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Abstract— This paper details a reliable control method for
highly nonlinear dynamical systems such as soft robots. We call
this method model evolutionary gain-based predictive control
or MEGa-PC. The method uses an evolutionary algorithm
to optimize a set of controller gains via model predictive
control. We demonstrate the performance of MEGa-PC in
simulation for a single-link inverted pendulum and a three-
link inverted pendulum, and on physical hardware for a three-
joint continuum soft robot arm with six degrees of freedom.
MEGa-PC is compared to prior work that used Nonlinear
Evolutionary Model Predictive Control or NEMPC. The new
method performs similarly to NEMPC in terms of accumulated
cost over the entire trajectory, however, MEGa-PC generalizes
better to real-world applications where safety is paramount, the
dynamic model is uncertain, the system has significant latency,
and where the previous sampling-based method (NEMPC) re-
sulted in significant steady-state error due to model inaccuracy.

I. INTRODUCTION

Model-based optimal control methods for soft robots can
enable more dynamic and aggressive performance. Specifi-
cally, model predictive control (MPC) is a class of optimal
control algorithms that use a dynamic model to forward
predict how different inputs will affect a system’s state
over time. However, this method often relies on an accurate
dynamic model (which is difficult for soft robots) and can
be intractable for complex models. Instead of solving for
direct control inputs at every time step, the method presented
in this paper uses a nonlinear model predictive controller
formulation to generate a gain matrix that optimizes perfor-
mance over a given time horizon. This method of generating
a gain matrix is especially advantageous and potentially more
robust because of the inherent uncertainties present when
developing model-based optimal controllers for soft robots.

We refer to the method in this paper as model evolutionary
gain-based predictive control (MEGa-PC) and it is a direct
improvement upon nonlinear evolutionary model predictive
control (NEMPC) (see [1]). Specifically, MEGa-PC gener-
ates low-level controller gains instead of direct actuation
inputs. Generating a gain matrix instead of direct control
inputs results in several additional benefits as outlined next.

First, MPC for complex, high-dimensional systems (such
as soft robots) can be computationally intensive and may not
find a solution (depending on constraints, initial conditions,
and nonlinear cost functions). If the high-level optimization
controller finds a poor local solution or does not converge
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Fig. 1. The three-link, three-joint soft continuum robot arm used to test the
control method introduced in this work. Each joint of the robot is able to
apply torque about two different axes. The joint angles are estimated using
HTC Vive trackers placed at top and bottom of each joint.

for any reason, using a gain matrix allows the low-level
controller to ensure that the system stays stable and performs
the desired task. This can be critical for applications such as
the task described in [2], where we plan to use a large-scale
soft robot such as the one presented in this paper for the
application of carrying a stretcher with a human partner.

Second, the high-level optimization for MEGa-PC can
maintain stable control while running at slower update rates
than past work, because the resulting gain matrix can be
utilized in a high-rate, low-level controller. Because we can
run the MPC algorithm at a lower rate, this allows additional
time for MEGa-PC to generate the gain matrix at each
iteration, thus allowing a longer time horizon, evaluation of a
more complicated nonlinear model, or finding a more optimal
trajectory. The control method can also be easily tailored to
different low-level control laws. For example, in this work,
we implement two different low-level control laws to adapt
to different scenarios and overcome different problems such
as model inaccuracies causing steady-state error.

In this paper, we show that MEGa-PC gives similar perfor-
mance in simulation scenarios when compared to NEMPC.
However, we also show that MEGa-PC outperforms NEMPC
when real-world effects are added such as latency, optimiza-
tion failure to converge, and model inaccuracies for three
different systems, including a continuum joint, three-link soft
robot arm as seen in Figure 1. These systems were chosen
because they all have nonlinear dynamics and are the same
systems as those analyzed in [1].
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II. RELATED WORKS

This work builds most directly on another sampling-based
MPC algorithm as described in [1] in which the authors
show that nonlinear evolutionary model predictive control
(NEMPC) performed better than other comparable state-of-
the-art optimal control methods, namely Model Predictive
Path Integral (MPPI) control and Differential Dynamic Pro-
gramming (DDP) on a single-link and triple-link inverted
pendulum. Because NEMPC outperformed MPPI and DDP,
in this paper, we focus on comparing model evolutionary
gain-based predictive control (MEGa-PC) to NEMPC as a
direct benchmark.

Hyatt et al.’s work is similar to [3], [4], and [5]. These
works focus on different machine-learned models but all
use the same evolutionary model predictive control format
where the optimization produces an optimal trajectory input.
Abughalieh and Alawneh, [6], give an overview of the then-
current parallelized or sampling-based MPC techniques.

Iterative linear quadratic regulator (iLQR) [7], a variant of
DDP, is similar to this work in that it uses the model to output
a gain instead of specific control inputs. Many papers use this
method as a baseline state-of-the-art controller in addition
to extending its utility by adding elements of machine
learning [8], [9], [10]. By comparison, because of required
assumptions, iLQR may only be able to find a local optimum,
whereas MEGa-PC has the ability to at least perform a global
search over the entire input space (albeit without guarantees
of finding a global solution). In other words, MEGa-PC
can explore the entire multi-modal or non-linear function
space heuristically, through the implementation of a genetic
algorithmic process, whereas iLQR finds the optimal in a
local region by approximating and linearizing the local space.
In addition, iLQR should perform the same or worse than
DDP (see [11]) and we have already seen that NEMPC
performs better, in terms of lower realized cost in simulation,
than DDP [1].

In [12] the authors developed a method that is the most
similar to MEGa-PC because they use a genetic algorithm to
optimize the cost function weightings for a linear quadratic
regulator (LQR) and augment an LQR with an integrator.
In contrast to this controller, MEGa-PC does not require
a linearized model or a quadratic cost. By enforcing the
constraints of a linearized model and quadratic cost function
on a nonlinear model, the solution provided by LQR will
likely be less performant.

MEGa-PC is also similar to the concept of gain-scheduling
(see [13]), where gains are selected for different areas of
the workspace, using interpolation between these areas to
achieve acceptable performance. One of the significant draw-
backs of a gain-scheduling algorithm is the tedious process
of tuning a controller for each part of the workspace. In
contrast, MEGa-PC only has a single cost function to tune,
but can output different gains depending on the current state
and goal state.

Colombo and Da Silva in [14], compare gain-scheduled
LQR with model predictive control (MPC). Although it was

more difficult to definitively quantify stability for MPC, they
found that MPC had higher performance in terms of RMS
error. One of the main ideas of MEGa-PC is to combine the
high performance of MPC with the straightforward stability
verification of a state feedback control law.

III. METHODS

A. Model Evolutionary Gain-Based Predictive Control

The essence of Model Evolutionary Gain-Based Predictive
Control (MEGa-PC) is a genetic algorithm working to op-
timize a set of gains for a low-level controller by sampling
the future predicted states of the system. At every time step,
the predicted future states are propagated forward in time
(using either a learned discrete-time model, or a discretized
analytical model), starting with the current measured states.
The low-level gain matrix that results from the MPC op-
timization is then used to multiply the current states and
generate the control input at the next time step. Figure 2
shows a process flow diagram for NEMPC and MEGa-PC.
Because [1] provides an in-depth description of the genetic
algorithm used to solve the MPC problem, in this paper we
present only the form of the optimization. The optimization
problem can be expressed in equation form as:

minimize
K

J(x, u)

subject to x⃗i+1 = f(x⃗i, u⃗i)

u⃗i = −Kx⃗i

umin <= u⃗i <= umax

where i = t, t+ 1, t+ 2, ..., t+ T

(1)

Here, standard notation is used where x and u are the
states and inputs of the system respectively, K is a Rmxn

gain matrix, and J is a general cost function (not necessarily
linear, or convex). Additionally, t is the current discrete time
step being evaluated and T is the length of the time horizon
(for both state prediction and control). Although we assume
a state feedback control law where u = −Kx, any low-level
control law that is gain-based would work for this algorithm.
For example, on the soft robot arm, we instead use the cost
function u = K(xgoal − x) + uprev which is essentially a
state feedback control law with an integral term. For the
cost function in this paper, we use a standard quadratic cost
function as follows:

J(x, u) =
T−1∑
i=t

x̃T
i Qx̃i +

N−1∑
j=0

Rj ũi,j

+ x̃T
TQf x̃T

where x̃ = xgoal − x

ũ = ugoal − u

(2)

where, Q, Qf , and R are diagonal weighting matrices
specific to each system, xgoal is the desired end state, and
ugoal is the desired final input (if it is needed). Although
we use a standard quadratic cost function in this paper for
the purpose of familiarity and defining a simple benchmark,
this control technique is not constrained to quadratic or even
differentiable cost functions.
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(a) NEMPC

(b) MEGa-PC
Fig. 2. Flow diagrams for NEMPC, (a), and MEGa-PC, (b). MEGa-PC
outputs a gain matrix for a low-level controller whereas NEMPC outputs a
direct actuation input. i refers to the current time step. At each new time
step, the previous time step’s xi+1 becomes the new xi.

One of the significant ways that MEGa-PC improves
upon NEMPC is that there is no need to parameterize the
outputs of the controller such as in [1] where they pick
several “knot points” between which they linearly interpolate
over the time horizon. These knot points are not needed
in MEGa-PC because the same gain is used for the entire
horizon as opposed to NEMPC which defines a set of inputs,
which could be different at each knot point. Although some
parameterization may be beneficial for extremely complex
or dramatically changing systems, the work in this paper has
no time horizon parameterization of the gain matrix inside
the controller. Expressed in another way, the controller has
the task of finding the single optimal gain matrix for the
current time horizon. However, because we are using model
predictive control, or receding horizon control, we can also
find a new gain matrix at every time step to adapt to changing
situations or state estimation.

Generating a complete gain matrix, K ∈ Rm×n, in-
creases the required memory storage of the optimization
script. However, this can be significantly reduced by only
optimizing a small subset of the matrix elements. In this
paper, this is done by optimizing only the diagonal elements
of the matrix, which assumes zero cross-coupling between
the states. Beyond this important difference in representing
the control input (or optimization variables) as a set of gains
for the output of this MPC algorithm, the procedure for
forward prediction given the control input, the procedure for
cost calculation, and the general optimization using a genetic
algorithm follows the process from the authors’ previous
work.

It should be noted that NEMPC and MEGa-PC, as part
of their common optimization method, rely on a large
population (or sample) size that can be evaluated in parallel
(multi-threading on a CPU/GPU) to produce optimal control
trajectories that are similar in performance to other methods.
This means that they are almost always run on a hardware-
accelerated platform. The results detailed in this paper use
Pytorch [15] for easy, rapid, parallelized execution on the

graphics processing unit (GPU) although any hardware-
accelerated linear algebra package would work.

B. Simulated and Hardware Test Systems

The three systems used to compare and evaluate MEGa-
PC in this paper are: 1) the single and 2) triple-link inverted
pendulum, and 3) a soft continuum robot arm. For forward
propagation of the dynamic models of these systems, we use
a discretized analytical model for both the single pendulum
and the soft continuum arm while we use a discrete-time
learned model (DNN) for the triple-link inverted pendulum.

The single-link inverted pendulum is modeled with stan-
dard dynamics of the form

Iθ̈ + bθ̇ −mg sin(θ) = τ (3)

where the moment of inertia, I , is calculated as ml2 and
θ, θ̇, θ̈ are the angular position, velocity and acceleration
respectively. The variables l, b, m, g, and τ are the length,
viscous friction coefficient, mass, gravity constant, and ap-
plied torque, respectively which have the following values

for our test cases: 1 m, 0.1
Nm

s
, 0.2 kg, 9.81

m

s2
and a

maximum allowable torque of 1Nm. These values will result
in a controller that has to drive energy into the system by
swinging back and forth to be able to get to the upright
position. We use a straightforward Runge-Kutta 4th-order
method with an integration step size of 0.01 seconds for the
single-link inverted pendulum for both simulation and control
without hardware acceleration.

For the three-link inverted pendulum, we use the deep
neural network (DNN) architecture as shown in [1] to
approximate the dynamics to enable a direct comparison
with their results. The DNN model outputs the next state
of the system at a time step of 0.01 seconds. The original
continuous-time dynamics (which were used to train the
DNN model) for this system are of the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (4)

where the mass matrix, M , Coriolis matrix, C, and gravity
vector, G, are calculated according to standard formulas and
q, q̇, and q̈ are a vector of each links’ angular position,
velocity, and acceleration. Each link in the three-link system
is parameterized by a mass of 0.5 kg, a length of 0.5m, a
simplified moment of inertia of 0.1 kgm2 and a maximum
allowable torque of 10Nm. The maximum allowable torque
is such that the three-link system cannot swing or move
directly to an upright configuration (similar to the single-
link system).

The last system used to test and analyze MEGa-PC in this
paper is the soft robot arm as seen in Figure 1. This arm
has three inextensible, compliant, continuum joints that can
each bend about the plane at the base of the joint defined by
two orthogonal axes. This gives each joint two controllable
degrees of freedom. This means that we model the soft
robot arm as having six kinematic degrees of freedom. Each
joint in the soft robot arm is actuated by either four or
eight antagonistic pneumatic chambers. The pressure in each
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chamber can be controlled to change the differential pressure
between each pair of antagonistic chambers. This gives the
system an 18-dimensional state space and six-dimensional
input space (two differential pressures for each joint). The
controller is tested on the soft robot hardware to show that
this control method works in the physical world as well as
in simulation. Soft robot arms such as the one used in this
paper exhibit extremely complex dynamic effects such as
hysteresis, nonlinear friction and stiffness, fluid dynamics,
and coupling effects. There are many ways to model these
robots, but none are as simple and accurate as models for
traditional rigid robots. The analytical model that we use to
predict the motion of this robot arm for control is equivalent
to the dynamic analysis given in [16]. The model takes the
standard form

Mq̈ + Cq̇ +G = Kprsp−Kspringq −Kdq̇ (5)

where q, q̇, and q̈ are the joint angles, velocities, and accelera-
tions of the arm. M , C, and G are the mass matrix, Coriolis
matrix, and gravity vector. Kprs is the pressure to torque
mapping. Kspringq accounts for the parasitic spring-like
force that causes the joint to settle at an equilibrium position,
and Kdq̇ is the damping force for modeling frictional effects.
This model is complicated enough that the DNN architecture
used to model the three-link system struggles to capture the
dynamic effects for this soft robot arm. To enable controller
comparison with this model, we use the Tustin or bilinear
discretization to get a discrete-time affine model at each time
step [17]. This model is then used to approximate the system
for the duration of the control horizon and is evaluated on
the GPU for rapid parallelized computation.

IV. RESULTS

A. Inverted Pendulum

To begin with, the new model evolutionary gain-based
predictive controller (MEGa-PC) is compared to NEMPC on
the inverted pendulum system (where the state x is θ and θ̇,
and u, the inputs, is torque τ ). Because the pendulum system
is relatively simple, the cost function is also simple with

Q =

[
0 0
0 1

]
, Qf =

[
0 0
0 5

]
, R =

[
0
]
, (6)

where the parameters above are manually tuned.
The zero weighting on velocity in both Q and Qf (top

left corner of the matrices) are because we do not want to
penalize high velocities in this case, but rather we want the
pendulum to get to its final position as quickly as possible.
Figure 3 shows the pendulum being controlled to the vertical
position, using NEMPC and MEGa-PC with the exact same
parameters. NEMPC and the high and low-level controllers
in MEGa-PC are run at 100 Hz. Both controllers have a
population of 1000 model prediction samples, each with a
horizon length of 50 time steps. As can be seen, the two
methods yield very similar results. This is confirmed in
their almost identical integral of time-weighted absolute error

Fig. 3. From top to bottom, graphs of the positions, velocities, and
applied torques of the inverted pendulum system controlled by NEMPC
and MEGa-PC with identical parameters. The controllers visually perform
almost identically. NEMPC is shown in blue and MEGa-PC is shown in
orange. One difference of note is that MEGa-PC has smooth input transitions
at steady state in comparison with NEMPC. The objective, or target angle
and velocity, in all cases, is 0 rad and 0 rad/s respectively which is not
shown in figures to increase legibility.

Fig. 4. From top to bottom, graphs of the angular positions, velocities,
and applied torques of the inverted pendulum system controlled by NEMPC
and MEGa-PC with identical parameters. Both optimization controllers are
stopped at 4 seconds, after which the control inputs change with respect to
a constant gain (For MEGa-PC) and constant torque for NEMPC). It should
be noted that the linear low-level controller for MEGa-PC (which uses the
last K matrix generated by the controller) is still running at every time step.

(ITAE) values of 16.40 and 16.35 for NEMPC and MEGa-PC
respectively, which is a difference of 0.3 percent in ITAE.

Figure 4 shows the same inverted pendulum system as
Figure 3. However, in contrast to Figure 3, Figure 4 shows
the systems when the optimization controller is stopped after
four seconds, after which the control inputs change with
respect to a constant gain (For MEGa-PC) and constant
torque for NEMPC). The motivation of stopping the two
controllers is to show the effect of using a gain-based
controller in the case of a current optimization becoming
infeasible, or not converging to a good solution.

The inverted pendulum, being controlled by NEMPC,
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TABLE I
A COMPARISON OF THE TOTAL ACCUMULATED COST OF NEMPC,

MEGA-PC, AND MPPI FOR 500 TRIALS. EACH TRIAL IS PERFORMED

THE SAME EXCEPT FOR A DIFFERENT INITIAL RANDOM SEED. SD
STANDS FOR STANDARD DEVIATION.

Controller Costs Median Mean Min Max SD

NEMPC 966 968 947 1069 12.35
MEGa-PC 1031 1031 937 1244 33.08
MPPI 1059 1060 1019 1149 18.44

begins to spin continuously in an uncontrolled manner.
However, MEGa-PC maintains its performance and this is
supported by the ITAE values of 49.01 and 16.39 for NEMPC
and MEGa-PC respectively. This is possible because a single
gain matrix is able to maintain performance over a larger
range of angles as the pendulum approaches the goal state.
Indeed, the ITAE performance confirms that the gain matrix
towards the end of the trajectory when the optimization
stops is already very close to being optimal. The modified
trajectory has an ITAE value of 16.39 versus the original
ITAE value of 16.35, a difference of 0.2 percent, where
MEGa-PC comes up with a new gain matrix at every step.
It should be noted that if MEGa-PC is stopped much sooner
than four seconds, it also cannot reach the goal orientation
since the pendulum is not close enough to its final goal state.
However, the system does not tend to go unstable with a fixed
gain matrix (unlike in the case of NEMPC). To encourage the
system to remain stable at all times, a cost on any positive,
real eigenvalues of the matrix A − BK, was added to the
cost function. This should help avoid introducing instability.

B. Three-link Inverted Pendulum

To further compare NEMPC and MEGa-PC, we evaluated
the two controllers on the three-link pendulum which triples
the dimension of the state space. The cost function for
NEMPC and MEGa-PC was again identical and the weights
for the weighting matrix, Q, were set at 3, 2, and 1 for
position. These same weights were retained for the final
weighting matrix, Qf , and a cost in R is also set on each
of the three inputs equal to 0.0001. The high-level MPC
controllers are nominally run at 100 Hz with a horizon length
of 50 time steps.

For the three-link inverted pendulum, the seed for the ran-
dom number generator which dictates the initial population
of input trajectories, strangers, and mutation noise during
the optimization for NEMPC and MEGa-PC had a noticeable
effect on the final cost. The effect of this randomness is quan-
tified in Table I which shows the median, mean, minimum,
maximum, and standard deviation for the accumulated cost
over 500 different trials. NEMPC performed slightly better
on average than MEGa-PC, while MEGa-PC found a control
policy that gave a lower overall minimum cost.

In addition, statistics for model predictive path integral
(MPPI) control were added to Table I to give a better
idea of the relative performance difference between NEMPC

Fig. 5. A histogram of 500 different runs for the three-link inverted
pendulum under MPPI, MEGa-PC and NEMPC. NEMPC is shown in blue,
MEGa-PC is shown in green, and MPPI is shown in pink. Each run is
exactly the same except for the seed of the random number generator used
in the controller optimization. MEGa-PC seems to be more sensitive to the
initial seeding, despite finding the best overall minimum.

and MEGa-PC. MPPI was specifically selected as Hyatt
and Killpack [1] found that NEMPC performed better than
MPPI, and both MPPI and NEMPC performed better than
differential dynamic programming (DDP). We use the same
MPPI controller from [1] based on the method presented
in Williams et al. [18]. MPPI was given the same horizon
length, control rate, number of samples, and cost function
as NEMPC and MEGa-PC. Figure 5 shows a histogram
of the accumulated cost over the entire trajectory for the
three controllers for the same set of 500 different random
initial seeds. Overall, NEMPC performs the best with a mean
difference of 6.5 % below MEGa-PC and 9.5 % below MPPI.
We expect that with a better initialization algorithm such as
latin hypercube sampling or a better matrix parameterization,
the MEGa-PC samples would move further left in Figure 5.
This sampling is particularly promising because MEGa-PC
does find the overall minimum cost of the three controllers
at 937. However, improvements in the quality of sampling-
based methods remain an open question. Still, even if MEGa-
PC were to always perform with slightly higher actual cost
than NEMPC, one of the main benefits is robustness to the
issues with both the optimization convergence, and errors
in the dynamic model (given that the output is a gain-
based controller that should be more robust than a direct
torque or pressure control policy). The seeds for NEMPC
and MEGa-PC that gave the smallest cost were selected for
the remainder of this paper.

Figure 6 shows graphs of the three-link inverted pendulum
under control by the NEMPC algorithm and the MEGa-
PC method. For these trajectories, the accumulated cost
is 947 and 937 for NEMPC and MEGa-PC respectively.
The two algorithms perform similarly, reaching the target
at approximately the same time despite generating different
trajectories in the global search space to reach the goal state.

Figure 7 shows the same three-link pendulum under con-
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Fig. 6. Graphs of the joint angles of the three-link inverted pendulum.
These plots show a comparison between the lowest cost trajectories from
NEMPC and MEGa-PC with the same cost functions. NEMPC is shown in
blue and MEGa-PC is shown in orange. The controllers perform similarly
in terms of rise and settling time, as well as in terms of accumulated cost.

Fig. 7. Graphs of the joint angles of the three-link inverted pendulum under
the control of NEMPC and MEGa-PC with the same cost functions. Both
optimization controllers are stopped at a half-second and are no longer able
to change their output. It should be noted that the linear low-level controller
for MEGa-PC is still running at every time step.

trol of NEMPC and MEGa-PC. The optimization portion
of both controllers is stopped at a half-second into the
trial, although after that time, the current gain matrix from
MEGa-PC is still used to generate state-dependent control
inputs. NEMPC’s past control output is not sufficient to give
good performance, resulting in a total accumulated cost of
4461. The low-level portion of the MEGa-PC controller still
achieves a total accumulated cost of 955 versus the optimal
accumulated cost of 937 based on the controller running
continuously. MEGa-PC is also able to control the pendulum,
even though the optimization script stopped prematurely at
0.5 seconds. This again shows that MEGa-PC finds gains
that function for a wide range of the state space. We note
that if the optimization script is stopped sooner than 0.5
seconds, MEGa-PC is also unable to perform the desired

Fig. 8. Graphs of the joint angles of the three-link inverted pendulum under
the control of NEMPC and MEGa-PC with the same cost functions. NEMPC
is shown in blue and MEGa-PC is shown in orange. Both controllers run
at a significantly reduced rate of 10 Hz. Importantly, the linear low-level
controller for MEGa-PC (u = −Kx) is still running at every time step.

task. However, the gain matrix should at least ensure a stable
response (which is not true with NEMPC).

To validate the hypothesis that a single gain matrix works
well for a sufficiently wide range of the state space, Figure
8 shows the three-link inverted pendulum system running at
a control frequency of 10 Hz, an order of magnitude lower
than its previous rate of 100 Hz. MEGa-PC is able to perform
the task successfully despite the drastically reduced rate of
updating the K gain matrix, especially when compared to the
resulting performance from NEMPC. MEGa-PC achieves an
accumulated cost of 1572 versus the higher cost for NEMPC
which was 5849. This is in part due to the fact that MEGa-
PC is able to keep running low-level control at 100 Hz and
only needs to output a gain matrix every 10 Hz to keep the
system performing well.

Interestingly, this means that MEGa-PC could intention-
ally take longer to solve the optimal control problem in order
to extend the control time horizon, evaluate a better model
of the plant, calculate a more computationally expensive
cost function, or increase the number of generations or
population size in the genetic algorithm to achieve a more
optimal control input trajectory. All of this would be possible
without sacrificing performance because we have a low-level
controller running at a high rate.

To further test the hypothesis that MEGa-PC can extend
its control horizon to solve more challenging problems than
NEMPC, we made the problem more complex by reducing
the maximum allowable torque in the three-link system by
one-fourth to 2.5 Nm. This significantly extends the required
horizon length to be able to successfully predict and perform
the swing-up task. If we reduce the control frequency from
100 Hz to 25 Hz, we can quadruple the horizon length to 200
time steps without increasing the latency of the controller.
Figure 9 shows the behavior of the two control methods
under these conditions. It should be noted that the random
number generator seed again had a significant effect on the
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Fig. 9. Graphs of the joint angles of the three-link inverted pendulum
under the control of NEMPC and MEGa-PC with the same cost functions.
For this experiment the maximum allowable applied torque was cut by
one-fourth. NEMPC is shown in blue and MEGa-PC is shown in orange.
Both controllers are run at 25 Hz instead of 100 Hz which allows the
optimizations to predict states four times as far into the future. MEGa-PC
is still able to perform the task successfully, as opposed to NEMPC, as seen
by closer match to the target objective (reaching the zero position for all
three joints). The linear low-level controller for MEGa-PC is still running
at every time step, which is one of the main benefits of this type of control.

cost and we selected the best seed out of 10 random seeds.
As shown, MEGa-PC is able to complete the task while
NEMPC attempts something that looks like it might work,
but in fact, cannot make the proper adjustments in time
to perform the task. For this test, MEGa-PC received an
accumulated cost of 4336 compared to the cost of NEMPC
which was 10 301. A video showing both the three-link and
single-link inverted pendulum experiments can be seen here:
https://youtu.be/TvptLL6eHtE.

C. Three-link, Six-DoF, Continuum, Soft Robot Arm

We also validated MEGa-PC on a physical soft robot
arm to show this method works for real-world applications
with complex, nonlinear dynamics. This further increases the
difficulty of the problem by increasing the dimensionality
of the system, and by dealing with the inherent model
inaccuracies present in our current soft robot model. Figure
10 shows NEMPC controlling the three-DoF continuum-joint
robot arm. Each row of plots shows the joint angles of each
joint from joint zero to joint two in top-to-bottom order.
The prediction model does not match the real system and
thus suffers from significant steady-state error. The middle
joint, referred to as joint one, specifically has unacceptable
steady state error with a maximum error of approximately
65 percent of the step size.

To overcome the steady state error problem, MEGa-PC
uses the control law u = K(xdes−x)+uprev , which allows
MEGa-PC to act like an integration scheme. Figure 11 shows
the arm under the control of MEGa-PC with the updated
control law. The system has zero steady-state error, while
also performing well in terms of transient response. MEGa-
PC is specifically tuned to get smooth non-oscillatory perfor-

Fig. 10. Graphs showing the performance of NEMPC on for the soft robot.
The plots show the rotation about the X and Y axis, denoted as U and V
respectively, for each of the joints. Given the difficulty in modeling soft
robot dynamics, the model of the arm that NEMPC uses to predict behavior
results in significant steady state error.

Fig. 11. Graphs showing the performance of MEGa-PC on the orange
robot arm. The plots show the rotation about the X and Y axis, denoted as
U and V respectively, for each of the joints. Because the model of the arm
that MEGa-PC used has significant steady state error, we used the control
law u = K(xdes −x)+uprev . This allows the controller to perform well
even with a suboptimal model of the system.

mance. During the tuning process, we found that multiplying
the weighting R by the squared inverse of the position error
drastically improved the oscillations and transient behavior
of the system. This is in part because we set ugoal in the
cost function (shown in Eqn. 2) for the soft robot arm
problem to be uprev . A video showing the arm under the
control of MEGa-PC can be found at the following link:
https://youtu.be/AwVW288Czoo.

The gains produced by MEGa-PC for the hardware exper-
iment shown in Figure 11 are presented in Figure 12. MEGa-
PC varies the gains intelligently by raising the values of the
gains when the system is far away from the goal and lowering
them to a steady state value when it gets close to the goal
state. Of note are the potential issues that may be caused by
the oscillation in these control inputs. However, in practice,
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Fig. 12. Graphs show the gain values output by MEGa-PC during the
hardware experiment with the soft robot. Each row shows the gains for
each joint. The first column shows the gains on the joint angles and the
second column shows the gains on the angular velocity of each joint.

this did not cause unwanted behavior. Slew constraints could
also easily be added to the optimization to limit how quickly
the gain matrix can change. Currently, we constrain the
overall control input but do not limit the values for the K
matrix directly.

V. CONCLUSION AND FUTURE WORK

In section IV, we found that the initial random seed
had a non-negligible effect on the performance of all three
algorithms, but had a larger effect on MEGa-PC. We assume
that this effect could be mitigated by starting with a better
initial population method such as Latin hypercube sampling
or by a better parameterization of the gain-matrix. Indeed,
future work should consider the impact of using a non-
diagonal gain matrix (and any required parameterization
of that matrix) that could serve to better handle coupling
effects for example. In addition, because this method does
not require a quadratic or differentiable cost, exploration of
more effective cost functions should also be explored.

In conclusion, MEGa-PC is shown to be more adapt-
able than NEMPC to model failures or model uncertainty
for applications like soft robot control. It also performs
well on complex control problems using the generated gain
matrices to maintain performance using high-rate low-level
controllers.
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