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Abstract—Since the terahertz frequency band (0.1-1 THz)
has attracted considerable attention for the upcoming sixth-
generation (6G) wireless communication systems, accurate mod-
els for multipath propagation in this frequency range need to be
established. Such models advantageously use the fact that multi-
path components (MPCs) occur typically in clusters, i.e., groups
of MPCs that have similar delays and angles. In this paper, we
first analyze the limitations of a widely used clustering algorithm,
Kernel-Power-Density (KPD), in evaluating an extensive THz
outdoor measurement campaign at 145-146 GHz, particularly
its inability to detect small clusters. We introduce a modified
version, which we term multi-level KPD (ML-KPD), iteratively
applying KPD to detect whether a cluster determined in the
previous round is made up of multiple clusters. We first apply
the method to synthetic channels to demonstrate its efficacy and
select suitable values for the adaptive hyperparameters. Then,
multi-level KPD is applied to our channel measurements in line-
of-sight (LOS) and non-line-of-sight (NLOS) environments to
determine statistics for the number of clusters and the cluster
spreads.

Index Terms—Channel measurement, clustering, device-to-
device, outdoor, THz

I. INTRODUCTION

A number of new and upcoming applications require data
rates that are beyond the capabilities of our current fifth-
generation (5G) wireless communication systems. The use of
spectrum in the terahertz' frequency band (0.1-1 THz) is a
promising avenue towards meeting those requirements [1],
[2]. Since both the fundamental performance limits and the
practical performance of any wireless system are determined
by the characteristics of the channels it operates in, we need
new channel models that accurately reflect these character-
istics in the new frequency bands. As with any channel
model, they need to be based on, or verified by, accurate
measurements (i.e., channel sounding) [3], [4]. Over the past
years, several such measurements have been performed [5].

These measurements (e.g., [6], [7]) show that—similar to
lower frequency bands—the multipath components (MPCs) in
THz channels occur in clusters, i.e., a group of MPCs that
have similar delay and angular parameters, while significantly
different from those of MPCs not part of the cluster.> Cluster-
ing not only simplifies the channel model, allowing to factor

The 0.1-0.3 THz range is also often called the sub-THz regime. We use
here THz for the whole band for the purpose of more compact notation.

2This is the common definition of clusters both in the scientific literature
since at least the 1980s [8], and in standardized models such as the
COST 259/273/2100 model [9], [10]. The 3GPP channel model [11] uses
a somewhat different definition in which all MPCs in a cluster have exactly
the same delay and only the angles are different (more recent version includes
a splitting of the delays into two different values).

the MPC statistics into intra- and inter-cluster statistics, but
also describes an effect that is important for system behavior,
determining, e.g., limitations of analog beamforming.

Because of its importance, a wide variety of clustering
algorithms have been developed, often drawing inspiration
from related problems in computer science [3]. The most
popular ones include the K-Power-Means [12], and Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) [13] algorithm. More recently, the Kernel-Power-
Density (KPD) algorithm [14] was proposed. It has the
advantage that—in contrast to K-Power-Means—it depends nei-
ther on the initialization of clusters, nor location and the
number of clusters, and significantly outperforms DBSCAN
[14] in terms of widely used quality criteria for clustering (F-
measure and silhouette coefficient). However, the performance
of KPD clustering relies on the hyperparameter selection,
especially the number of nearest neighbors taken into account
in the density computation procedure. As we observed during
an analysis of a large-scale outdoor channel measurement
campaign [15], it tends to insufficiently separate MPCs from
different clusters.

Our main contributions in this paper are: (i) we demon-
strate the limitations of KPD in analyzing our real-world
outdoor device-to-device (D2D)? measurement campaigns at
145 GHz; (ii) we develop a new algorithm, multi-level KPD,
that overcomes these limitations; and (iii) we use our new
algorithm to analyze the cluster statistics, in particular the
number of clusters, cluster delay spread (DS), and cluster
angular spread (AS), of our measurements.

While terahertz frequencies offer larger bandwidth, we con-
jecture that the clustering behavior observed in THz channels
is not fundamentally different from that in lower-frequency
bands. The main motivation for focusing on THz channels
in this paper is the real-world measurements analyzed here.
The multi-level KPD algorithm is designed to overcome
limitations in existing methods and improve cluster analysis
in a variety of scenarios and frequency bands.

II. MEASUREMENTS, SIGNAL MODEL, AND MPC
EXTRACTION
A. Measurement Locations
For the convenience of the reader, we briefly summarize the

measurement campaign; a detailed sounder and measurement

3In military communication, D2D communication is particularly important
for direct communications between soldiers, or between combat vehicles.



description can be found in [15]. The measurements of both
line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios
were conducted in two distinct locations: (i) an intersection
of two roads, and (ii) a quad surrounded by vegetation and
buildings. The intersection has buildings on three corners,
and a sport playground at the remaining one, with trees and
bushes nearby and along the streets. The quad environment
on the campus of USC is surrounded by multi-story concrete
buildings. It includes an open area interspersed with concrete
pillars and a courtyard with tables, umbrellas, lamp poles,
bushes, and a fountain. The measurements were done for
a D2D setup, with both transmitter (Tx) and receiver (Rx)
antennas about 1.5 m above ground. In total, there are 21
LOS and 17 NLOS Tx/Rx location pairs.

B. Signal Model

The channel response can be expressed as the superposition
of MPCs that in the far field of antennas can be modeled
as planar waves [16]. The MPCs are characterized by a set
of parameters, i.e., complex amplitude, direction of arrival
(DoA), direction of departure (DoD), and propagation delay.
The multiple-input multiple-output (MIMO) transfer function
matrix of the channel between N1 Tx antennas and Ng Rx
antennas at a specific frequency point, fi, can be expressed
in terms of these MPC parameters [4]. Note that this matrix
is actually observed during measurements, and its evaluation
by Fourier methods has a resolution that is limited by the
aperture in the different domains (bandwidth, array apertures
at Tx and Rx). With sufficiently high resolution in all para-
metric domains [14], the formation of clusters in the different
parametric domains can also be observed in this matrix [17];
alternatively, high resolution parameter estimation can provide
appropriate resolution [4]. Therefore, the clustered signal
model can be expressed as

N¢c N.
H(fi) =D > YepBr(Dr,ep)&T (Qr,ep)e 7> 7r 4N,

c=1p=1
)]

where v, Qr, Qr, and 7 are complex amplitude, DoA, DoD
and propagation delay, respectively, of the p-th MPC in the
c-th cluster. N is the total number of clusters existing in the
channel, and NV, refers to the number of MPCs within the c-th
cluster. The calibrated array patterns, gg(Qr) € CV**! and
gr(Qr) € CNtx1 express the array response in a certain
direction. The additive noise, N € CVre*Nt _ follows a zero-
mean circularly symmetric complex Gaussian distribution and
is independent between antennas and frequencies.

C. MPC Tap Extraction

For the current measurements, the transfer function ma-
trix is measured by sweeping the frequency using a Vector
Network Analyzer (VNA), while horn antennas at Tx and
Rx are rotated by precision stepper motors into different
directions, scanning the azimuth with spacing 10°. While
other measurement principles can be applied as well [3], the
subsequent processing remains the same.

Each element of the channel matrix in (1) is the convolu-
tion between MPCs and the antenna array responses at the

corresponding directions, which cannot be easily decoupled
(high-resolution parameter estimation for this decoupling will
be subject of our future work). Consequently, the angle-delay
power spectrum (ADPS) is regarded as the indicator in this
paper on which delay and angular bins the MPC clusters
locate at.

We first form the ADPS on a grid in parameter space, which
can be expressed as

1 A
Pppps(T, ¢r, ¢1) = N > H(gr, ¢rs fi)e ™ F 72, (2)
K

where 7, ¢r and ¢ are the grid-of-interest for delay, az-
imuthal DoA and DoD, respectively. Considering a rotating
horn channel sounder is deployed for the measurement cam-
paign, the observation, H(¢r, ¢T; fi), denotes the measured
impulse response when the horn antenna rotates and steers
towards the direction ¢g and ¢r at Rx and Tx ends, re-
spectively, which coincide with the angular grids. Since the
measurement is conducted for D2D scenario where Tx and
Rx are at the same height, only azimuthal angles are taken
into account for both DoA and DoD.

However, the ADPS may deviate from the true MPC
magnitudes, due to the Fourier grid quantization error when
the grids do not coincide with MPCs. The quantization error
may lead to errors in both cluster visibility and the modeling
statistics. While the angular Fourier grids are fixed due to
the selection of {¢r} and {¢dT}-Ngr and Nt uniformly
distributed directions on [0, 27), respectively—the delay grids
can be over-sampled by the factor of N,¢ enabling higher
delay resolution. This results in an improved angle-delay
power spectrum (IADPS), Pjappg € RN XNrXNT a5 the
maximal value among every N,s consecutive points in the
delay domain, to overcome the problem that the true loca-
tions of ADPS peaks sit between the original Fourier delay
gridpoints.

Since Fourier analysis cannot distinguish between signal
and noise, amplitude thresholding is required. For a fair
comparison of the different ADPSs, we limit the results to the
same dynamic range. The dynamic range is determined by the
peak amplitude on one hand, and a noise thresholding level
(chosen here to be 12 dB above the average noise power level,
to achieve a probability of misinterpreting a noise peak as an
MPC is 10~7 [18]). We then find that among all the measured
ADPSs (both LOS and NLOS), the minimum dynamic range
is 35 dB, which is thus the value we use for all thresholding
all ADPSs, i.e., the subset of Fourier gridpoints whose power
is within this dynamic range, named henceforth MPC taps, is
extracted to build up the MIMO channel model.

III. CLUSTERING
A. Kernel Power Density Method

We next summarize the KPD algorithm [14]. It consists of
three main steps.

The first step is the calculation of absolute and relative
density of MPC taps. The calculation of the absolute density
of a certain tap relies on the total distance measured to its K
nearest neighboring taps weighted by a Gaussian kernel in the
delay domain, Laplacian kernel in the angular domain, and
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Fig. 1. Clustering comparison of 15-meter LOS outdoor measurement between (a) KPD and (b) multi-level KPD (ML-KPD).
Several small clusters, which are observed but not correctly grouped, are clustered and separated properly.
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Fig. 2. The total power at delay and DoD angular bin. The
KPD clustering result does not match the uni-modal model.

exponentially weighted MPC power [14]. Then the relative
density is determined by normalizing by the maximal value
among all its nearest components.

In the following step, the taps whose relative density is
1, i.e., whose “importance” is maximum compared to its
neighbors, will be identified as key points. Considering that
the density is higher at the cluster center and lower close
to the cluster boundary, the local maxima of taps are the
candidates for cluster centroids. Therefore, the key points
are automatically initialized as centroids, after which all the
points are assigned to one of the key points with the maximal
MPC density.

Lastly, all the possible connections between each pair of
clusters are explored. If one of the connections between two
clusters, measured by the relative density, is greater than a
pre-defined threshold, then the clusters can be merged to form
a bigger cluster due to the strong connectivity. The clusters
remaining after this last step are the final results. The pseudo-
code of ML-KPD can be found in Alg. 1.

An example of clustering with KPD is shown in Fig. 1(a).

Algorithm 1: Multi-level KPD clustering method

1 function ML-KPD({7}, {¢r}, {¢T})

K nearest neighbors, K = \/M/2;

Cluster using KPD;

Check separability among Nc clusters;

while clusters can be split do
Update number of neighbors, K = /M. /2;
Cluster using KPD;
Check its separability;

R - N R e

9 return All cluster labels

Here, we analyze a LOS measurement with 15 m distance
between Tx and Rx. Visual inspection demonstrates that the
cluster represented by yellow markers (identified in the red
circle) is a combination of one big cluster and several small
clusters with significant separation in delay and angles. To
further analyze this cluster, the powers in each delay- and
DoD (as an example for the directional distribution) angular-
bin are shown in Fig. 2, and denoted by a dashed line
with cross markers. It is widely accepted that intra-cluster
spectra have a simple and in particular unimodal shape:
namely the power as a function of delay follows a single-
sided exponential decay, and the angular model is assumed to
be either Laplace or von Mises distribution. However, for the
intra-cluster power spectra of the cluster extracted by KPD,
Fig. 2 shows multiple peaks in both delay and DoD domain.
This, in turn, indicates the presence of multiple clusters,
confirming the impression from visual inspection of Fig. 1(a).
Therefore, this phenomenon verifies the practical limitation of
KPD clustering method and motivates its improvement, which
will be introduced in the next subsection.

B. Multi-level KPD

The fundamental reason for the aforementioned mis-
classification phenomenon can be explained as follows.
Stronger clusters, measured by total power, may have larger
delay and angular spread. In contrast, it is possible to select a
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Fig. 3. Clustering comparison of 23-meter NLOS outdoor measurement between (a) KPD and (b) ML-KPD.
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Fig. 4. The detectability comparison between KPD and
ML-KPD.

smaller number of taps for weaker clusters. Considering the
mechanism of the KPD clustering method, if the number of
the selected taps of a certain cluster is less than K, its relative
density may be “contaminated” by the surrounding clusters.
In particular, the relative density might be significantly biased
when the weak cluster is closer to one of the stronger clusters.
Consequently, it is possible that no key points are initialized
for this cluster, leading to an erroneous assignment of the
cluster components.

Based on the observation and the analysis, we propose a
modification of the KPD method to solve the issue, which
we call ML-KPD. In this method, KPD will be deployed
multiple times to separate a “bulky” cluster and split it into
several smaller clusters that satisfy the assumed model. At
different levels of the KPD implementation, the values of the
nearest neighbors used in computing densities, &', may shrink
to improve the detectability for smaller clusters.

Firstly, all the extracted taps are fed into KPD methods
to cluster into well-separated clusters with the empirical
selection K = \/M/2, where M is the total number of
extracted MPC taps. If there are no small clusters within each
cluster based on observation, then it is the final result for

clustering.

If the smaller clusters are observed in a certain cluster with
M, taps within, another round of clustering with the KPD
method can be applied to it only. Since the current target is
the partitioning of a single cluster, the number of the nearest
neighbor can be updated by applying a new round of KPD,
K’ = /M./2, which may enable the detection of smaller
clusters. The whole process is stopped until all the clusters
are explored and properly grouped. The additional complexity
due to the multiple levels of KPD clustering deployment is
upper-bounded by the original KPD complexity multiplied
by the number of levels, though in the cases we analyzed the
increase in runtime was less than a factor of 3.

Empirically, it usually takes 3 to 4 rounds or levels of KPD
application until convergence, i.e., clusters are not further split
up. In Fig. 1(b), a successful partition of a big cluster in the
red circle in the same LOS measurement location is shown,
leading to 5 new sub-clusters. The power in each delay and
angular bin for each sub-cluster, denoted by colored circle
markers, is compared with the KPD-grouped cluster in Fig.
2. Four of the five clusters satisfy the uni-modal model. For
sub-cluster 1, we observe a second peak in both delay and
DoD. This may be attributed either to the fading status or
could indicate that a further subdivision might be desirable
(and the measurements do not allow a distinction of which
of those explanations is “true”). However, due to the strong
connectivity in delay and angle, we do not consider such a
further partition.

Another example comparing the clustering results from
KPD and ML-KPD applied to a measurement with Tx and
Rx at a distance of 23 m, for a NLOS measurement, is shown
in Fig. 3(a) and 3(b).

As measurements do not provide a “ground truth” to allow
quantitative assessment of KPD versus multi-level KPD, we
further conduct a set of comparison experiments on 4410
different synthetic channels. There are two fixed clusters
existing in the channel, whose centroids are at 10-th delay bin
and 0 deg in the azimuth, denoted by (10, 0°), and (30, 300°),
respectively, with random disturbance around them. The third
cluster’s center is varying among the synthetic channels,
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whose delay with respect to the first cluster is ranging from
0 to 20 delay bins, and the angular spacing ranges from 0
to 7 horn antenna half-power beamwidth (approximately 90
degree). The MPC magnitudes for three clusters are 0, -3,
and -10 dB, respectively. With the same MPC tap extraction
procedure mentioned in Sec II C, the experiments are used to
compare the detectability of clustering methods with different
parametric separations.

In Fig. 4, the clustering from different methods are shown.
The blue dots stand for the cases when three clusters are
properly detected. When the “moving” cluster is getting closer
to the first cluster in at least one parametric domain, more
cases are observed that the clusters are merged with the KPD
method, denoted by the red “x” markers. For those cases,
we applied with ML-KPD to split up the merged cluster. If
all clusters are then separated successfully, a black circle is
placed. From Fig. 4, we can observe that the detectability of
clusters is significantly improved by enabling the additional
split-up with adaptive values of K. When two clusters are
close enough in all domains, it is almost impossible to
separate them, which meets the intuitive expectation.

IV. CLUSTER STATISTICS OF MEASURED D2D CHANNELS

In this section, we present the computed cluster statistics
from the D2D outdoor measurement campaign described in
Sec. II.A. After the MPC tap extraction from the improved
joint beamforming spectrum that is described in Sec II.C, the
clustering is conducted using the KPD and ML-KPD method.
The statistics of the number of clusters, and of the cluster
dispersion, more precisely the intra-cluster rms spreads, in
delay and angular domain, are evaluated in this section.

The clusters are all coming from the reflections, diffrac-
tions, and scattering interacting with the measurement envi-
ronment for both LOS and NLOS scenarios, except for the
LOS component, which is without interactions. Considering
this difference in the underlying propagation mechanism, the
LOS cluster is evaluated separately, and the “LOS” scenario
excludes the LOS cluster from the computation.

A. Number of Clusters

Fig. 5 shows the cumulative distribution function (CDF) of
the number of clusters using KPD and ML-KPD clustering

----- LOS-KPD
----- LOS cluster-KPD

LOS-MLKPD
LOS cluster-MLKPD | |
== NLOS-MLKPD

0.5 1 2 5 10 20 50 100 200
delay spread [ns]

Fig. 6. The CDF of intra-cluster delay spread.

method. The number of clusters increases for both LOS and
NLOS scenarios from KPD to ML-KPD, due to the cluster
separation effected in multi-level KPD clustering. The NLOS
scenario tends to have more clusters, compared to LOS in a
similar measurement scenario with the same dynamic range
cut-off. We conjecture that this can be attributed to more
possible interactions due to the blockage of the boresight
path. We furthermore conjecture that for an equal noise floor
(instead of an equal dynamic range), the number of clusters
for LOS and NLOS would become more similar.

B. Intra-cluster Delay Spread

Intra-cluster delay spread is a statistic to describe the
temporal dispersion of rays from the same grouped MPC
cluster. The intra-cluster delay spread, DS, for cluster c is
defined as the square root of the second central moment
of the cluster delay profile [4]. In Fig. 6, the intra-cluster
delay spread from ML-KPD, denoted by solid lines, shows
a significant decrease compared to KPD (denoted by dashed
lines). This outcome, delay spread reduction, is expected, as
the larger clusters identified by KPD are further partitioned
in ML-KPD. LOS clusters have the least delay spread, which
is generally less than 3 nanosecond (ns) (approximately 1
meter), due to it containing a single dominant component, in
contrast to other clusters. Small-delay clusters can be defined
as clusters whose MPCs have similar or even the same delay
but extend out in the angular domain. It can be observed that
40% in LOS and 20% in NLOS are weak-delay clusters with
less than 0.5 ns delay spread.

C. Intra-cluster Angular Spread

Intra-cluster angular spread is another statistic that is used
to describe the dispersion of rays from the same grouped
MPC cluster. In this work, we use the unitless angular spread,
AS,, for cluster ¢ as defined by Fleury [19]. Similar to the
delay spread, intra-cluster DoA and DoD angular spread from
ML-KPD shows a significant decrease compared to KPD due
to the further split in ML-KPD as expected. In Fig. 7 and 8,
except for the LOS cluster, LOS and NLOS measurements
show almost identical angular spread when partitioned by
ML-KPD. The small-angle clusters are defined as the cluster
with similar or even the same DoA or DoD but only extending
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in the delay domain. Analysis shows that 25% in LOS and
15% in NLOS clusters are such weak-delay clusters. Both
DoA and DoD angular spread for the LOS cluster is between
0.1 and 0.2, which is approximately between 5 to 10 deg.
The LOS cluster angular spread is comparable to the half-
power beamwidth of the horn antenna, which is 13 deg [15].
Furthermore, DoA and DoD angular spread distributions are
similar, which is intuitive considering that Tx and Rx have
the same type of horn antennas, and similar surrounding
environments (due to the same height of Tx and Rx.

V. CONCLUSION

In this paper, we analyze the practical limitation of KPD
clustering in the analysis of THz D2D outdoor measurements.
Due to the fixed number of nearest neighbors in the KPD,
smaller clusters cannot be classified properly. Therefore,
we improve the ‘“detection ability” by an improved algo-
rithm, namely multi-level KPD, which applies KPD clustering
method multiple times, with adaptive nearest neighbors def-
initions. Experiments with synthetic channels, where ground
truth is available, demonstrated the superiority of our new
algorithm in resolving weak clusters. We further evaluated the
basic statistics—number of clusters in the channel, intra-cluster
delay spread, and intra-cluster angular spread—of real-world

LOS and NLOS measurements. While our results focused on
urban THz band measurements, a similar approach can be
used for any other frequency bands/scenarios.
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