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Abstract: Maleimides serve as crucial components in various synthetic processes and are of significant
interest to researchers in bioorganic chemistry and biotechnology. Although thermal reactions
involving maleimides have been studied extensively, light-mediated reactions with maleimides
remain relatively underutilized. This review focuses on understanding the behavior of maleimides in
their excited state, particularly their role as synthetic scaffolds for excited-state reactions. Specific
emphasis is placed on the diverse photoreactions involving maleimides and photophysical evaluation
from our research group.
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1. Introduction
Light-driven [2 + 2] cycloaddition reactions continue to attract the attention of chemists

with varied scientific interests as they enable easy access to a cyclobutane core [1–3]. An
attractive feature that adds complexity to these reactions is the generation of potential stere-
ogenic centers [4–6]. Historically, [2 + 2] photodimerization reactions involving identical
olefins laid the groundwork for [2 + 2] photocycloaddition involving two different alkene
partners, leading to a cyclobutane ring [7–14]. Unlike thermal reactions, in photochemical
transformations, reaction control in isotropic media is dictated by the short excited-state
lifetime(s) of the chromophore. This places significant limitations on controlling the stereo-
chemical outcome during the reaction under ambient conditions [3]. One of the approaches
that has been quite successful involves the use of organized media where the confinement
of excited chromophores lends a hand in controlling reactivity and selectivity [15–17]. The
knowledge gained in reaction control by confinement led to the development of various
catalytic approaches for asymmetric [2 + 2] photocycloadditions [4–6,18,19]. In this regard,
our group has utilized the strategy of employing restricted bond rotations in atropisomeric
chromophores to control reactivity and selectivity in solution at ambient conditions [20,21].
Recently, we uncovered a new excited-state reactivity of methyl-substituted maleimide that
underwent a photo-ene reaction instead of the traditional [2 + 2] photocycloaddition with
different alkene partners [22]. This observation motivated us to evaluate the [2 + 2] photocy-
cloaddition of atropisomeric phenyl maleimide 1 with substituted alkenes 2 (Scheme 1) to
study the influence of restricted bond rotations on intermolecular transformations. Herein,
we disclose a comprehensive overview of the photochemical reactivity developed in our
group leading to chemo-, regio-, and stereoselective [2 + 2] photocycloaddition featuring
diverse maleimide scaffolds [3,22–25].
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strated a viable pathway to access stereo-enriched cyclobutanes via atrop- and regioselec-
tive intermolecular [2 + 2] photocycloaddition with atropisomeric phenyl-substituted ma-
leimide (1) and olefins (2) as coupling partners (Scheme 1).  

Axial chirality in maleimide 1 arises due to N–C(aryl) bond rotation featuring high 
free energy for the racemization barrier (∆G‡rac = 29.9 kcal/mol; krac@70 °C = 6.1 × 10−7 s−1) 
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Scheme 1. [2 + 2] Photocycloaddition reaction of maleimide with olefin.

2. Light-Mediated Photoreactions of Maleimides
2.1. Atrop- and Regioselective [2 + 2] Photoycloaddition

The concerted [2 + 2] cycloaddition reaction between two alkene partners leading to
cyclobutane is a thermally forbidden process. To address this limitation, light-initiated
[2 + 2] cycloaddition to access cyclobutanes has attracted the attention of various research
groups [4,6,18,19,21]. An additional feature of the [2 + 2] photocycloaddition process is that
it provides access to four stereogenic centers in the photoproduct. We have demonstrated
a viable pathway to access stereo-enriched cyclobutanes via atrop- and regioselective
intermolecular [2 + 2] photocycloaddition with atropisomeric phenyl-substituted maleimide
(1) and olefins (2) as coupling partners (Scheme 1).

Axial chirality in maleimide 1 arises due to N–C(aryl) bond rotation featuring high free
energy for the racemization barrier (DG‡

rac = 29.9 kcal/mol; krac@70 �C = 6.1 ⇥ 10�7 s�1) [20].
This high barrier for racemization enabled the successful induction of chirality in the
cyclobutane system leading to stereo-enriched photoproduct 3a–d formation (Scheme 2) [3].
The isolated yield in the system varied from 42% to 78% with a diastereomeric ratio
varying from 1:0.2 to 1:0.02. For atropoisomeric systems, the enantiomeric excess in the
photoproduct was >95%.
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To rationalize the observed reactivity and selectivity in maleimide 1, mechanistic
investigation using laser flash photolysis was performed. As the reaction was performed
under sensitized irradiation conditions using thioxanthone (Tx) as the triplet sensitizer,
the excited-state quenching dynamics of Tx with maleimides was performed. The triplet-
excited 3Tx* was quenched by 1 at the near-diffusion control rate that was reflected by the
bimolecular quenching rate (kTx

q = 8 ± 0.1 ⇥ 109 M�1 s�1), indicating the feasibility of triplet
energy transfer (TEnT) from the excited-state thioxanthone photocatalyst to ground-state
maleimide 1 (Figure 1). This conclusion was again supported by plotting the decay kinetics
of 3Tx* alongside the rising kinetics of 31* that occurred with the same rate. Hence, a
plausible mechanism was proposed in which 31* was generated via triplet energy transfer
(TEnT). The triplet maleimides reacted with alkenes with bimolecular rate constants that
was dependent on the type of alkenes. For mono-substituted alkene 2a, the bimolecular
rate constant for the quenching of 31* was (k2a

q ) 1.3 ± 0.1 ⇥ 106 M�1 s�1, while for the
other alkenes, it varied from 3 ± 0.3 ⇥ 107 M�1 s�1 (for tetra-substituted alkene 2d) to
5 ± 0.5 ⇥ 107 M�1 s�1 (for di-substituted alkene 2b).
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Based on the photophysical studies (Figure 1), a mechanistic rationale for the ob-
served reactivity and selectivity was proposed featuring triplet-excited-state maleimide 
31*. This triplet maleimide 31* reacted with alkenes leading to the observed reactivity and 
selectivity in the [2 + 2] photocycloaddition reaction (Scheme 3). For simplicity, alkene 2b 
is depicted as an example which, upon reaction with 31*, generates triplet 1,4–biradicals t–

Figure 1. Photophysical studies featuring maleimide 1 with various alkenes 2a–d showcasing
an energy transfer mechanism from thioxanthone sensitizer. (A) Determination of the quenching
rate constant kq of quenching of thioxanthone (Tx) triplet states by 1 using laser flash photolysis.
(B) Transient absorption spectra after laser flash photolysis of Tx in the presence of 1 (0.1 mM)
monitored 0–3 µs (blue) and 5–9 µs (red) after the laser pulse (�ex = 355 nm, 7 ns pulse width)
of argon-saturated MeCN. (C) Kinetic traces for LFP experiments showcasing the decay of 3Tx*

monitored at 620 nm (blue) and formation of 31* monitored at 400 nm (red). (D) Determination of the
bimolecular quenching rate constant kq for quenching of 31* by various alkenes 2a–2d using laser
flash photolysis. Figure adapted from reference [3].

Based on the photophysical studies (Figure 1), a mechanistic rationale for the observed
reactivity and selectivity was proposed featuring triplet-excited-state maleimide 31*. This
triplet maleimide 31* reacted with alkenes leading to the observed reactivity and selectivity
in the [2 + 2] photocycloaddition reaction (Scheme 3). For simplicity, alkene 2b is depicted as
an example which, upon reaction with 31*, generates triplet 1,4–biradicals t–1,4BR–2b and t–
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1,4BR–2b’, because the stability of t–1,4BR–2b was likely preferred (tertiary radical centers)
via t–1,4BR–2b’ featuring secondary radical centers. The triplet t–1,4BR–2b diradical
intersystem crossed to form the corresponding singlet biradical s–1,4BR–2b enroute to the
formation of the observed photoproduct 3b. Thus, the stability of the biradicals controls
the formation of the regio-isomeric photoproduct in the system.
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2.2. Atrop-Selective Intramolecular [2 + 2] Photocycloaddition of Maleimides
As part of transferring chirality from the excited state, our group investigated a study

on atroposelective intramolecular [2 + 2] photocycloaddition in maleimide chromophores
4 (Scheme 4). By introducing an alkenyl 4–carbon (butenyl) tether/pendant, it resulted
in the exclusive formation of the [2 + 2] photoproduct, demonstrating excellent control
over the reactivity. To further advance the atropisomeric design, the strategy was extended
to introduce an ether tether (i.e., oxy-allyl chain), which once again resulted in the [2 +
2] photoproduct exclusively. Based on extensive photophysical investigation, this study
revealed that the reaction proceeded via a triplet excited state generated either via direct
irradiation followed by intersystem crossing or via triplet sensitization generating the triplet
maleimide 34*. This triplet-excited maleimide led to exo–5 and endo–6 photo-adducts with
varying enantiomeric excess (>98% ee) for all the substrates studied. Although excellent
enantiomeric excess was observed in the photoproduct, the diastereomeric ratio in the
product mainly depended on the substitution of the maleimide ring and the alkenyl tether.
Based on scrambling experiments of the alkenyl tether on maleimides, they suggested that
the external bond in the cyclobutane formed initially, followed by the recombination of the
1,4 biradical, leading to cyclobutane adducts (Scheme 4) [23].

2.3. [5 + 2] Photocycloaddition of Maleimides
As part of the investigation of excited-state maleimides, our group also evaluated the

possibility of [5 + 2] photocycloaddition. Alkenyl-substituted maleimides 7 underwent
[5 + 2] photocycloaddition enroute to the formation of products 8/9. An atroposelective
variant of the photoreaction was also developed for the observed [5 + 2] photocycloaddition
leading to 8/9 with excellent ee values (>98%). It was observed that the electron-donating
and -withdrawing R1 substituent gave the corresponding azepinone-based products 8
and 9, respectively. The reversal of product selectivity was rationalized based on the
stabilization of the zwitterionic forms (ZW–7 and ZW–70) of maleimide (Scheme 5) [24].
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2.4. Photo-ene Reaction of Maleimides
While [2 + 2] photocycloaddition is a very known process initiated by light, under

thermal conditions, alkenes with active allylic hydrogens undergo an ene reaction at ele-
vated temperatures (typically in excess of 130 �C in the absence of any catalyst). Research
from our group demonstrated that one can perform a photo-ene reaction by circumventing
the known [2 + 2] photocycloaddition process. The photoreaction of maleimide 10 (citra-
conicimide) with various substituted alkenes resulted in either [2 + 2] photocycloaddition
or photo-ene reaction (Scheme 6) [22]. The photoreaction of 10 with various mono- and
di-substituted alkenes gave the expected [2 + 2] photocycloaddition products 11 and 12.
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On the other hand, the photoreaction of 10 with tri- and tetra-substituted alkenes gave the
novel photo-ene product 13 with isolated yields varying from 41% (at room temperature)
to 83% (�78 �C). In addition, at low temperature, the diastereomeric ratio was 97:3. Based
on detailed photophysical studies, the nature and the lifetime of the intermediates were
found to be crucial in determining the photo-ene vs. [2 + 2] photocycloaddition pathways.
The stability of the intermediates in turn can be fine-tuned by substituents on the alkene
reaction partners, offering new venues to explore its potential for diverse photoreactions,
such as synergistic-excited-state photocatalysis [22].
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2.5. Diversity in Photoreactions of Maleimides—An Overview
Since the early 1960s, multiple research groups have investigated the photodimeriza-

tion of maleimide and published some of the earliest findings on maleimide photochemistry.
In 1982, Bong et al. conducted a study on the photodimerization of maleimide. They found
that subjecting maleimide to UV light (~350 nm) for 10 h, either directly or through sensi-
tized irradiation using benzophenone or acetophenone as a sensitizer, resulted in efficient
photoreaction (Scheme 7a) [26]. In 2001 and 2008, Booker–Milburn employed maleimides
for [2 + 2] and [5 + 2] photocycloadditions to synthesize intricate organic molecules with
stereogenic centers such as perhydroazaazulene or stamina alkaloids. This research il-
lustrates that N–alkenyl maleimides demonstrate varying reactivity in sensitized and
non-sensitized reactions due to the participation of different bonds, such as C–N and C–C
bonds within the same molecule. This led to the formation of different products, including
7,5-fused azepines 20 or cyclobutanes 21, through two distinct modes of photocycloaddition:
[5 + 2] photocycloaddition [27] and [2 + 2] photocycloaddition [28] (Scheme 7b,c).

In 2023, Kokotos and coworkers [29] investigated the diverse reactivity of maleimide
by employing a sensitizer and manipulating the excited state to control the outcome of
the product selectivity. [2 + 2] Photocycloadditions of N–alkyl maleimides 22 reacted with
alkenes when directly exposed to 370 nm UV light, whereas N–aryl maleimides 23 required
a sensitizer (Tx) and 440 nm visible light for the reaction (Scheme 8). Quantum yield mea-
surements revealed that N–aryl maleimides had a zero-triplet quantum yield, necessitating
a photosensitizer to transfer triplet energy to the substrate for product formation. On the
other hand, the triplet quantum yield of N–alkyl maleimides improved in the presence
of TFA or HFIP, enabling product formation through direct irradiation. This showed the
uniqueness of the maleimide scaffold in dictating photochemical reactivity.
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There is extensive research on the use of maleimides as photoinitiators for photopoly-
merization due to their unique properties in generating radicals and initiating polymeriza-
tion. Decker et al. [30] investigated the photopolymerization of a diacrylate monomer by
employing maleimides (N–aliphatic maleimide) as photoinitiators to initiate chain-growth
polymerization. They showed that the maleimides unlike common photoinitiators could act
both as a polymerizable monomer and as an initiator, particularly with vinyl ethers, acry-
lates, and styrene oxides. Their preliminary studies suggested that excited-state maleimides
were effective as H-abstracting agents, generating radical species that was responsible for
initiating polymerization. This unique dual function of maleimides has increased interest
in maleimides within the UV curing field.

3. Conclusions
Maleimides are versatile scaffolds that have been widely employed in synthetic and

materials chemistry. Research from our group and others have demonstrated the rich
excited-state chemistry of maleimides that can be exploited for various applications. As
maleimides have been widely used in pharmaceutical and materials applications and are
also well-established building blocks in synthetic organic chemistry, their excited-state
chemistry will be of contemporary interest to chemists across disciplines [31,32]. We have
also discussed various maleimide-based reactions from other research groups, highlighting
their diverse reactivity. Furthermore, we included the role of maleimides as photoinitiators
for photopolymerization, using specific examples to illustrate their utility in initiating
polymerization reactions. The prevailing gap in the excited-state chemistry of maleimides
coupled with their diverse applications are fertile grounds for exploration in basic and
applied research.
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