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Human-robot planar
co-manipulation of extended
objects: data-driven models and
control from human-human
dyads

Erich Mielke, Eric Townsend, David Wingate, John L. Salmon
and Marc D. Killpack*

Robotics and Dynamics Laboratory, Brigham Young University, Mechanical Engineering, Provo, UT,
United States

Human teams are able to easily perform collaborative manipulation tasks.
However, simultaneously manipulating a large extended object for a robot and
human is a difficult task due to the inherent ambiguity in the desired motion. Our
approach in this paper is to leverage data from human-human dyad experiments
to determine motion intent for a physical human-robot co-manipulation task.
We do this by showing that the human-human dyad data exhibits distinct torque
triggers for a lateral movement. As an alternative intent estimation method,
we also develop a deep neural network based on motion data from human-
human trials to predict future trajectories based on past object motion. We then
show how force and motion data can be used to determine robot control in
a human-robot dyad. Finally, we compare human-human dyad performance
to the performance of two controllers that we developed for human-robot
co-manipulation. We evaluate these controllers in three-degree-of-freedom
planar motion where determining if the task involves rotation or translation
is ambiguous.

KEYWORDS

physical human-robot interaction, force control, cooperative manipulation, learning
and adaptive systems, human-robot interaction, neural network, variable impedance

1 Introduction

In the future, robots will work alongside humans in many applications including
logistics, health-care, agriculture, disaster response, and search and rescue. The advantage
of human-robot collaboration in these areas is that humans provide intelligence and
dexterity while robots may provide strength, stability, and even redundancy (Kazerooni,
1990). Physical Human-Robot Interaction (pHRI) for collaborative manipulation (or
co-manipulation) is an area of robotics that can especially benefit from the combined
strengths of a human-robot team: strength and execution from the robot and intelligence
and planning from the human. This is particularly true of co-manipulation tasks
where a human and a robot physically manipulate the same object simultaneously. Co-
manipulation can include complex translational and rotational tasks, such as moving a
table (Mortl et al., 2012), couch, or other extended, rigid object. These objects may be
heavy or unwieldy, which could necessitate two or more people to carry them. A robot
capable of replacing a human in these teams would help in situations like search and rescue
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where current high-payload robots are too heavy and dangerous
to relocate and operate. Robots that can physically interact with
a human could help lift and remove rubble from disaster areas
or take a victim on a stretcher to safety. These robots would
allow fewer people to complete the same amount of work, or
for more teams to operate and reach more people in need of
help. Other applications include using robots to help load and
unload moving vans, using robots to help move objects around
warehouses, and any other co-manipulation applications where
human-human teams are currently needed.

In these situations, robots will need to work safely and
intuitively, in order to be an asset when interacting with people.
However, often a task is poorly defined for one or both partners of
a dyad. Uncertainty or ambiguity can especially exist when tasks
include manipulating an extended object that may need to be either
translated or rotated, or both. In order to be effective, a pHRI robot
controller for co-manipulation of extended objects must be able to
distinguish between an intent to rotate and translate. By studying
human-human interaction (HHI) data, we can define patterns that
will help to create a safe and intuitive co-manipulation controller.
Therefore, this paper proposes a method for predicting human
intent in a co-manipulation task based on HHI. We designate
human intent as the intent to move an object in a particular
direction along a trajectory with a particular velocity.

There are many signals that could be used to predict human
intent, including motion, force, partner posture, and verbal
communication among others. In our study, we chose to focus on
motion and force, since we expect that these variables are the most
fundamental and easiest for a robot to sense and interpret. This
does not mean that other information sources could not be used
to improve upon our results, but rather that this data is sufficient
to characterize human intent in co-manipulation tasks. Further,
other studies have confirmed that haptic-channel communication
is sufficient to indicate motion intent (Sawers et al., 2017). However,
while the past work on co-manipulation outlined in Section 2 shows
that collaboration through force is applicable to some tasks, it is not
clear that previously developed algorithms and intent-estimators
will work in cases that include whole-body, bi-manual, six degree
of freedom (DoF) manipulation of an object, rather than planar
arm movements only. The initial goal of our co-manipulation
controllers is to know how the robot should move, based on sensory
inputs, in order to manipulate the object being carried in the
manner desired by the human partner. By basing our human-intent
model on data from human-human dyads, we are increasing the
likelihood that our controller will be intuitive for human users.

The specific contributions of this paper include the following:

1. Observations on planar motion from a human-human
co-manipulation study (see Section 3.2), which include
the following:

e Lateral movements are triggered by a specific
torque sequence.

e Planar rotation movements can be distinguished from

lateral movements using sequences of applied torque.

2. Development of a neural network to predict human intent based
on past motion (see Section 4.3).
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3. Application of the neural network and trigger-based predictions
to a human-robot dyad, comparing the performance of human-
robot dyads with human-human dyads (see Section 5).

We next outline the organization of the rest of this paper.
Section 2 describes related work on physical human-robot
interaction and intent modeling. Next, the human-human dyad
experiment is explained in Section 3, including the main results
and observations of the HHI study. Section 4.1 describes the robot
hardware used in our co-manipulation experiments. In Section 4.2
we discuss the formulation and preliminary testing of an Extended
Variable-Impedance Controller for human-robot co-manipulation.
We then describe the structure, training, and validation of a neural
network, as well as the formulation of a neural-network-based
controller in Section 4.3. In Section 4.4 we describe a physical
human-robot co-manipulation experimental study comparing both
human-robot controllers. Finally, we discuss the results of the
human-robot study in Section 5 with conclusions in Section 6.

2 Related work

In this literature review, we group the efforts of past researchers
into a few different categories: studies about co-manipulation or
human behaviors, force-based and motion-based co-manipulation
methods, determining the performance of human-robot dyads
through metrics, and human intent estimation.

2.1 Co-manipulation and human behavior
studies

One of the most widely used studies that explore human-arm
reaching movement was performed by Flash and Hogan (1985).
They illustrated the tendency of upper-arm reaching movements to
resemble minimum-jerk trajectories. Another fundamental study
was performed by Rahman et al. (1999) where they performed a 1
DoF translation co-manipulation experiment between two human
users, showing that users exhibited variable impedance along with
minimum-jerk trajectories.

There were also a number of studies investigating how humans
cooperate through forces and haptic channels. In particular, Reed
et al. (2007); Wel et al. (2011), and Ganesh et al. (2014) all showed
that human-human dyads were able to perform better than when
performing the task as individuals. However, when Reed et al.
included a robot, this advantage disappeared.

Focusing on trying to understand conflicts in human-human
interaction to better enable future human-robot interaction, in
Madan et al. (2015) the authors use haptic devices and a virtual
collaborative task to explore haptic interaction patterns related
to quantifying consensus in a dyadic interaction. While in Al-
Saadi et al. (2020) they used wrench-based metrics and divided
interaction patterns into discrete behavior classes describing how
a dyad was working for translational and rotational tasks. A major
difference in our paper, where we move a large, heavy object which
requires bi-manual manipulation, is that we use haptic or motion
signals to generate robot motion commands directly, with the sole
objective of making the robot an effective follower.
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Other studies have shown that a haptic channel can be used
as the only source of information exchange between partners.
Sawers et al. (2017) performed an experiment where participants
performed a series of dance steps with a partner while Mojtahedi
et al. (2017) showed that interaction forces may communicate
movement goals between human-human dyads in cooperative
physical interactions.

One of the only studies performed with a human-human dyad
carrying an extended object was done by Bussy et al. (2012b). In this
experiment, they had dyads move a beam in 1 DoF, both forward
and backward and used object velocity to trigger state transitions in
a state machine model.

2.2 Control methods for co-manipulation

2.2.1 Force-based co-manipulation methods

One of the first controllers for cooperative manipulation of
an object by robots and humans was an impedance controller
developed by Ikeura et al. (2002) and Rahman et al. (2002).
They also developed strategies for situations that required using
direction of force and change in magnitude of force. This type of
control technique is known as variable-impedance control (Ikeura
and Inooka, 1995; Dimeas and Aspragathos, 2015). The defining
characteristic of this method is measuring Cartesian-coordinate
forces at the end effector to determine motion intent in certain
Cartesian directions. Tsumugiwa et al. (2002) showed that varying
the impedance allows for increased performance of human-robot
interaction in calligraphy. This variable impedance approach was
also very successful in predicting Cartesian movements, as was
shown in other studies as well (see Duchaine and Gosselin’s, 2007;
Ficuciello et al., 2015). However, it does not generalize to include
rotational movements. It also is heavily dependent on human force
input, meaning the robot does not proactively contribute to moving
the object being manipulated, and the sole human partner must
exert more force than may be required in a human-human dyad.

The initial work in variable impedance control (VIC), however,
provided a basis for using haptic information in future pHRI
controllers. One such controller was implemented by Ranatunga
et al. (2016) who performed 1 DoF point-to-point motion tasks
without previous knowledge of the trajectory, which is necessary for
situations such as search and rescue. However, the work assumed
direct contact between human and robot, (i.e. no extended object
co-manipulation), and was limited in DoF. Further, there is an
inherent problem with VIC, and other methods, such as Leica
etal. (2013)’s method for moving extended objects, that limits how
many DoFs are viable. This is known as the translation versus
rotation (TvR) problem. In a simple planar task, the leader has
the option of moving the extended object by either translating
forward/backward, translating laterally, or rotating the object. The
problem arises when the leader wishes to move laterally, and so
applies a force in that direction. The follower, who is positioned
some distance away from the applied force, perceives the force as
a torque, and begins to rotate the board. This shows that there is
information missing in VIC to deal with the TvR problem.

Two approaches to solve this problem were suggested by
Karayiannidis et al. (2014) and Nguyen (2016). Karayiannidis et
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al. used the direction and magnitude of the applied force to an
extended object to create a state machine that switches between
translation and rotation modes. The state machine, however, fails
to transition between states correctly when moving at different
speeds than described in their experiment. Nguyen improved
upon this by using Hidden Markov Models and showed that it is
possible to predict human behavior in co-manipulation tasks. The
algorithm allowed for different speeds of rotation and translation,
but ultimately performed worse than Karayiannidis et al.’s method.
Neither compared their controller performance to any of the
metrics established by other researchers.

Other work has been done by Peternel et al. (2017a) where they
incorporated EMG sensor feedback with the control law to provide
more information about the stiffness the human was applyingina 1
DoF sawing task. Additionally, Peternel et al. (2017b), in a different
work, showed how robots can adapt to human fatigue in pHRI.

One of the few attempts at bi-manual, planar human-robot co-
manipulation was developed by Bussy et al. (2012a). Their method
relied on force inputs to a trajectory-based control law, where
the trajectories are then decomposed into a finite state machine
to determine the desired velocities. This research was successful
in at least anterior translation coupled with planar rotation, and
theoretically generalizes to include lateral translation. However,
they do not mention attempts to move in lateral translation, and a
video of the controller shows only anterior translation with planar
rotation. It is therefore unclear how they deal with the TvR problem.

Others have explored human-robot co-manipulation from the
standpoints of roles (Mortl et al., 2012) to leverage the benefits of
precision, strength, and repeatability of a robot and the decision-
making and cognitive capabilities of a human. These roles can be
allocated, shared, or passed between the human and robot agents
to improve performance for different phases of a co-manipulation
task. Not surprisingly, researchers found that humans prefer a
lower-effort role, offloading more to the robot when appropriate
but also taking on more effort at certain times during the task of
moving a table on wheels through and around obstacles (Mortl
et al,, 2012). Similarly, this continuous adjustment of not just roles
but adjustment of control parameters is explored in Sirintuna et al.
(2020) and Hamad et al. (2021), in which the researchers study
variable admittance controllers as the needs of a collaborative task
can change over time. In the later reference, the force is scaled or
even amplified to improve the performance of a task (Hamad et al.,
2021). These variable implementations of controllers can therefore
make trades between, and adjust the emphasis of, transparency and
stability of the given system (Aydin et al., 2020). Finally, in Al-Saadi
et al. (2023), the authors use a random forest classifier to determine
conflict-based interaction states using haptic signals. Their robot
then responds appropriately based on a mixture of force-sensing
strategies, admittance control, and potential fields to complete a
collaborative task.

2.2.2 Motion-based co-manipulation methods

In addition to force-based methods, many insights into
human-robot interaction have been gained from studying motion-
based intent. One of the common methods of motion-based co-
manipulation is using a minimum-jerk basis. Corteville et al.
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(2007), did so for a 1 DoF point-to-point experiment. Also, Maeda
et al. used minimum-jerk trajectories to predict human intent for
proactive robot behavior (Maeda et al., 2001). This strategy reduced
the amount of effort a human partner needed to exert in co-
manipulation tasks, which is one of the problems with variable
impedance control.

Interestingly, Thobbi et al. (2011) showed that there are some
human movements that are not minimum-jerk movements, but
they did not consider higher DoF tasks, nor do they incorporate
haptic inputs. Miossec and Kheddar (2008) also explored non-
minimum jerk-based trajectories extending the work of Bussy et al.
(2012b), where the dyad motions are longer and include walking
and not just arm movement.

Ge et al. (2011) showed that machine learning can be a useful
tool in pHRI. Their research used supervised learning to predict
the motion of the human limb. While their work, along with that
shown by Thobbi et al. (2011), shows that human performance
can be learned and applied to pHRI controllers, they did not
account for co-manipulation of an extended object. Another use of
machine learning was demonstrated by Berger et al. (2015) where
they used accelerometer and pressure sensor information to learn
a statistical model to guide the robots behavior. However, they
did not explore the TvR problem, and it is not clear how well
this method performed in comparison to human-human dyads.
More recently, Lanini et al. (2018) used a multi-class classifier to
determine if a robot should start or stop walking, accelerate, or
decelerate for a seemingly one DoF task with a single arm.

2.3 Performance metrics

An issue in co-manipulation studies and methods is
determining what constitutes a successful dyad. One dyad
might take longer than the other, or a dyad might also have more
variability in motion than another. Therefore, there needs to be
performance metrics that allow for comparison between dyads.

Haptic information has been shown to be a viable
communication method, and some researchers have suggested
this information is used by dyads to minimize certain criteria.
Groten (2011) described a number of these metrics, including
minimizing interaction forces and root-mean-square tracking
error, and maximizing time on target. A reference trajectory
that is commonly used, such as in Corteville et al. (2007)
and other previously mentioned studies, is the minimum-
jerk trajectory. However, there are also tasks that do not
fit well with the minimum-jerk trajectories (Miossec and
Kheddar, 2008; Thobbi et al., 2011). Therefore, some alternative
trajectories may need to be used if using a root-mean-square error
on trajectory.

Ivaldi et al. (2012) also described a few other metrics, such
as minimizing jerk, torque change, geodesic trajectories, energy,
and effort. These are all fairly well explained by their titles, and
the objective of minimizing these metrics is to achieve human-
like behavior. More metrics not mentioned by Ivaldi et al., but
commonly used in other works are minimizing task completion
time (Duchaine and Gosselin’s, 2007; Miossec and Kheddar, 2008)
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and position error in trajectory following tasks such as tracing a
path through a maze (Ikeura and Inooka, 1995; Thobbi et al., 2011).

2.4 Human intent estimation

One of the main hurdles remaining in human-robot co-
manipulation is effective human intent estimation. Many papers
have suggested that haptic channels are an appropriate method
of communication for human intent (Basdogan et al., 2001; Reed
et al., 2007; Groten et al., 2013; Noohi et al., 2016). This makes
sense, as we have seen that human teams can move objects by
interacting only through forces applied to the objects, rather
than by communicating verbally or otherwise (Mojtahedi et al,
2017; Sawers et al, 2017). Many studies have concluded that
robots can be controlled by human force input in this manner,
but these studies often involve the human acting directly on the
robot, and not through any extended object (Ikeura et al., 1997;
Rahman et al., 2002; Tsumugiwa et al., 2002; Corteville et al.,
2007).

Another method of intent estimation that has been used is
programming by demonstration, as in Rozo et al. (2016). Here,
intent is compressed into a section of possible motions the human-
robot dyad could take. The disadvantage is that it is not robust to
disturbances or trajectories that have not been previously modeled.
Our definition of intent for co-manipulation of extended objects
allows us to capture intent for motion with no definite start or
end point (as observed by the robot), or motion that involves
unforeseen obstacles.

2.5 Related work summary

As has been shown, there are very few studies that look at co-
manipulation of extended objects, and even fewer that look at high
DoF bi-manual co-manipulation. Approaches for control methods
are varied between force-based and motion-based, but almost all
are limited in applicability due to low DoF, or lack of generality
(requiring previous knowledge about a desired trajectory). We also
have not seen a working bi-manual co-manipulation controller
for a human-robot dyad, with at least 3 DoF that can be used
in undefined situations or respond to disturbances, in any of the
related literature.

In our past research, we have completed a human-human
dyadic study that required participants to move a large, extended
object through many degrees of freedom while recording relevant
force and motion data (see Mielke et al., 2017). Based on that
data, we compared two different methods for intent prediction, and
found that neural networks provided a promising avenue for future
efforts (see Townsend et al., 2017). Furthermore, we then developed
two data-driven co-manipulation controllers (one based on force
inputs, the other on object displacement) that were presented as
part of a masters thesis (Mielke, 2018), and pre-print version of
this paper (see Mielke et al., 2020). This paper (as opposed to
past versions) focuses on the development and comparison of the
proposed human-robot co-manipulation controllers.
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FIGURE 1

Left: A leader and a blindfolded follower performing a table-carrying task. Right: Rethink Robotics Baxter robot mounted on a holonomic base

carrying the table with a person.

Z - Superior -
Positive Direc:rion

Y - Lateral -
Positive Direction

b

Leader Follower
Side Side
—
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& ¥ Positive Direction
FIGURE 2

Anatomical direction reference with corresponding table axis: X is
anterior, Y is lateral, and Z is superior.

3 Observations and data from
human-human experiment

3.1 Overview of prior human-human
dyadic experiment

We previously performed a human-human co-manipulation
dyad experiment with 21 dyads. Each dyad moved an extended
board representing a table or stretcher as we measured their motion
and forces on the board as shown in Figure 1. The tasks ranged from
one degree of freedom required for the motion of the object, up
to, potentially, six degrees of freedom. Each member of the dyad
was randomly assigned the role of leader or follower, where the
leader was instructed how to complete the task and the follower was
expected to assist in completing the task based on communication
from the leader. Furthermore, the follower was either blindfolded
or not according to a randomized assignment. This was intended
to show how people behave when relying solely on haptic feedback,
and to give a baseline of performance when human partners are
restricted in a communication channel (i.e. vision in this case)
while co-manipulating a large or extended object. This study has
been both described and analyzed previously in Mielke et al. (2017)
and Jensen et al. (2021). In this paper we follow the coordinate
frame and sign conventions as described specifically in Mielke et al.

Frontiersin Neurorobotics

(2017) and shown in Figure 2. In this paper, our objective was to
use the recorded haptic and motion-based data from the object
to enable physical human-robot interaction controllers that would
allow intuitive co-manipulation.

3.2 Observations relative to in-plane
translation vs. rotation

Although the original human-human experiment involved
six different tasks with up to six DoF, this paper focuses on
determining a control strategy for three DoF planar motion.
Since nearly all previous co-manipulation methods involve one or
two DoF (mostly for co-located manipulation), three DoF planar
motion is a natural step toward our goal of eventual six DoF
co-manipulation. Because we are focusing on three DoF planar
motion, our observations of the data from the human-human dyad
study focus mainly on the blind-folded tasks that required only
lateral translation and rotation about the leader or follower (as
shown in Figure 3).

The emphasis was placed on these tasks for two main reasons.
First, because we perceived a gap in the related literature for three
DoF motion of large, extended objects where most past research
was focused on co-located co-manipulation, or motion in only the
anterior direction. Second, we expect that many more complicated
planar motions can be made from combinations of lateral and
rotational motion [including other tasks demonstrated by human-
human dyads in Mielke et al. (2017)].

In the case of lateral movements (or side-to-side), we
recognized some patterns in how the dyads behaved. Studying the
videos of the lateral motion task, the follower often guessed the
leader’s intent incorrectly, and began to rotate when the leader
started their movement. When this happened, the leader would
exert a force on one side of the table, causing a torque on the
table, and the follower would then commence moving in the correct
manner. With this video evidence, we looked for in-task patterns
of applied torques which could indicate the leader’s intent to start
either a translation or rotation task.
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FIGURE 3

Examples of the simple planar translation and rotation task executed by each H-H dyad and emulated by the human-robot dyads in this paper. Used
with permission (Jensen et al., 2021). (A) H-H translation task. (B) H-H rotation task.

A
30
@=® Translate Left
=4 Translate Right
20 {0 Rotate Left
== Rotate Right
’é 10}
=
[}
3 0
o
=
o
N -10
-20
-30 L L L n L L L
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Time (s)
FIGURE 4

First 4 seconds of trials showing torque trends for rotation and translation tasks for both directions of motion: dashed lines are individual trials, bold
lines are averages over all types of trials. (A) z-axis torque patterns. (B) x-axis torque patterns.
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In order to see in-task relationships, we looked at the time
series of torque for each relevant task and two distinct groups
became obvious. These two groups represented the torque values
for the direction of the rotation task, since the dyads were assigned
to randomly rotate either clockwise or counterclockwise for each
rotation task performed. We then looked at the same z-torque time-
series data for the translation tasks, and noticed that two more
groups appeared, indicating that there was a difference between
translation and rotation tasks, as well as a difference depending on
which direction the table was traveling. We took an average of z-
torque for each of the 4 distinct groups: translation left, translation
right, rotation clockwise (left), and rotation counterclockwise
(right). We noticed there appeared 4 groupings of average z-torque
for the entire time series. These findings are summarized in Figure 4
and corresponding fixed torque thresholds were identified and
subsequently used in the controller described later and represented
in Figure 6B.

As can be seen, translation tasks tend to increase in z-torque
more quickly, whereas the rotation tasks hover around the same
value for over one second before diverging. It is evident from this
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plot that there is a clear difference in torque patterns between
the translation and rotation trials, and also the direction of travel.
Based on the z-torque value, the intent can be classified as either
translation left, or translation right. However, there is no difference
between z-torque patterns for the first second of left and right
rotations. This is an important time segment, since it is during this
interval that decisions about whether to rotate or translate are made
by the follower.

We also identified other signals that might be used to
disambiguate lateral translation from rotation from videos of the
experiment. We noticed that some dyads tended to rotate the
board about the anterior (x) axis while performing the tasks. The
results of examining the x-axis torques can be seen in Figure 4.
Similar to torques in the z-direction, there is a divide between
left translation and right translation. Additionally, a divide appears
between left rotation and right rotation. We therefore used the z-
torque to determine direction of travel, and x-torque to determine
type of motion.

After determining force-based triggers that would enable a
distinction between rotation and translation, we determined what
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FIGURE 5

Plot showing lateral velocity profile for the beginning of Task 5, a 3D
complex task avoiding obstacles: this portion of the task includes a
lateral translation for over two meters.

the velocity profile should look like for these tasks if a robot were
to act as a teammate. For the translation tasks, we assumed it
would follow the bell-shaped velocity profile from a minimum jerk
(M]) trajectory, however, we wanted to first confirm the velocity
profile shape when translating over a large distance. Bussy et al.
(2012b) showed that humans often accelerate an object to a steady
velocity while translating an object. We wanted to verify this, and
also determine what velocity most dyads chose as the steady-state
velocity. To do this, we looked at our 3D complex task data. This
task involved a large translation portion, followed by changes in
direction and rotation of the board to avoid obstacles. Figure 5
shows the first portion of a typical complex task, which is a lateral
translation for over two meters. We notice from this data that
the results seen in Bussy et al. can be verified, and also that the
steady velocity achieved is around -0.35 m/s for most dyads. It is
important to note that this velocity value is for a 10.3 kg board, and
may differ depending on the mass of the object. However, despite
this limitation, the observations about torque patterns shown here
provide the basis for task disambiguation for a robot follower to use
during co-manipulation of extended objects.

4 Materials and methods

4.1 Robot hardware platform description

Since some of the controller details described in subsequent
sections rely on some characteristics of the robot hardware we use,
we first describe this hardware.

Our robot platform for this research is a Rethink Robotics
Baxter robot mounted on an AMP-I holonomic base from HStar
Technologies as seen in Figure 1. There are force/torque sensors on
Baxter’s wrists, and the base is equipped with mecanum wheels. For
our initial work, we chose to use a holonomic base with mecanum
wheels instead of a bipedal robot in order to validate that the human
intent prediction works at the appropriate speeds without having to
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incorporate the complexities of bipedal robots. This is important
to ensure that our methods work in real-world applications as
limiting speed due to limited locomotion may affect the dynamics
of the interaction.

For all human-robot experiments described throughout the rest
of this paper, the Baxter arms ran an impedance controller with a
commanded joint angle calculated for acceptable positioning of the
table. The impedance controller was run along with Baxter’s built-in
gravity compensation. The impedance control law, given in Eq. 1,
used K, and K gains of [40, 120, 40, 16, 8, 10, 12] and [7, 8,4, 7, 1.5,
1.5, 1] respectively. The same gains were used for both arms. The
desired angles, g4, used were [0, -0.84, -1.27, 2.26, -0.34, -1.22, -
2.25] radians and [0, -0.84, 1.27, 2.26, 0.34, -1.22, 2.25] radians for
left and right arms respectively. We ran the controller at a rate of
500 Hz.

Temd = Kp(qcmd - q) - qu (1)

As described in other literature, Burdet et al. (2013), the
impedance controller allows the robot to react in a more
human-like manner, making the human-robot interaction more
natural for a human user. While humans typically use their
arms in co-manipulation tasks, especially when doing precise
placement, using the impedance control law allows us to run initial
studies to determine if our co-manipulation controllers are good
approximations for human behavior in co-manipulation.

4.2 Planar extension of variable impedance
control

4.2.1 Motivation and formulation

In order to verify that the torque patterns described in Section
3.2 would be applicable in a human-robot extended object co-
manipulation scenario, and also to show that current variable
impedance co-manipulation techniques in the literature are not
adequate for extended objects, we built an extension for a variable
impedance controller. Variable impedance control (VIC) is a
possible solution to undefined or indefinite scenarios, since it is
not based on a trajectory, but rather on force inputs that determine
robot velocity. What we noticed in practice is that VIC causes high
internal forces when dealing with bi-manual co-manipulation of an
extended object. However, using two arms was essential to being
able to carry a heavier, more realistic payload. We first implemented
a VIC based on Duchaine and Gosselin’s (2007) work, on our
robot platform.

Our implementation of VIC, which we called Bi-Manual VIC
(BMVIC), involves the control loop seen in Figure 6A. The human
communicates their intent to the robot through force sensors, and
the VIC model determines a desired velocity based on the applied
force, and how the force is changing in relation to the robots
velocity. The general force model (for x and y directions) is shown
in Figure 6A. Here, F and F are applied force and time derivative of
force, respectively, p and p are velocity and acceleration, and m, ¢,
and « serve as virtual mass, damping, and weighting parameters to
define the impedance. These virtual parameters do not correspond
to the actual parameters of the system. They have values of 1.2, 0.6,
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FIGURE 6
Control loops for co-manipulation of an extended object showing human (in green box) communicating intent haptically through force sensor, then
desired velocity is calculated using the specified control law and sent to velocity controller. (A) Control loop for BMVIC. (B) Control loop for EVIC.

and 0.2 respectively, and were determined by trial and error. The
model can be discretized and implemented as a discrete LTI system,
solving for the desired velocity at each time step. We applied
the resulting desired velocity that would give a model impedance
directly to the base and controlled the robot arms to have very low
impedance (see Section 4.2.2).

This method was developed for single-arm manipulation, so we
implemented a VIC for each arm independently in order to achieve
bi-manual manipulation. However, this is not an ideal method
for bi-manual control. Pushing one arm forward and one arm
backward would apply zero net force, causing the robot to remain
stationary, rather than rotate as expected. To account for this, we
added a torque model to their VIC model, as seen in Figure 6A.
Here, 7 and 7 are applied torque and time derivative of torque,
respectively, with 6 and 6 as angular velocity and acceleration,
while I, b, and B serve as virtual inertia, damping, and weighting
parameters, with values of 0.12, 0.6, and 0.2. All forces and torques
referenced here and used for variable impedance control are with
respect to the center of the table. The bi-manual torque-based
model theoretically allows VIC to be extended to planar motion,
where pushing one arm forward and one arm backward will
provide a net torque, indicating a desired angular velocity (in
the plane only), in addition to any desired Cartesian velocities
calculated by the original model. In summary, at each time step,
the equations for force and torque are solved to determine desired
velocity and angular velocity to send to the velocity controller.

We also extended VIC in a novel way, using our results from
Section 3.2. We used the force equation in Figure 6A as a base
controller for anterior/posterior desired velocity and added torque-
based triggers for lateral translation and planar rotation. The logic
of this extended variable impedance control (EVIC) is shown in
Figure 5. Torque thresholds are calculated, based on Figure 4, and
are implemented as shown. We centered the thresholds around
zero for ease of implementation. The threshold values are 3.0
Nm for z-torque and 1.5 Nm for x-torque. If none of the torque
threshold conditions are met, the algorithm commands no lateral
translation or rotation about the superior axis. If the torque
threshold conditions are met, the robot accelerates until it reaches
a specified steady-state velocity. The lateral velocity value, 0.35
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m/s, was determined from the logic described in Section 3.2 and
Figure 5, and the rotation velocity value, 0.4 rad/s, was determined
similarly. The robot acceleration was limited to the capabilities of
our robot mobile base. A control loop showing how this algorithm
is implemented is shown in Figure 5. The main difference between
EVIC and BMVIC is that EVIC uses torque thresholds to determine
the desired lateral and angular velocities, whereas BMVIC relies
on the equations in Figure 6A to calculate the desired lateral and
angular velocities.

4.2.2 Extended object co-manipulation
implementation

We implemented both BMVIC, as well as the EVIC on our
robot platform, shown in Figure 1. A video showing EVIC running
can be seen at https://youtu.be/VIOkNBOuRLY. Our purpose in
implementing both controllers was to determine their feasibility
and also to acquire initial data quantifying the performance of a
human-robot dyad against the blindfolded human-human dyads.
As a reminder, BMVIC is a bi-manual implementation of the
most relevant pHRI controller found in related literature (see
Section 2) for co-manipulation of an extended object. We ran both
BMVIC and EVIC and evaluated them based on the following
criteria: lateral translation and planar rotation, or rotation about
the superior axis. We ran the controller at a rate of 500 Hz,
manipulating or carrying the same table from our human-human
dyad experiment (see Figure 1). For determining performance of
the controllers, we compared the completion time and M]J error for
both lateral and rotational tasks. We also had a qualitative metric:
whether BMVIC, EVIC, or neither controller was preferred by the
human participants.

4.2.2.1 Pilot study testing

During feasibility testing, we discovered important issues with
the BMVIC method. The problem for BMVIC arises when forces
are applied laterally on a long object being manipulated by two
partners, and the follower does not know whether the leader
wants to rotate or translate. We had hoped that introducing an
impedance relationship for torque would allow us to overcome
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Basic control loop structure of intent estimation in co-manipulation. The human moves the co-manipulated object, and the motion of the object, x,
is fed into an intent estimator, which determines a desired motion of the robot, x4. The commanded robot's motion, x,, and resulting actual motion
X,. then influences the object motion, as well as influencing the human leader. For the network, time-series motion data (Left), which are the inputs,
are sent through a fully connected layer, a ReLU layer, an LSTM Cell RNN, and another fully connected layer before predicted velocities are given as
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the TvR problem. In practice, however, the controller was unable
to correctly predict the direction and type of motion desired.
Additionally, the robot often moved aggressively with the human
in the loop, causing large internal forces in the kinematic chain
between the two arms, and shearing internal components within
the arm during two different trials. When running EVIC, incorrect
predictions occurred, but only when the user did not move
as the algorithm anticipated and this movement did not cause
aggressive behavior. We recognize this does not allow for a detailed
comparison between BMVIC and EVIC. But due to the resulting
damage on our robot platforms, we instead decided to only
compare EVIC to human-human data from our previous study and
to the neural-net-based controller described next in Section 4.3.

4.3 Neural network control

A more direct approach to intent-based co-manipulation is
to estimate the desired motion of the co-manipulated object and
have the robot respond accordingly. We, therefore, used Google
TensorFlow to develop a neural network that could accurately
predict human intent. The output of this intent estimator could be
used directly to control the object with a control loop similar to that
seen in Figure 7.

Because our data considered the interaction between a human
leader and a human follower, the input x, could be considered
what the leader did-in terms of applying forces or moving the
object-to indicate their intent to the follower. The follower then
deciphered the intent, x4, and moved as they believed appropriate,
x,. Despite the obvious physical interactions between the leader
and the follower as they both manipulate the same rigid object,
we choose to assume that the signal that we attribute to the leader
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can be used to directly interpret and predict intent and is what the
follower should attempt to respond to.

Among the potential variety of neural network structures that
could be considered for this purpose (Sutskever et al., 2011) showed
how given a sequence of characters, a Recurrent Neural Networks
(RNNs) can be used to predict the next character in the sequence.
Leveraging this architecture we had sequences of forces on, and
motion of, a table that could be used as inputs to an RNN. We used
force and motion data as an analog to characters in other RNNG,
and calculate a motion prediction as an output. This prediction
encapsulates the human intent, encoded as a desired velocity of the
co-manipulated object, and therefore provides a goal for the robot
to achieve.

4.3.1 Architecture

We do not explore the effect of multiple different architectures
on the performance of our neural network predictor and controller.
In addition, although we generated preliminary networks that used
both past force and motion to predict future motion, networks that
used only motion data (linear and angular velocity of the object)
as inputs performed better in our initial trials. We expect that
including a dynamic model, changing the RNN structure, or using
a different architecture of neural network altogether could allow
a better use of force data. However, we have left this for future
work given the baseline performance that we were already able
to achieve. The structure of the neural network is shown in the
“Intent Estimation” block of Figure 7. Our final network consisted
of three LSTM layers each with 100 hidden states. Despite the
myriad of potential other NN architectures, our purpose in this
paper is to show that estimating human intent and incorporating
it in a human-robot controller is possible based on the HHI
data collected.
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Neural network prediction explanation. Previous time steps (shown
in red) are used to obtain one future prediction of states (shown in
green). This state is then appended to previous time steps, the first
time step is removed, and the network is run again in order to
achieve multiple future predictions.

Additionally, it was shown by Chipalkatty and Droge (2013)
that more complex predictions of future movement can actually
decrease performance if they do not agree with what the human
is trying to do. They found that it was more important that the
human understand what the robot is planning to do, meaning that
our controller should be “legible” (see Dragan et al., 2013) for a
human partner in a human-robot dyad. In addition to being legible,
the prediction should also be accurate and repeatable. The inputs
to the neural network, as seen in Figure 7, are 150 past steps of
velocity and angular velocity of the table in the x, y, and z directions,
{X1—149, Xt—148..., Xt—1, x¢}. The outputs are the predicted velocity
and angular velocity of the table in the x, y, and z directions for one
time step into the future, X1, where & indicates a predicted value.

Our neural net formulation also uses what Engel et al. (2004)
describe as iterated prediction. The neural network itself only
predicts one time step into the future. Then, the prediction, X4,
is appended to the input to give {x;—149,Xr—148...» X¢t—1, X, Xt1}.
The first step of the input is dropped to obtain a new input of
past motions for the neural net, {x;_148, X(—147..., X¢> X;+1}. The new
data is input into the neural net which outputs a prediction one
step forward, but two total steps into the future, X;4,. This is then
appended to the input. The process is repeated 50 times to obtain
a prediction of 50 steps, {X¢+1,X+2..» X1+49, X450} This process is
depicted in Figure 8. Because the outputs of each prediction step
become the inputs for the next, the inputs and outputs must be the
same variables.

4.3.2 Training

We pre-processed the data for the neural net to improve the
results. The velocity and acceleration data were scaled to have a
mean of zero and a standard deviation of 1 over the entire set of
data. This was then inverted on the output to show the results in
their proper units. This same scaling can be used on new data as
long as the mean and standard deviation are similar to the training
data. This is the case in our experiment, as velocity values fall into
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the average adult human range. The entire set of data consists of 2.5
million time steps for each variable. Data was split into two, training
and validation, sets. 75% of the data was assigned to the training set
and the other 25% to the validation set.

The neural net was trained in a special way in order to
make the iterated prediction Xry; stable beyond the first step.
This process is described in more detail in Engel et al. (2004),
and more specifically in Mielke (2018). The neural net predicts
50 steps or 0.25 seconds into the future. This number of steps
was chosen because outputs beyond this point did not produce
accurate predictions. We speculate that this was due to a limit
on the predictability of human intent after a certain amount of
time. Humans are inherently unpredictable by nature, and we
would not expect that an intent estimator could predict an entire
trajectory given only a few data points. Improvements to the neural
network architecture may also provide longer prediction times. An
additional benefit of this iterated prediction method is that the
inclusion of predicted velocities in each training step reduces the
amount of overfitting, since new data is essentially being introduced
in each iteration.

We trained multiple models for the purpose of cross-validation,
making sure that the learned models generalized well across our
data set. This included randomly selecting a subset of the data for
training and validation for each model to avoid overfitting, similar
to k-fold cross-validation.

4.3.3 Validation

Figure 9 shows the neural network predictions of velocity in
the x and y directions, and angular velocity in the z direction
for a single sequence of the validation set. The thin lines show
the actual velocities, while the bold lines show a 50-time step
prediction. These predictions occur at every time step when
used for control, but are shown here intermittently (i.e. at 10
second intervals) to improve readability of the plot. As seen,
the predictions are reasonably accurate for that time scale.
While the prediction deteriorates as we move farther along the
iterated prediction, this is acceptable, as only one of the first few
predictions will be used for control, and then a new prediction will
be generated.

4.3.4 Neural network prediction control

As shown in Figure 7, predicting human intent is only one
portion of our proposed approach. We also need to convert the
predicted object motion into actual commands for our robot
motion controller. The neural network outputs include a predicted
velocity and angular velocity of the center of mass (COM) of the
table. Given the prediction of the velocity of the COM, we can
calculate the velocity of other known points on the table, such as
where the robot is gripping the table. However, for our motion
controller we shifted the predicted linear and angular velocity of the
COM of the object to the COM of the mobile base (assuming they
are rigidly connected) to produce a desired velocity for the mobile
base. This shifting can be done using the transport theorem shown
in Eq. 2. Here, v, is the robot’s calculated velocity in its reference
frame, with 1_5 as the distance from the table frame to the robot
frame, and @ as the table’s angular velocity in the table frame. Also,
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Ve is the tables velocity in its own frame. We assumed the table
frame and robot frame do not rotate independently, allowing us to
rotate the predicted velocities in the table frame to the robot frame.

()

Ve = Vye + (@ Xl_i)

We now have the components to complete the control loop
shown in Figure 7. The intent estimator consists of the neural
network model. The motion controller is described by Eq.2,
and is subsequently fed into the low-level control of the robot’s
mobile base, which sends voltages down to the wheels to match
the desired velocity. The achieved velocity, x,, is then what the
human interacts with, completing the loop. x, is estimated using
numerical differentiation and a 2nd-order low-pass filter of the pose
information coming from the motion capture. This loop is shown
in Figure 7. We call this control method Neural Network Prediction
Control (NNPC). A notable feature of this method is that the
commanded velocity, x,, is a continuous variable on [—Vyuax, Vmax]»
where vy,4y is determined empirically for each DoF based on HHI
data. This means the human user has control of the speed of the
interaction, so if the response x, is not suitable for the human, they
can adjust their inputs to move faster or slower.

4.4 PHRI co-manipulation study

As mentioned in Section 4.2, EVIC works only for 3 DoF
planar control-anterior and lateral translation and rotation in
the plane-so we developed an experiment to compare a planar
implementation of NNPC and EVIC. We believe that since NNPC
can provide predictions for all 6 DoF, it can be expanded to control
in 6 DoF. However, we have left that for future work as it would also
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FIGURE 10

Representation of the ambiguity of a translation task (moving from
the top to bottom left) and a rotation task (rotating from the top to
bottom right), where Agent R represents a robot, and Agent H
represents a human. Agent R will, at least initially, “sense” the same
signal or force due to the extent of the object immediately after
Agent H initiates movement to either of the final positions.

require integration with better robot arm control and is beyond the
scope of this paper. This experiment was designed to be as close
as possible to the lateral translation and planar rotation tasks from
HHI data in Mielke et al. (2017).
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4.4.1 Experiment description
4.4.1.1 Translation vs. rotation tasks

Figure 10 shows a representative diagram of the tasks to
be performed by each human-robot dyad, and the inherent
uncertainty in determining which of the two main motions is
being attempted. Each participant performed two tasks: translation
and rotation. In this diagram, the human is represented by the
agent with an “H” and the robot is represented by an “R”. The
translation task consisted of the subject moving laterally, either
right or left, with tape lines extending on the ground to help the
user align the board correctly. Rotation tasks were similar, except
with the participant rotating £90 degrees relative to their starting
location. Tasks could be run starting in either configuration, and
the direction was randomized throughout the trial. An example of
the expected motion during an actual trial can be seen at https://
youtu.be/QQKpT1ORxkw.

4.4.1.2 Equipment

The position of the board was tracked via Cortex Motion
Capture software with a Motion Analysis Kestrel Digital Realtime
System. A total of eight Kestrel cameras were used to track
eight infrared markers placed on the object. Using a static global
frame established by the motion capture system, the position and
orientation of the board could be tracked over time, and we
transformed the data into the robot’s frame for use in the neural
network. The motion capture data was collected at a rate of 200
Hz. In order to run NNPC, we need a method of estimating
the object’s velocity. We used a 2nd-order, low-pass filter and
numerical differentiation on position and orientation data to define
the object velocity. Additionally, participants wore sleeves with
infrared markers to track the position of their arms during the
experiments. This data was not used during analysis but was
collected to match similar data collected during the experiment in
Mielke et al. (2017).

The object the teams moved was a 59x122x2 cm wooden board
weighing 10.3 kg—meant to simulate an object (like a table or
stretcher) that is difficult for one person to maneuver. Attached
to the board on the side of the robot was a pair of ABS 3D-
printed handles, to which two ATI Mini45 force/torque sensors
were fastened. The sensors transmitted data via ATI NET F/T
Boxes, which passed data over Ethernet to the computer at a rate
of 100 Hz. The sensor is attached to wrist adapters on the other
side, which fasten to Baxter’s wrists.

The test arena was a volume measuring 4.0 x 5.1 X
2.5 m. The arena was also equipped with a video-capturing
device. The device used was a Microsoft Kinect 2, which
allowed us to capture 3D point cloud data, as well as color
video of each trial. Although we did not use the point cloud
data for analysis in this paper, the data may be useful in
future work.

4.4.1.3 Subjects and procedure

Subjects for this study were male and female students from
Brigham Young University in Provo, UT. There were a total of 16
students—4 female and 12 male-ranging from 18 to 23 years of age,
with an average age of 20. Students were from a variety of majors,
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with STEM majors making up a majority. Participants were asked
to rate their familiarity with robots on a scale from 1 to 5, with 5
being the most familiar and 1 being not familiar at all, with the
average rating calculated at 2. IRB approval was obtained for this
experimental study.

Participants entered the Robotics and Dynamics Lab, and
provided written informed consent in accordance with IRB. They
were then briefed on the purpose of the research and given
an introduction to what data would be collected, and what
would be expected of them. Sleeves were then placed on the
participants’ arms in order to track their arm motion during the
trial. Subjects were then given basic operating instructions for
both EVIC and NNPC controllers. This instruction included how
to translate in the anterior and lateral directions, and how to
rotate the board for each controller. A controller was randomly
selected, and each participant practiced with that controller until
they were able to complete a competency task, they moved on
to the other controller, and repeated the competency training.
The competency task consisted of aligning the board with the
tape lines on the ground, starting from a translated and rotated
position. The practice assured us that each participant would
have at least enough familiarity to complete the translation and
rotation tasks.

Once competency training was completed, a controller was
selected at random to be the first controller for data collection. The
randomization of controllers was counterbalanced. Participants
knew the controllers only as option “A” (NNPC) or “B” (EVIC).
They were not given any specific details about the formulation of
the controllers, other than the basic operating instructions in the
competency task. The subjects then ran a series of translation and
rotation tasks with the selected controller. Tasks were randomized
(counterbalanced) in order between translation and rotation. Once
a type of task, either rotation or translation, was selected, the
participant ran that task type in one direction (i.e. to the left
or to the right), and then ran the same task type, but in the
other direction. Due to the nature of the controller, the robot
was not able to lift the table from the ground, so the table was
laid on a rest stand between trials. A single trial consisted of
the subject lifting the table from the stand, then a researcher
would remove the stand from below the table. Once the rest
stand was completely out of the way, the subject then performed
the specified task. Participants indicated they were finished by
verbally communicating completion. Once they indicated they
had completed the task, a researcher would replace the rest
underneath the table, and the participant would lower the table
back onto the rest. Each task was repeated six times, three in
one direction and three in the other direction, for each controller.
Once trials were completed for one controller, the participants were
given a survey, and asked to rate the first controller on certain
qualitative characteristics. Once completed, they moved on to the
other controller.

A video showing the performance of both controllers (EVIC
and NNPC) can be seen online at https://youtu.be/VIn9x0CaMXg.
This video was taken after the participant had completed all trials,
and is a representation of the skill level of the human-robot dyad
post-experiment.
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5 Results and discussion

5.1 Evaluation metrics

A number of metrics could be used to quantify the performance
of the controllers and a high-level summary of these potential
metrics is found in Ivaldi et al. (2012). Among these are a few that
are especially applicable to the tasks and control methods developed
in this paper including minimum jerk, minimum torque change,
and completion time. While none of these metrics can individually
store all the information of each controller, collectively they provide
a reasonable indication of how each controller performs in relation
to HHI data from Mielke et al. (2017).

Minimum jerk error (MJE), or deviation from a minimum-
jerk trajectory, is a measure of how close the actual trajectory
was to a minimum-jerk trajectory in meters (for translation) or
radians (for rotation), is calculated using Eq. 3, and accounts for
a human’s tendency to match these trajectories. Completion time
is the time from the start of the task to the end of the task. We
define “start” and “end” as being when the object has moved 5%
beyond the initial position (or within 5% of the final position)
relative to the y positions (or 6, for rotation) respectively. A buffer
of 0.5 s is added to the total time to approximately account for
the missed motion and to give an accurate measure of actual time
requiring movement.

Minimum-torque measure (MTM) computes how much the
time-derivative of torque changes over the course of the task. In
instances where the follower predicted incorrectly, there was an
unforeseen obstacle, or some other disturbance, MTM can account
for a human’s tendency to reduce the amount of force or torque
required to move an object, with MTM calculated using Fq. 4.

T
MJE =" |xmjr — Xau| (3)
t=0
T-1
MT™M =Y i+, (4)
t=0

5.2 Quantitative results

While each task type was performed six times for each
controller, we only consider the data from the last two
trials performed since participants would learn throughout the
experiment with the final trials most representative of the particular
controller. This assumption is justified as real-world human-
robot teams would almost always include some training and
familiarization with the robot before deployment.

Using the metrics previously defined, Table I compares the
EVIC and NNPC controllers, as well as the lower (blind-folded
HHI) and upper (sighted or non-blind-folded HHI) bounds of
human performance. Overall, NNPC performed the best in most of
the metrics. NNPC approached the blind-folded HHI performance
in completion time (ie, 7.75 s vs. 7.18 s for Translation).
NNPC also outperformed EVIC, blind-folded, and sighted HHI
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performance in both MJE and MTM (where lower numbers for
a given row in Table I indicate more efficient performance in
that task). EVIC, while not quite as good, still outperformed
blind-folded and sighted HHI in most of the metrics, except
for completion time. It is notable that the blind-folded HHI
performance captured here is for a human-human leader-follower
dyad, where the follower was blindfolded, and communication
was limited to haptic communication only, whereas sighted HHI
allowed for communication in any form desired by the dyad.

For statistical analysis, we ran an unpaired t-test and
determined Cohen’s d-effect size for the various factors, controllers,
and metrics described above, to ascertain the difference between
treatments and the strength of those comparisons. Effect sizes were
calculated, and then categorized into very small, small, medium,
large, very large, or huge categories, based on Sawilowsky (2009).
The statistical results are summarized in Table 2.

A few key results are important to recognize from this analysis.
First, EVIC and NNPC are not statistically different in terms of
completion time or MJE. They do seem to differ in MTM, which
has a fairly large effect size. Second, both EVIC and NNPC are not
statistically different from the blind-folded human-human dyads in
terms of completion time.

Lastly, EVIC and NNPC are statistically different from
both blind-folded and sighted human-human dyads in terms of
minimum-jerk error and MTM, and these comparisons are all
categorized as large or higher. Overall, the statistics show that
these controllers have approached a level comparable to blind-
folded human-human dyads with respect to the completion time
metric, but are sometimes orders of magnitude better than human-
human dyads in terms of MJE and MTM metrics. Although we
have defined MJE and MTE metrics with lower values as being
more desirable, it is interesting to note human dyads may not
in fact be minimizing these values. This result may require re-
thinking the utility of these metrics in the context of this type of
extended object with associated geometry and mass, especially in
cases where mimicking human behavior is a desired attribute of
human-robot dyads.

Another noteworthy observation is that both EVIC and NNPC,
while capable, have difficulties with fine-motor adjustments.
Throughout the trials, participants occasionally overshot or
undershot their desired position, and had to make fine motor
adjustments to achieve the desired final position. An example of
undershooting is shown in Figure 11. The dyad is able to complete
90% of the task, represented by the dashed vertical line, in just
under 6 seconds, but spends approximately 3 seconds trying to
complete the remaining 10%, which amounts to about 10 cm of
movement, with more fine adjustments.

On average, the remaining time at 90% completion was 2.40s
for EVIC and 2.55s for NNPC. From this data, it would appear that
EVIC is slightly better at fine-motor adjustments than NNPC, since
EVIC had a smaller discrepancy between achieved and minimum-
jerk 90% completion time.

To determine if a few underperforming dyads skewed the
average, we also took the median 90% completion time. For
achieved and minimum-jerk trajectories, respectively, with EVIC,
this gave values of 1.98 and 2.11 s. Similarly for NNPC, it gave
values of 1.97 and 2.02 s. From these results, we conclude that
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TABLE 1 Performance metrics of EVIC and NNPC for rotation and translation tasks, compared against blindfolded HHI and sighted HHI data from Mielke

etal. (2017).
Task type Metric Unit EVIC NNPC Blind-folded HHI Sighted HHI
Rotation Completion time s 8.25 8.26 7.08 6.58
Translation Completion time s 7.91 7.75 7.18 4.93
Rotation MJE rad 96.44 87.38 392.71 344.70
Translation MJE m 50.24 48.51 149.91 98.92
Rotation MTM N2.m?/s? 65,603 12,771 4,88,454 3,41,253
Translation MTM N2.m?/s? 48,192 15,221 3,87,938 1,51,759

TABLE 2 Statistical significance and comparisons of quantitative performance metrics.

Cohen's d effect size

Comparison Comp. time Comp. time MJE MTM
groups

EVIC vs. NNPC Trans. 0.73 0.89 0.017 Small Medium Large
EVIC vs. NNPC Rot. 0.98 0.70 0.14 Very small Small Medium
EVIC vs. Blind-folded 0.07 0.00 0.00 Medium Huge Huge
Trans.

EVIC vs. Blind-folded 0.06 0.00 0.00 Medium Very large Very large
Rot.

NNPC vs. Blind-folded 0.16 0.00 0.00 Medium Huge Huge
Trans.

NNPC vs. Blind-folded 0.05 0.00 0.00 Medium Very large Very large
Rot.

EVIC vs. Sighted Trans. 0.00 0.00 0.00 Huge Large Very large
EVIC vs. Sighted Rot. 0.01 0.00 0.00 Large Large Large
NNPC vs. Sighted Trans. 0.00 0.00 0.00 Huge Large Huge
NNPC vs. Sighted Rot. 0.01 0.00 0.00 Large Large Very large
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FIGURE 11
Undershooting behavior of a human-robot dyad for a translation
task, where bold, vertical lines indicate start and stop points, and
dashed vertical line indicates the 90% completion point. Movement
after this point is considered a fine motor adjustment.
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this data is positive skewed, and only a small number of dyads
had trouble with fine-motor adjustments, causing the higher mean
values. Therefore, we can conclude the lack of fine motor skills in
the controllers did not significantly hamper their ability to complete
the tasks, but should be addressed in future work to help improve
the performance of those dyads who struggled with undershooting
or overshooting.

5.3 Qualitative results

After each participant had performed all tasks with one
controller they were asked questions regarding how they thought
their partner, in this case, a robot, performed the actions. This
survey was repeated after tasks with the second controller.
Using a 5-point Likert scale, 1-Strongly Disagree-to 5-Strongly
Agree, participants answered 12 questions rating their partner’s
helpfulness, predictability, speed, and other attributes. The full
set of questions can be found in Mielke (2018). Although these
questions were not asked in multiple ways (such as in Kucukyilmaz
et al., 2013 to detect inconsistencies) the results are useful to assess
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qualitatively the perceived attributes of the two methods from the
perspective of the participants.

The average for each controller rating is given in the first 2
columns of Table 3 with the controller that performed better in each
category designated in bold text. For some categories, like Too Slow,
a lower number is desired, whereas for others, like Safe, a higher
number is desired. For comparisons, the same survey questions,
except for the Correct Direction question, was given to the human
dyads after the HHI study, with the results shown in the third
column of Table 3. Only the responses of the human designated as
the leader from the human-human dyads are included akin to the
one human in the human-robot dyad experiments.

For each question, we ran an unpaired t-test to calculate a p-
value and determined the Cohen’s d effect size presented in Table 3.
Only the Good Force Amount question obtained a p-value of <0.05,
suggesting it is statistically significant. However, this question, as
well as a number of others, had a medium effect size.

5.4 Discussion

From Table 3, people still clearly prefer working with a human
partner over a robot partner as evidenced by the higher values in the
last column to either of the controllers. One reason for this may be
that humans do not trust robots entirely, as is evidenced by the 5th,
7th, and 8th questions in the survey, which all ask about trust in the
partner. Perhaps the same pHRI experiment, with a blindfold and
earmuffs on the human would have returned more favorable ratings
for the robot controllers.

As was mentioned above, NNPC was the more capable
controller in terms of performance metrics. This corresponds to
the slightly higher average scores for NNPC compared to EVIC
for metrics related to performance Fast Enough, Too Slow, Correct
Speed, Correct Direction, and Better than Alone, but those results
were not statistically significant (see Table 3).

Although NNPC users experienced less force overall, based on
the TMT metric, the survey indicated that EVIC applied more
appropriate forces. From these observations, we surmise that haptic
communication is a large factor in how humans perform co-
manipulation tasks successfully. Furthermore, EVIC and NNPC
were only statistically different in terms of the MTM metric and the
Good Force Amount question. From these results, we can conclude
that NNPC is not applying sufficient or appropriate forces, and
is therefore considered more difficult and less intuitive to use by
the participants. These results agree with Chipalkatty and Droge
(2013), who indicated that training a controller to be the most
efficient or best-performing controller may cause it to be a less
preferable controller to humans. So while NNPC may potentially be
the better-performing controller, EVIC might currently be a more
intuitive and appropriate controller for real-world applications
with humans, since it applies more appropriate forces.

In terms of completion time data presented in Table 2, we see
that both EVIC and NNPC are not statistically distinguishable
from the blind-folded human-human dyads. While this is an
encouraging result, we know that there is some missing information
in our model. Although similar in completion time, our controllers
performed much differently than human-human teams in the TMT
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and MJE metrics. These considerations should be explored further
in future controller development for pHRI.

In addition, the EVIC and NNPC algorithms represent the
average behavior of 21 human-human dyads manipulating a
specific object. It is not evident that the thresholds or learned
neural networks would work for objects of different size or mass.
However, in our initial testing of the controller, we used a table of
about half the length and mass of the table used in the experiment,
and achieved similar general performance of the controllers. This
generalized behavior, however, was not tested thoroughly.

For EVIC in particular, in order to set thresholds for torque,
as well as the target velocity, one may consider using a learned
approach-or an optimization-where a user would manipulate the
object for a certain period of time, and the algorithm would adjust
to the preferences of the user and the characteristics of the object,
based on the applied forces and achieved velocities. Similar on-
line strategies could be applied to learning the desired trajectory
behavior from an individual human partner as part of NNPC.

In terms of limitations of the methods presented in this paper,
one of the main issues is knowing whether or not the thresholds
found for EVIC, and the models learned for the neural network-
based controller, would generalize to other objects with varying
mass and geometry. The velocity data for the neural network was
normalized. So, given additional training data for a new object
we would expect the same approach to work. However, making a
learned co-manipulation model more general is desirable in future
work. Specifically, we would start by testing if both the neural
network model and EVIC thresholds generalize to other objects
(since it is possible that they do). However, if they did not, we would
expect that scaling the thresholds for EVIC based on the mass and
extent of the object would be a reasonable first approach that could
be readily validated. While for the neural network, training with
multiple objects, and including object-related information in the
net would likely help the model to generalize to objects on which
the network was not trained.

Finally, one additional limitation is that it is not clear that the
force/torque patterns seen in these tasks, nor the torque thresholds
used, would be applicable to tasks involving higher DoF. However,
because the NNPC was trained on six DoF data, we expect that
it may generalize more easily if implemented using the additional
degrees of freedom available from the robot arms. This is something
that must be explored in future work as we extend our methods to
six DoF tasks.

6 Conclusion

In this paper, we have discussed the problems and limitations of
many current co-manipulation pHRI controllers, especially as they
relate to co-manipulation of extended objects in the ambiguous
situation of translation versus rotation tasks. We described the
key takeaways from HHI experiments gathering the force and
motion data for tasks that could inform how humans disambiguate
translation versus rotation in the plane. We then apply this data to
the development of control methods to enable human-robot dyads
to adapt to this ambiguous situation.

Developed from this data, our implementation of an Extended
Variable Impedance Control (EVIC), a novel method for planar 3

frontiersin.org


https://doi.org/10.3389/fnbot.2024.1291694
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Mielke et al.

10.3389/fnbot.2024.1291694

TABLE 3 Ratings and statistical significance of survey questions, with 5 as strongly agree and 1 as strongly disagree.

Controller EVIC vs. NNPC HHI survey
Attribute EVIC NNPC Cohen'’s d effect size Leader only
Helpful 3.88 3.88 0.5 Very small 4.52
Fast enough 3.38 3.63 0.19 Medium 4.38
Too slow (*) 3.31 2.94 0.15 Medium 2.09
Confusing (*) 3.38 3.5 0.34 Small 2.09
Correct task 3.94 3.75 0.28 Medium 4.42
Safe 4.5 4.44 0.36 Small 4.71
Correct speed 3.44 3.56 0.37 Small 4.47
Correct direction 35 3.56 0.41 Small N/A
Good force amount 3.44 2.81 0.04 Medium 4.47
Predictable 3.63 3.5 0.35 Small 4.28
Better than alone 35 3.56 0.38 Small 4.38
Equal share 3.75 3.5 0.15 Medium 4.23

Bold numbers indicate a preference between EVIC and NNPC for the specified attribute. Starred (*) attributes indicated a desire to minimize values.

DoF co-manipulation of extended objects, has certain advantages
over standard Variable Impedance Control, as well as Bi-Manual
Variable Impedance Control, an extension of a controller from
related work. Furthermore, we have shown that human intent can
be estimated accurately from the previous motion of the object
that is being co-manipulated and that an RNN (coupled with basic
motion controller to make a NNPC) with velocity inputs is capable
of capturing human intent in the form of velocity estimation.

We found that NNPC outperformed EVIC in all metrics
considered and that both were comparable to blind-folded human-
human dyads in terms of completion time. Although NNPC
was the superior controller based on performance, participants
preferred EVIC, claiming they felt it was safer, less confusing, and
more predictable (although not at high enough levels to establish
significance). We conclude that NNPC sacrifices some intuition
for performance, but since the added performance capabilities
are unfamiliar to human partners, future users may feel less
comfortable than with the force-based EVIC.
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