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Despite the existence of robots that can physically lift heavy loads, robots that can collaborate with people to
move heavy objects are not readily available. This article makes progress toward effective human-robot co-
manipulation by studying 30 human-human dyads that collaboratively manipulated an object weighing 27 kg
without being co-located (i.e., participants were at either end of the extended object). Participants maneuvered
around different obstacles with the object while exhibiting one of four modi–the manner or objective with
which a team moves an object together–at any given time. Using force and motion signals to classify modus
or behavior was the primary objective of this work. Our results showed that two of the originally proposed
modi were very similar, such that one could effectively be removed while still spanning the space of common
behaviors during our co-manipulation tasks. The three modi used in classification were quickly, smoothly and
avoiding obstacles. Using a deep convolutional neural network (CNN), we classified three modi with up to
89% accuracy from a validation set. The capability to detect or classify modus during co-manipulation has the
potential to greatly improve human-robot performance by helping to define appropriate robot behavior or
controller parameters depending on the objective or modus of the team.
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1 Introduction
Robotics and automated systems have permanently altered many industries around the world
by lifting heavy payloads, performing precision welding, doing pick and place maneuvers, or
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accomplishing many other repetitive but important tasks. However, while these robots are useful,
they are not intelligent enough to operate in unstructured environments in the real world. Robots
generally require that their working environment be void of human disturbances or interaction.
Efforts to make robots more fit for the real world have led to the development of compliant and
soft robots that are safer for working with humans. However, while the hardware for real-world
robot interaction continues to improve, a critical deficit in robot intelligence remains. This deficit is
the intelligence necessary to enable robots to intuitively interact with humans, human teams, and
human environments in natural and effective ways.

Specific to this article, we propose that the intelligence required for a robot to assist a human
team in co-manipulating an object in a natural and comfortable way is currently underdeveloped,
especially for objects that are longer than a few inches in length. Current co-manipulation control
algorithms do not reach human levels of performance in detecting a partner’s intended path or
manner of motion. This type of intelligence will certainly be required for any sort of home or office
assistant robot and will benefit many other fields like construction, medical evacuation, and search
and rescue. The Bureau of Labor Statistics has reported that over 40% of workplace injuries result
from overexertion and that overexertion from lifting was the most common cause [60]. Robots that
can safely and intelligently carry objects with a human partner can make a big impact in the lives
of these workers. The intent of this research is to make progress toward this greater intelligence by
developing the ability to identify the intended manner in which a team co-manipulating an object
wants to move. Our specific contributions are described in Section 1.3.

1.1 Problem Motivation
There is a scarcity of research that considers evaluating team performance for co-manipulation
tasks based on objectives, priorities, or intent of the team (beyond merely completing the task).
When a team performs an action, before it can be said whether they were successful in performing
that action, their intended manner of performing the action must be known. In the realm of robotics
and controls it is tempting to pick a canonical metric on which to judge performance, such as
minimum energy trajectories or completion time, because they are well-known metrics. However,
these metrics should only be applied in a principled manner. It would be best if the intended
objective (both the goal state and the desired manner of reaching that goal) of the team is known
before deciding which metric to use. Previous researchers have discovered that if task completion
is the only objective given to a team co-manipulating an object, it is difficult to compare teams in
a principled manner. Thus, it is difficult to ascertain which objective function should be used to
evaluate the team’s performance [35–37]. However, evaluating a human-human team’s performance
for a given task is essential to enabling robots to reproduce or mimic that behavior.

For instance, if a team’s intended manner was to complete the task quickly, then minimum
energy would be the wrong metric to use to judge the performance of the team. If another team’s
intended manner was to be very careful because the object they were moving was delicate or fragile,
neither completion time nor minimum energy would be the right metric to consider for evaluating
performance.

The improper implementation of a performance metric and intended manner of motion in an
algorithm can be disastrous if a robot replaces one of the members of a team co-manipulating
an object. For example, in a search-and-rescue situation, without concern for the intended man-
ner of motion, a robot could move an object very smoothly and with minimum jerk, achieving
“optimal performance,” but completely fail to meet the team’s desire of moving quickly. Alterna-
tively, in another scenario, if a robot was optimized for speed, it might exert forces that could
damage fragile payloads, or cause injury to human team members.
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1.2 Problem Terminology
Another way to define the “intended manner” of the team is the word “modus,” with the plural
“modi.” One definition of the word modus is “a mode of procedure, a way of doing something” [1].
In this article we will use modus to express the “intended manner” in which a team moves an object
through an environment, more accurately describing their overall behavior. Examples of modi
include: moving quickly, moving carefully because of a special consideration of the environment
(e.g., fragile drywall, unstable rubble), moving carefully because the object itself is fragile or needs
special moving considerations (e.g., a person with a spinal injury), and moving “normally” with
no special care to the environment or the completion time. In this article, the word “modus” will
be used to define high-level behavior and objectives; whereas the trajectory chosen, or the final
configuration of the object, will not be considered part of the modus. Section 3.1 describes the
subset of potential modi that we used in our experiments in more detail, including motivation and
justification.

We will refer to the act of a team moving an object together as physical “co-manipulation” to
stay consistent with previous research [35, 36]. Co-manipulation simply refers to a team of people
collaboratively manipulating or moving an object together and involves not only the motion, but
also the interaction forces and spoken and unspoken communication of the team. In particular, this
research involves the co-manipulation of objects that are of a significant dimension and weight
which would require more than one agent to successfully complete the task.

1.3 ResearchQuestions and Contributions
The purpose of this work is to answer two important questions. First, when the modus of a team
varies, will the behavior of the team change enough to be observable using common sensors on
robotic platforms? Second, if the change in behavior with varying modi is observable with certain
signals, can those observations be used to classify the modus of the team at any given time?

If the modus of a team can be classified from externally observable data, it could have a sub-
stantial impact on the field of physical human-robot interaction (pHRI). It would enable the
development of a principled manner of identifying which teams are the highest performers. For
example, if it is known that a team was intending to move quickly there are metrics associated with
the quickly modus (e.g., maximum velocity, average velocity, completion time, and so on) which
could be used to evaluate the team’s performance. If it is possible to determine if a single team has
performed well, it is also possible to compare teams against each other and evaluate which teams
perform best.

Furthermore, these high-performing teams can be studied and used as models to develop robotic
partners. Future robot controllers could be designed to classify team behavior or modus, and use
the classification to optimize the robot’s performance to mimic the behavior of the best-performing
human partners while also moving the object to a desired goal state. For example, if a robot has
determined that the human is being careful with the object, the robot can alter its control method
to optimize for slow and smooth motion. This allows the robot to quantify its own performance and
improve its behavior online. Importantly, the method must be able to run in real time as the robot
will need to constantly monitor the signals from their human partner to notice any possible shifts in
modus. We theorize that humans can change their modus based on the object being co-manipulated,
the obstacles they face, the team’s fatigue, and many other reasons.

With the aforementioned research questions and high-level strategy described, the fundamental
contributions of this article are:

(1) Development of aneural network (NN) architecture to classify themodus of a co-manipulation
task in real time
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(2) Identification of a subset of important modi that are both identifiable and relevant for co-
manipulation

(3) Analysis of the most effective signals for modus classification during co-manipulation
(4) An open-source dataset obtained from the instrumentation, observation, and recording

of a large number of dyadic teams manipulating an extended object through and around
physical obstacles

2 Related Work
For decades people have theorized about how to enable robots to assist people in their real-world
tasks. Around the end of the 20th century, a number of designs enabled robots to assist humans in
co-manipulation tasks. These designs included one arm on a mobile base [27], a humanoid robot
with two arms on a mobile base [29], and a humanoid robot with two arms and two legs [62]. Since
then, the field of human-robot co-manipulation has only continued to develop. However, most of
the developments have been focused on developing robot hardware to perform co-manipulation
tasks. Our work concerns modi, which will enable the principled selection of metrics to aid in
evaluating robot performance to determine how well the robots are performing a given task with a
given context.

2.1 Modus
While the term “modus” might be new in the field of co-manipulation, there is a small body of
research closely related to the topic. For example, there have been a series of studies performed by
Shaikh et al. that closely touch the concept of modus [49–53]. Shaikh designed a graphical user
interface that assisted humans in the task of defining paths and objectives for robots during a planar-
path planning task. At the heart of this graphical user interface was an “adverb palette,” which
was used like an artist’s palette to mix and match objectives. The adverb options for qualifying the
robot motion were: safely, stealthily, and quickly. This concept of robots estimating human intent
and modifying their behavior to match the intent is fundamental to our research. In their work,
the adverb weights were explicitly set by the human, but in our work we attempt to automatically
detect the modus of a team.

The work of Medina et al. considered the effect of language on task execution [34]. They broke
down communication that robots would need to detect into verbs and adverbs. In order to test their
theories they had participants interact with a haptic-interface robot to navigate paths exhibiting
three different adverbials. The adverbials they chose were fast and slow, with an implicit third
adverbial of normal when no explicit adverbial was given. They found that participants completed
the tasks at different speeds and with slightly different paths when different adverbials were
mandated. The fact that human performance changed when different adverbs were specified implies
that robots need to detect this intent in order to perform optimally as co-manipulation partners.

2.2 Human-Human and Human-Robot Co-Manipulation
The majority of co-manipulation research is focused on robot algorithm development in the pursuit
of making robots better co-manipulation partners for humans. However, human-human studies are
an important stepping stone toward better human-robot interaction and many human-robot studies
are preceded by human-human studies. Below we outline important work related to human-human
explorations and experiments first, then include related literature on the development of human-
robot co-manipulation algorithms (whether they are directly built on human-human studies or
not). A general survey of related physical human-robot collaboration can be found in [44], which
may be useful as an introduction to this broad area.
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It is important to note that despite the significant amount of research that has been done around
the theme of co-manipulation, there are at least two main aspects that seem to be lacking in
the literature. First, the effect of human modi in co-manipulation research is significantly under-
developed (for both human-only teams and human-robot teams). Second, the number of teams
that were manipulating, heavy, large-scale items is quite small and may therefore limit some of the
prior results when applied in scenarios, such as search and rescue or disaster response.

2.2.1 Human-Human Co-Manipulation. Townsend et al. researched dyads, or teams of two
people, moving through a series of obstacles holding a board outfitted with force and motion
sensors and then trained a NN to create a predictive reference trajectory that a robot could use in a
control algorithm [59]. Bussy and Agravente et al. also performed a series of studies that started
with human-human research and after moved to human-robot research [3, 4, 11, 12]. They also
started with co-manipulating an extended object and developing a state machine to model human
behavior. In related work by Mielke and Jensen [24, 37], triggers were identified at the start of
rotation tasks vs. at the start of lateral translation tasks for large extended objects, suggesting
communication signals via forces or torques. Calculating these interactions builds upon the work
of Groten et al. [22] where the interaction forces are defined as the smaller of two opposing forces.
Noohi et al. also presents an alternative approach assuming minimum jerk movements [39, 42].

Researchers have been able to further classify the states and behavior of human teams co-
manipulating extended objects. While physical co-manipulating, Lanini et al. [31] classified walking
direction states, Kucukyilmaz et al. [30] classified six behavior states, Al-Saadi et al. [6] successfully
classified the actions into four states (comparing harmonious/conflicted translation or rotation), and
Karayiannidis et al. [26] explored classifiers to resolve the rotation vs. translation co-manipulation
ambiguity and predict human intent in the plane of motion.

Complementary research by Sawers et al. [48] found that interaction forces are critical signals
for communication in cooperative motion tasks, such as in dancing with a partner. Further, as
human co-manipulation interactions are inherently multi-modal and hard to model, the work of
Rysbek et al. attempts to capture the multi-modal nature of those interactions. They also performed
a study in which human teams moved an object around an obstacle together [47]. They were able to
identify patterns in low-level physical data that can be interpreted as higher-level motion primitives
that communicate motion intent between the team members. They theorized that utilizing the
information from these motion primitives in a multi-modal interaction manager, as they created
in their previous work [2], would allow a robotic co-manipulation partner to synergize the two
disparate forms of communication to estimate human intent more successfully.

2.2.2 Human-Robot Co-Manipulation. Although we do not show explicit human-robot co-
manipulation control in this article, we believe that understanding prior strategies for human-robot
co-manipulation controllers is important to understanding both the novelty and utility of the results
presented in this article.

Generally speaking, the majority of prior research in dyadic human-robot co-manipulation uses
a form of admittance control (see [15, 17, 19, 35, 36, 58]) or impedance control (see [3, 4, 11, 12,
25, 63, 65]). However, there are many successful general force or motion-based strategies that
instead use force or motion to estimate the intent of a human partner (see [5, 7, 8, 28, 32, 57]).
There are also learning-based strategies that attempt to either interpret human intention explicitly
(see [20, 21, 35, 36, 56, 61, 64]) or to learn a controller directly for human-robot co-manipulation
(see [16]). In addition to the specific areas outlined above, a survey article covering methods in
both impedance variation and learning strategies in relevant human-robot interaction scenarios
can be found in [54].
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Fig. 1. Diagram of the placement of the different devices inside the co-manipulated object which allowed it
to provide untethered power to the force torque sensors and record the resulting data locally on a computer
inside the object.

Importantly, the past research in this entire area of pHRI for co-manipulation does not clearly
define high or low-performing groups for a well-specified task or variety of tasks (other than
perhaps time or force efficiency). Instead, the literature tends to focus on the general potential
for success or failure, which is a difficult signal for a robot to operate on since it is not smooth or
continuous. In addition, the notion of performing a task with different objectives or weightings on
multiple objectives for co-manipulation is not explored. We believe that this is due, in part, to a
lack of clearly defined modi during the tasks that currently exist in the literature. Our research
attempts to build on past work in the hope of providing data to determine better ways to evaluate
a co-manipulation partner’s performance, thereby quantifying how to encode and evaluate the
performance of a robot partner in real time in future work.

3 Experiment Design
In order to determine if the modus of a team can be identified by externally observable data we
designed an experiment to capture data that we hypothesized would be relevant. The experiment
consisted of having two participants (together referred to as a dyad or team) move a 27 kg, 1.2m
long stretcher-like object (seen in Figure 1) through a series of five obstacles. A team is asked to
perform with one of four different modi for each series of obstacles with multiple repetitions in a
randomized order. After developing a NN classifier, a modified version of the same experiment was
performed with real-time modus classification.

3.1 Modi Selected
In the ensuing descriptions, it is useful to think of a modus like an adverb. While a verb describes
what action is being taken, an adverb’s job is to qualify the manner in which the action is taken;
it does not describe the action itself. While a team may move in any direction or around any
obstacle, the modus is not concerned with the action that is performed but rather the manner
in which that action is performed. Human variability implies a nearly infinite number of dif-
ferent possible modi, forming an almost infinite “modus space.” A specific design decision was
made to only consider the fraction of the “modus space” that are specifically useful for team
co-manipulation. More than 20 modi were initially considered but eventually excluded from our
experiment, including: gently, quietly, recklessly, lethargically, slowly, angrily, and many more.
The main reason these and other adverbs or modi were removed from candidacy is that they did
not cross the value threshold of how we would want to design future robots. For example, no
robot should act recklessly or angrily while co-manipulating with humans. Similarly, a robot that
was too slow in any action would be unacceptable. A secondary reason for dismissal includes
highly correlated adverbs which are essentially synonyms, such as gently and peacefully. The
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Fig. 2. The pendulum placed on top of the object that the participants carried around the obstacles. The
pendulum was placed there for the smoothly tasks only.

objective was not to find a single and unique set of modi, but instead to find a spanning set that
could represent the different behaviors we expect to see while a team successfully completes a
co-manipulation task in a given context. In this sense, this was a design problem that included
some subjectivity, but was based on “engineering judgment” which is required for tasks in an
undefined area that requires creativity, but is nonetheless grounded in math, physics, and so on
(see [45]). This exercise was similar to that used to help define the series of obstacles described in
Section 3.3.

The final set we chose was comprised of four modi: quickly, careful of the object, careful of the
environment, and normally. The two “careful” modi also help show why an adverb may not be
sufficient on its own to describe the desired intent. These modi carry some information about the
context as well. Collectively, these four modi do not cover all of the possible modus space, but
they cover a sufficiently large part of the useful modus space for co-manipulation in teams. This
is especially true since we expect that at times, teams may use a mixture of these objectives to
accomplish real-world tasks (i.e., moving a patient quickly but also smoothly is a common goal for
medical personnel).

For the purposes of the experiment, example situations or contexts were developed and described
to the participants in order to evoke certain behavior as much as possible. When the quickly modus
was the condition, the participants were told that their friend was injured, and that the friend was
safely secured to a stretcher that they needed to move to seek medical attention as soon as possible.
For the “careful of environment” modus, participants were told that they worked for a moving
company and would get in trouble with their boss if they touched any walls or obstacles with the
object. We refer to this modus as avoiding obstacles to be more concise.

For the “careful of the object” modus, participants were told that they were bringing a bomb to
a safe location where it could be disarmed. The fictional bomb was sensitive to motion, so they
needed to move smoothly and carefully to avoid setting the bomb off. In order to help the dyads
see how they were moving, we attached a small pendulum to the top of the object they carried
and told them that it served as an indicator of their smoothness (see Figure 2). We refer to this
modus during the experiment as smoothly. The use of a pendulum as an external objective in a
co-manipulation task is not unlike the work of Mojtahedi who used a level in co-manipulation
tasks between two humans [38].

For the “normal” context, the participants were told that none of the other contexts were invoked
and that they should move in whatever manner felt most normal for their dyad. We refer to this
modus as no context.
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3.2 Co-Manipulation Object (CMO) Design
The object that was carried through the obstacles was a wooden box (1.2m × 0.6m × 0.17m). This
box will be referred to as the CMO for short. The CMO was designed with the intent to hide sensors
and electronics from the participants as much as possible so that they would be more likely to treat
the CMO in a natural manner, rather than as an expensive piece of equipment.

The outside of the CMO was outfitted with four HTC Vive trackers that tracked the pose of
the CMO as it moved through the obstacles. Four trackers were used to account for possible data
dropouts or tracker occlusions by the obstacles or participants. Post-experiment analysis showed
that one or more of the trackers was always reporting data at any point in time. These trackers
reported pose information at 200Hz in the form of G ,~, I position data and @G , @~, @I, @F quaternion
orientation data. The Vive trackers relayed their data over Bluetooth to a computer which ran the
Vive software and recorded the data.

The CMO was also outfitted with four force/torque ATI Mini45 sensors, each at the point where
one of the stretcher-like handles connected with the CMO. The sensors collect force in the G , ~, and
I directions and torque in the G , ~, and I directions at 200Hz. In order to store the data without
signal loss over a wireless connection, the force/torque data was stored locally on a laptop strapped
to the CMO as can be seen in Figure 1.

In order to synchronize the timestamp data between the Vive computers and the laptop storing
the force/torque data, we used the “Chrony” daemon for Linux. The devices inside the CMO were
placed on axes of symmetry in order to bring the products of inertia of the box close to zero. One
conference microphone was placed on the top-center of the CMO which recorded audio from both
members of the dyad. All Vive, force/torque, and audio data was published and recorded using the
robot operating system (ROS) [46].

3.3 Obstacles
We designed varied obstacles with the intent of encouraging different types of motion from the
participants. Each of the obstacles specializes in forcing the team to move the CMO in at least
one of the six basic degrees of freedom for a rigid body (translation along the G , ~, and I axes and
rotation about the G , ~, and I axes). The desired trajectories for these obstacles all start and stop
in the same nominal location in the center of the room, as seen in Figure 3. Although we herein
describe the obstacles in a specified order, the participants traversed the obstacles in a randomized
order.

The first obstacle was the straightaway, in which the team walked straight to the first location
from the starting point, then walked straight for 5m in the opposite direction, and then moved
back to the nominal starting point (shown with numbers 1–4 on the left in Figure 3). This obstacle
required only one degree of freedom along the straightaway and covered the most common form
of motion, in which a dyad was not impeded by an obstacle and only needed to move straight from
point A to point B.

The second obstacle was the hallway, in which the team moved away from the nominal starting
point and aligned the CMO in order to move through a hallway (which also had a step) before
returning to the starting point. The step was 0.06m high and induced a pitch rotation of the CMO
(about the green axis shown in Figure 4).

The third obstacle was a box obstacle for which the teams lined up with the obstacle, lifted the
CMO over the box, and then returned to the nominal starting point. The box usually induced a
sidestepping motion from the participants, as well as a lifting motion in order to raise the object
over the box. The box obstacle required two of the six basic degrees of freedom possible for
rigid-body motion.
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Fig. 3. Layout of the obstacles in the room where the experiment took place. The arrows indicate the direction
in which we instructed participants to navigate through the obstacles. Traversing each obstacle involved
leaving the blue circle with a blue “x,” following the arrows before returning to the blue circle. The straightaway
required walking through the blue circle on the long stretch. For orientating the reader, the corner obstacle
shown on the far right of the image, corresponds to the obstacle profile on the bottom left of the diagram
with red arrows.

The fourth obstacle was the columns obstacle, in which the participants had to weave their
way around three columns which were meant to cause a turning motion in yaw of the coordinate
frame of the CMO. If the dyads traversed the columns by pivoting around each column, they
totaled 520◦ of rotation, but participants were not constrained to traverse the columns in this
way. The last obstacle was the corner, which was spaced so that the participants could only move
the object they were carrying through if they rolled the object 90◦ about the red axis of the
CMO shown in Figure 4). Video of the dyads moving through the obstacles was captured using
ceiling-mounted cameras. An image from the perspective of one of these cameras can be seen in
Figure 3.

3.4 Experiment Procedures
The participants were informed in advance that they would be teamed with someone of a similar
height. We thus matched participants whose height difference was less than 0.15m. All the partici-
pants were adults between the ages of 18 and 40. Eighteen of the teams were male and twelve of the
teams were female. At the beginning of the experiment, participants were shown an introductory
video and completed the necessary articlework. They were then introduced to the obstacle course
with a prepared script. After that, the experiment administrator instructed the participants on how
to place ankle trackers on their legs properly. Data collection then began. To sync the data from
the cameras and the microphone on the CMO a loud clapping noise was made as a reference time
in all the recordings.

The main body of the experiment consisted of the participants picking up the CMO, traversing
through all five of the obstacles in a random order, putting the CMO down, and then repeating
this process with different modi. In total, the dyads completed each obstacle 14 times, for a total
of 70 individual tasks completed. For the first two rounds of five obstacles, the participants were
not told to perform the tasks in any particular manner (i.e., modus). After the second round was
completed the participants were introduced to the different contexts using a prepared script. The
participants then did four rounds of five obstacles, each round with one of the four modi invoked.
They were then offered a break before four more rounds, followed by another break and four
more rounds. In total, they did each obstacle three times with each modus. To provide additional
clarity about what the experiment was like, footage from one of the experiments is available at
https://youtu.be/eg2mf6LeDlo.
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Fig. 4. The table frame is at the center of the CMO. The x -axis is in red and points from Participant B toward
Participant A. The y-axis is green and points to the left of the x-axis. The z-axis is blue and points up from
the top face of the CMO.

In addition, we have posted the full dataset (before filtering and fusion as described in the
following section) at the following link: https://figshare.com/articles/journal_contribution/
Classification_of_Comanipulation_Modus_with_Human-Human_Teams_for_Future_Application_
to_Human-Robot_Systems/26029339

3.5 Data Cleaning and Fusion
To ensure that the NN learned patterns in physically meaningful signals for effective classification
of modus, the data post-processing included data cleaning, filtering, outlier removal, and so on.
Since NNs act as universal function approximators, and as such they have the potential to learn
any and all patterns in the training data, our careful filtering system was intended to remove any
patterns in noise that the NN may learn, ensuring that the NN learns useful patterns in the true
signals instead.

The data was manually cleaned with a custom Python application which allowed researchers to
label the start and stop of each task. This labeling was not essential to our results presented in this
article on classifying modus but makes future analysis and comparison easier between each task,
dyad, and obstacle type. Each labeling was also verified by a second researcher. The pose signals
from the Vive system would occasionally drift (beyond their nominal noise characteristics) due
to occlusions. These data errors were obvious to identify and were manually removed from the
dataset.

In order to combine the pose measurements from the four Vive trackers they were first re-sampled
and interpolated in time to be at the exact same timesteps. The pose signals were then transformed
to give their estimates of the pose of the center of mass of the CMO. The pose measurements were
then combined by taking the weighted average of the poses. The Cartesian position was averaged
with simple weighted averaging. The average orientation quaternion was found by taking the
eigenvector corresponding to the largest eigenvalue of matrix Q as calculated in Equation (1), with
subscript 8 iterating over the quaternions from the four trackers. This has been shown to be a robust
method of averaging quaternions [33]. The weights were determined by the Euclidean distance
from the direct average of the poses

Q =

4∑
1=1

F̂8q8q
)
8 . (1)

The orientation chosen for the center of mass can be seen in Figure 4. This frame was chosen to
be consistent with previous work [24].

The numerical derivative of the pose signal was taken to obtain the velocity signal.The quaternion
derivative was converted to an angular velocity 8 using Equation (2). This transformation also
changes the frame to the body frame (fixed to the CMO) which is more appropriate for a velocity
signal.The ∗ symbol represents the Hamiltonian product, and the �" operator returns the imaginary
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Fig. 5. A depiction of the different procedures used in each step of data processing, showing how all of the
vital signals for analysis were compiled.

8, 9, : parts of the output of the Hamiltonian product

8 = �<(2q ∗ ¤q). (2)

The velocity signal was filtered with a low-pass filter which had a pass-band frequency of 10Hz,
a stop-band frequency of 20Hz and 80 dB of attenuation by the stop-band frequency. The pass-band
of 10Hz was chosen because fast voluntary human movement has a frequency of about 3–5 Hz
[10]. We wanted to capture these frequencies and reject any noise from the sensors that recorded
data at 200Hz. This same filter design was used to filter all of the other signals.

In order to produce the acceleration trajectory signals the derivative of the velocity signals were
taken and then filtered again. The derivative was taken using the central difference of sixth-order
accuracy as seen in Equation (3). The subscripts in Equation (3) represent the time at which the x
value was sampled. The values added or subtracted from the subscripts represent indexing forwards
or backward in the sample

� ′ (x8 ) = −x8−3
60

+ x8−2
20

− x8−1
4

+ x8+1
4

− x8+2
20

+ x8+3
60

. (3)

The larger central difference kernel has a smoothing effect. The flow of data and mathematical
procedures used to produce all these signals is summarized in Figure 5.

In order to find the interaction wrench between participants, the combined wrench (meaning the
sum of torques and forces from each handle for a given participant) had to first be determined. The
raw wrench signals from each force-torque sensor were re-sampled and linearly interpolated in
time to have the exact same timesteps. Each wrench signal was then filtered with a low pass filter.
Then the wrenches were shifted in pairs from the sensor locations in the handles to be directly
in front of the participants and halfway between the handles. The shifting was performed using
the shifting law seen in Equation (4). In Equation (4), 8 and 9 represent frames one and two of
the transformation, and 12 indicates that the transformation moves the wrench from point 1 to
point 2 in space. The matrices are 6 × 6, each sub-matrix being a 3 × 3. The zeros represent 3 ×
3 sub-matrices of zeros and the I represents a 3 × 3 identity matrix. The −[r8

12
]× term represents
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forming a skew-symmetric matrix from the vector pointing from point 1 toward point 2 in frame
8

Z9

8
(12) =

[
R9

8
0

0 R9

8

] [
I −[ r8

12
]×

0 I

]
. (4)

The summation of the two wrenches between the handles most accurately represents the com-
bined wrench exerted on the box by one participant. These individual participant wrenches were
then combined using the interaction force calculation algorithm implemented by Jensen and Groten,
to calculate the interaction between the two participants [22, 24]. A more detailed explanation of
this algorithm can be found in their work, specifically under the heading “algorithm 1.” Here we
include only a brief summary of the algorithm.

If two forces or torques act in the same direction then there is not an interaction force or torque
in that direction. In other words, the combination of the forces or torques of the two individuals are
working together to move the object. Interaction forces and torques occur when forces in excess of
those required to move the CMO are applied either for stability or in order to communicate haptic
information with the other person in the dyad.

Interaction forces and torques can then be found when two force or torque signals act in the
same direction but have opposite signs. In this case, one participant is applying more force or
torque, enough to both move the object and counteract the force and torque from their part-
ner. The magnitude of the smaller of these two signals is then considered the interaction force
or torque, since it represents the magnitude of force or torque that each participant is exert-
ing that does not accelerate the CMO. The interaction wrench signal often has portions of the
signal with values flat-lined at zero. These portions of the signal happen when the dyad is
working together to move the CMO with no excess energy expended as an interaction force
or torque.

The derivative of the interaction wrench was also taken with the central difference of sixth-order
accuracy. This derivative signal was then filtered to produce the final signal used in the offline
analysis. This signal is simply referred to as the derivative of the interaction wrench.

3.6 Real-Time Experiment
Once we had trained the NN (as described in Section 4.1) on the data that was cleaned offline,
we adapted our system to work in real time and performed another series of human-human co-
manipulation experiments. Adaption only required the forward-backward filtering and data fusion
that had been done offline to be switched to real-time filtering or data processing. We also dropped
the steps related to outlier rejection which were done more easily offline.

The real-time NN is meant as a validation of this algorithm’s potential for real-time application
with a human-robot dyad (instead of a human-human dyad). For this reason, we used a simpler
version of the NN trained only on velocity data. The velocity of the co-manipulated object was
chosen as a signal because it can easily be estimated from the velocity of the robot base and end
effector, or with basic computer vision. Since the force-torque sensors were not required for the
real-time study, they were removed from the table, along with the onboard laptop. Without these
components, the table was about 4.5 kilograms (or 17%) lighter. The simplified real-time experiment
had three obstacles instead five. The three obstacles were the columns and straightaway described
in Section 3.3, as well as a new obstacle called the “ring” to test how well the NN generalized to
new obstacles and motions. The ring consisted of a single column, which the participants had to
walk past and around before returning to the start position.
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Fig. 6. The architecture of the CNN used to classify the modi as the participants performed the tasks of the
experiment.

4 Results

4.1 Offline Results
We developed a convolutional NN (CNN) and trained it on the data from the experiments. This
NN attempts to determine the modus of any given team at any given time based on the data that a
team produces as they move. The following signals were used as inputs for the NN: velocity (of
CMO), acceleration (of CMO), wrench from participant A, wrench from participant B (as labeled in
Figure 4), interaction wrench, and the derivative of the interaction wrench. These signals all have
six components (G , ~, I linear and G , ~, I angular), making a total of 36 time-series signals to be
used in the classification.

The data from all 30 teams was split into subsets of training and validation data. The training data
consisted of the data from 24 of the 30 teams with the validation data comprised of the data from
the remaining 6 teams. All obstacles were used in both training and validation to make the classifier
more robust. A sliding window of 3 seconds was used as the time frame over which classification
was attempted. At 200 hertz, 3 seconds results in 600 timesteps worth of data as input to the NN.

The NN architecture was based on the VGG 16 architecture, but was modified for this application
[55]. All 36 signals were independently normalized in time by finding the minimums and maximums
of the each signal across the whole study and scaling the training data so that the maximum and
minimum of each signal were 1 and −1, respectively. Instead of stacking all 36 signals on top of
each other in a 1 × 36 × 600 tensor, the different categories (velocity, acceleration, and so on) were
treated as different channels in an image, so the tensor dimensions were 6 × 6 × 600. The data was
fed through two convolutional layers, a max pooling layer, two more convolutional layers, one
more max pooling layer, then through three linear layers and a final soft-maxed operation to return
classification confidence values. Dropout layers were included in training, but not in validation.
Importantly the max pooling was only in the time dimension, since we did not want to lose data
across different Cartesian directions by max-pooling the columns. A visualization of the NN design
can be seen in Figure 6.

The choice to use a modified VGG 16 architecture was motivated by two major considerations.
First, we knew our goal was classification and VGG 16 performs especially well in classification,
specifically image classification. Second, CNNs like VGG 16 do well at learning spatial relationships.

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 50. Publication date: October 2024.



50:14 S. Freeman et al.

Table 1. Performance of the Four-Modus NN over 10 Different Cross
Validations

Cross
Validation
Number

Avoiding
Obstacles
Accuracy%

Quickly
Accuracy%

Smoothly
Accuracy%

No Context
Accuracy%

1 61.2 51.2 89.9 25.2
2 48.3 78.2 98.8 32.5
3 38.4 79.9 91.2 43.6
4 11.5 84.2 93.7 76.0
5 44.2 71.5 94.2 51.3
6 17.2 91.9 97.2 65.0
7 37.6 71.3 94.4 50.6
8 27.6 81.9 95.7 61.1
9 32.8 47.3 91.2 51.9
10 31.6 64.3 97.5 53.2

By formatting our time-series data like an image, with adjacent timesteps becoming adjacent “pixels”
in the image, we translated the time-series relationship of data points into a spatial relationship
which the NN could extract.

Other researchers, such as Zhao et al. and Chen et al. have also used CNNs for classification of
time-series data, so there is a precedent for adapting a CNN for such tasks [13, 43]. We chose to
modify the architecture, making it smaller because our dataset had much less training data to work
with than VGG 16 and we only wanted to classify across three or four classes instead of 1,000 in
the original VGG 16 architecture [55].

Throughout the course of the experiments, we noticed that the behavior of the teams for the no
context modus and the avoiding obstacles modus were difficult to distinguish from each other from
a strictly observational standpoint. In order to determine if avoiding obstacles and no context were
clearly separable, the analysis of the NN was performed twice to compare a NN with an output of
three classes to a NN with an output of four classes.

In order to robustly characterize the performance of the NN, cross-validation was performed.
Each row in Tables 1 and 2 represents a different division of all the data into sets of 24 training
teams and six validation teams. Cross-validation helps show if a specific split of the data was
particularly high-performing or not. Average performance across all splits is an important measure
of robustness, but it is also common practice to choose the best NN for future work. Classification
accuracies were calculated by randomly selecting 3 second time windows from the validation
data. Each time window results in one classification from the NN and time windows may overlap.
For obstacle-specific accuracies, 20,400 time windows (and thus 20,400 samples) were used to
calculate the average accuracy of correct classification. The number of samples used was defined by
increasing the number of windows until stability of results was observed. For the overall accuracies
of each NN, 54,000 samples were used to reach stability (with stability defined as accuracy results
differing by 0.25% or less across multiple runs of the accuracy analysis for the same NN). The first
classifications were delayed until 600 timesteps after the start of the tasks because 600 timesteps of
data is the selected input size for the NN.

As can be seen in Table 1, the NN classified between four modi with a total classification
accuracy that varied between 56% to 68%, the average accuracy being 63%. The quickly and smoothly
modi were classified most successfully with average classification accuracies of 72% and 94%,
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Table 2. Performance of the Three-Modus NN over 10
Different Cross Validations

Cross
Validation
Number

Avoiding
Obstacles
Accuracy%

Quickly
Accuracy%

Smoothly
Accuracy%

1 77.6 64.1 95.1
2 85.6 80.3 92.2
3 68.9 89.5 94.8
4 84.7 72.0 95.5
5 86.6 74.1 95.3
6 71.1 91.6 97.9
7 79.6 78.0 92.5
8 74.2 95.0 94.3
9 64.8 71.6 90.7
10 78.1 80.7 94.0

Fig. 7. Performance of the three-modus and four-modus NNs for one task from team 28. The soft-max
classification estimates from the NN are seen above, and the linear velocity xyz signals are shown below to
give some idea of what is happening in the task. The classification does not start until 3 seconds (600 time
steps) into the task since that is the size of the classification window.

respectively. The avoiding obstacles and no context modi were classified less successfully with
average classification accuracies of 35% and 51%, respectively. As mentioned previously it was
difficult to determine any difference in the behavior of teams between avoiding obstacles and no
context suggesting a default human behavior may be to avoid obstacles in the absence of any other
provided objective.

The data in Figure 7 helps to support the hypothesis that avoiding obstacles and no context are
similar. We see that the four-modus NN split the difference between the avoiding obstacles and no
context modi causing classification performance to be low on both of these tasks as the classification
kept oscillating between the two modi. For the four-modus test shown in Figure 7, the NN achieved
a classification accuracy of only 55% across this task. Alternatively, the three-modus NN achieved
100% classification accuracy across the whole task. We do not hypothesize that avoiding obstacles
and no context are wholly indistinguishable, but rather that the behaviors are so similar that it is
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Fig. 8. Performance of the three-modus NN on one trial of data, in which the NN struggled to consistently
classify the modus of the team. The soft-max classification estimates from the NN are seen above, and the
linear velocity xyz signals are shown below to give some idea of what is happening in the task. The classification
does not start until 3 seconds (600 time steps) into the task since that is the size of the classification window.

not beneficial to differentiate them for the sake of a robot controller. We therefore made a design
decision to primarily use the three-modus NN.

The results from the three-modus NN can be seen in Table 2. The total classification accuracy
varied from 76% to 89%, with the average accuracy being 84%. While this is significantly better
than in the four-modus NN, an increase in classification accuracy is inevitable when there are
fewer classes. However, the most important improvement in using the three-modus NN over the
four-modus NN is that we no longer see the behavior of an oscillating classification between two
modi.

In Figure 8 the NN classified this task with 74% accuracy over the entire task. This trial shows
that at different points throughout the task the modus of the team was estimated to be smoothly,
then avoiding obstacles, then quickly, then back to avoiding obstacles. While this could be a failing
of the NN to classify the behavior of the team, it also hints at the possibility that teams were not
always consistent in the execution of tasks in certain modi. Figure 8 may be showing that the team
was altering their behavior throughout the task. We see that the team moved a little more quickly
to the obstacle, moved a little more carefully through the obstacle, and then had a more relaxed
pace back to the starting point.

It is important to remember that we have no ground truth data, other than encouraging par-
ticipants as much as possible to move in a certain manner. Rather than a failing of the NN, this
transition uncertainty might show the ability of the NN to determine variations from baseline modi
behavior and to identify transitions from one modus to another. One of the benefits of the soft-max
result is that it shows the ratios and trends of confidence. The softmax can predict a change in the
predominant modus before it happens as the confidence values change. Additionally, the modus of
a team might not always be exactly in one class, but might be a weighted combination of multiple
classes, just like in work of Shaikh et al. [49]. Watching the trends of all three values can help
predict a change in modus as a team shifts from one modus to another in certain situations. This
is one of the most important lessons to learn from this research to apply to robotics. Not only
can a NN classify the modus of a team with a high degree of accuracy, it can also predict changes
in modus by observing the confidence levels of each modus. The ability to detect modus, assert
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Table 3. The Confusion Matrix for the 3-Modus NN Trained on
All Signals

ObsAvoid
(Predicted)

Quickly
(Predicted)

Smoothly
(Predicted)

ObsAvoid (True) 73.0% 18.6% 8.4%
Quickly (True) 5.2% 94.7% 0.1%
Smoothly (True) 6.0% 0.0% 94.1%

Table 4. The Confusion Matrix for the 4-Modus NN Trained on All Signals

ObsAvoid
(Predicted)

Quickly
(Predicted)

Smoothly
(Predicted)

No Context
(Predicted)

ObsAvoid (True) 44.2% 6.4% 4.2% 45.1
Quickly (True) 8.2% 71.5% 0.5% 19.8
Smoothly (True) 5.5% 0.1% 94.2% 0.2
NoContext (True) 38.1% 8.1% 2.5% 51.3

Table 5. The Mean Classification Accuracies for
Each Obstacle-Modus Combination from the

Validation Set Evaluated with a Sample of 20,400
Classifications of the Validation Data Per Obstacle

ObsAvoid
(mean)

Quickly
(mean)

Smoothly
(mean)

Box 69.3 95.2 85.7
Columns 70.1 98.1 89.1
Corner 80.5 90.9 94.6
Hallway 69.6 93.7 97.5
Straight 75.9 95.1 95.5

confidence in those predictions, and predict changes in modus can go a long way in improving the
reactivity and helpfulness of robot co-manipulation team members.

Tables 3 and 4 show the confusion matrices for the three-modus and four-modus NNs. In this
table, we see that the NNs struggled to classify the avoiding obstacles modus most often and had
the easiest time classifying the smoothly modus. The smoothly modus was the most distinct of the
three with the slowest speed and careful motion, so it makes sense that it was the easiest to classify.
The avoiding obstacles modus was in between the other two modi and was the easiest to misclassify
if the team had a particularly fast or particularly slow baseline speed. Table 5 shows the average
classification accuracies of each obstacle-modus combination. The box obstacle was the hardest to
classify. This may be because of the sidestep motion it induced and that was not normally seen for
other obstacles. The corner and straightaway obstacles were the easiest to classify. However, all the
classifications performed relatively well, which is promising for the generalization of the classifier.

We originally hypothesized that of the six signals used in classification, velocity, acceleration, and
interaction wrench would be the most important and carry the most information, and thus be the
most crucial for the NN classification. In order to test this hypothesis we modified the three-modus
NN and trained it multiple times with different combinations of input signals to produce the results
shown in Table 6. We were surprised to find that interaction wrench was the second least useful
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Table 6. Average Classification Performance of the Three-Modus
NNs Trained on Different Combinations of Inputs

Signal
Combination

Average
Accuracy

Minimum
Accuracy

Maximum
Accuracy

V 82.8 77.2 88.8
A 82.5 75.5 87.4
FTA 77.7 71.6 81.9
IW 73.7 68.0 80.0
IWD 69.4 33.3 80.0
A/V 84.4 76.1 88.0
A/IW 82.7 75.5 87.0
IWD/V 82.5 76.3 87.6
A/FTA 82.1 73.9 85.9
IW/V 81.8 76.2 85.8
FTA/V 81.3 71.7 86.5
FTA/FTB 78.8 72.6 81.7
A/V/IW 84.3 76.9 88.9
A/FTA/V 83.3 76.5 87.5
A/FTA/FTB 82.7 76.9 87.0
FTA/FTB/IWD 79.4 72.9 82.5
A/V/FTA/FTB 83.6 78.1 86.9
V/A/IW/IWD/FTA/FTB 83.6 76.4 87.1

Double lines between rows separate groups of NNs trained on one signal, two
signals, and so on up to six signals. A: 6-dimensional vector of linear and
angular acceleration for the CMO; FTA or FTB: 6-dimensional force and torque
measurements from participant A or B; IW: 6-dimensional interaction wrench
(force and torque in three directions); IWD: time derivative of the interaction
wrench; V: 6-dimensional vector of linear and angular velocity for the CMO.

signal, the least useful being the derivative of the interaction wrench. This is likely because at times
when the team is working together, the interaction force signal flattens to zero since the team is
cooperating with no conflicting interaction. While a flat portion of the signal does provide some
information, it is a feature-poor signal for the NN to analyze. Despite the unexpected result, this
is promising news for future research, as it shows that easy-to-measure signals, such as velocity
can perform very well in classification tasks. This lowers the barrier for modus classification in
real-time robot co-manipulation control algorithms and allows us to focus on appropriate real-time
processing techniques for effective classification using the most promising signals.

Of NNs trained with single signals, the highest performing were those trained with velocity or
acceleration signals, which performed with an average accuracy of 82.8% and 82.5%, respectively.
This is an excellent outcome for robotic controller design since there are multiple simple ways to
acquire quality velocity and acceleration signals for the CMO. NNs with multiple signals generally
performed better than those trained with individual signals, confirming the intuition that including
more signals results in better performance. It is noteworthy that the all of the NNs which were
trained on only velocity and/or acceleration performed better than those nets trained with velocity
and force signals or acceleration and force signals. This probably has to do with the suboptimality
of our CNN architecture rather than the force signals themselves, but it demonstrates that the
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Table 7. The Mean Classification Accuracies of the Real-Time NN on
Offline Validation Data and on Real-Time Data, Separated by Modus

ObsAvoid
(mean)

Quickly
(mean)

Smoothly
(mean)

All Modi
(mean)

Clean Data 76.2 92.8 98.5 89.2
Real-Time Data 68.1 95.7 75.3 79.6

Note that these accuracy averages are weighted so each task weighted equally
independent of its duration, so these averages differ slightly from those shown
in the confusion matrices from Table 9.

Table 8. The Means Classification Accuracies for Each
Obstacle-Modus Combination from the Real-Time

Experiment (Comparable to Table 5)

ObsAvoid
(mean)

Quickly
(mean)

Smoothly
(mean)

Columns 68.4 94.5 74.2
Ring 57.2 99.8 76.4
Straight 79.3 93.2 75.3
All Obstacles 68.1 95.7 75.3

interaction between the input data signals and the NN output is not always straightforward and
should be considered carefully. If force-torque signals are available to future researchers on the
systems they use, then force and torque signals can be considered for modus classification, especially
if different classification schemes are being explored. However, given the superior performance of
NNs trained only on velocity and acceleration data in our experiment, we recommend that future
modus classification efforts focus on those signals first.

4.2 Real-Time Results
For the real-time experiment, we used the highest-performing velocity-only NN trained on the
offline data. The real-time classification accuracy was 79.6% overall as compared to the 89.2%
validation accuracy with offline data. The real-time classification performed similarly across each
obstacle, and its performance varied significantly across modi like the offline classification. The
real-time results separated by obstacle and modus are included in Table 8. The overall real-time
accuracy compared to the NN’s validation accuracy on offline data is shown in Table 7. A video of
the real-time classifier (meaning the classification was done while data was published through ROS,
and the classification was recorded in real time), can be seen at https://youtu.be/GO41O7npDI8.

We can draw a few important conclusions from these results. First, we note that there is potential
for a modus-classifier to perform well on tasks it was not trained on as classification for the quickly
and smoothly modi during the ring task was accurate. Second, we can see that although the NN
performed similarly between the real time results and the offline results, there is a noticeable
difference between the NN’s performance with real-time-filtered data and offline data. We attribute
this difference to the fact that the NN was trained on offline data rather than real-time filtered
data. Intuitively, a noisy signal is less smooth and outliers would cause jumps in the estimated
velocity signal. We can see that by comparing the confusion matrices of the real-time and offline
performance in Table 9 that obstacle avoidance is misclassified as quickly much more in the real-time
NN and smoothly is misclassified as obstacle avoidance more with the real-time data than the offline
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Table 9. The Confusion Matrix for the NN Used in Real-Time Study,
Normalized across the True Modus (Rows)

ObsAvoid
(Predicted)

Quickly
(Predicted)

Smoothly
(Predicted)

ObsAvoid (True, Real time) 75.1% 19.2% 5.7%
Quickly (True, Real time) 8.4% 91.6% 0.0%
Smoothly (True, Real time) 22.1% 1.6% 76.3%

ObsAvoid (True, Clean Data) 75.1% 16.1% 8.87%
Quickly (True, Clean Data) 7.18% 92.8% 0.00%
Smoothly (True, Clean Data) 1.82% 0.00% 98.2%

The first three rows show the confusion matrix for the NN on real-time data and the
final three rows show the confusion matrix for the same NN on the carefully-cleaned
validation data.

data. One way to likely improve performance would be to train the real-time classifier directly
with “real-time” data that is filtered and processed in the same way as the presented real-time
experiment (even if the training occurs offline).

5 Discussion
5.1 Insights on Physical Human-Human Co-Manipulation
The purpose of this work was to answer two important questions. First, when the modus of a team
varies, does the behavior of the team change enough to be observable? Second, if the change in
behavior with varying modi is observable with certain signals, can those observations be used to
classify the modus of the team?

The answers to both of these questions is yes. The behavior of the teams was indeed differ-
ent when different modi were invoked. This is clear from the observation of the experiment
administrators, but much more importantly it has been shown that a computer can detect and
classify the difference. The fact that the difference can be detected with up to 89% accuracy
is significant. It means that humans are similar enough in how they move that learning from
a few teams can generalize fairly well. As a future strategy, we plan to use a NN trained on
high-performing teams only as a good starting point for additional refinement and learning
with an unknown team, rather than trying to learn that team’s modus model from scratch.
Another important finding of our work is the similarity between the no context and avoiding
obstacles modi. This seems to indicate that people perform obstacle avoidance as a default
behavior.

5.2 Lessons for Physical Human-Robot Co-Manipulation
In this section we describe lessons, necessary considerations, and future strategies to enable
applications of our modus classifier to human-robot co-manipulation controllers.

This research serves to point out a gap in the current field of human-robot co-manipulation
research. The tradeoff in competing objectives or methods for completing a task (which we call
modus) has not been significantly explored in human-robot co-manipulation research, but it
significantly impacts the behavior and performance of human teams. We expect that the presented
modus classifications can provide significant direction for human-robot researchers as they identify
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explicit parameters to modify robot control algorithms or optimizations that might allow the robots
to adapt more appropriately to their human partner’s behavior.

The reason that clearly and explicitly defining goal behavior is important (as opposed to defin-
ing only the goal state of the co-manipulated object) is to enable more useful and intuitive co-
manipulation control. Many robot controllers use optimization in the loop, model predictive control
being one of the most well-known. These controllers need clearly defined objective functions to
optimize. When a team is behaving according to a different modus, the objective function should
change appropriately, or weightings on certain parts of the objective function might need to change.
This could lead to an increase in satisfaction from the human partners and make the robots more
generally useful or task-efficient.

In addition, since obstacle avoidance seems to be a default behavior for human teams, obstacle
detection and obstacle avoidance algorithms should likely be a baseline for robot helpers. Research
will need to be performed to explore how to balance a robot’s capability to detect the obstacles in
its path, while also meeting the desired intent of the human partner as far as both object trajectory
and modus are concerned.

Delay in classification is another element that will need to be addressed for real-time application
in co-manipulation controllers. This has been addressed to some extent with our real-time imple-
mentation and validation. However, the classification window uses 3 seconds of past data, while our
real-time filtering adds 0.075 seconds of lag.TheNN also only currently runs at 10 Hz, but this is not a
fundamental limit with the NN (whose speed is hardware dependent and was run at 200 Hz on a non-
specialized desktop computer in a test case). Given these delays, the current worst-case lag would
be 3.175 seconds of delay between when a modus or behavior begins and the moment when a robot
could recognize the change. However, this is the worst case. We expect that even for a human team-
mate to recognize a change in behavior, it may take 1–2 seconds. Given the natural delay between
two human partners, it may be that the 3.175 seconds of delay would be acceptable between a human
and robot partner. Additional exploration of the NN’s sensitivity to filtering parameters and numbers
of inputs (by varying the amount of past data used) may also yield improved real-time performance
with lower amounts of lag. Although we have not done extensive testing to determine the sensitivity
of our algorithm to changes in modus, we expect this not to be a significant problem, given that most
tasks can last minutes without changing modus.This results in our 3.175 second worst-case-delay be-
ing orders of magnitude less than the time for which the modus would be relevant during operation.

Finally, during the time period when the robot is waiting for enough data to determine the
modus with which to operate, the robot would need a default behavior or cost function. Based on
our results, we would propose setting the default behavior or modus as obstacle avoidance since
that was the closest to the no context or neutral motion than any of the other modi. After the
initial lag, the robot would then adapt the cost function it uses according to the current estimate of
the modus. Since the estimate will always lag real or desired behavior to some extent, the robot
would only change its active behavior when the newly classified modus was maintained for at
least the duration of the lag. More practically, we expect to not use discrete classification signals
to determine co-manipulation behaviors or cost functions, but instead to use a relative weighting
between three possible behaviors as shown with the continuous values reported in Figure 8. We
hypothesize that this approach is more aligned with how human agents behave as they may have
multiple objectives that vary in importance based on circumstance or environment. In this way,
robot behavior could also change smoothly as the output of the NN changes in time. By way of
example, the robot may switch from a cost function which maximizes speed if the modus is quickly,
to a cost function which minimizes jerk if the modus is smoothly, to an obstacle avoidance cost
function if the modus is obstacle avoidance, or to a multi-objective cost that includes weighted
versions of the previous three deriving from soft-max classification estimates.
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5.3 Limitations and Future Work
In this section, we first outline a number of limiting factors related to our study formulation
and execution. We next discuss future work that will be necessary to eventually enable realistic
human-robot co-manipulation scenarios.

One limitation of our experiment was the lack of consistency in modus execution of any given
team throughout their experiment. There is no guarantee that when we instructed teams to move
in the manner of one of the modi, they actually moved only in that modus for the entire task, or
matched their behavior for repetitions of that task. There was also a lack of consistency between the
teams. While all of the teams generally moved faster on the quickly tasks and slower and smoother
on the smoothly tasks, they did not all do so equally. Some teams had a faster baseline speed than
other teams. In the future, fine-tuning the NN for each new team during co-manipulation could sub-
stantially improve the performance of the NN by effectively biasing it to the baseline behavior of any
particular team. This practice could also be used for human-robot teams, in which the robot would
spend a fewminutes, during initial operation, to calibrate its NN and to adjust to the baseline of its hu-
man partner. This would also help account for variance in team behaviors from the average behavior.

From our observations, some dyads were able to perform at a higher level than other dyads. They
were either faster, smoother, had less conflict, or had less confusion. What makes the difference
between these teams is still unknown. If a robust manner of identifying high-performing teams
could be identified, then these teams could become models for robot controllers to mimic. Future
analysis of this data should include the identification of high-performing dyads. Our data may also
include insights into human fatigue. The teams in the experiment co-manipulated a heavy object
for close to half an hour, and fatigue definitely played a role in certain behaviors, especially for the
teams that were less physically conditioned.

Only one CMO was used. This object never varied significantly in weight or dimension (aside
from the 17% change for our real-time experiment). People almost certainly change their behavior
with heavier/lighter or smaller/bulkier objects. We also told participants to hold the CMO in a very
specific way with one hand on each handle at all times. This prevented body contact with the object
in order to support some of the weight. It also prevented choosing another grip style, which might
affect behavior. However, the result that a velocity-only network gave reasonable performance in
real time may mean that when using the right signals, people’s strategy for interacting with the
object become less important.

We also do not claim to have found the optimal classifier for modus. While the architecture was
designed based on best practices, there are many different classification algorithms and frameworks
that could be applied to the same problem, some of which are specifically tailored to time-series
data. Residual networks and recurrent NNs, for example, are commonly used for time-series data.
Additionally, there are classification methods that specifically consider uncertainty and multi-
modality (many possible distinct futures) in their estimates, from which our classification could
benefit. Bouveyron and Girard use a Gaussian Mixture Model to explicitly consider uncertainty in
a classification task [9] and Choi et al. use a mixture density network to consider uncertainty when
determining how a self-driving car should behave [14]. Ivanovic et al. use a conditional variational
autoencoder with long-short term subcomponents to considermultiple future possibilities, whichwe
could adapt to consider several different ways in which the modus may change in a co-manipulation
task [23]. It is possible that another algorithm would have performed better on the data, or that a
different NN architecture could have achieved a better performance. Similarly, we did no analysis
of time windows used for classification. Accurate classification is likely possible with time windows
shorter than 3 seconds, and the optimal time likely differs between classifier architectures. However,
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our goal to prove that a modus is distinguishable and classifiable in real-time was achieved and the
performance in this article can act as a benchmark or baseline for future work.

6 Conclusion
This research has shown that when the desired modus of a team varies, the behavior of the team
changes enough to be observable. It has also been shown that the proposed measurements (i.e.,
velocity, force, and so on) can be used to classify the modus of the team using NNs both offline and
in real time. Based on our classifier’s performance, the concept of modus could be used in future
human-human co-manipulation research to identify and quantify a desired behavior. Being able to
quantify and identify desired behavior will allow future researchers to pick metrics to evaluate the
performance of human-human teams and then program objective functions for robot controllers in
human-robot teams to match or at least approach that performance.
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