 146 • We empirically demonstrate that our PMNet pre-trained
 147 model has generalization capability for different network
 148 scenarios, adjusting to new network scenarios $\times 5.6$ faster
 149 and using $\times 4.5$ less data than a baseline model without
 150 TL, while still achieving high accuracy of an RMSE of
 151 10^{-2} level (see **Fig. 6** and **Table. VIII** in Sec. V).
- 152 • We release source code for the experiments to promote
 153 reproducible ML research in wireless communication.⁴

C. Paper Organization

155 The rest of the paper is organized as follows: Sec. II presents
 156 the background on two important concepts: (1) *ray tracing*
 157 *simulation*, which is used to generate ground-truth channel
 158 information for training and evaluation; and (2) *transfer*
 159 *learning*, which enables us to transfer the knowledge learned

160 ³In this competition, PMNet demonstrated its high accuracy in the PMP
 161 task on a different dataset [21], which featured a different map scale, network
 162 configuration, and was generated by a different RT simulation tool, *i.e.*,
 163 *WinProp*, highlighting PMNet's generalization capability.

⁴<https://github.com/abman23/PMNet>

from a source task/dataset to a new task/dataset (*e.g.*, unseen network scenario). After introducing our dataset based on real geographical maps in Sec. III, Sec. IV introduces the PMP task and our proposed NN architecture (PMNet) for this channel prediction task. We also present the training and evaluation process, as well as simulation results. Then, Sec. V presents our approach for efficiently learning and predicting channels in unseen network environments by transferring the pre-trained knowledge from other networks. We provide extensive experimental results and quantitative and qualitative performance analysis, followed by concluding remarks in Sec. VI.

Notation: Throughout this paper, we use the normal-face font to denote scalars and the boldface font to denote vectors. We use $P(\cdot)$ and $P(\cdot|\cdot)$ to represent a marginal probability distribution and conditional distribution, respectively. We also use $\|\cdot\|$ to denote the L^2 -norm, which is an Euclidean norm. $\mathcal{N}(\mu, \sigma)$ denotes the normal distribution with mean μ and standard deviation σ .

II. BACKGROUND

To provide a comprehensive understanding of our work, it is essential to cover Pathloss, Ray Tracing Simulation, and Transfer Learning, as these areas are integral to our methodology and analysis.

A. Pathloss

The link gain between a TX at location \mathbf{q}_{TX} and an RX at location \mathbf{q}_{RX} at time t and frequency f can be expressed as follows:

$$|h(t, f, \mathbf{q}_{\text{TX}}, \mathbf{q}_{\text{RX}})|^2 = \frac{P_{\text{RX}}(t, f, \mathbf{q}_{\text{RX}})}{P_{\text{TX}}(t, f, \mathbf{q}_{\text{TX}})} \quad (1)$$

where P_{RX} and P_{TX} are received and transmitted power, respectively. This link gain includes the effects of antenna gains at TX and RX; when isotropic antennas are used, it becomes identical to the channel gain. It exhibits variations in time and/or location due to small-scale fading, shadowing, and large-scale distance changes. Averaging over small-scale fading removes (under certain circumstances, see [23, Ch. 7]) the dependence on frequency and time, providing the *path gain* (PG) that can be written as a function of only the large-scale distance changes:

$$\text{PG}(\mathbf{q}_{\text{TX}}, \mathbf{q}_{\text{RX}}) = \frac{1}{T_{\text{S}}} \frac{1}{B_{\text{S}}} \int \int |h(t, f, \mathbf{q}_{\text{TX}}, \mathbf{q}_{\text{RX}})|^2 df dt. \quad (2)$$

Here, T_{S} and B_{S} denote the stationary-time and -bandwidth, respectively. The path gain can be represented as the sum of the powers of the N MPCs, as discussed further in Sec. III-A. For later reference, we note that the pathloss is the inverse of the path gain (or the sign-flipped value when expressed in dB).

B. Ray Tracing (RT) Simulation

RT is an approximate method for modeling the propagation of electromagnetic waves in wireless communication

scenarios. It works by tracing the paths of individual rays as they propagate through the environment, whose features are represented in a geographical database. The rays are reflected, deflected, and scattered by the objects in the environment, with the various interaction processes computed according to high-frequency approximations, namely (most commonly) Snell's laws for specular reflection and transmission, uniform theory of diffraction (UTD) for diffraction, and Kirchhoff scattering theory for diffuse scattering [23, Ch. 4].⁵ The RT tool simulates radio wave propagation deterministically based on physical laws, offering site-specific radio propagation modeling, in contrast to stochastic wireless channel models (*e.g.*, 3GPP standardized channel model).

In this paper, we employ a commercial RT tool, *Wireless Insite* from Remcom [7] for all RT simulations, both because of its user-friendliness and the fact that its accuracy has been compared against a number of channel sounder measurements [6], [24], [25]. RT can be used to predict channel information, such as received signal strength, delay, and angles, in a variety of wireless environments, both indoor and outdoor. The accuracy of RT simulations depends on various factors, such as the complexity of the environment, the accuracy of the geographical database, and the carrier frequency. The channel information obtained from the RT can be utilized, *inter alia*, for various network optimization tasks, including base station (BS) deployment planning, BS parameter optimization, as well as beam management and localization.

C. Transfer Learning (TL)

TL is a machine learning technique that leverages a pre-trained model on a new task, significantly reducing the amount of data and training time required for new scenarios. This approach is particularly advantageous when there is limited data available for the new task or when the new task shares similarities with a previously learned task. By utilizing knowledge from a related task, TL can enhance model performance, expedite training processes, and mitigate overfitting, especially in data-constrained environments.

For instance, a model pre-trained on image classification tasks can be effectively repurposed for object detection or semantic segmentation. This reuse is possible because the model has already learned useful *feature representations* from a large and diverse dataset, enabling it to adapt more efficiently to new, related tasks.

One of the most popular pre-trained models is VGG16 [22], which is trained on more than a million images from the ImageNet database for image classification. VGG16 has demonstrated its versatility by being reused to improve performance in various tasks, including semantic segmentation [26] and object detection [27]. These applications showcase the model's ability to transfer learned features, thus enhancing performance in new domains with minimal additional training.

However, it is important to note that the effectiveness of TL depends on the *similarity* between the pre-trained task and the

⁵RT can be implemented via image-theory-based RT, or as ray launching. We will henceforth use the expression RT for both those methods.

target task.⁶ The transferability of deep feature representations decreases as the discrepancy between the pre-trained task and the target task increases [28]. In other words, the further apart the task is, the less transferable the knowledge. One example is catastrophic forgetting, which is a phenomenon that can occur when fine-tuning a pre-trained model on a new task, resulting in a loss of previously acquired knowledge [29].

Research has shown that well-generalized models, particularly those with excellent pre-training performance [30], have the potential to require minimal fine-tuning or even none at all (e.g., zero-shot learning) for new tasks [31]. These suggest the importance of selecting a pre-trained model suitable for the target task.

III. DATASET

In this section, we discuss the dataset preparation process for our pathloss map datasets, reflecting real-world network scenarios in USC, UCLA, and Boston areas.

We obtained the ground-truth channel data using the commercial RT tool *Wireless Insite* [7], which takes into account the geographical and morphological features of the propagation environment. We then pre-processed the data (e.g., interpolation and data augmentation) to prepare the ground-truth pathloss map.

A. Channel Data

1) *RT Simulation*: As discussed in Sec. II-A, RT emulates the behavior of each MPC between TX and RX, following physical principles including the free-space power loss and interaction with different interacting objects (IOs). This allows us to compute for each MPC the information of complex amplitude a , directions of departure Ω and arrival Ψ , and delay τ . The contribution of m -th MPC can be expressed as [32]:

$$h_m(t, \tau, \Omega, \Psi) = a_m \delta(\tau - \tau_m) \delta(\Omega - \Omega_m) \delta(\Psi - \Psi_m), \quad (3)$$

where the dependence of Ω, Ψ, τ, a on t is not written explicitly on the r.h.s. The sum of contributions from all MPCs is given by

$$h(t, \tau, \Omega, \Psi) = \sum_{m=1}^N h_m(t, \tau, \Omega, \Psi). \quad (4)$$

Since $\Omega, \Psi, \tau, |a|$ are constant over a stationarity-time and bandwidth, while $\arg(a)$ varies over many periods of 2π , and assuming isotropic antennas at TX and RX (so that Ω, Ψ do not matter), the path gain averaged over the small-scale fading can be computed from (2) as

$$PG = \sum_{m=1}^N |h_m(\tau, \Omega, \Psi)|^2 = \sum_{m=1}^N |a_m|^2. \quad (5)$$

⁶The wireless community has long classified environments—rural, suburban, urban, and metropolitan—based on their channel characteristics, a practice dating back to the COST 207 models of the mid-1980s. Despite the subjective nature of these categories and the lack of specific numerical criteria, their differentiation by factors like population density and infrastructure complexity is widely accepted for assessing wireless signal propagation and network performance and its *similarity*.

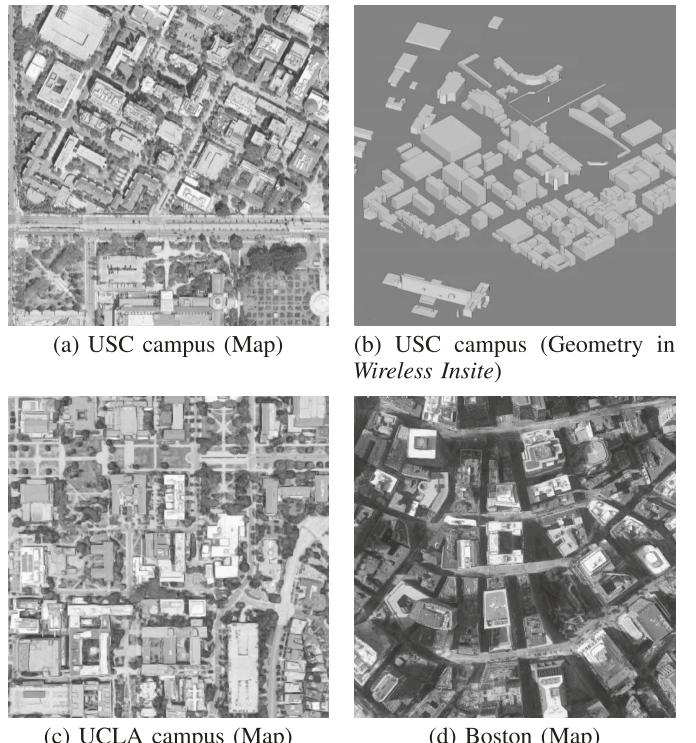


Fig. 2. Map of USC, UCLA, and Boston used in RT simulation. Fig. 2a is imported and converted to Fig. 2b. The ground-truth pathloss map over the USC campus is then obtained using *Wireless Insite* RT simulation and pre-processing (e.g., interpolation, gray conversion, and data augmentation).

Note that our pathloss map uses the information of path gain (in [dB]) while other information on angles and delay is not needed (though this information can be used for further applications, e.g., beamforming algorithms).

Thus, P_{RX} (in [dBm]) can be expressed as a function of P_{TX} (in [dBm]) as follows:

$$P_{RX} = P_{TX} + PG. \quad (6)$$

Note that we set $P_{TX} = 0$ [dBm] in our RT dataset to simplify the analysis, which makes P_{RX} in [dBm] equal to PG in [dB].

To generate a ground-truth (labeled) dataset that simulates real-world network scenarios, we conduct *Wireless Insite* RT simulations on the geographical and morphological maps of the University of Southern California (USC) campus, the University of California, Los Angeles (UCLA) campus, and the Boston area. Both campus areas are in Los Angeles, CA, and exhibit a (light) urban build-up, with most buildings being five stories or less (with a few high-rises interspersed), gaps between buildings along the street canyons, and some open squares. The Boston area is in downtown of Boston, MA. It is a metropolitan area with multiple high-rises; its streets are *not* arranged along a rectangular grid. Each dataset has different network configurations and environmental characteristics (e.g., map scale, and geographical features, such as vegetation). See Fig. 2 and Table I for more details.⁷

⁷It is worth noting that the simulations are performed at the sub-6 GHz band, which is the most widely used cellular band. Similar simulations can be performed in other frequency bands, such as the mmWave and THz bands, with minor adjustments to the parameters. However, at those high frequency bands, geographical data bases with higher resolution might be required for comparable accuracy.

TABLE I
PARAMETERS OF USC, UCLA, AND BOSTON DATASETS

Parameter	Dataset		
	USC	UCLA	Boston
Map scale	880 × 880 [m ²]	760 × 760 [m ²]	553 × 553 [m ²]
Cropped map scale (per pixel)	221 × 221 [m ²] (0.86 × 0.86 [m ²])	225 × 225 [m ²] (0.88 × 0.88 [m ²])	187 × 187 [m ²] (0.73 × 0.73 [m ²])
Terrain	✓	✓	✓
Buildings	✓	✓	✓
Foliage ^a	✗	✗	✗
Carrier frequency	2.5 [GHz]	3.0 [GHz]	3.0 [GHz]
Transmit power	0 [dBm]	0 [dBm]	0 [dBm]
TX antenna type ^b	Isotropic (vertical)	Half-wave dipole (vertical)	Half-wave dipole (vertical)
Total # of data/scene	4754	3776	3143

^aOur study assesses PMP accuracy across datasets varying in map scale, network configurations, and geography, focusing on how factors like foliage impact path loss predictions.

^bIsotropic and half-wave dipole antennas provide almost identical radiation patterns within a certain angular extent. MPC induced outside of the angular extent does not contribute significantly to the link.

330 We stress that the goal of our work is the correct prediction of “ground-truth” pathloss by ML techniques. The
331 pathloss obtained from the RT simulations might deviate
332 from measured values due to inaccuracies of the database
333 or inherent approximations of RTs. However, such deviations
334 are irrelevant to the assessment of our ML methods, since
335 they only impact what is used as “ground-truth” and not the
336 prediction process itself. In other words, if the ground-truth is
337 more accurate (similar to measurement results), our prediction
338 inherently becomes more accurate as well.⁸
339

340 *2) 3GPP Model:* The 3GPP 38.901 channel model [20]
341 (henceforth simply called the “3GPP model” for conciseness)
342 is a widely used model for wireless system standardization
343 that claims validity for frequencies spanning from 0.5 to
344 100 [GHz].
345

346 For the purposes of this paper, we only consider the 3GPP
347 modeling of the pathloss, which follows the classical $\alpha - \beta$
348 model

$$349 \text{PL}_{\alpha-\beta}(d) = 10\alpha \log_{10}(d) + \beta + S, \quad (7)$$

350 where $S \sim \mathcal{N}(0, \sigma_S)$ is a lognormally distributed random
351 variable (with variance σ_S) representing the shadow fading,
352 and α , β , and σ are parameters of the model that are
353 based on measurement campaigns and that are different in
354 different environments. Important for our later discussions,
355 those parameters are also different depending on whether an
356 unobstructed optical line of sight (LoS) exists between TX and
357 RX or not.

358 Specifically, for urban environments, the following describes
359 the path gain:

$$360 \text{PG}_{\text{UMi-LoS}} = \begin{cases} \text{PL}_1, & (10[\text{m}] \leq d_{2\text{D}} \leq d_{\text{BP}}) \\ \text{PL}_2, & (d_{\text{BP}} \leq d_{2\text{D}} \leq 5[\text{km}]) \end{cases} \quad (8)$$

$$361 \text{PG}_{\text{UMi-NLoS}} = \max(\text{PG}_{\text{UMi-LoS}}, \text{PL}_3), \quad (10[\text{m}] \leq d_{2\text{D}} \leq 5[\text{km}]) \quad (9)$$

⁸Thus, if our proposed PMNet can accurately predict/reproduce RT results when trained with RT data, it will also be able to do so for measurement data when trained with measurement data.

362 where the two-dimensional xy -distance is $d_{2\text{D}}$ and the three-
363 dimensional xyz -distance is $d_{3\text{D}}$,

$$364 \text{PL}_1 = 32.4 + 21 \log_{10}(d_{3\text{D}}) + 20 \log_{10}(f_c), \\ 365 \text{PL}_2 = 32.4 + 40 \log_{10}(d_{3\text{D}}) + 20 \log_{10}(f_c) \\ 366 - 9.5 \log_{10}((d_{\text{BP}})^2 + (h_{\text{BS}} - h_{\text{UT}})^2), \\ 367 \text{PL}_3 = 22.4 + 35.3 \log_{10}(d_{3\text{D}}) + 21.3 \log_{10}(f_c) \\ 368 - 0.6(h_{\text{UT}} - 1.5). \quad (10)$$

369 Here, the breakpoint distance is $d_{\text{BP}} = 2\pi h_{\text{BS}} h_{\text{UT}} f_c / c$ where
370 f_c is the center frequency in [Hz] and $c = 3.0 \times 10^8$ [m/s] is
371 the speed of light. The antenna heights at the TX (e.g., base
372 station), h_{BS} , and the RX (e.g., user terminal), h_{UT} , are set to
373 1.5 [m] and 10 [m], respectively. Note that the model differs
374 for LoS and non-LoS (NLoS) situations.

375 This model is employed as one of our baselines for the
376 prediction (see Sec. IV-E). While the 3GPP model also models
377 shadowing, it incorporates it as *stochastic* variations that
378 cannot be related to particular map features; we therefore omit
379 them for the purposes of this paper.

B. Pre-Processing

380 The raw numeric data from the RT simulation is
381 pre-processed using *gray conversion* and *interpolation* meth-
382 ods to generate the ground-truth pathloss map, *data augmen-
383 tation* methods to create an increased amount of labeled data,
384 and *sampling* methods to divide them into training and testing
385 sets.

386 *1) Gray Conversion:* To generate the pathloss map,
387 we begin by converting the received power P_{RX} (in [dBm])
388 (or the path gain PG in [dB]) into grayscale between 1 and
389 255 using *Min-Max* normalization, with the minimum value
390 of -254 [dBm] and the maximum value of 0 [dBm]. While
391 the upper value is higher than physically reasonable, this pair
392 of values was chosen for convenience to have a 1 [dBm] per
393 gray value step mapping. A smaller (or larger) step size does
394 not have a significant impact on the prediction performance.

395 The gray value 0 is filled at pixels of building area, which
396 is not our region-of-interest (RoI), while, for our RoI, each
397 pixel is filled with gray values between 1 and 255, which
398 corresponds to P_{RX} . Then, the pathloss map is generated after

400 scaling the considered map scale into a 256×256 gray image.
 401 Note that the image size (256×256) has nothing to do with
 402 the grayscale ($0 - 255$).

403 *2) Interpolation:* Since the RT simulations are carried out
 404 over a discrete set of RX locations, and it is computationally
 405 challenging to gather the channel information for every
 406 available RX location, there is missing channel information in
 407 a few pixel locations. To fill the missing part of the pathloss
 408 map, we utilize *bilinear interpolation*, which approximates the
 409 missing value with a weighted sum of the gray values of the
 410 adjacent locations.

411 *3) Data Augmentation:* Typically, a larger dataset leads to
 412 improved performance of NN training. In other words, the
 413 larger the data set, the better the outcome. We thus use two
 414 augmentation methods - cropping and rotation - to increase
 415 the size of our data set.

416 The entire map data is cropped into images of about a
 417 quarter of the size, taking TX as an anchor point. This
 418 augments the size of the dataset by a factor of 96. The image
 419 is first cropped as a 64×64 size image and then upsampled to
 420 a 256×256 size image. Note that some cropped images, not
 421 including any TX, are skipped since the TX location will be
 422 used as our second input feature. After cropping, the image
 423 sets are rotated by 90° , 180° , and 270° , thus increasing the
 424 size of the dataset by a further factor of 4.

425 *4) Sampling:* In the training and testing of PMNet on the
 426 pathloss map dataset, we employ an exclusive division scheme.
 427 Specifically, 90% and 10% of images are randomly split into
 428 the training and validation set, while the images from the same
 429 geographical map belong exclusively to either the training
 430 or the validation set. This approach is taken to enhance the
 431 generalization performance of PMNet.

432 IV. PATHLOSS MAP PREDICTION

433 A. Task (1): Pathloss Map Prediction

434 We now formulate the prediction task in ML nomenclature.
 435 A domain (*i.e.*, wireless channel prediction) is composed of a
 436 feature space \mathcal{X} , where $x \in \mathcal{X}$. Given the domain, a PMP task
 437 is defined as $\mathcal{T} = \{\mathcal{Y}, P(y|x)\}$, which is composed of a label
 438 space \mathcal{Y} , where $y \in \mathcal{Y}$. Given the task, a dataset is defined as
 439 $\mathcal{D} = \{\mathcal{X}, \mathcal{Y}\}$, which is a collection of $|\mathcal{D}| = \mathcal{N}$ channel data
 440 that belong to a domain with a task \mathcal{T} .

441 For the PMP task, \mathcal{X} consists of (1) a building map
 442 (including terrain, building, and/or foliage) and (2) a TX
 443 location and \mathcal{Y} is a Pathloss map. The goal of the PMP
 444 task \mathcal{T} is to find a predictive function $f(\cdot)$, which accurately
 445 predicts \mathcal{Y} for a given \mathcal{X} . It is worth noting that integrating
 446 ROI (denoted as \mathcal{A}^*) segmentation with path gain prediction
 447 simplifies the PMP task and eliminates the need for separate
 448 pre- or post-processing steps for the ROI segmentation for each
 449 map. Additionally, this integration helps NN better understand
 450 the different IOs in a given building map.

451 In a nutshell, the PMP task is to predict the pathloss/path
 452 gain (and received power P_{RX} using simple normalization)
 453 at RX locations q_{RX} given TX location q_{TX} in ROI \mathcal{A}^* .
 454 This channel prediction task exploits *site-specific* geographical
 455 information, focusing on the large-scale effects in the channel.

456 We employ a supervised ML method for the PMP task.
 457 We train the model on a dataset of RT channel for an area
 458 of \mathcal{A} , such as the USC dataset in Table I; see Fig. 3 for an
 459 overview of the ML-based PMP approach.

460 B. Network Architecture

461 In this subsection, we present the design process of our
 462 proposed PMP-oriented NN architecture, referred to as *PMNet*.
 463 Our design principles are summarized as follows: (1) several
 464 state-of-the-art techniques in the field of image processing are
 465 carefully selected and tested, (2) some essential techniques are
 466 selected following the concept of ablation study, and (3) the
 467 NN with selected techniques is optimized with extensive
 468 trials.

469 *1) Design Choices:* In the PMP task, the NN is required to
 470 perform image segmentation to identify the ROI and predict
 471 received power within the ROI, while accounting for complex
 472 wireless propagation physics. To accomplish this, our proposed
 473 PMNet is designed based on such methods, *Encoder-Decoder*
 474 and *Atrous convolution*.

475 *2) Encoder-Decoder:* Encoder-Decoder networks are a
 476 widely applied architecture for many computer vision tasks,
 477 *e.g.*, object detection [33], human pose estimation [34], and
 478 semantic segmentation [35], [36], [37]. The encoder-decoder
 479 architecture allows to learn a lower-dimensional representation
 480 from a higher-dimensional dataset and utilize the learned rep-
 481 resentation for various tasks. However, as the encoder shrinks
 482 the input feature maps, it may lose essential information, lead-
 483 ing to a *bottleneck problem*. Several architectures, including
 484 U-Net [38], address the bottleneck problem by adding *skip
 485 connections* between the encoder and the decoder parts. Skip
 486 connections allow the decoder to access feature maps from
 487 the encoder, which helps to propagate context information to
 488 higher-resolution layers.

489 *3) Atrous Convolution:* *Receptive field* of a convolutional
 490 layer is the region of the input feature map that contributes
 491 to the output feature map at a given location. The size of the
 492 receptive field is determined by the resolution of the input
 493 feature map and the field-of-view (FoV) of the filter. There is
 494 a logarithmic relationship between the localization accuracy
 495 of a model and the size of its receptive field. This means the
 496 receptive field size should be sufficient if the given dataset and
 497 task are observed with wide FoV. A standard convolutional
 498 filter detects a particular feature by sliding over the input
 499 feature map, resulting in the output feature map seeing only
 500 the adjacent part of the input feature map. In terms of
 501 computational complexity, having a wide receptive field with
 502 the standard convolutional filter is expensive. Thus, broadly
 503 speaking, the receptive field of the standard convolution filter
 504 is somewhat narrow, seeing only little context.

505 Atrous convolution, also known as dilated convolution,
 506 is a technique that addresses this limitation [39]. It allows
 507 capturing a larger context with a wider FoV by modifying
 508 the standard convolution operation. For the two-dimensional
 509 case, atrous convolution is applied over the input feature map
 510 f to produce the output feature map g at location $\{i, j\}$ using
 511 the convolution filter w . This operation can be expressed as

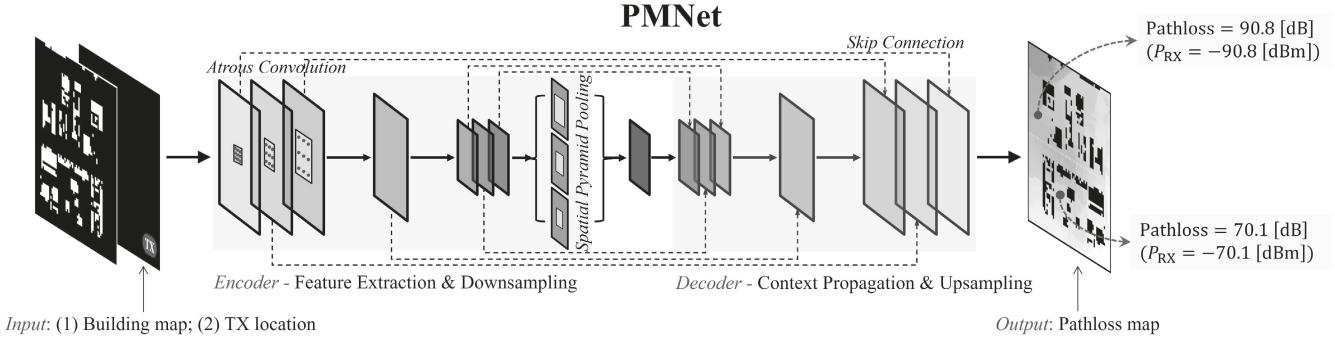


Fig. 3. Overview of the PMP task and the PMNet architecture.

512 follows:

$$g_{\{i,j\}} = \sum_{m=1}^k \sum_{n=1}^k f_{\{i+rm, j+rn\}} w_{\{m,n\}}. \quad (11)$$

514 Here, k represents the kernel size, and r is the atrous rate, 515 which determines the stride level. Notably, the atrous rate r 516 allows to adaptively control the FoV of the filter. For example, 517 an atrous rate of $r = 2$ doubles the FoV of the filter, while an 518 atrous rate of $r = 3$ triples it. The standard convolution can 519 be seen as a special case of (11) where $r = 1$.

520 In the context of the PMP task, the encoder-decoder 521 architecture of PMNet facilitates efficient context propagation 522 from the encoder to the decoder, while atrous convolution 523 enables it to handle scale variations and capture broader 524 context in map data, setting it apart from other UNet-based 525 networks [15], [16], [17], [18]. The combination of these two 526 features enables PMNet to efficiently and accurately predict 527 pathloss maps, while also accounting for complex wireless 528 propagation physics.

529 *4) Design Parameters:* PMNet architectures are composed 530 of a stack of *ResLayers*, each containing multiple residual 531 blocks [40]. These ResLayers can be configured with varying 532 numbers of blocks, atrous rates, multi-grids, and output strides. 533 These elements are summarized as follows:

- 534 • *Number of blocks:* The number of residual blocks in 535 a ResLayer controls the complexity and depth of the 536 network. Increasing the number of blocks may improve 537 the accuracy of the model, but it also increases the 538 computational cost.
- 539 • *Atrous rates:* Atrous rates control the spacing between 540 the convolutions in a ResLayer. Larger atrous rates allow 541 the network to capture more larger spatial contexts in the 542 PMP task.
- 543 • *Multi-grids:* Multi-grids allow the network to capture 544 multi-scale information from different levels of the CNN 545 architecture.
- 546 • *Output stride:* The output stride of a ResLayer controls 547 the ratio between the resolution of the input image and the 548 output image's resolution. A higher output stride results 549 in a lower-resolution output image. This can be useful to 550 strike a balance between accuracy and speed.

551 Parameters are optimized through thorough simulations. Note 552 that the impact of output stride in the PMP task is shown in

553 Table IV in Sec. IV-E (e.g., the case of $\frac{H}{8} \times \frac{W}{8}$), demonstrating 554 the most substantial effect compared to other parameters. 555 With these design choices and parameters, PMNet effectively 556 predicts pathloss maps even for different channel datasets (e.g., 557 *RadioMapSeer* [21]). For an architectural overview, please 558 refer to Fig. 3 and Table II. For more details, please see our 559 source code repository.

C. Training

560 Table III lists the hyper-parameters that are used for the 561 training of PMNet. We implement the PMNet using PyTorch 562 and use an NVIDIA GeForce RTX 3080 Ti GPU. For more 563 stable training, we normalize the input values into $[0, 1]$ via 564 scaling. During the training, we evaluate the PMNet by mean 565 squared error (MSE) on the validation set at the end of every 566 epoch. For testing, we use the parameters of PMNet with 567 the best MSE score on the validation set. Consequently, the 568 pathloss map for a given map can be generated within a few 569 milliseconds after training.

D. Evaluation

571 *1) Root Mean Square Error (RMSE):* RMSE is a widely 572 used loss function in regression analysis and is used as the 573 primary evaluation metric for this task. It measures the overall 574 difference between the prediction $\hat{\mathbf{y}}$ and ground-truth \mathbf{y} and 575 quantifies the overall accuracy of the model. The formula for 576 RMSE is:

$$\text{RMSE}(\hat{\mathbf{y}}, \mathbf{y}) = \sqrt{\frac{1}{N} \sum_{n=1}^N (\hat{y}_n - y_n)^2}, \quad (12)$$

577 where $\hat{y}_n \in \hat{\mathbf{y}}$ and $y_n \in \mathbf{y}$ denote predicted and ground-truth 578 gray value (corresponding P_{RX}) at the n -th pixel, respectively, 579 and N is the number of pixels in a pathloss map, i.e., 580 256×256 . The RMSE averaged over all samples is the primary 581 evaluation metric for the PMP task.

582 *2) ROI Segmentation Error:* The ROI segmentation error, 583 calculated using the intersection over union (IoU) metric, 584 quantifies the accuracy of ROI and non-ROI area segmentation 585 for all pixels in the ground-truth ($\{i, j\}$) and prediction 586 ($\{\hat{i}, \hat{j}\}$) - that is calculated as follows:

$$\text{ROI Segmentation Err.} = \frac{\sum_i \sum_j \text{Err}^B_{\{i,j\}}}{\sum_i \sum_j \text{Bld}_{\{i,j\}}}. \quad (13)$$

TABLE II
PMNET ARCHITECTURES AND PARAMETERS. \downarrow AND \uparrow REPRESENT THE DOWNSAMPLING AND UPSAMPLING LAYERS, RESPECTIVELY

PMNet					
Encoder			Decoder		
#	Type	Output Size	#	Type	Output Size
Input	Image	$2 \times 256 \times 256$	Output	Image	$1 \times 256 \times 256$
1(\downarrow)	Conv2d, MaxPool2d	$64 \times 65 \times 65$	1(\uparrow)	Conv2d	$(128 + 2) \times 256 \times 256$
2	ResLayer	$256 \times 65 \times 65$	2	Conv2d	$(256 + 64) \times 65 \times 65$
3(\downarrow)	ResLayer	$512 \times 33 \times 33$	3	Conv2d	$(256 + 256) \times 65 \times 65$
4(\downarrow)	ResLayer	$512 \times 17 \times 17$	4(\uparrow)	ConvTranspose2d	$(256 + 256) \times 65 \times 65$
5	ResLayer	$1024 \times 17 \times 17$	5(\uparrow)	ConvTranspose2d	$(512 + 512) \times 33 \times 33$
6	Conv2d, AdaptiveAvgPool2d	$512 \times 17 \times 17$	6	Conv2d	$(512 + 512) \times 17 \times 17$

TABLE III
TRAINING CONFIGURATION AND HYPER-PARAMETERS
FOR PMNET TRAINING

Model	PMNet
Dataset (USC)	
Map	USC campus
Split for training (test) set	90% (10%) of dataset
Hyper-parameter	
Learning rate (LR)	$10^{-3} \sim 5 \times 10^{-4}$
LR gamma, step size	0.5, 10
Batch size	16 \sim 32
Optimizer	Adam
# of of epochs	50

590 Here, $\text{Err}^B_{\{i,j\}}$ and $\text{Bld}_{\{i,j\}}$ are defined as:

$$\text{591 } \text{Err}^B_{\{i,j\}} = \begin{cases} 1, & \{i,j\} \in \mathcal{B} \text{ and } \{\hat{i},\hat{j}\} \in \mathcal{A}^* \\ 1, & \{i,j\} \in \mathcal{A}^* \text{ and } \{\hat{i},\hat{j}\} \in \mathcal{B} \\ 0, & \text{otherwise} \end{cases} \quad (14)$$

$$\text{592 } \text{Bld}_{\{i,j\}} = \begin{cases} 1, & \{i,j\} \in \mathcal{B} \\ 0, & \text{otherwise} \end{cases} \quad (15)$$

593 Within a given map, the non-RoI area, denoted as black (gray
594 value 0), is represented by \mathcal{B} , while the RoI area, denoted as
595 non-black (grayscale 1 – 255), is represented by \mathcal{A}^* . \mathcal{B} and
596 \mathcal{A}^* are complementary set within \mathcal{A} . \mathcal{B} can include buildings,
597 foliage, and/or small objects.

598 *3) Channel Prediction Error:* Channel prediction error
599 directly evaluates path gain accuracy for pixels within the RoI
600 area, evaluating power in [dBm] (or path gain in [dB]) unlike
601 RMSE, which quantifies differences based on gray values.

602 To calculate channel prediction error, gray values within the
603 RoI area of both the predicted and ground-truth pathloss maps
604 are converted into corresponding received power values. The
605 RMSE formula is then applied to these power values:

$$\text{606 } \text{RMSE}(\hat{\mathbf{p}}, \mathbf{p}) = \sqrt{\frac{1}{N} \sum_{n=1}^N (\hat{p}_n - p_n)^2}, \quad (16)$$

607 where $\hat{p}_n \in \hat{\mathbf{p}}$ and $p_n \in \mathbf{p}$ represent the predicted and ground-
608 truth P_{RX} at the n -th pixel, respectively. Channel Prediction
609 Error is then computed by averaging $\text{RMSE}(\hat{\mathbf{p}}, \mathbf{p})$ across all
610 given samples.

E. Simulation Result

611 *1) Training Optimization:* Table IV presents an ablation
612 study to identify the factors that significantly contribute to
613 PMNet’s performance in the PMP task, such as *data augmen-*
614 *tation* and *feature map size*.⁹

615 *2) Impact of Data Augmentation:* For the data augmentation,
616 we do horizontal, vertical and diagonal flips. In other
617 words, including the original images, we use the $\times 4$ number
618 of images for training. Note that data augmentation has several
619 advantages in general: first, it enhances the diversity of the
620 training data by generating additional examples that capture
621 various variations of the original data. Second, it reduces
622 overfitting by exposing the model to a wider range of input
623 patterns. Finally, data augmentation helps to make the model
624 more robust to noise and variability in the input data. As shown
625 in Table IV, it improves the performance of PMNet by 15.7%
626 in terms of RMSE.

627 *3) Impact of Feature Map Size:* We analyze the perfor-
628 mances of PMNet according to the size of the feature map,
629 which is the output of the encoder. Table IV compares the
630 results with the feature map sizes $\frac{H}{8} \times \frac{W}{8}$ and $\frac{H}{16} \times \frac{W}{16}$,
631 where H and W are the height and width of an input image,
632 respectively. To adjust the feature map size, we modify the
633 strides of the convolution layers in the encoder. We employ
634 the feature map size of $\frac{H}{8} \times \frac{W}{8}$ as the default option, because
635 PMNet yields better performance with the feature map size of
636 $\frac{H}{8} \times \frac{W}{8}$ than that of $\frac{H}{16} \times \frac{W}{16}$.

637 *4) Accuracy:* We compare the ML-based PMP with our
638 proposed PMNet model to two other methods for the PMP
639 task: a model-based approach, *3GPP*, and an ML-based
640 approach, *RadioUNet*. All three methods produce a single-
641 channel 256×256 image of the pathloss map as the output,
642 given the input of a two-channel 256×256 image containing
643 the geographical map and the TX location. Here are the details
644 of these baseline methods:

645 *1) 3GPP (with map info.)* As discussed in Sec. III-A.2, the
646 3GPP model determines the pathloss at a particular loca-
647 tion based on the Euclidean distance and whether the link
648 between the TX and RX is in LoS or NLoS. To ensure
649 a fair comparison with other baselines, we utilize map
650 information to determine the LoS or NLoS condition of

651 ⁹Our extensive experiments tested other factors, such as different sampling
652 methods, training loss functions, and additional input features (e.g., TX dis-
653 tance heatmap), but these factors did not show a meaningful improvement to
654 justify the additional complexity.

TABLE IV
ABLATION STUDY FOR PMNET TRAINING OPTIMIZATION. LOWER VALUES INDICATE BETTER PERFORMANCE

Case	Data Aug. ($\times 4$)	Feature Size	RMSE \downarrow	RoI Segmentation Err. \downarrow	Channel Prediction Err. \downarrow
w/o Data-Aug.	\times	$\frac{H}{16} \times \frac{W}{16}$	0.01637	0.00263	0.01860
w/ Data-Aug.	\checkmark	$\frac{H}{16} \times \frac{W}{16}$	0.01259	0.00025	0.01403
$\frac{H}{8} \times \frac{W}{8}$	\checkmark	$\frac{H}{8} \times \frac{W}{8}$	0.01057	0.00096	0.01175

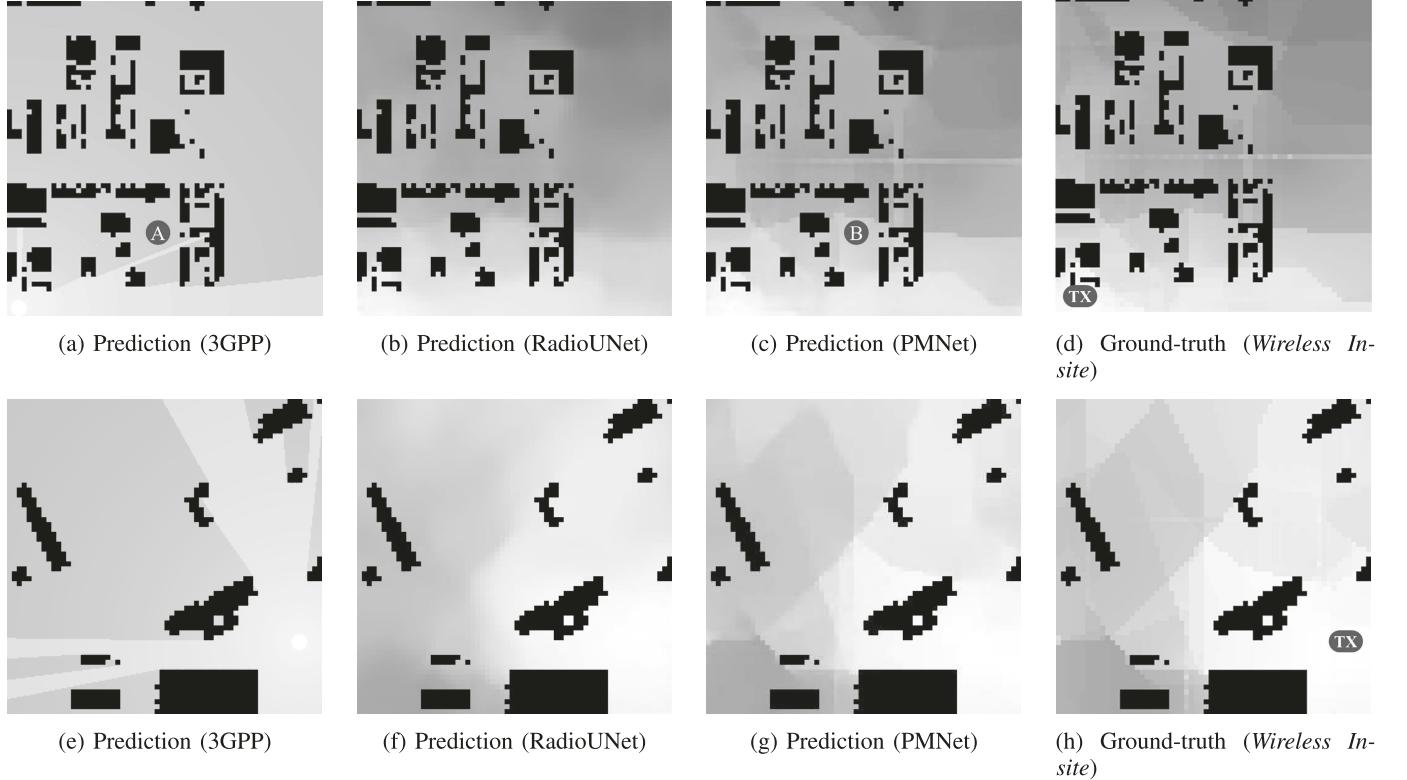


Fig. 4. Comparison of the predicted pathloss map of 3GPP, RadioUNet, and PMNet. TX in ground-truth represents the TX location. The scenes are randomly selected, not cherry-picked.

specific pixels to the TX.¹⁰ Note that it does not require any NN training as it is a model-based approach.

652 2) **RadioUNet** [15] is an ML-based PMP method that
653 extends the UNet architecture by employing two UNets.
654 Each UNet comprises 8 encoder layers with convolution,
655 ReLU, and Maxpool layers, followed by 8 decoder layers
656 with transposed convolution and ReLU layers. The
657 encoders and decoders are concatenated, as in the original
658 UNet architecture. Here, RadioUNet employs curriculum
659 training to enhance training: in the first stage, the first
660 UNet is trained for a specific number of epochs, with
661 the second UNet frozen. In the second stage, the second
662 UNet is trained using the two-channel input features
663 and the output of the first UNet, effectively making it
664 a three-channel input network.
665 3) **PMNet (Proposed)** is our proposed ML-based PMP
666 method. This network employs several parallel atrous

667 convolutions with different rates and the encoder-decoder
668 network. The encoder consists of 6 ResNet-based layers.
669 Each ResNet layer comprises several bottleneck layers
670 consisting of convolution, batch normalization, max
671 pooling, and ReLU. The decoder consists of 6 layers
672 consisting of convolution, adaptive average pooling, ReLU,
673 transposed convolution, and ReLU. Skip connections are
674 used between encoders and decoders.
675

677 5) *Qualitative Analysis:* Fig. 4 shows the prediction results
678 of the baselines. Recall that each pixel in the ROI corresponds
679 to the predicted received power P_{RX} (or the path gain PG).
680 Note that some pixel values in the ground-truth data appear
681 noisy due to interpolation during the gray conversion process
682 after RT simulation.
683

684 3GPP exhibits a substantial deviation from ground-truth
685 obtained through RT simulation, highlighting the differences
686 between how RT simulation and 3GPP model calculate a
687 pathloss. Specifically, for RX locations with LoS conditions
688 close to the TX, the results obtained using the 3GPP model
689 approximately match the ground-truth data obtained from
690 *Wireless Insite*. However, for RX locations farther from the TX

¹⁰The original 3GPP pathloss model uses a probabilistic model to determine LoS/NLoS condition at a particular distance. However, to ensure a fair comparison, we use here the deterministic LoS/NLoS condition determined from the map information in calculating the pathloss gain.

TABLE V
COMPARISON STUDY FOR PMP SCHEMES (3GPP, RADIOUNET, AND PMNET). LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

<i>Scheme</i>	<i>ML-based</i>	<i>RMSE</i> ↓	<i>RoI Segmentation Err.</i> ↓	<i>Channel Prediction Err.</i> ↓
3GPP (with map info.) [20]	✗	15.9451	-	17.5973
RadioUNet [15]	✓	0.02634	0.00840	0.01249
PMNet	✓	0.01057	0.00096	0.01175

TABLE VI
NUMERICAL RESULTS OF PMNET ON AN UNSEEN NETWORK SCENARIO. PMNET WAS TRAINED ON THE USC DATASET AND EVALUATED ON THE UCLA AND BOSTON DATASET

<i>Case</i>	<i>Model</i>	<i>Train Data</i>	<i>Eval. Data</i>	<i>RMSE</i> ↓	<i>RoI Segmentation Err.</i> ↓	<i>Channel Prediction Err.</i> ↓
Vanilla	PMNet	USC	USC	0.01057	0.00096	0.01175
Cross-scenario (UCLA)	PMNet	USC	UCLA	0.19146	0.03925	0.21700
Cross-scenario (Boston)	PMNet	USC	Boston	0.25842	0.04602	0.32436

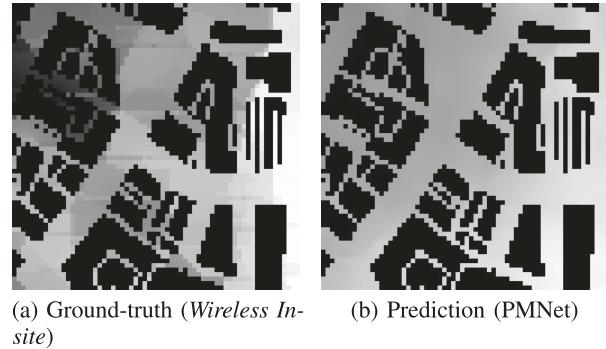
690 or under NLoS conditions, the 3GPP model exhibits significant
691 discrepancy from the ground-truth data. It is worth noting that
692 the 3GPP pathloss model does not provide results for near-field
693 within a link distance of 10 meters; so, we arbitrarily set the
694 power in the near-field area to gray value 255, which does
695 not introduce significant errors. The 3GPP pathloss model is
696 a simplified model that does not account for the complex
697 wireless propagation physics of reflection, diffraction, and
698 scattering (highlighted in **A**). Instead, it relies solely on two
699 models for LoS and NLoS locations, respectively, and only
700 considers link distance and carrier frequency. This simplified
701 approach inevitably leads to significant inaccuracies in the
702 pathloss prediction.

703 RadioUNet demonstrates impressive RoI segmentation
704 results, while its channel prediction outputs appear some-
705 what blurry. It is worth noting that RadioUNet conducts
706 curriculum-based training with 50 epochs each in the first
707 and second stages, utilizing the same training/validation set
708 as PMNet, which is trained with a total of 50 epochs.

709 PMNet, on the other hand, achieves notable results for both
710 RoI segmentation and channel prediction. As highlighted in **B**,
711 PMNet effectively captures the intricate wireless propagation
712 physics of reflection, diffraction, and scattering. This can
713 be attributed to PMNet's ability to incorporate a broader
714 contextual understanding of the environment, enabling it to
715 capture the representation of wireless propagation physics in
716 the surrounding environment.

717 6) *Quantitative Analysis*: Table V compares our proposed
718 PMNet model to the model-based 3GPP method and the
719 ML-based RadioUNet method in terms of three accuracy
720 metrics for the PMP task: RMSE, RoI segmentation error, and
721 channel prediction error. Note that the ground-truth dataset
722 is made by RT simulation; therefore, the error shows the
723 difference between a scheme and the RT simulation.

724 The model-based 3GPP method has inferior results com-
725 pared to ML-based methods, which can be explained by the
726 oversimplifications inherent in this model, as discussed above.
727 While our proposed PMNet model achieves the best score on
728 all three metrics, another ML-based PMP method, RadioUNet,



(a) Ground-truth (*Wireless Inside*) (b) Prediction (PMNet)

Fig. 5. Prediction results of PMNet on an unseen network scenario (*i.e.*, cross-scenario evaluation). The model is trained on the USC dataset and evaluated on the Boston dataset.

729 also achieves high accuracy ($RMSE \leq 0.03$). This result
730 highlights the capability of ML-based PMP approaches to
731 learn a representation of the wireless propagation physics
732 implicit in the ground-truth RT channel data.

V. TRANSFERABLE PATHLOSS MAP PREDICTION

A. Challenge: PMP for Unseen Network Scenario

733 As demonstrated in the previous section, PMNet exhibits
734 high accuracy of the PMP task for a given dataset. How-
735 ever, minimizing re-training efforts for new network scenarios
736 remains a challenge. To evaluate PMNet's generalizability
737 across different scenarios, we conducted a cross-scenario eval-
738 uation, testing PMNet trained on USC data on the Boston
739 dataset.

740 As shown in Fig. 5 and Table VI, the PMNet achieves
741 the RoI segmentation error on the order of 10^{-2} and the
742 channel prediction error on the order of 10^{-1} in a new
743 scenario. Such deterioration is due to differences in network
744 configuration and environmental characteristics between the
745 two scenarios (*e.g.*, different map scales and geographical
746 features). This highlights the need for further development
747 to improve PMNet's performance across different network
748 scenarios, a task we refer to as *cross-scenario PMP*.

751 **B. Task (2): Cross-Scenario PMP**

752 To enable better performance, we now allow cross-scenario
 753 PMP to *improve* the model trained on a different network
 754 scenario through training with a *reduced-size* training in the
 755 new scenario. This will allow the network to adapt to the new
 756 scenario with less time and resource effort, while maintaining
 757 high accuracy. To address this challenge, we leverage *transfer
 758 learning* (TL).

759 *1) Approach: Transfer Learning:* TL is an ML technique
 760 that allows knowledge transfer from one task or dataset to
 761 another, reducing the amount of data and training time required
 762 for new scenarios. In the context of cross-scenario PMP,
 763 we can transfer the knowledge from the source scenario, which
 764 learns a predictive function $f_S(\cdot)$ from a source dataset \mathcal{D}_S
 765 (e.g., USC), to the target scenario, which learns a predictive
 766 function $f_T(\cdot)$ from a target dataset \mathcal{D}_T (e.g., UCLA and
 767 Boston).

768 There are two main ways to use TL for the cross-scenario
 769 PMP.

- 770 • *Feature extraction:* We can train a feature extractor on
 771 a source scenario and then use that feature extractor to
 772 extract features from data from a target scenario. Once we
 773 have extracted the features, we can train a simple model
 774 (e.g., a linear regressor) to predict the pathloss map for
 775 the target scenario.
- 776 • *Fine-tuning:* We can fine-tune a pre-trained model on the
 777 target scenario. This can be done by unfreezing some or
 778 all of the layers of the pre-trained model and training the
 779 model on data from the target scenario.

780 The choice between those two methods depends on a number
 781 of factors, including the size and complexity of the pre-trained
 782 model, the availability of training data for the target dataset,
 783 and the computational resources available.

784 In this work, we focus on the fine-tuning TL approach with
 785 all of the layers of the pre-trained model unfrozen.¹¹ This
 786 approach is simple yet effective, achieving higher accuracy on
 787 various cross-scenario PMP tasks with less training data and
 788 shorter training time, as elaborated in the following subsection.

789 We prepare and use the following pre-trained models in our
 790 experiments:

- 791 (i) **VGG16_{ImgNet}** is the pre-trained CNN model trained
 792 on the ImageNet dataset, which contains 140k images
 793 belonging to 22k categories. It is a powerful image
 794 classification model that has been used to achieve state-
 795 of-the-art results on a variety of image classification
 796 benchmarks.
- 797 (ii) **PMNet_{3gpp}** is the pre-trained PMNet model trained on
 798 the 3GPP pathloss map dataset. The 3GPP pathloss map
 799 dataset is prepared with the 3GPP pathloss model in [20]
 800 (see 3GPP in Sec. IV-E.4, Fig. 4, and Table V).
- 801 (iii) **PMNet_{usc}** is the pre-trained PMNet model trained on the
 802 USC RT dataset. It is similar to PMNet_{3gpp} but is trained
 803 on a different dataset. This is our main pre-trained model.

804 Each pre-trained model is available on our GitHub page.

¹¹While we have performed sample experiments with unfreezing certain layers, such as the encoder-frozen and decoder-unfrozen, performance did not improve significantly. A more comprehensive investigation of this topic is, however, beyond the scope of this paper.

TABLE VII
 TRAINING CONFIGURATION AND HYPER-PARAMETERS
 IN CROSS-SCENARIO PMP

Model	
Backbone	PMNet, VGG16
Pre-trained model	PMNet _{usc} , PMNet _{3gpp} , VGG16 _{ImgNet}
Dataset (UCLA, Boston)	
Map	UCLA campus, Boston
Split for training (test) set	10% ~ 90% (10%) of dataset
Hyper-parameter	
LR	$10^{-3} \sim 5 \times 10^{-4}$
LR gamma, step size	0.5, 10
Batch size	16
Optimizer	Adam
# of epochs	50

TABLE VIII
 IMPACT OF TL ON TRAINING SPEED ($= \frac{1}{\text{steps}}$). PMNET MODELS WITH
 OR WITHOUT PMNET_{usc} PRE-TRAINED MODEL ARE TRAINED AND
 EVALUATED ON THE BOSTON DATASET

Case	# of Required Step (Training Speed)	
	RMSE ≤ 0.1	RMSE ≈ 0.03
Vanilla (90% Data)	5841 (x1.0)	6195 (x1.0)
PMNet _{usc} (20% Data)	1040 (x5.6)	1520 (x4.1)

805 **C. Simulation Results**

806 As demonstrated in the cross-scenario evaluation results (in
 807 Fig. 5 and Table VI), there is a need for further development
 808 to make PMNet adapt to different network scenarios. To this
 809 end, our approach is fine-tuning a pre-trained model with
 810 down-sized data for the new scenario. Here, the main questions
 811 in performing cross-scenario PMP are: (1) How quickly and
 812 with how minimal data PMNet can effectively adapt to new
 813 scenarios; and (2) Which pre-trained model should be utilized
 814 for optimal performance in cross-scenario PMP.

815 *1) Efficiency:* For cross-scenario PMP, rapidly adapting
 816 PMNet models to new network scenarios using limited data
 817 is essential due to the time-consuming and expensive nature
 818 of channel measurement using RT simulation or channel
 819 sounder. This is particularly critical for applications like beam
 820 management and localization using ML-based PMP, which
 821 demand quick adjustments for new scenarios.

822 *2) Impact of TL:* TL can significantly improve the training
 823 speed of PMNet models for cross-scenario PMP. As shown in
 824 Fig. 6 and Table VIII, the TL case with the PMNet_{usc} pre-
 825 trained model achieves a given level of accuracy much faster
 826 even with much less amount of training data. In particular,
 827 PMNet_{usc} achieves the same level of accuracy ($RMSE \leq$
 828 0.1 and $RMSE \approx 0.03$) $\times 5.6$ and $\times 4.1$ faster, respectively,
 829 as the Vanilla case (highlighted in **C**), where we define as
 830 “Vanilla” the training from scratch in a particular environment.

831 Furthermore, the TL can also significantly save the required
 832 amount of data for cross-scenario PMP. As shown in Fig. 7, the
 833 TL (PMNet_{usc}) trained with about 20% of the Boston dataset
 834 achieves equivalent results to the Vanilla case trained with
 835 about 90% of the dataset.

836 It is worth noting that limited training data can easily induce
 837 overfitting, as observed in the Vanilla case with 20% Data
 838 (highlighted in **D**). For the same amount of new scenario

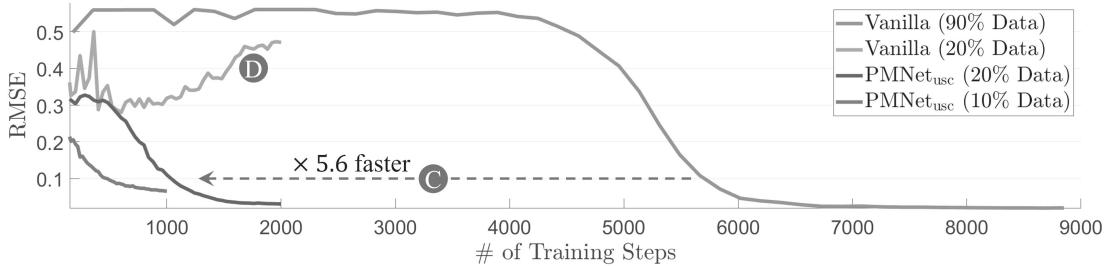


Fig. 6. Comparison of the training efficiency of PMNet models with and without TL. PMNet models are trained for 50 epochs and evaluated on the Boston dataset.

TABLE IX

COMPARISON OF PRE-TRAINED MODELS ($\text{VGG16}_{\text{ImgNet}}$, $\text{PMNET}_{\text{3GPP}}$, AND $\text{PMNET}_{\text{usc}}$) IN TERMS OF ACCURACY. MODELS ARE EVALUATED ON THE UCLA AND BOSTON DATASETS, USING 90% OF THE DATA FOR TRAINING AND 10% OF THE DATA FOR VALIDATION. 50 EPOCHS ARE USED FOR TRAINING. LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE LOWEST ERRORS ARE HIGHLIGHTED

Case	Pre-training	Model	RMSE \downarrow	RoI Segmentation Err. \downarrow	Channel Prediction Err. \downarrow
Vanilla	\times	PMNet	0.03415	0.02935	0.03844
TL (ImageNet)	\checkmark (ImageNet)	VGG16	0.04528	0.01814	0.05108
TL (3GPP)	\checkmark (3GPP)	PMNet	0.02809	0.00655	0.03238
TL (USC)	\checkmark (USC)	PMNet	0.02792	0.01666	0.03145

(a) UCLA

Case	Pre-training	Model	RMSE \downarrow	RoI Segmentation Err. \downarrow	Channel Prediction Err. \downarrow
Vanilla	\times	PMNet	0.01736	0.02417	0.02125
TL (ImageNet)	\checkmark (ImageNet)	VGG16	0.01999	0.02040	0.02512
TL (3GPP)	\checkmark (3GPP)	PMNet	0.01762	0.04030	0.02187
TL (USC)	\checkmark (USC)	PMNet	0.00987	0.03530	0.01225

(b) Boston

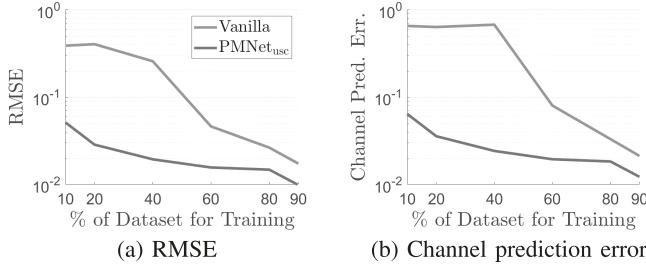


Fig. 7. Impact of TL on training data requirements. PMNet models with or without $\text{PMNet}_{\text{usc}}$ pre-trained model are trained with 50 epochs and evaluated on the Boston dataset.

839 data, the TL case ($\text{PMNet}_{\text{usc}}$ (20%)) does not experience the
840 overfitting issue. This suggests that TL also enhances training
841 stability (less overfitting issue with limited data) in cross-
842 scenario PMP.

843 Our findings demonstrate that the pre-trained $\text{PMNet}_{\text{usc}}$
844 model efficiently accelerates the training process by leveraging
845 its knowledge of PMP tasks, including the physics of wireless
846 channel propagation and RoI segmentation, and this model
847 can be readily adapted to new scenarios with minimal data
848 and training steps.

849 Consequently, we confirm that fine-tuning with a *suitable*
850 pre-trained model is an effective cross-PMP task method.
851 Another key question is which pre-trained model is suit-
852 able and which is not, which is discussed further in the
853 following.

854 **3) Accuracy:** As discussed in Sec. V, the source and target
855 scenario (task or domain) should be sufficiently similar for
856 effective TL to occur. For instance, to successfully apply TL to
857 the target task of predicting wireless communication channels,
858 the NN should extract relevant features of wireless propagation
859 physics from the source task.

860 **4) “Suitable” Pre-Trained Model:** Table IX compares the
861 performance of the PMNet model with and without TL. The
862 baseline model, referred to as Vanilla, is trained without any
863 pre-trained model. Additionally, we compare the performance
864 of TL using a pre-trained model trained on an
865 unrelated source scenario (*i.e.*, VGG16 trained on ImageNet)
866 with TL using a pre-trained model trained on a related source
867 scenario (*i.e.*, PMNet trained on USC or 3GPP datasets).

868 As shown in Table IX, both PMNet models trained on
869 $\text{PMNet}_{\text{usc}}$ and $\text{PMNet}_{\text{3GPP}}$ outperform the Vanilla case on all
870 performance metrics, suggesting that using a pre-trained model
871 trained on a related source task can significantly improve
872 accuracy.

873 Interestingly, while the VGG16 model trained on ImageNet
874 ($\text{VGG16}_{\text{ImgNet}}$) outperforms the Vanilla for RoI segmentation,
875 it fails to do so for channel prediction (highlighted in **E**). This
876 discrepancy stems from the VGG16 pre-trained model, which
877 has an inherent understanding of segmentation and image
878 representation from its source task; however, does not have
879 any knowledge of the physics of wireless propagation.

880 Fig. 8 visually confirms the findings from Table IX. All
881 models achieve high accuracy for RoI segmentation, while

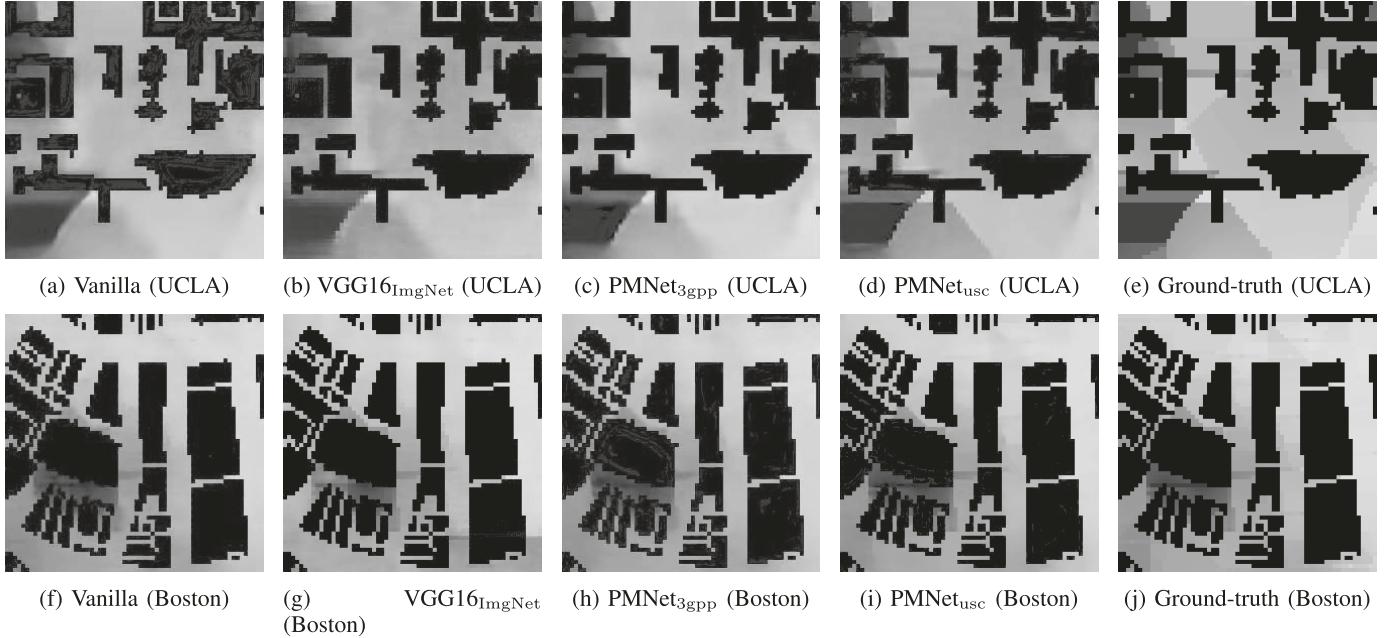


Fig. 8. Comparison of the prediction results of pre-trained models (VGG16_{ImgNet}, PMNet_{3gpp}, and PMNet_{usc}). 50 epochs are used for training. Brighter colors indicate higher PG. Note that pixels with non-zero gray value are converted to color to highlight differences between results.

882 only the TL case using a pre-trained model trained on a related
 883 source scenario (e.g., PMNet_{3gpp} and PMNet_{usc}) achieves high
 884 accuracy for channel prediction, capturing subtle details of the
 885 wireless propagation physics. This suggests that our PMNet
 886 pre-trained model is generalizable to different scenarios due to
 887 its inherent knowledge of channel propagation representation,
 888 and that TL can further improve accuracy.

889 These results empirically demonstrate that pre-trained
 890 model's source dataset (task or domain) should be similar
 891 to the target dataset (task or domain) to transfer useful
 892 information during TL. Specifically, for cross-scenario PMP,
 893 it is important to use a pre-trained model that has been
 894 trained extensively on data related to wireless propagation
 895 physics.

896 Therefore, we conclude that the suggested TL approach,
 897 fine-tuning with a stable and closely related pre-trained model
 898 (such as PMNet_{usc}), is a simple yet effective way to address
 899 the cross-scenario PMP task, which is important for practical
 900 applications.

VI. CONCLUSION

902 This work introduces an ML-based large-scale channel pre-
 903 diction framework, PMNet, which can create highly accurate
 904 pathloss predictions for a given map in a few milliseconds.
 905 Utilizing an RT channel dataset of real-world scenarios (e.g.,
 906 USC, UCLA, and Boston area), PMNet is verified for its
 907 accuracy and training efficiency. In particular, TL with our
 908 PMNet pre-trained model, which has generalization capability
 909 for different network scenarios, enables the PMNet to adapt
 910 itself quickly and efficiently to a new network scenario, while
 911 achieving an RMSE of 10^{-2} level.

912 The high accuracy and low runtime of the PMNet frame-
 913 work make it suitable for deployment planning in dense
 914 networks as well as online optimization of network parameters.

915 Still, it remains an open question whether the knowledge of
 916 wireless propagation physics in our PMNet pre-trained model
 917 can be transferred to other downstream tasks beyond the PMP
 918 task; this question will be the topic of our future research.

ACKNOWLEDGMENT

920 The help of Dr. Zheda Li in the creation of the USC data
 921 set is gratefully acknowledged.

REFERENCES

- [1] J.-H. Lee, J. Lee, S.-H. Lee, and A. F. Molisch, "PMNet: Large-scale channel prediction system for ICASSP 2023 first pathloss radio map prediction challenge," in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)*, Jun. 2023, pp. 1–2.
- [2] J.-H. Lee, O. G. Serbetci, D. P. Selvam, and A. F. Molisch, "PMNet: Robust pathloss map prediction via supervised learning," in *Proc. IEEE Global Commun. Conf.*, Dec. 2023, pp. 1–20.
- [3] X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, "6G digital twin networks: From theory to practice," *IEEE Commun. Mag.*, vol. 1, no. 1, pp. 1–7, Aug. 2023.
- [4] A. Alkhateeb, S. Jiang, and G. Charan, "Real-time digital twins: Vision and research directions for 6G and beyond," *IEEE Commun. Mag.*, vol. 61, no. 11, pp. 128–134, Nov. 2023.
- [5] R. Valenzuela, "A ray tracing approach to predicting indoor wireless transmission," in *Proc. IEEE 43rd Veh. Technol. Conf.*, Apr. 1993, pp. 214–218.
- [6] S.-C. Kim et al., "Radio propagation measurements and prediction using three-dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz," *IEEE Trans. Veh. Technol.*, vol. 48, no. 3, pp. 931–946, May 1999.
- [7] *Wireless Insite*. Accessed: Sep. 2024. [Online]. Available: <https://www.remcom.com/wirelessinsite>
- [8] (2024). *Path Loss Comparison in Rosslyn*. [Online]. Available: <https://www.remcom.com/examples/path-loss-comparison-in-rosslyn-virginia.html>
- [9] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, "Measurement and modelling of scattering from buildings," *IEEE Trans. Antennas Propag.*, vol. 55, no. 1, pp. 143–153, Jan. 2007.
- [10] R. Wahl, G. Wolfe, P. Wildbolz, and F. Landstorfer, "Dominant path prediction model for urban scenarios," in *Proc. 14th IST Mobile Wireless Commun. Summit*, 2005, pp. 1–26.

[11] M. Lee and D. Han, "Voronoi tessellation based interpolation method for Wi-Fi radio map construction," *IEEE Commun. Lett.*, vol. 16, no. 3, pp. 404–407, Mar. 2012.

[12] D. Romero and S.-J. Kim, "Radio map estimation: A data-driven approach to spectrum cartography," 2022, *arXiv:2202.03269*.

[13] T. Orekondy, P. Kumar, S. Kadambi, H. Ye, J. Soriaga, and A. Behboodi, "WiNeRT: Towards neural ray tracing for wireless channel modelling and differentiable simulations," in *Proc. Int. Conf. Learn. Represent.*, 2023, pp. 1–20.

[14] X. Zhao, Z. An, Q. Pan, and L. Yang, "NeRF2: Neural radio-frequency radiance fields," in *Proc. 29th Annu. Int. Conf. Mobile Comput. Netw.*, vol. 33, Oct. 2023, pp. 1–15.

[15] R. Levie, Ç. Yapar, G. Kutyniok, and G. Caire, "RadioUNet: Fast radio map estimation with convolutional neural networks," *IEEE Trans. Wireless Commun.*, vol. 20, no. 6, pp. 4001–4015, Jun. 2021.

[16] V. V. Ratnam et al., "FadeNet: Deep learning-based mm-Wave large-scale channel fading prediction and its applications," *IEEE Access*, vol. 9, pp. 3278–3290, 2021.

[17] E. Kriještorac, H. Sallouha, S. Sarkar, and D. Cabric, "Agile radio map prediction using deep learning," in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)*, Jun. 2023, pp. 1–2.

[18] K. Qiu, S. Bakirtzis, H. Song, I. Wassell, and J. Zhang, "Deep learning-based path loss prediction for outdoor wireless communication systems," in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)*, Jun. 2023, pp. 1–2.

[19] Ç. Yapar, F. Jaensch, R. Levie, G. Kutyniok, and G. Caire, "The first pathloss radio map prediction challenge," 2023, *arXiv:2310.07658*.

[20] *Study on Channel Model for Frequencies From 0.5 to 100 GHz*, Standard TR 38.901, 2018.

[21] Ç. Yapar, R. Levie, G. Kutyniok, and G. Caire, "Dataset of pathloss and ToA radio maps with localization application," 2022, *arXiv:2212.11777*.

[22] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 2014, *arXiv:1409.1556*.

[23] A. F. Molisch, *Wireless Communications: From Fundamentals to Beyond 5G*, 3rd ed., Hoboken, NJ, USA: Wiley, 2023.

[24] F. Fuschini, H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci, and P. Vainikainen, "Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation," *IEEE Trans. Antenna Propag.*, vol. 56, no. 3, pp. 848–857, Mar. 2008.

[25] T. Rautiainen, G. Wolfle, and R. Hoppe, "Verifying path loss and delay spread predictions of a 3D ray tracing propagation model in urban environment," in *Proc. IEEE 56th Veh. Technol. Conf.*, vol. 4, Jun. 2002, pp. 2470–2474.

[26] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jun. 2015, pp. 3431–3440.

[27] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 28, 2015, pp. 1–20.

[28] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?" 2014, *arXiv:1411.1792*.

[29] K. James et al., "Overcoming catastrophic forgetting in neural networks," *Proc. Nat. Acad. Sci. USA*, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

[30] S. Kornblith, J. Shlens, and Q. V. Le, "Do better ImageNet models transfer better?" 2018, *arXiv:1805.08974*.

[31] M. Huh, P. Agrawal, and A. A. Efros, "What makes ImageNet good for transfer learning?" 2016, *arXiv:1608.08614*.

[32] M. Steinbauer, A. F. Molisch, and E. Bonek, "The double-directional radio channel," *IEEE Antennas Propag. Mag.*, vol. 43, no. 4, pp. 51–63, Aug. 2001, doi: 10.1109/74.951559.

[33] R. Araki, T. Onishi, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, "MT-DSSD: Deconvolutional single shot detector using multi task learning for object detection, segmentation, and grasping detection," in *Proc. IEEE Int. Conf. Robot. Autom. (ICRA)*, May 2020, pp. 10487–10493.

[34] T. Xu and W. Takano, "Graph stacked hourglass networks for 3D human pose estimation," in *Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jun. 2021, pp. 1–23.

[35] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, "Encoder–decoder with atrous separable convolution for semantic image segmentation," in *Proc. ECCV*, 2018, pp. 1–27.

[36] G. Lin, A. Milan, C. Shen, and I. Reid, "RefineNet: Multi-path refinement networks for high-resolution semantic segmentation," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jul. 2017, pp. 5168–5177.

[37] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, "Large kernel matters—Improve semantic segmentation by global convolutional network," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jul. 2017, pp. 1743–1751.

[38] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in *Medical Image Computing and Computer-Assisted Intervention*. Cham, Switzerland: Springer, 2015, pp. 234–241.

[39] F. Yu and V. Koltun, "Multi-scale context aggregation by dilated convolutions," in *Proc. ICLR*, 2016, pp. 1–29.

[40] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, Jun. 2016, pp. 770–778.

Ju-Hyung Lee (Member, IEEE) received the Ph.D. degree from Korea University, Seoul, South Korea. He was a Post-Doctoral Researcher in electrical and computer engineering with the University of Southern California (USC), Los Angeles, CA, USA, where he worked under the supervision of Prof. Andreas F. Molisch. Before that, he was a Research Professor with Korea University. He is currently a Principal Researcher with Nokia, Sunnyvale, CA, USA. His research interests include generative AI solutions for wireless communication systems and on-device AI/LLM. He has been recognized with several prestigious awards, including first rank in a machine learning (ML) competition, best paper awards at key IEEE conferences, and the Grand Prize for Research Excellence from Korea University. For more information visit the link (<https://juhyung-lee.com/>) and (<https://juhyung-lee.com/>).

Andreas F. Molisch (Fellow, IEEE) received the Dipl. (Ing.), Ph.D., and Habilitation degrees from Technical University Vienna, Austria, in 1990, 1994, and 1999, respectively.

He spent the next ten years in industry, FTW, AT&T (Bell) Laboratories, and Mitsubishi Electric Research Laboratories (where he rose to the Chief Wireless Standards Architect). In 2009, he joined the University of Southern California (USC), Los Angeles, CA, USA, as a Professor and founded the Wireless Devices and Systems (WiDeS) Group. In 2017, he was appointed to the Solomon Golomb—Andrew and Erna Viterbi Chair. His research interests revolve around wireless propagation channels, wireless systems design and their interaction, wireless channel measurement and modeling for 5G and 6G systems, joint communication-caching-computation, hybrid beamforming, UWB/TOA-based localization, and novel modulation/multiple access methods. Overall, he has published five books [among them the textbook *Wireless Communications* (third edition in 2023)], 22 book chapters, more than 300 journal articles, and more than 400 conference papers. He is also the inventor of 80 patents, and the co-author of some 70 standards contributions. His work has been cited more than 73,000 times, his H-index is 113, and he is a Clarivate Highly Cited Researcher.

Dr. Molisch is a fellow of the National Academy of Inventors, AAAS, and IET; an IEEE Distinguished Lecturer, and a member of Austrian Academy of Sciences. He has received numerous awards, among them the IET Achievement Medal, the Technical Achievement Awards of IEEE Vehicular Technology Society (Evans Avant-Garde Award) and the IEEE Communications Society (Edwin Howard Armstrong Award), and the Technical Field Award of the IEEE for Communications (Eric Sumner Award). He has been an editor of a number of journals and special issues, the general chair, the technical program committee chair, or the symposium chair of multiple international conferences; and the Chairperson of various international standardization groups.